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FROM THE REVIEWS OF THE FIRST EDITION:
“Tour de Force… Meyer succeeds admirably in leading the patient reader … through a presentation of the 
fundamental software development issues that is independent of any programming system, language or 
application area… Well organized and highly readable… Meyer’s high standards for precision of expression 
do not interfere with a literate style or preclude the occasional injection of humor.”

Ron Levin in Software (IEEE)
“The author believes in OOP, has the experience to know that it works, and is willing and able to show us why 
and how… The clear choice for software people who want to dive straight into object-oriented programming”

Walter Zintz in Unix World
“The book presents the concepts in an orderly manner and explains them very well. It is even more attractive 
because it presents a technique of object-oriented design.”

Pierre America in Science of Computer Programming
A whole generation was introduced to object technology through the first edition of Bertrand Meyer’s OOSC. 
This long-awaited new edition retains the qualities of clarity, practicality and scholarship that made the first an 
instant best-seller. It has been thoroughly revised and considerably expanded. No other book on the market 
provides such a breadth and depth of coverage on the most important technology in software development.
SOME OF THE NEW TOPICS COVERED IN DEPTH BY THIS SECOND EDITION:

• Concurrency, distribution, client-server and the Internet.
• Object-oriented databases, persistence, schema evolution.
• Design by contract: how to build software that works the first time around.
• A study of fundamental design patterns.
• How to find the classes and many others topics of object-oriented methodology.
• How to use inheritance well and detect misuses.
• Abstract data types: the theory behind object technology.
• Typing: role, issues and solutions.
• More than 400 references to books, articles, Web pages, newsgroups; glossary of object technology.
• And many new developments on the topics of the first edition: reusability, modularity, software quality, 

O-O languages, inheritance techniques, genericity, memory management, etc.
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Preface
B orn in the ice-blue waters of the festooned Norwegian coast; amplified (by an 
aberration of world currents, for which marine geographers have yet to find a suitable 
explanation) along the much grayer range of the Californian Pacific; viewed by some as a 
typhoon, by some as a tsunami, and by some as a storm in a teacup — a tidal wave is 
hitting the shores of the computing world. 

“Object-oriented” is the latest in term, complementing and in many cases replacing 
“structured” as the high-tech version of “good”. As is inevitable in such a case, the term 
is used by different people with different meanings; just as inevitable is the well-known 
three-step sequence of reactions that meets the introduction of a new methodological 
principle: (1) “it’s trivial”; (2) “it cannot work”; (3) “that’s how I did it all along anyway”. 
(The order may vary.) 

Let us have this clear right away, lest the reader think the author takes a half-hearted 
approach to his topic: I do not see the object-oriented method as a mere fad; I think it is 
not trivial (although I shall strive to make it as limpid as I can); I know it works; and I 
believe it is not only different from but even, to a certain extent, incompatible with the 
techniques that most people still use today — including some of the principles taught in 
many software engineering textbooks. I further believe that object technology holds the 
potential for fundamental changes in the software industry, and that it is here to stay. 
Finally, I hope that as the reader progresses through these pages, he will share some of my 
excitement about this promising avenue to software analysis, design and implementation. 

“Avenue to software analysis, design and implementation”. To present the object-
oriented method, this books resolutely takes the viewpoint of software engineering — of 
the methods, tools and techniques for developing quality software in production 
environments. This is not the only possible perspective, as there has also been interest in 
applying object-oriented principles to such areas as exploratory programming and 
artificial intelligence. Although the presentation does not exclude these applications, they 
are not its main emphasis. Our principal goal in this discussion is to study how practicing 
software developers, in industrial as well as academic environments, can use object 
technology to improve (in some cases dramatically) the quality of the software they 
produce.
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Abstract data types 
are discussed in 
chapter 6, which 
also addresses some 
of the related episte-
mological issues. 
Structure, reliability, epistemology and classification

Object technology is at its core the combination of four ideas: a structuring method, a 
reliability discipline, an epistemological principle and a classification technique. 

The structuring method applies to software decomposition and reuse. Software 
systems perform certain actions on objects of certain types; to obtain flexible and reusable 
systems, it is better to base their structure on the object types than on the actions. The 
resulting concept is a remarkably powerful and versatile mechanism called the class, 
which in object-oriented software construction serves as the basis for both the modular 
structure and the type system. 

The reliability discipline is a radical approach to the problem of building software 
that does what it is supposed to do. The idea is to treat any system as a collection of 
components which collaborate the way successful businesses do: by adhering to contracts
defining explicitly the obligations and benefits incumbent on each party.

The epistemological principle addresses the question of how we should describe the 
classes. In object technology, the objects described by a class are only defined by what we 
can do with them: operations (also known as features) and formal properties of these 
operations (the contracts). This idea is formally expressed by the theory of abstract data 
types, covered in detail in a chapter of this book. It has far-reaching implications, some 
going beyond software, and explains why we must not stop at the naïve concept of 
“object” borrowed from the ordinary meaning of that word. The tradition of information 
systems modeling usually assumes an “external reality” that predates any program using 
it; for the object-oriented developer, such a notion is meaningless, as the reality does not 
exist independently of what you want to do with it. (More precisely whether it exists or 
not is an irrelevant question, as we only know what we can use, and what we know of 
something is defined entirely by how we can use it.) 

The classification technique follows from the observation that systematic 
intellectual work in general and scientific reasoning in particular require devising 
taxonomies for the domains being studied. Software is no exception, and the object-
oriented method relies heavily on a classification discipline known as inheritance.

Simple but powerful

The four concepts of class, contract, abstract data type and inheritance immediately raise 
a number of questions. How do we find and describe classes? How should our programs 
manipulate classes and the corresponding objects (the instances of these classes)? What 
are the possible relations between classes? How can we capitalize on the commonalities 
that may exist between various classes? How do these ideas relate to such key software 
engineering concerns as extendibility, ease of use and efficiency? 

Answers to these questions rely on a small but powerful array of techniques for 
producing reusable, extendible and reliable software: polymorphism and dynamic 
binding; a new view of types and type checking; genericity, constrained and 
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Chapters 1 to 2.

Chapters 3 to 6.

Chapters 7 to 18.

Chapters 19 to 29.

Chapters 30 to 32.
unconstrained; information hiding; assertions; safe exception handling; automatic garbage 
collection. Efficient implementation techniques have been developed which permit 
applying these ideas successfully to both small and large projects under the tight 
constraints of commercial software development. Object-oriented techniques have also 
had a considerable impact on user interfaces and development environments, making it 
possible to produce much better interactive systems than was possible before. All these 
important ideas will be studied in detail, so as to equip the reader with tools that are 
immediately applicable to a wide range of problems. 

Organization of the text

In the pages that follow we will review the methods and techniques of object-oriented 
software construction. The presentation has been divided into six parts. 

Part A is an introduction and overview. It starts by exploring the fundamental issue 
of software quality and continues with a brief survey of the method’s main technical 
characteristics. This part is almost a little book by itself, providing a first view of the 
object-oriented approach for hurried readers. 

Part B is not hurried. Entitled “The road to object orientation”, it takes the time to 
describe the methodological concerns that lead to the central O-O concepts. Its focus is on 
modularity: what it takes to devise satisfactory structures for “in-the-large” system 
construction. It ends with a presentation of abstract data types, the mathematical basis for 
object technology. The mathematics involved is elementary, and less mathematically 
inclined readers may content themselves with the basic ideas, but the presentation 
provides the theoretical background that you will need for a full understanding of O-O 
principles and issues. 

Part C is the technical core of the book. It presents, one by one, the central technical 
components of the method: classes; objects and the associated run-time model; memory 
management issues; genericity and typing; design by contract, assertions, exceptions; 
inheritance, the associated concepts of polymorphism and dynamic binding, and their 
many exciting applications. 

Part D discusses methodology, with special emphasis on analysis and design. 
Through several in-depth case studies, it presents some fundamental design patterns, and 
covers such central questions as how to find the classes, how to use inheritance properly, 
and how to design reusable libraries. It starts with a meta-level discussion of the 
intellectual requirements on methodologists and other advice-givers; it concludes with a 
review of the software process (the lifecycle model) for O-O development and a 
discussion of how best to teach the method in both industry and universities.

Part E explores advanced topics: concurrency, distribution, client-server 
development and the Internet; persistence, schema evolution and object-oriented 
databases; the design of interactive systems with modern (“GUI”) graphical interfaces.
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Chapters 33 to 35.

Chapter 36.

Appendix A.

See “About the 
accompanying CD-
ROM”, page xiv.
Part F is a review of how the ideas can be implemented, or in some cases emulated, 
in various languages and environments. This includes in particular a discussion of major 
object-oriented languages, focusing on Simula, Smalltalk, Objective-C, C++, Ada 95 and 
Java, and an assessment of how to obtain some of the benefits of object orientation in such 
non-O-O languages as Fortran, Cobol, Pascal, C and Ada. 

Part G (doing it right) describes an environment which goes beyond these solutions 
and provides an integrated set of tools to support the ideas of the book.

As complementary reference material, an appendix shows some important reusable 
library classes discussed in the text, providing a model for the design of reusable software. 

A Book-Wide Web

It can be amusing to see authors taking pains to describe recommended paths through their 
books, sometimes with the help of sophisticated traversal charts — as if readers ever paid 
any attention, and were not smart enough to map their own course. An author is permitted, 
however, to say in what spirit he has scheduled the different chapters, and what path he 
had in mind for what Umberto Eco calls the Model Reader — not to be confused with the 
real reader, also known as “you”, made of flesh, blood and tastes.

The answer here is the simplest possible one. This book tells a story, and assumes 
that the Model Reader will follow that story from beginning to end, being however invited 
to avoid the more specialized sections marked as “skippable on first reading” and, if not 
mathematically inclined, to ignore a few mathematical developments also labeled 
explicitly. The real reader, of course, may want to discover in advance some of the plot’s 
later developments, or to confine his attention to just a few subplots; every chapter has for 
that reason been made as self-contained as possible, so that you should be able to intake 
the material at the exact dosage which suits you best.

Because the story presents a coherent view of software development, its successive 
topics are tightly intertwined. The margin notes offer a subtext of cross references, a Book-
Wide Web linking the various sections back and forth. My advice to the Model Reader is 
to ignore them on first reading, except as a reassurance that questions which at some stage 
are left partially open will be fully closed later on. The real reader, who may not want any 
advice, might use the cross references as unofficial guides when he feels like cheating on 
the prearranged order of topics.

Both the Model Reader and the real reader should find the cross references mostly 
useful in subsequent readings, to make sure that they have mastered a certain object-
oriented concept in depth, and understood its connections with the method’s other 
components. Like the hyperlinks of a WWW document, the cross references should make 
it possible to follow such associations quickly and effectively.

The CD-ROM that accompanies this book and contains all of its text provides a 
convenient way to follow cross references: just click on them. All the cross references 
have been preserved.
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The notation

In software perhaps even more than elsewhere, thought and language are closely 
connected. As we progress through these pages, we will carefully develop a notation for 
expressing object-oriented concepts at all levels: modeling, analysis, design, 
implementation, maintenance.   

Here and everywhere else in this book, the pronoun “we” does not mean “the 
author”: as in ordinary language, “we” means you and I — the reader and the author. In 
other words I would like you to expect that, as we develop the notation, you will be 
involved in the process. 

This assumption is not really true, of course, since the notation existed before you 
started reading these pages. But it is not completely preposterous either, because I hope 
that as we explore the object-oriented method and carefully examine its implications the 
supporting notation will dawn on you with a kind of inevitability, so that you will indeed 
feel that you helped design it. 

This explains why although the notation has been around for more than ten years and 
is in fact supported by several commercial implementations, including one from my 
company (ISE), I have downplayed it as a language. (Its name does appear in one place in 
the text, and several times in the bibliography.) This book is about the object-oriented 
method for reusing, analyzing, designing, implementing and maintaining software; the 
language is an important and I hope natural consequence of that method, not an aim in itself. 

In addition, the language is straightforward and includes very little else than direct 
support for the method. First-year students using it have commented that it was “no 
language at all” — meaning that the notation is in one-to-one correspondence with the 
method: to learn one is to learn the other, and there is scant extra linguistic decoration on 
top of the concepts. The notation indeed shows few of the peculiarities (often stemming 
from historical circumstances, machine constraints or the requirement to be compatible 
with older formalisms) that characterize most of today’s programming languages. Of 
course you may disagree with the choice of keywords (why do rather than begin or 
perhaps faire?), or would like to add semicolon terminators after each instruction. (The 
syntax has been designed so as to make semicolons optional.) But these are side issues. 
What counts is the simplicity of the notation and how directly it maps to the concepts. If 
you understand object technology, you almost know it already. 

Most software books take the language for granted, whether it is a programming 
language or a notation for analysis or design. Here the approach is different; involving the 
reader in the design means that one must not only explain the language but also justify it 
and discuss the alternatives. Most of the chapters of part C include a “discussion” section 
explaining the issues encountered during the design of the notation, and how they were 
resolved. I often wished, when reading descriptions of well-known languages, that the 
designers had told me not only what solutions they chose, but why they chose them, and 
what alternatives they rejected. The candid discussions included in this book should, I 
hope, provide you with insights not only about language design but also about software 
construction, as the two tasks are so strikingly similar. 
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“SEAMLESSNESS 
AND REVERSIBIL-
ITY”, 28.6, page 930.

The last chapter, 36, 
summarizes the 
environment.
Analysis, design and implementation

It is always risky to use a notation that externally looks like a programming language, as 
this may suggest that it only covers the implementation phase. This impression, however 
wrong, is hard to correct, so frequently have managers and developers been told that a gap 
of metaphysical proportions exists between the ether of analysis-design and the 
underworld of implementation. 

Well-understood object technology reduces the gap considerably by emphasizing the 
essential unity of software development over the inevitable differences between levels of 
abstraction. This seamless approach to software construction is one of the important 
contributions of the method and is reflected by the language of this book, which is meant 
for analysis and design as well as for implementation. 

Unfortunately some of the recent evolution of the field goes against these principles, 
through two equally regrettable phenomena:   

• Object-oriented implementation languages which are unfit for analysis, for design and 
in general for high-level reasoning. 

• Object-oriented analysis or design methods which do not cover implementation (and 
are advertized as “language-independent” as if this were a badge of honor rather than 
an admission of failure). 

Such approaches threaten to cancel much of the potential benefit of the approach. In 
contrast, both the method and the notation developed in this book are meant to be 
applicable throughout the software construction process. A number of chapters cover 
high-level design issues; one is devoted to analysis; others explore implementation 
techniques and the method’s implications on performance. 

The environment

Software construction relies on a basic tetralogy: method, language, tools, libraries. The 
method is at the center of this book; the language question has just been mentioned. Once 
in a while we will need to see what support they may require from tools and libraries. For 
obvious reasons of convenience, such discussions will occasionally refer to ISE’s object-
oriented environment, with its set of tools and associated libraries.

The environment is used only as an example of what can be done to make the 
concepts practically usable by software developers. Be sure to note that there are many 
other object-oriented environments available, both for the notation of this book and for 
other O-O analysis, design and implementation methods and notations; and that the 
descriptions given refer to the state of the environment at the time of writing, subject, as 
anything else in our industry, to change quickly — for the better. Other environments, O-O
and non O-O, are also cited throughout the text.
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A few notes in the 
margin or in chap-
ter-end bib-
liographic sections 
give credit for some 
specific ideas, often 
unpublished.
Acknowledgments (quasi-absence thereof)

The first edition of this book contained an already long list of thanks. For a while I kept 
writing down the names of people who contributed comments or suggestions, and then at 
some stage I lost track. The roster of colleagues from whom I have had help or borrowed 
ideas has now grown so long that it would run over many pages, and would inevitably omit 
some important people. Better then offend everyone a little than offend a few very much.

So these acknowledgments will for the most part remain collective, which does not 
make my gratitude less deep. My colleagues at ISE and SOL have for years been a daily 
source of invaluable help. The users of our tools have generously provided us with their 
advice. The readers of the first edition provided thousands of suggestions for 
improvement. In the preparation of this new edition (I should really say of this new book) 
I have sent hundreds of e-mail messages asking for help of many different kinds: the 
clarification of a fine point, a bibliographical reference, a permission to quote, the details 
of an attribution, the origin of an idea, the specifics of a notation, the official address of a 
Web page; the answers have invariably been positive. As draft chapters were becoming 
ready they were circulated through various means, prompting many constructive 
comments (and here I must cite by name the referees commissioned by Prentice Hall, Paul 
Dubois, James McKim and Richard Wiener, who provided invaluable advice and 
corrections). In the past few years I have given countless seminars, lectures and courses 
about the topics of this book, and in every case I learned something from the audience. I 
enjoyed the wit of fellow panelists at conferences and benefited from their wisdom. Short 
sabbaticals at the University of Technology, Sydney and the Università degli Studi di 
Milano provided me with a influx of new ideas — and in the first case with three hundred 
first-year students on whom to validate some of my ideas about how software engineering 
should be taught.

The large bibliography shows clearly enough how the ideas and realizations of others 
have contributed to this book. Among the most important conscious influences are the 
Algol line of languages, with its emphasis on syntactic and semantic elegance; the seminal 
work on structured programming, in the serious (Dijkstra-Hoare-Parnas-Wirth-Mills-
Gries) sense of the term, and systematic program construction; formal specification 
techniques, in particular the inexhaustible lessons of Jean-Raymond Abrial’s original (late 
nineteen-seventies) version of the Z specification language, his more recent design of B, 
and Cliff Jones’s work on VDM; the languages of the modular generation (in particular 
Ichbiah’s Ada, Liskov’s CLU, Shaw’s Alphard, Bert’s LPG and Wirth’s Modula); and 
Simula 67, which introduced most of the concepts many years ago and had most of them 
right, bringing to mind Tony Hoare’s comment about Algol 60: that it was such an 
improvement over most of its successors. 





Foreword to the second edition

M any events have happened in the object-oriented world since the first edition of 
OOSC (as the book came to be known) was published in 1988. The explosion of interest 
alluded to in the Preface to the first edition, reproduced in the preceding pages in a slightly 
expanded form, was nothing then as compared to what we have seen since. Many journals 
and conferences now cover object technology; Prentice Hall has an entire book series 
devoted to the subject; breakthroughs have occurred in such areas as user interfaces, 
concurrency and databases; entire new topics have emerged, such as O-O analysis and 
formal specification; distributed computing, once a specialized topic, is becoming 
relevant to more and more developments, thanks in part to the growth of the Internet; and 
the Web is affecting everyone’s daily work.

This is not the only exciting news. It is gratifying to see how much progress is 
occurring in the software field — thanks in part to the incomplete but undeniable spread 
of object technology. Too many books and articles on software engineering still start with 
the obligatory lament about the “software crisis” and the pitiful state of our industry as 
compared to true engineering disciplines (which, as we all know, never mess things up). 
There is no reason for such doom. Oh, we still have a long, long way to go, as anyone who 
uses software products knows all too well. But given the challenges that we face we have 
no reason to be ashamed of ourselves as a profession; and we are getting better all the time. 
It is the ambition of this book, as it was of its predecessor, to help in this process.

This second edition is not an update but the result of a thorough reworking. Not a 
paragraph of the original version has been left untouched. (Hardly a single line, actually.) 
Countless new topics have been added, including a whole chapter on concurrency, 
distribution, client-server computing and Internet programming; another on persistence 
and databases; one on user interfaces; one on the software lifecycle; many design patterns 
and implementation techniques; an in-depth exploration of a methodological issue on 
which little is available in the literature, how to use inheritance well and avoid misusing 
it; discussions of many other topics of object-oriented methodology; an extensive 
presentation of the theory of abstract data types — the mathematical basis for our subject, 
indispensable to a complete understanding of object technology yet seldom covered in 
detail by textbooks and tutorials; a presentation of O-O analysis; hundreds of new 
bibliographic and Web site references; the description of a complete object-oriented 
development environment (also included on the accompanying CD-ROM for the reader’s 
enjoyment) and of the underlying concepts; and scores of new ideas, principles, caveats, 
explanations, figures, examples, comparisons, citations, classes, routines.

The reactions to OOSC-1 have been so rewarding that I know readers have high 
expectations. I hope they will find OOSC-2 challenging, useful, and up to their standards.

Santa Barbara B.M. 
January 1997
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FrameMaker Customer Support Group. Special thanks are due — for the printed book as 
well as the CD — to Russ Hall and Eileen Clark of Prentice Hall.

About the accompanying CD-ROM
The CD-ROM that comes with this book contains the entire hyperlinked text in Adobe 
Acrobat format. It also includes Adobe’s Acrobat Reader software, enabling you to read 
that format; the versions provided cover major industry platforms. If you do not already 
have Acrobat Reader on your computer, you can install it by following the instructions. 
The author and the publisher make no representations as to any property of Acrobat and 
associated tools; the Acrobat Reader is simply provided as a service to readers of this 
book, and any Acrobat questions should be directed to Adobe. You may also check with 
Adobe about any versions of the Reader that may have appeared after the book.
To get started with the CD-ROM, open the Acrobat file README.pdf in the OOSC_2 
directory, which will direct you to the table of contents and the index. You can only open 
that file under Acrobat Reader; if the Reader has not been installed on your computer, 
examine instead the plain-text version in the file readme.txt in the top-level directory. 
The instructions also appear at the end of this book.
The presence of an electronic version will be particularly useful to readers who want to 
take advantage of the thousands of cross-references present in this book (see “A Book-
Wide Web”, page viii). Although for a first sequential reading you will probably prefer 
to follow the paper version, having the electronic form available on a computer next to 
the book alllows you to follow a link once in a while without having to turn pages back 
and forth. The electronic form is particularly convenient for a later reading during which 
you may wish to explore links more systematically.
All links (cross-references) appear in blue in the Acrobat form, as illustrated twice 
above (but not visible in the printed version). To follow a link, just click on the blue part. 
If the reference is to another chapter, the chapter will appear in a new window. The 
Acrobat Reader command to come back to the previous position is normally Control-
minus-sign (that is, type – while holding down the CONTROL key). Consult the on-line 
Acrobat Reader documentation for other useful navigational commands.
Bibliographical references also appear as links, such as [Knuth 1968], in the Acrobat 
form, so that you can click on any of them to see the corresponding entry in the 
bibliography of appendix E.
The CD-ROM also contains:

• Library components providing extensive material for Appendix A.
• A chapter from the manual for a graphical application builder, providing 

mathematical complements to the material of chapter 32.
In addition, the CD-ROM includes a time-limited version of an advanced object-
oriented development environment for Windows 95 or Windows NT, as described in 
chapter 36, providing an excellent hands-on opportunity to try out the ideas developed 
throughout the book. The “Readme” file directs you to the installation instructions and 
system requirements.



On the bibliography, Internet sources and exercises
The bibliography 
starts on page 
1203.
This book relies on earlier contributions by many authors. To facilitate reading, the 
discussion of sources appears in most cases not in the course of the discussion, but in the 
“Bibliographical notes” sections at chapter end. Make sure you read these sections, so as 
to understand the origin of many ideas and results and find out where to learn more. 

References are of the form [Name 19xx], where Name is the name of the first author, 
and refer to the bibliography in appendix E. This convention is for readability only and is 
not intended to underrate the role of authors other than the first. The letter M in lieu of a 
Name denotes publications by the author of this book, listed separately in the second part 
of the bibliography. 

Aside from the bibliography proper, some references appear in the margin, next to 
the paragraphs which cite them. The reason for this separate treatment is to make the 
bibliography usable by itself, as a collection of important references on object technology 
and related topics. Appearance as a margin reference rather than in the bibliography does 
not imply any unfavorable judgment of value; the division is simply a pragmatic 
assessment of what belongs in a core list of object-oriented references. 

***
Although electronic references will undoubtedly be considered a matter of course a few 
years from now, this must be one of the first technical books (other than books devoted to 
Internet-related topics) to make extensive use of references to World-Wide-Web pages, 
Usenet newsgroups and other Internet resources.

Electronic addresses are notoriously volatile. I have tried to obtain from the authors 
of the quoted sources some reassurance that the addresses given would remain valid for 
several years. Neither they nor I, of course, can provide an absolute guarantee. In case of 
difficulty, note that on the Net more things move than disappear: keyword-based search 
tools can help.

***
Most chapters include exercises of various degrees of difficulty. I have refrained from 
providing solutions, although many exercises do contain fairly precise hints. Some readers 
may regret the absence of full solutions; I hope, however, that they will appreciate the 
three reasons that led to this decision: the fear of spoiling the reader’s enjoyment; the 
realization that many exercises are design problems, for which there is more than one good 
answer; and the desire to provide a source of ready-made problems to instructors using this 
book as a text.

***
For brevity and simplicity, the text follows the imperfect but long-established tradition of 
using words such as “he” and “his”, in reference to unspecified persons, as shortcuts for 
“he or she” and “his or her”, with no intended connotation of gender.



A modest soul is shocked by objects of such kind

And all the nasty thoughts that they bring to one's mind.

 
Molière, Tartuffe, Act III.
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Part A: 
The issues



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part A will define the goals of our search by taking a close look at the notion of software 
quality, and, for readers who do not fear a spoiler, provide a capsule preview of the 
highlights of object technology.



1  
Software quality
E  ngineering seeks quality; software engineering is the production of quality software. 
This book introduces a set of techniques which hold the potential for remarkable 
improvements in the quality of software products. 

Before studying these techniques, we must clarify their goals. Software quality is 
best described as a combination of several factors. This chapter analyzes some of these 
factors, shows where improvements are most sorely needed, and points to the directions 
where we shall be looking for solutions in the rest of our journey. 

1.1  EXTERNAL AND INTERNAL FACTORS 

We all want our software systems to be fast, reliable, easy to use, readable, modular, 
structured and so on. But these adjectives describe two different sorts of qualities.

On one side, we are considering such qualities as speed or ease of use, whose 
presence or absence in a software product may be detected by its users. These properties 
may be called external quality factors.

Under “users” we should include not only the people who actually interact with the final 
products, like an airline agent using a flight reservation system, but also those who 
purchase the software or contract out its development, like an airline executive in charge 
of acquiring or commissioning flight reservation systems. So a property such as the ease 
with which the software may be adapted to changes of specifications — defined later in 
this discussion as extendibility — falls into the category of external factors even though 
it may not be of immediate interest to such “end users” as the reservations agent.

Other qualities applicable to a software product, such as being modular, or readable, 
are internal factors, perceptible only to computer professionals who have access to the 
actual software text. 

In the end, only external factors matter. If I use a Web browser or live near a 
computer-controlled nuclear plant, little do I care whether the source program is readable 
or modular if graphics take ages to load, or if a wrong input blows up the plant. But the 
key to achieving these external factors is in the internal ones: for the users to enjoy the 
visible qualities, the designers and implementers must have applied internal techniques 
that will ensure the hidden qualities. 
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Layers in 
software 
development
The following chapters present of a set of modern techniques for obtaining internal 
quality. We should not, however, lose track of the global picture; the internal techniques 
are not an end in themselves, but a means to reach external software qualities. So we must 
start by looking at external factors. The rest of this chapter examines them.

1.2  A REVIEW OF EXTERNAL FACTORS 
Here are the most important external quality factors, whose pursuit is the central task of 
object-oriented software construction.

Correctness

Correctness is the prime quality. If a system does not do what it is supposed to do, 
everything else about it — whether it is fast, has a nice user interface… — matters little. 

But this is easier said than done. Even the first step to correctness is already difficult: 
we must be able to specify the system requirements in a precise form, by itself quite a 
challenging task. 

Methods for ensuring correctness will usually be conditional. A serious software 
system, even a small one by today’s standards, touches on so many areas that it would be 
impossible to guarantee its correctness by dealing with all components and properties on 
a single level. Instead, a layered approach is necessary, each layer relying on lower ones:

In the conditional approach to correctness, we only worry about guaranteeing that 
each layer is correct on the assumption that the lower levels are correct. This is the only 
realistic technique, as it achieves separation of concerns and lets us concentrate at each 
stage on a limited set of problems. You cannot usefully check that a program in a high-level 
language X is correct unless you are able to assume that the compiler on hand implements 
X correctly. This does not necessarily mean that you trust the compiler blindly, simply that 
you separate the two components of the problem: compiler correctness, and correctness of 
your program relative to the language’s semantics. 

In the method described in this book, even more layers intervene: software 
development will rely on libraries of reusable components, which may be used in many 
different applications.

Definition: correctness
Correctness is the ability of software products to perform their exact tasks, 
as defined by their specification. 

Application system
Compiler 

Operating System
Hardware 
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Layers in a 
development 
process that 
includes reuse

Robustness 
versus 
correctness
The conditional approach will also apply here: we should ensure that the libraries are 
correct and, separately, that the application is correct assuming the libraries are.

Many practitioners, when presented with the issue of software correctness, think 
about testing and debugging. We can be more ambitious: in later chapters we will explore 
a number of techniques, in particular typing and assertions, meant to help build software 
that is correct from the start — rather than debugging it into correctness. Debugging and 
testing remain indispensable, of course, as a means of double-checking the result. 

It is possible to go further and take a completely formal approach to software 
construction. This book falls short of such a goal, as suggested by the somewhat timid 
terms “check”, “guarantee” and “ensure” used above in preference to the word “prove”. 
Yet many of the techniques described in later chapters come directly from the work on 
mathematical techniques for formal program specification and verification, and go a long 
way towards ensuring the correctness ideal. 

Robustness

Robustness complements correctness. Correctness addresses the behavior of a system in 
cases covered by its specification; robustness characterizes what happens outside of 
that specification. 

Definition: robustness
Robustness is the ability of software systems to react appropriately to 
abnormal conditions. 

Application system
Application library 

Operating System

… More libraries …
Base library

Kernel library

Hardware 

Compiler

SPECIFICATION
Correctness

Robustness



SOFTWARE QUALITY  §1.2 6

On exception 
handling see 
chapter 12.
As reflected by the wording of its definition, robustness is by nature a more fuzzy 
notion than correctness. Since we are concerned here with cases not covered by the 
specification, it is not possible to say, as with correctness, that the system should “perform 
its tasks” in such a case; were these tasks known, the abnormal case would become part 
of the specification and we would be back in the province of correctness.

This definition of “abnormal case” will be useful again when we study exception 
handling. It implies that the notions of normal and abnormal case are always relative to a 
certain specification; an abnormal case is simply a case that is not covered by the 
specification. If you widen the specification, cases that used to be abnormal become 
normal — even if they correspond to events such as erroneous user input that you would 
prefer not to happen. “Normal” in this sense does not mean “desirable”, but simply 
“planned for in the design of the software”. Although it may seem paradoxical at first that 
erroneous input should be called a normal case, any other approach would have to rely on 
subjective criteria, and so would be useless.

There will always be cases that the specification does not explicitly address. The role 
of the robustness requirement is to make sure that if such cases do arise, the system does 
not cause catastrophic events; it should produce appropriate error messages, terminate its 
execution cleanly, or enter a so-called “graceful degradation” mode. 

Extendibility

Software is supposed to be soft, and indeed is in principle; nothing can be easier than to 
change a program if you have access to its source code. Just use your favorite text editor. 

The problem of extendibility is one of scale. For small programs change is usually 
not a difficult issue; but as software grows bigger, it becomes harder and harder to adapt. 
A large software system often looks to its maintainers as a giant house of cards in which 
pulling out any one element might cause the whole edifice to collapse. 

We need extendibility because at the basis of all software lies some human 
phenomenon and hence fickleness. The obvious case of business software (“Management 
Information Systems”), where passage of a law or a company’s acquisition may suddenly 
invalidate the assumptions on which a system rested, is not special; even in scientific 
computation, where we may expect the laws of physics to stay in place from one month to 
the next, our way of understanding and modeling physical systems will change.

Traditional approaches to software engineering did not take enough account of 
change, relying instead on an ideal view of the software lifecycle where an initial analysis 
stage freezes the requirements, the rest of the process being devoted to designing and 
building a solution. This is understandable: the first task in the progress of the discipline 
was to develop sound techniques for stating and solving fixed problems, before we could 
worry about what to do if the problem changes while someone is busy solving it. But now 

Definition: extendibility
Extendibility is the ease of adapting software products to changes of 
specification. 
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Chapter 4.
with the basic software engineering techniques in place it has become essential to 
recognize and address this central issue. Change is pervasive in software development: 
change of requirements, of our understanding of the requirements, of algorithms, of data 
representation, of implementation techniques. Support for change is a basic goal of object 
technology and a running theme through this book.

Although many of the techniques that improve extendibility may be introduced on 
small examples or in introductory courses, their relevance only becomes clear for larger 
projects. Two principles are essential for improving extendibility: 

• Design simplicity: a simple architecture will always be easier to adapt to changes 
than a complex one. 

• Decentralization: the more autonomous the modules, the higher the likelihood that 
a simple change will affect just one module, or a small number of modules, rather 
than triggering off a chain reaction of changes over the whole system. 

The object-oriented method is, before anything else, a system architecture method 
which helps designers produce systems whose structure remains both simple (even for 
large systems) and decentralized. Simplicity and decentralization will be recurring themes 
in the discussions leading to object-oriented principles in the following chapters.

Reusability

The need for reusability comes from the observation that software systems often follow 
similar patterns; it should be possible to exploit this commonality and avoid reinventing 
solutions to problems that have been encountered before. By capturing such a pattern, a 
reusable software element will be applicable to many different developments.

Reusability has an influence on all other aspects of software quality, for solving the 
reusability problem essentially means that less software must be written, and hence that 
more effort may be devoted (for the same total cost) to improving the other factors, such 
as correctness and robustness.

Here again is an issue that the traditional view of the software lifecycle had not 
properly recognized, and for the same historical reason: you must find ways to solve one 
problem before you worry about applying the solution to other problems. But with the 
growth of software and its attempts to become a true industry the need for reusability has 
become a pressing concern.

Reusability will play a central role in the discussions of the following chapters, one 
of which is in fact devoted entirely to an in-depth examination of this quality factor, its 
concrete benefits, and the issues it raises. 

Definition: reusability
Reusability is the ability of software elements to serve for the construction 
of many different applications.
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Compatibility 

Compatibility is important because we do not develop software elements in a vacuum: 
they need to interact with each other. But they too often have trouble interacting because 
they make conflicting assumptions about the rest of the world. An example is the wide 
variety of incompatible file formats supported by many operating systems. A program can 
directly use another’s result as input only if the file formats are compatible. 

Lack of compatibility can yield disaster. Here is an extreme case:

DALLAS — Last week, AMR, the parent company of American Airlines, Inc., said it fell 
on its sword trying to develop a state-of-the-art, industry-wide system that could also 
handle car and hotel reservations.

AMR cut off development of its new Confirm reservation system only weeks after it was 
supposed to start taking care of transactions for partners Budget Rent-A-Car, Hilton 
Hotels Corp. and Marriott Corp. Suspension of the $125 million, 4-year-old project 
translated into a $165 million pre-tax charge against AMR’s earnings and fractured the 
company’s reputation as a pacesetter in travel technology. […]

As far back as January, the leaders of Confirm discovered that the labors of more than 
200 programmers, systems analysts and engineers had apparently been for naught. The 
main pieces of the massive project — requiring 47,000 pages to describe — had been 
developed separately, by different methods. When put together, they did not work with 
each other. When the developers attempted to plug the parts together, they could not.
Different “modules” could not pull the information needed from the other side of the 
bridge.

AMR Information Services fired eight senior project members, including the team leader. 
[…] In late June, Budget and Hilton said they were dropping out.

The key to compatibility lies in homogeneity of design, and in agreeing on 
standardized conventions for inter-program communication. Approaches include: 

• Standardized file formats, as in the Unix system, where every text file is simply a 
sequence of characters. 

• Standardized data structures, as in Lisp systems, where all data, and programs as 
well, are represented by binary trees (called lists in Lisp). 

• Standardized user interfaces, as on various versions of Windows, Linux and MacOS, 
where all tools rely on a single paradigm for communication with the user, based on 
standard components such as windows, icons, menus etc. 

More general solutions are obtained by defining standardized access protocols to all 
important entities manipulated by the software. This is the idea behind abstract data types 
and the object-oriented approach, as well as so-called middleware protocols such as 
CORBA and Microsoft’s OLE-COM (ActiveX).

Definition: compatibility
Compatibility is the ease of combining software elements with others. 
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Efficiency

Almost synonymous with efficiency is the word “performance”. The software community 
shows two typical attitudes towards efficiency: 

• Some developers have an obsession with performance issues, leading them to devote 
a lot of efforts to presumed optimizations. 

• But a general tendency also exists to downplay efficiency concerns, as evidenced by 
such industry lore as “make it right before you make it fast” and “next year’s 
computer model is going to be 50% faster anyway”. 

It is not uncommon to see the same person displaying these two attitudes at different 
times, as in a software case of split personality (Dr. Abstract and Mr. Microsecond). 

Where is the truth? Clearly, developers have often shown an exaggerated concern for 
micro-optimization. As already noted, efficiency does not matter much if the software is 
not correct (suggesting a new dictum, “do not worry how fast it is unless it is also right ”, 
close to the previous one but not quite the same). More generally, the concern for 
efficiency must be balanced with other goals such as extendibility and reusability; extreme 
optimizations may make the software so specialized as to be unfit for change and reuse. 
Furthermore, the ever growing power of computer hardware does allow us to have a more 
relaxed attitude about gaining the last byte or microsecond. 

All this, however, does not diminish the importance of efficiency. No one likes to 
wait for the responses of an interactive system, or to have to purchase more memory to run 
a program. So offhand attitudes to performance include much posturing; if the final system 
is so slow or bulky as to impede usage, those who used to declare that “speed is not that 
important” will not be the last to complain. 

This issue reflects what I believe to be a major characteristic of software engineering, 
not likely to move away soon: software construction is difficult precisely because it 
requires taking into account many different requirements, some of which, such as 
correctness, are abstract and conceptual, whereas others, such as efficiency, are concrete 
and bound to the properties of computer hardware.

For some scientists, software development is a branch of mathematics; for some 
engineers, it is a branch of applied technology. In reality, it is both. The software developer 
must reconcile the abstract concepts with their concrete implementations, the mathematics 
of correct computation with the time and space constraints deriving from physical laws 
and from limitations of current hardware technology. This need to please the angels as well 
as the beasts may be the central challenge of software engineering.

Definition: efficiency

Efficiency is the ability of a software system to place as few demands as 
possible on hardware resources, such as processor time, space occupied in 
internal and external memories, bandwidth used in communication devices.
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The constant improvement in computer power, impressive as it is, is not an excuse 
for overlooking efficiency, for at least three reasons: 

• Someone who purchases a bigger and faster computer wants to see some actual 
benefit from the extra power — to handle new problems, process previous problems 
faster, or process bigger versions of the previous problems in the same amount of 
time. Using the new computer to process the previous problems in the same amount 
of time will not do! 

• One of the most visible effects of advances in computer power is actually to increase
the lead of good algorithms over bad ones. Assume that a new machine is twice as 
fast as the previous one. Let n be the size of the problem to solve, and N the maximum 
n that can be handled by a certain algorithm in a given time. Then if the algorithm is 
in O (n), that is to say, runs in a time proportional to n, the new machine will enable 
you to handle problem sizes of about 2 ∗ N for large N. For an algorithm in O (n2) the 
new machine will only yield a 41% increase of N. An algorithm in O (2 n), similar to 
certain combinatorial, exhaustive-search algorithms, would just add one to N — not 
much of an improvement for your money.

• In some cases efficiency may affect correctness. A specification may state that the 
computer response to a certain event must occur no later than a specified time; for 
example, an in-flight computer must be prepared to detect and process a message 
from the throttle sensor fast enough to take corrective action. This connection 
between efficiency and correctness is not restricted to applications commonly 
thought of as “real time”; few people are interested in a weather forecasting model 
that takes twenty-four hours to predict the next day’s weather.

Another example, although perhaps less critical, has been of frequent annoyance to me: 
a window management system that I used for a while was sometimes too slow to detect 
that the mouse cursor had moved from a window to another, so that characters typed at 
the keyboard, meant for a certain window, would occasionally end up in another.

In this case a performance limitation causes a violation of the specification, that is to say 
of correctness, which even in seemingly innocuous everyday applications can cause nasty 
consequences: think of what can happen if the two windows are used to send electronic 
mail messages to two different correspondents. For less than this marriages have been 
broken, even wars started. 

Because this book is focused on the concepts of object-oriented software engineering, 
not on implementation issues, only a few sections deal explicitly with the associated 
performance costs. But the concern for efficiency will be there throughout. Whenever the 
discussion presents an object-oriented solution to some problem, it will make sure that the 
solution is not just elegant but also efficient; whenever it introduces some new O-O 
mechanism, be it garbage collection (and other approaches to memory management for 
object-oriented computation), dynamic binding, genericity or repeated inheritance, it will do 
so based on the knowledge that the mechanism may be implemented at a reasonable cost in 
time and in space; and whenever appropriate it will mention the performance consequences 
of the techniques studied.
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Efficiency is only one of the factors of quality; we should not (like some in the 
profession) let it rule our engineering lives. But it is a factor, and must be taken into 
consideration, whether in the construction of a software system or in the design of a 
programming language. If you dismiss performance, performance will dismiss you.

Portability 

Portability addresses variations not just of the physical hardware but more generally of the 
hardware-software machine, the one that we really program, which includes the 
operating system, the window system if applicable, and other fundamental tools. In the 
rest of this book the word “platform” will be used to denote a type of hardware-software 
machine; an example of platform is “Intel X86 with Windows NT” (known as “Wintel”).

Many of the existing platform incompatibilities are unjustified, and to a naïve 
observer the only explanation sometimes seems to be a conspiracy to victimize humanity 
in general and programmers in particular. Whatever its causes, however, this diversity 
makes portability a major concern for both developers and users of software. 

Ease of use

The definition insists on the various levels of expertise of potential users. This requirement 
poses one of the major challenges to software designers preoccupied with ease of use: how 
to provide detailed guidance and explanations to novice users, without bothering expert 
users who just want to get right down to business. 

As with many of the other qualities discussed in this chapter, one of the keys to ease 
of use is structural simplicity. A well-designed system, built according to a clear, well 
thought-out structure, will tend to be easier to learn and use than a messy one. The 
condition is not sufficient, of course (what is simple and clear to the designer may be 
difficult and obscure to users, especially if explained in designer’s rather than user’s 
terms), but it helps considerably. 

This is one of the areas where the object-oriented method is particularly productive; 
many O-O techniques, which appear at first to address design and implementation, also 
yield powerful new interface ideas that help the end users. Later chapters will introduce 
several examples. 

Definition: portability
Portability is the ease of transferring software products to various hardware 
and software environments. 

Definition: ease of use
Ease of use is the ease with which people of various backgrounds and 
qualifications can learn to use software products and apply them to solve 
problems. It also covers the ease of installation, operation and monitoring. 
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Software designers preoccupied with ease of use will also be well-advised to 
consider with some mistrust the precept most frequently quoted in the user interface 
literature, from an early article by Hansen: know the user. The argument is that a good 
designer must make an effort to understand the system’s intended user community. This 
view ignores one of the features of successful systems: they always outgrow their initial 
audience. (Two old and famous examples are Fortran, conceived as a tool to solve the 
problem of the small community of engineers and scientists programming the IBM 704, 
and Unix, meant for internal use at Bell Laboratories.) A system designed for a specific 
group will rely on assumptions that simply do not hold for a larger audience. 

Good user interface designers follow a more prudent policy. They make as limited 
assumptions about their users as they can. When you design an interactive system, you 
may expect that users are members of the human race and that they can read, move a 
mouse, click a button, and type (slowly); not much more. If the software addresses a 
specialized application area, you may perhaps assume that your users are familiar with its 
basic concepts. But even that is risky. To reverse-paraphrase Hansen’s advice:

Functionality

One of the most difficult problems facing a project leader is to know how much 
functionality is enough. The pressure for more facilities, known in industry parlance as 
featurism (often “creeping featurism”), is constantly there. Its consequences are bad for 
internal projects, where the pressure comes from users within the same company, and 
worse for commercial products, as the most prominent part of a journalist’s comparative 
review is often the table listing side by side the features offered by competing products.

Featurism is actually the combination of two problems, one more difficult than the 
other. The easier problem is the loss of consistency that may result from the addition of 
new features, affecting its ease of use. Users are indeed known to complain that all the 
“bells and whistles” of a product’s new version make it horrendously complex. Such 
comments should be taken with a grain of salt, however, since the new features do not 
come out of nowhere: most of the time they have been requested by users — other users. 
What to me looks like a superfluous trinket may be an indispensable facility to you.

The solution here is to work again and again on the consistency of the overall 
product, trying to make everything fit into a general mold. A good software product is 
based on a small number of powerful ideas; even if it has many specialized features, they 
should all be explainable as consequences of these basic concepts. The “grand plan” must 
be visible, and everything should have its place in it.

User Interface Design principle
Do not pretend you know the user; you don’t.

Definition: functionality
Functionality is the extent of possibilities provided by a system. 
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The more difficult problem is to avoid being so focused on features as to forget the 
other qualities. Projects commonly make such a mistake, a situation vividly pictured by 
Roger Osmond in the form of two possible paths to a project’s completion:

The bottom curve (black) is all too common: in the hectic race to add more features, 
the development loses track of the overall quality. The final phase, intended to get things 
right at last, can be long and stressful. If, under users’ or competitors’ pressure, you are 
forced to release the product early — at stages marked by black squares in the figure — 
the outcome may be damaging to your reputation.

What Osmond suggests (the color curve) is, aided by the quality-enhancing 
techniques of O-O development, to maintain the quality level constant throughout the 
project for all aspects but functionality. You just do not compromise on reliability, 
extendibility and the like: you refuse to proceed with new features until you are happy with 
the features you have.

This method is tougher to enforce on a day-to-day basis because of the pressures 
mentioned, but yields a more effective software process and often a better product in the 
end. Even if the final result is the same, as assumed in the figure, it should be reached 
sooner (although the figure does not show time). Following the suggested path also means 
that the decision to release an early version — at one of the points marked by colored 
squares in the figure — becomes, if not easier, at least simpler: it will be based on your 
assessment of whether what you have so far covers a large enough share of the full feature 
set to attract prospective customers rather than drive them away. The question “is it good 
enough?” (as in “will it not crash?”) should not be a factor.

As any reader who has led a software project will know, it is easier to approve such 
advice than to apply it. But every project should strive to follow the approach represented 
by the better one of the two Osmond curves. It goes well with the cluster model introduced 
in a later chapter as the general scheme for disciplined object-oriented development.

Other qualities

Functionality

Common

Desirable

Debugging

early
releases

Envisaged
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Timeliness

Timeliness is one of the great frustrations of our industry. A great software product that 
appears too late might miss its target altogether. This is true in other industries too, but few 
evolve as quickly as software.

Timeliness is still, for large projects, an uncommon phenomenon. When Microsoft 
announced that the latest release of its principal operating system, several years in the 
making, would be delivered one month early, the event was newsworthy enough to make 
(at the top of an article recalling the lengthy delays that affected earlier projects) the front- 
page headline of ComputerWorld.

Other qualities 
Other qualities beside the ones discussed so far affect users of software systems and the 
people who purchase these systems or commission their development. In particular: 

• Verifiability is the ease of preparing acceptance procedures, especially test data, and 
procedures for detecting failures and tracing them to errors during the validation and 
operation phases. 

• Integrity is the ability of software systems to protect their various components 
(programs, data) against unauthorized access and modification. 

• Repairability is the ability to facilitate the repair of defects. 
• Economy, the companion of timeliness, is the ability of a system to be completed on 

or below its assigned budget.

About documentation 
In a list of software quality factors, one might expect to find the presence of good 
documentation as one of the requirements. But this is not a separate quality factor; instead, 
the need for documentation is a consequence of the other quality factors seen above. We 
may distinguish between three kinds of documentation: 

• The need for external documentation, which enables users to understand the power 
of a system and use it conveniently, is a consequence of the definition of ease of use. 

• The need for internal documentation, which enables software developers to 
understand the structure and implementation of a system, is a consequence of the 
extendibility requirement. 

• The need for module interface documentation, enabling software developers to 
understand the functions provided by a module without having to understand its 
implementation, is a consequence of the reusability requirement. It also follows from 
extendibility, as module interface documentation makes it possible to determine 
whether a certain change need affect a certain module. 

Definition: timeliness
Timeliness is the ability of a software system to be released when or before 
its users want it.
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Rather than treating documentation as a product separate from the software proper, 
it is preferable to make the software as self-documenting as possible. This applies to all 
three kinds of documentation: 

• By including on-line “help” facilities and adhering to clear and consistent user 
interface conventions, you alleviate the task of the authors of user manuals and other 
forms of external documentation. 

• A good implementation language will remove much of the need for internal 
documentation if it favors clarity and structure. This will be one of the major 
requirements on the object-oriented notation developed throughout this book. 

• The notation will support information hiding and other techniques (such as 
assertions) for separating the interface of modules from their implementation. It is 
then possible to use tools to produce module interface documentation automatically 
from module texts. This too is one of the topics studied in detail in later chapters.

All these techniques lessen the role of traditional documentation, although of course 
we cannot expect them to remove it completely.

Tradeoffs 

In this review of external software quality factors, we have encountered requirements that 
may conflict with one another.

How can one get integrity without introducing protections of various kinds, which 
will inevitably hamper ease of use? Economy often seems to fight with functionality. 
Optimal efficiency would require perfect adaptation to a particular hardware and software 
environment, which is the opposite of portability, and perfect adaptation to a specification, 
where reusability pushes towards solving problems more general than the one initially 
given. Timeliness pressures might tempt us to use “Rapid Application Development” 
techniques whose results may not enjoy much extendibility.

Although it is in many cases possible to find a solution that reconciles apparently 
conflicting factors, you will sometimes need to make tradeoffs. Too often, developers 
make these tradeoffs implicitly, without taking the time to examine the issues involved and 
the various choices available; efficiency tends to be the dominating factor in such silent 
decisions. A true software engineering approach implies an effort to state the criteria 
clearly and make the choices consciously. 

Necessary as tradeoffs between quality factors may be, one factor stands out from 
the rest: correctness. There is never any justification for compromising correctness for the 
sake of other concerns such as efficiency. If the software does not perform its function, the 
rest is useless.

Key concerns 

All the qualities discussed above are important. But in the current state of the software 
industry, four stand out: 
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• Correctness and robustness: it is still too difficult to produce software without defects 
(bugs), and too hard to correct the defects once they are there. Techniques for 
improving correctness and robustness are of the same general flavors: more systematic 
approaches to software construction; more formal specifications; built-in checks 
throughout the software construction process (not just after-the-fact testing and 
debugging); better language mechanisms such as static typing, assertions, automatic 
memory management and disciplined exception handling, enabling developers to state 
correctness and robustness requirements, and enabling tools to detect inconsistencies 
before they lead to defects. Because of this closeness of correctness and robustness 
issues, it is convenient to use a more general term, reliability, to cover both factors. 

• Extendibility and reusability: software should be easier to change; the software 
elements we produce should be more generally applicable, and there should exist a 
larger inventory of general-purpose components that we can reuse when developing 
a new system. Here again, similar ideas are useful for improving both qualities: any 
idea that helps produce more decentralized architectures, in which the components 
are self-contained and only communicate through restricted and clearly defined 
channels, will help. The term modularity will cover reusability and extendibility. 

As studied in detail in subsequent chapters, the object-oriented method can 
significantly improve these four quality factors — which is why it is so attractive. It also 
has significant contributions to make on other aspects, in particular: 

• Compatibility: the method promotes a common design style and standardized 
module and system interfaces, which help produce systems that will work together. 

• Portability: with its emphasis on abstraction and information hiding, object 
technology encourages designers to distinguish between specification and 
implementation properties, facilitating porting efforts. The techniques of 
polymorphism and dynamic binding will even make it possible to write systems that 
automatically adapt to various components of the hardware-software machine, for 
example different window systems or different database management systems. 

• Ease of use: the contribution of O-O tools to modern interactive systems and 
especially their user interfaces is well known, to the point that it sometimes obscures 
other aspects (ad copy writers are not the only people who call “object-oriented” any 
system that uses icons, windows and mouse-driven input).   

• Efficiency: as noted above, although the extra power or object-oriented techniques at 
first appears to carry a price, relying on professional-quality reusable components 
can often yield considerable performance improvements. 

• Timeliness, economy and functionality: O-O techniques enable those who master 
them to produce software faster and at less cost; they facilitate addition of functions, 
and may even of themselves suggest new functions to add.

In spite of all these advances, we should keep in mind that the object-oriented method 
is not a panacea, and that many of the habitual issues of software engineering remain. 
Helping to address a problem is not the same as solving the problem. 
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1.3  ABOUT SOFTWARE MAINTENANCE 

The list of factors did not include a frequently quoted quality: maintainability. To 
understand why, we must take a closer look at the underlying notion, maintenance. 

Maintenance is what happens after a software product has been delivered. 
Discussions of software methodology tend to focus on the development phase; so do 
introductory programming courses. But it is widely estimated that 70% of the cost of 
software is devoted to maintenance. No study of software quality can be satisfactory if it 
neglects this aspect. 

What does “maintenance” mean for software? A minute’s reflection shows this term 
to be a misnomer: a software product does not wear out from repeated usage, and thus need 
not be “maintained” the way a car or a TV set does. In fact, the word is used by software 
people to describe some noble and some not so noble activities. The noble part is 
modification: as the specifications of computer systems change, reflecting changes in the 
external world, so must the systems themselves. The less noble part is late debugging: 
removing errors that should never have been there in the first place.

The above chart, drawn from a milestone study by Lientz and Swanson, sheds some 
light on what the catch-all term of maintenance really covers. The study surveyed 487 
installations developing software of all kinds; although it is a bit old, more recent 
publications confirm the same general results. It shows the percentage of maintenance 
costs going into each of a number of maintenance activities identified by the authors.

More than two-fifths of the cost is devoted to user-requested extensions and 
modifications. This is what was called above the noble part of maintenance, which is also 
the inevitable part. The unanswered question is how much of the overall effort the industry 
could spare if it built its software from the start with more concern for extendibility. We may 
legitimately expect object technology to help. 
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The second item in decreasing order of percentage cost is particularly interesting: 
effect of changes in data formats. When the physical structure of files and other data items 
change, programs must be adapted. For example, when the US Postal Service, a few years 
ago, introduced the “5+4” postal code for large companies (using nine digits instead of 
five), numerous programs that dealt with addresses and “knew” that a postal code was 
exactly five digits long had to be rewritten, an effort which press accounts estimated in the 
hundreds of millions of dollars. 

Many readers will have received the beautiful brochures for a set of conferences — not a 
single event, but a sequence of sessions in many cities — devoted to the “millennium 
problem”: how to go about upgrading the myriads of date-sensitive programs whose 
authors never for a moment thought that a date could exist beyond the twentieth century. 
The zip code adaptation effort pales in comparison. Jorge Luis Borges would have liked 
the idea: since presumably few people care about what will happen on 1 January 3000, 
this must be the tiniest topic to which a conference series, or for that matter a conference, 
has been or will ever be devoted in the history of humanity: a single decimal digit.

The issue is not that some part of the program knows the physical structure of data: 
this is inevitable since the data must eventually be accessed for internal handling. But with 
traditional design techniques this knowledge is spread out over too many parts of the 
system, causing unjustifiably large program changes if some of the physical structure 
changes — as it inevitably will. In other words, if postal codes go from five to nine digits, 
or dates require one more digit, it is reasonable to expect that a program manipulating the 
codes or the dates will need to be adapted; what is not acceptable is to have the knowledge 
of the exact length of the data plastered all across the program, so that changing that length 
will cause program changes of a magnitude out of proportion with the conceptual size of 
the specification change. 

The theory of abstract data types will provide the key to this problem, by allowing 
programs to access data by external properties rather than physical implementation. 

Another significant item in the distribution of activities is the low percentage (5.5%) 
of documentation costs. Remember that these are costs of tasks done at maintenance time. 
The observation here — at least the speculation, in the absence of more specific data — is 
that a project will either take care of its documentation as part of development or not do it 
at all. We will learn to use a design style in which much of the documentation is actually 
embedded in the software, with special tools available to extract it. 

The next items in Lientz and Swanson’s list are also interesting, if less directly 
relevant to the topics of this book. Emergency bug fixes (done in haste when a user reports 
that the program is not producing the expected results or behaves in some catastrophic 
way) cost more than routine, scheduled corrections. This is not only because they must be 
performed under heavy pressure, but also because they disrupt the orderly process of 
delivering new releases, and may introduce new errors. The last two activities account for 
small percentages: 
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• One is efficiency improvements; this seems to suggest that once a system works, 
project managers and programmers are often reluctant to disrupt it in the hope of 
performance improvements, and prefer to leave good enough alone. (When 
considering the “first make it right, then make it fast” precept, many projects are 
probably happy enough to stop at the first of these steps.) 

• Also accounting for a small percentage is “transfer to new environments”. A possible 
interpretation (again a conjecture in the absence of more detailed data) is that there 
are two kinds of program with respect to portability, with little in-between: some 
programs are designed with portability in mind, and cost relatively little to port; 
others are so closely tied to their original platform, and would be so difficult to port, 
that developers do not even try. 

1.4  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• The purpose of software engineering is to find ways of building quality software. 
• Rather than a single factor, quality in software is best viewed as a tradeoff between 

a set of different goals. 
• External factors, perceptible to users and clients, should be distinguished from 

internal factors, perceptible to designers and implementors. 
• What matters is the external factors, but they can only be achieved through the 

internal factors. 
• A list of basic external quality factors was presented. Those for which current 

software is most badly in need of better methods, and which the object-oriented 
method directly addresses, are the safety-related factors correctness and robustness, 
together known as reliability, and the factors requiring more decentralized software 
architectures: reusability and extendibility, together known as modularity. 

• Software maintenance, which consumes a large portion of software costs, is 
penalized by the difficulty of implementing changes in software products, and by the 
over-dependence of programs on the physical structure of the data they manipulate. 

1.5  BIBLIOGRAPHICAL NOTES 
Several authors have proposed definitions of software quality. Among the first articles on 
subject, two in particular remain valuable today: [Hoare 1972], a guest editorial, and 
[Boehm 1978], the result of one of the first systematic studies, by a group at TRW. 

The distinction between external and internal factors was introduced in a 1977 
General Electric study commissioned by the US Air Force [McCall 1977]. McCall uses 
the terms “factors” and “criteria” for what this chapter has called external factors and 
internal factors. Many (although not all) of the factors introduced in this chapter 
correspond to some of McCall’s; one of his factors, maintainability, was dropped, because, 
as explained, it is adequately covered by extendibility and verifiability. McCall’s study 
discusses not only external factors but also a number of internal factors (“criteria”), as well 
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as metrics, or quantitative techniques for assessing satisfaction of the internal factors. 
With object technology, however, many of that study’s internal factors and metrics, too 
closely linked with older software practices, are obsolete. Carrying over this part of 
McCall’s work to the techniques developed in this book would be a useful project; see the 
bibliography and exercises to chapter 3.

The argument about the relative effect of machine improvements depending on the 
complexity of the algorithms is derived from [Aho 1974].

On ease of use, a standard reference is [Shneiderman 1987], expanding on 
[Shneiderman 1980], which was devoted to the broader topic of software psychology. The 
Web page of Shneiderman’s lab at http://www.cs.umd.edu/projects/hcil/ contains many 
bibliographic references on these topics.

The Osmond curves come from a tutorial given by Roger Osmond at TOOLS USA 
[Osmond 1995]. Note that the form given in this chapter does not show time, enabling a 
more direct view of the tradeoff between functionality and other qualities in the two 
alternative curves, but not reflecting the black curve’s potential for delaying a project. 
Osmond’s original curves are plotted against time rather than functionality.

The chart of maintenance costs is derived from a study by Lientz and Swanson, 
based on a maintenance questionnaire sent to 487 organizations [Lientz 1980]. See also 
[Boehm 1979]. Although some of their input data may be considered too specialized and 
by now obsolete (the study was based on batch-type MIS applications of an average size 
of 23,000 instructions, large then but not by today’s standards), the results generally seem 
still applicable. The Software Management Association performs a yearly survey of 
maintenance; see [Dekleva 1992] for a report about one of these surveys. 

The expressions programming-in-the-large and programming-in-the-small were 
introduced by [DeRemer 1976].

For a general discussion of software engineering issues, see the textbook by Ghezzi, 
Jazayeri and Mandrioli [Ghezzi 1991]. A text on programming languages by some of the 
same authors, [Ghezzi 1997], provides complementary background for some of the issues 
discussed in the present book.
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Criteria of object orientation
Warning: 
SPOILER! 
In the previous chapter we explored the goals of the object-oriented method. As a 
preparation for parts B and C, in which we will discover the technical details of the 
method, it is useful to take a quick but wide glance at the key aspects of object-oriented 
development. Such is the aim of this chapter. 

One of the benefits will be to obtain a concise memento of what makes a system 
object-oriented. This expression has nowadays become so indiscriminately used that we 
need a list of precise properties under which we can assess any method, language or tool 
that its proponents claim to be O-O.

This chapter limits its explanations to a bare minimum, so if this is your first reading 
you cannot expect to understand in detail all the criteria listed; explaining them is the task 
of the rest of the book. Consider this discussion a preview — not the real movie, just a trailer.

Actually a warning is in order because unlike any good trailer this chapter is also 
what film buffs call a spoiler — it gives away some of the plot early. As such it breaks the 
step-by-step progression of this book, especially part B, which patiently builds the case 
for object technology by looking at issue after issue before deducing and justifying the 
solutions. If you like the idea of reading a broad overview before getting into more depth, 
this chapter is for you. But if you prefer not to spoil the pleasure of seeing the problems 
unfold and of discovering the solutions one by one, then you should simply skip it. You 
will not need to have read it to understand subsequent chapters.

2.1  ON THE CRITERIA

Let us first examine the choice of criteria for assessing objectness.

How dogmatic do we need to be?

The list presented below includes all the facilities which I believe to be essential for the 
production of quality software using the object-oriented method. It is ambitious and may 
appear uncompromising or even dogmatic. What conclusion does this imply for an 
environment which satisfies some but not all of these conditions? Should one just reject 
such a half-hearted O-O environment as totally inadequate? 
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Only you, the reader, can answer this question relative to your own context. Several 
reasons suggest that some compromises may be necessary: 

• “Object-oriented” is not a boolean condition: environment A, although not 100% 
O-O, may be “more” O-O than environment B; so if external constraints limit your 
choice to A and B you will have to pick A as the least bad object-oriented choice. 

• Not everyone will need all of the properties all the time. 

• Object orientation may be just one of the factors guiding your search for a software 
solution, so you may have to balance the criteria given here with other considerations. 

All this does not change the obvious: to make informed choices, even if practical 
constraints impose less-than-perfect solutions, you need to know the complete picture, as 
provided by the list below. 

Categories 

The set of criteria which follows has been divided into three parts: 

• Method and language: these two almost indistinguishable aspects cover the thought 
processes and the notations used to analyze and produce software. Be sure to note 
that (especially in object technology) the term “language” covers not just the 
programming language in a strict sense, but also the notations, textual or graphical, 
used for analysis and design. 

• Implementation and environment: the criteria in this category describe the basic 
properties of the tools which allow developers to apply object-oriented ideas. 

• Libraries: object technology relies on the reuse of software components. Criteria in 
this category cover both the availability of basic libraries and the mechanisms 
needed to use libraries and produce new ones. 

This division is convenient but not absolute, as some criteria straddle two or three of 
the categories. For example the criterion labeled “memory management” has been 
classified under method and language because a language can support or prevent 
automatic garbage collection, but it also belongs to the implementation and environment 
category; the “assertion” criterion similarly includes a requirement for supporting tools.

2.2  METHOD AND LANGUAGE
The first set of criteria covers the method and the supporting notation.

Seamlessness 

The object-oriented approach is ambitious: it encompasses the entire software lifecycle. 
When examining object-oriented solutions, you should check that the method and 
language, as well as the supporting tools, apply to analysis and design as well as 
implementation and maintenance. The language, in particular, should be a vehicle for 
thought which will help you through all stages of your work. 
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Clusters, studied 
in chapter 28, are 
the countries and 
provinces.
The result is a seamless development process, where the generality of the concepts 
and notations helps reduce the magnitude of the transitions between successive steps in 
the lifecycle. 

These requirements exclude two cases, still frequently encountered but equally 
unsatisfactory: 

• The use of object-oriented concepts for analysis and design only, with a method and 
notation that cannot be used to write executable software. 

• The use of an object-oriented programming language which is not suitable for 
analysis and design. 

In summary:

Classes 
The object-oriented method is based on the notion of class. Informally, a class is a software 
element describing an abstract data type and its partial or total implementation. An 
abstract data type is a set of objects defined by the list of operations, or features, applicable 
to these objects, and the properties of these operations.

Assertions 
The features of an abstract data type have formally specified properties, which should be 
reflected in the corresponding classes. Assertions — routine preconditions, routine 
postconditions and class invariants — play this role. They describe the effect of features 
on objects, independently of how the features have been implemented. 

Assertions have three major applications: they help produce reliable software; they 
provide systematic documentation; and they are a central tool for testing and debugging 
object-oriented software.

In the society of software modules, with classes serving as the cities and instructions 
(the actual executable code) serving as the executive branch of government, assertions 
provide the legislative branch. We shall see below who takes care of the judicial system. 

An object-oriented language and environment, together with the supporting 
method, should apply to the entire lifecycle, in a way that minimizes the gaps 
between successive activities.

The method and the language should have the notion of class as their 
central concept.

The language should make it possible to equip a class and its features with 
assertions (preconditions, postconditions and invariants), relying on tools to 
produce documentation out of these assertions and, optionally, monitor them 
at run time.



CRITERIA FOR OBJECT ORIENTATION  §2.2 24
Classes as modules 

Object orientation is primarily an architectural technique: its major effect is on the 
modular structure of software systems. 

The key role here is again played by classes. A class describes not just a type of 
objects but also a modular unit. In a pure object-oriented approach: 

In particular, there is no notion of main program, and subprograms do not exist as 
independent modular units. (They may only appear as part of classes.) There is also no 
need for the “packages” of languages such as Ada, although we may find it convenient for 
management purposes to group classes into administrative units, called clusters.

Classes as types 

The notion of class is powerful enough to avoid the need for any other typing mechanism: 

Even basic types such as INTEGER and REAL can be derived from classes; normally 
such classes will be built-in rather than defined anew by each developer. 

Feature-based computation 

In object-oriented computation, there is only one basic computational mechanism: given a 
certain object, which (because of the previous rule) is always an instance of some class, 
call a feature of that class on that object. For example, to display a certain window on a 
screen, you call the feature display on an object representing the window — an instance of 
class WINDOW. Features may also have arguments: to increase the salary of an employee 
e by n dollars, effective at date d, you call the feature raise on e, with n and d as arguments. 

Just as we treat basic types as predefined classes, we may view basic operations 
(such as addition of numbers) as special, predefined cases of feature call, a very general 
mechanism for describing computations:

A class which contains a call to a feature of a class C is said to be a client of C. 
Feature call is also known as message passing; in this terminology, a call such as the above 
will be described as passing to e the message “raise your pay”, with arguments d and n.

Classes should be the only modules.

Every type should be based on a class.

Feature call should be the primary computational mechanism.
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Information hiding 

When writing a class, you will sometimes have to include a feature which the class needs 
for internal purposes only: a feature that is part of the implementation of the class, but not 
of its interface. Others features of the class — possibly available to clients — may call the 
feature for their own needs; but it should not be possible for a client to call it directly.

The mechanism which makes certain features unfit for clients’ calls is called 
information hiding. As explained in a later chapter, it is essential to the smooth evolution 
of software systems. 

In practice, it is not enough for the information hiding mechanism to support exported 
features (available to all clients) and secret features (available to no client); class designers 
must also have the ability to export a feature selectively to a set of designated clients.

An immediate consequence of this rule is that communication between classes 
should be strictly limited. In particular, a good object-oriented language should not offer 
any notion of global variable; classes will exchange information exclusively through 
feature calls, and through the inheritance mechanism. 

Exception handling 

Abnormal events may occur during the execution of a software system. In object-oriented 
computation, they often correspond to calls that cannot be executed properly, as a result 
of a hardware malfunction, of an unexpected impossibility (such as numerical overflow in 
an addition), or of a bug in the software. 

To produce reliable software, it is necessary to have the ability to recover from such 
situations. This is the purpose of an exception mechanism. 

In the society of software systems, as you may have guessed, the exception 
mechanism is the third branch of government, the judicial system (and the supporting 
police force). 

Static typing 

When the execution of a software system causes the call of a certain feature on a certain 
object, how do we know that this object will be able to handle the call? (In message 
terminology: how do we know that the object can process the message?) 

To provide such a guarantee of correct execution, the language must be typed. This 
means that it enforces a few compatibility rules; in particular: 

It should be possible for the author of a class to specify that a feature is 
available to all clients, to no client, or to specified clients.

The language should provide a mechanism to recover from unexpected 
abnormal situations.



CRITERIA FOR OBJECT ORIENTATION  §2.2 26
• Every entity (that is to say, every name used in the software text to refer to run-time 
objects) is explicitly declared as being of a certain type, derived from a class. 

• Every feature call on a certain entity uses a feature from the corresponding class (and 
the feature is available, in the sense of information hiding, to the caller’s class).

• Assignment and argument passing are subject to conformance rules, based on 
inheritance, which require the source’s type to be compatible with the target’s type. 

In a language that imposes such a policy, it is possible to write a static type checker
which will accept or reject software systems, guaranteeing that the systems it accepts will 
not cause any “feature not available on object” error at run time.

Genericity 

For typing to be practical, it must be possible to define type-parameterized classes, known 
as generic. A generic class LIST [G] will describe lists of elements of an arbitrary type 
represented by G, the “formal generic parameter”; you may then declare specific lists 
through such derivations as LIST [INTEGER] and LIST [WINDOW], using types INTEGER
and WINDOW as “actual generic parameters”. All derivations share the same class text.

This form of type parameterization is called unconstrained genericity. A companion 
facility mentioned below, constrained genericity, involves inheritance. 

Single inheritance 

Software development involves a large number of classes; many are variants of others. To 
control the resulting potential complexity, we need a classification mechanism, known as 
inheritance. A class will be an heir of another if it incorporates the other’s features in 
addition to its own. (A descendant is a direct or indirect heir; the reverse notion is ancestor.)

Inheritance is one of the central concepts of the object-oriented methods and has 
profound consequences on the software development process. 

Multiple inheritance 

We will often encounter the need to combine several abstractions. For example a class 
might model the notion of “infant”, which we may view both as a “person”, with the 

A well-defined type system should, by enforcing a number of type 
declaration and compatibility rules, guarantee the run-time type safety of the 
systems it accepts.

It should be possible to write classes with formal generic parameters 
representing arbitrary types.

It should be possible to define a class as inheriting from another.
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Repeated 
inheritance
associated features, and, more prosaically, as a “tax-deductible item”, which earns some 
deduction at tax time. Inheritance is justified in both cases. Multiple inheritance is the 
guarantee that a class may inherit not just from one other but from as many as is 
conceptually justified. 

Multiple inheritance raises a few technical problems, in particular the resolution of 
name clashes (cases in which different features, inherited from different classes, have the 
same name). Any notation offering multiple inheritance must provide an adequate solution 
to these problems.

The solution developed in this book is based on renaming the conflicting features in 
the heir class. 

Repeated inheritance 

Multiple inheritance raises the possibility of repeated inheritance, the case in which a class 
inherits from another through two or more paths, as shown.

In such a case the language must provide precise rules defining what happens to 
features inherited repeatedly from the common ancestor, A in the figure. As the discussion 
of repeated inheritance will show, it may be desirable for a feature of A to yield just one 
feature of D in some cases (sharing), but in others it should yield two (replication). 
Developers must have the flexibility to prescribe either policy separately for each feature.

Constrained genericity 

The combination of genericity and inheritance brings about an important technique, 
constrained genericity, through which you can specify a class with a generic parameter 
that represents not an arbitrary type as with the earlier (unconstrained) form of genericity, 
but a type that is a descendant of a given class. 

It should be possible for a class to inherit from as many others as necessary, 
with an adequate mechanism for disambiguating name clashes.

Precise rules should govern the fate of features under repeated inheritance, 
allowing developers to choose, separately for each repeatedly inherited 
feature, between sharing and replication.

Inherits from

A

D
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A generic class SORTABLE_LIST, describing lists with a sort feature that will 
reorder them sequentially according to a certain order relation, needs a generic parameter 
representing the list elements’ type. That type is not arbitrary: it must support an order 
relation. To state that any actual generic parameter must be a descendant of the library 
class COMPARABLE, describing objects equipped with an order relation, use constrained 
genericity to declare the class as SORTABLE_LIST [G –> COMPARABLE].

Redefinition 

When a class is an heir of another, it may need to change the implementation or other 
properties of some of the inherited features. A class SESSION describing user sessions in 
an operating system may have a feature terminate to take care of cleanup operations at the 
end of a session; an heir might be REMOTE_SESSION, handling sessions started from a 
different computer on a network. If the termination of a remote session requires 
supplementary actions (such as notifying the remote computer), class REMOTE_SESSION
will redefine feature terminate. 

Redefinition may affect the implementation of a feature, its signature (type of 
arguments and result), and its specification.

Polymorphism 

With inheritance brought into the picture, the static typing requirement listed earlier would 
be too restrictive if it were taken to mean that every entity declared of type C may only 
refer to objects whose type is exactly C. This would mean for example that an entity of 
type C (in a navigation control system) could not be used to refer to an object of type 
MERCHANT_SHIP or SPORTS_BOAT, both assumed to be classes inheriting from BOAT. 

As noted earlier, an “entity” is a name to which various values may become attached at 
run time. This is a generalization of the traditional notion of variable.

Polymorphism is the ability for an entity to become attached to objects of various 
possible types. In a statically typed environment, polymorphism will not be arbitrary, but 
controlled by inheritance; for example, we should not allow our BOAT entity to become 
attached to an object representing an object of type BUOY, a class which does not inherit 
from BOAT.

The genericity mechanism should support the constrained form of genericity.

It should be possible to redefine the specification, signature and 
implementation of an inherited feature.

It should be possible to attach entities (names in the software texts 
representing run-time objects) to run-time objects of various possible types, 
under the control of the inheritance-based type system.
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Dynamic binding 

The combination of the last two mechanisms mentioned, redefinition and polymorphism, 
immediately suggests the next one. Assume a call whose target is a polymorphic entity, 
for example a call to the feature turn on an entity declared of type BOAT. The various 
descendants of BOAT may have redefined the feature in various ways. Clearly, there must 
be an automatic mechanism to guarantee that the version of turn will always be the one 
deduced from the actual object’s type, regardless of how the entity has been declared. This 
property is called dynamic binding.

Dynamic binding has a major influence on the structure of object-oriented 
applications, as it enables developers to write simple calls (meaning, for example, “call 
feature turn on entity my_boat”) to denote what is actually several possible calls 
depending on the corresponding run-time situations. This avoids the need for many of the 
repeated tests (“Is this a merchant ship? Is this a sports boat?”) which plague software 
written with more conventional approaches. 

Run-time type interrogation 

Object-oriented software developers soon develop a healthy hatred for any style of 
computation based on explicit choices between various types for an object. Polymorphism 
and dynamic binding provide a much preferable alternative. In some cases, however, an 
object comes from the outside, so that the software author has no way to predict its type 
with certainty. This occurs in particular if the object is retrieved from external storage, 
received from a network transmission or passed by some other system. 

The software then needs a mechanism to access the object in a safe way, without 
violating the constraints of static typing. Such a mechanism should be designed with care, 
so as not to cancel the benefits of polymorphism and dynamic binding. 

The assignment attempt operation described in this book satisfies these 
requirements. An assignment attempt is a conditional operation: it tries to attach an object 
to an entity; if in a given execution the object’s type conforms to the type declared for the 
entity, the effect is that of a normal assignment; otherwise the entity gets a special “void” 
value. So you can handle objects whose type you do not know for sure, without violating 
the safety of the type system.

Calling a feature on an entity should always trigger the feature corresponding 
to the type of the attached run-time object, which is not necessarily the same 
in different executions of the call.

It should be possible to determine at run time whether the type of an object 
conforms to a statically given type.
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Deferred features and classes 

In some cases for which dynamic binding provides an elegant solution, obviating the need 
for explicit tests, there is no initial version of a feature to be redefined. For example class 
BOAT may be too general to provide a default implementation of turn. Yet we want to be 
able to call feature turn to an entity declared of type BOAT if we have ensured that at run 
time it will actually be attached to objects of such fully defined types as MERCHANT_
SHIP and SPORTS_BOAT. 

In such cases BOAT may be declared as a deferred class (one which is not fully 
implemented), and with a deferred feature turn. Deferred features and classes may still 
possess assertions describing their abstract properties, but their implementation is 
postponed to descendant classes. A non-deferred class is said to be effective.

Deferred classes (also called abstract classes) are particularly important for object-
oriented analysis and high-level design, as they make it possible to capture the essential 
aspects of a system while leaving details to a later stage. 

Memory management and garbage collection 

The last point on our list of method and language criteria may at first appear to belong 
more properly to the next category — implementation and environment. In fact it belongs 
to both. But the crucial requirements apply to the language; the rest is a matter of good 
engineering. 

Object-oriented systems, even more than traditional programs (except in the Lisp 
world), tend to create many objects with sometimes complex interdependencies. A policy 
leaving developers in charge of managing the associated memory, especially when it 
comes to reclaiming the space occupied by objects that are no longer needed, would harm 
both the efficiency of the development process, as it would complicate the software and 
occupy a considerable part of the developers’ time, and the safety of the resulting systems, 
as it raises the risk of improper recycling of memory areas. In a good object-oriented 
environment memory management will be automatic, under the control of the garbage 
collector, a component of the runtime system. 

The reason this is a language issue as much as an implementation requirement is that 
a language that has not been explicitly designed for automatic memory management will 
often render it impossible. This is the case with languages where a pointer to an object of 
a certain type may disguise itself (through conversions known as “casts”) as a pointer of 
another type or even as an integer, making it impossible to write a safe garbage collector.

It should be possible to write a class or a feature as deferred, that is to say 
specified but not fully implemented.

The language should make safe automatic memory management possible, 
and the implementation should provide an automatic memory manager 
taking care of garbage collection.
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2.3  IMPLEMENTATION AND ENVIRONMENT 
We come now to the essential features of a development environment supporting object-
oriented software construction. 

Automatic update 
Software development is an incremental process. Developers do not commonly write 
thousands of lines at a time; they proceed by addition and modification, starting most of 
the time from a system that is already of substantial size. 

When performing such an update, it is essential to have the guarantee that the 
resulting system will be consistent. For example, if you change a feature f of class C, you 
must be certain that every descendant of C which does not redefine f will be updated to 
have the new version of f, and that every call to f in a client of C or of a descendant of C 
will trigger the new version. 

Conventional approaches to this problem are manual, forcing the developers to 
record all dependencies, and track their changes, using special mechanisms known as 
“make files” and “include files”. This is unacceptable in modern software development, 
especially in the object-oriented world where the dependencies between classes, resulting 
from the client and inheritance relations, are often complex but may be deduced from a 
systematic examination of the software text. 

It is possible to meet this requirement in a compiled environment (where the 
compiler will work together with a tool for dependency analysis), in an interpreted 
environment, or in one combining both of these language implementation techniques. 

Fast update 
In practice, the mechanism for updating the system after some changes should not only be 
automatic, it should also be fast. More precisely, it should be proportional to the size of 
the changed parts, not to the size of the system as a whole. Without this property, the 
method and environment may be applicable to small systems, but not to large ones. 

Here too both interpreted and compiled environments may meet the criterion, 
although in the latter case the compiler must be incremental. Along with an incremental 
compiler, the environment may of course include a global optimizing compiler working 
on an entire system, as long as that compiler only needs to be used for delivering a final 
product; development will rely on the incremental compiler. 

System updating after a change should be automatic, the analysis of inter-
class dependencies being performed by tools, not manually by developers.

The time to process a set of changes to a system, enabling execution of the 
updated version, should be a function of the size of the changed components, 
independent of the size of the system as a whole.



CRITERIA FOR OBJECT ORIENTATION  §2.3 32

S is a “supplier” of 
C if C is a client of S. 
“Client” was 
defined on page 24.
Persistence 

Many applications, perhaps most, will need to conserve objects from one session to the 
next. The environment should provide a mechanism to do this in a simple way. 

An object will often contain references to other objects; since the same may be true 
of these objects, this means that every object may have a large number of dependent 
objects, with a possibly complex dependency graph (which may involve cycles). It would 
usually make no sense to store or retrieve the object without all its direct and indirect 
dependents. A persistence mechanism which can automatically store an object’s 
dependents along with the object is said to support persistence closure.

For some applications, mere persistence support is not sufficient; such applications 
will need full database support. The notion of object-oriented database is covered in a 
later chapter, which also explores other persistent issues such as schema evolution, the 
ability to retrieve objects safely even if the corresponding classes have changed.

Documentation 

Developers of classes and systems must provide management, customers and other 
developers with clear, high-level descriptions of the software they produce. They need 
tools to assist them in this effort; as much as possible of the documentation should be 
produced automatically from the software texts. Assertions, as already noted, help make 
such software-extracted documents precise and informative.

Browsing

When looking at a class, you will often need to obtain information about other classes; in 
particular, the features used in a class may have been introduced not in the class itself but 
in its various ancestors. This puts on the environment the burden of providing developers 
with tools to examine a class text, find its dependencies on other classes, and switch 
rapidly from one class text to another. 

This task is called browsing. Typical facilities offered by good browsing tools 
include: find the clients, suppliers, descendants, ancestors of a class; find all the 
redefinitions of a feature; find the original declaration of a redefined feature.

A persistent storage mechanism supporting persistence closure should be 
available to store an object and all its dependents into external devices, and 
to retrieve them in the same or another session.

Automatic tools should be available to produce documentation about classes 
and systems.

Interactive browsing facilities should enable software developers to follow up 
quickly and conveniently the dependencies between classes and features.
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2.4  LIBRARIES 

One of the characteristic aspects of developing software the object-oriented way is the 
ability to rely on libraries. An object-oriented environment should provide good libraries, 
and mechanisms to write more. 

Basic libraries 

The fundamental data structures of computing science — sets, lists, trees, stacks… — and 
the associated algorithms — sorting, searching, traversing, pattern matching — are 
ubiquitous in software development. In conventional approaches, each developer 
implements and re-implements them independently all the time; this is not only wasteful 
of efforts but detrimental to software quality, as it is unlikely that an individual developer 
who implements a data structure not as a goal in itself but merely as a component of some 
application will attain the optimum in reliability and efficiency. 

An object-oriented development environment must provide reusable classes 
addressing these common needs of software systems.

Graphics and user interfaces 

Many modern software systems are interactive, interacting with their users through 
graphics and other pleasant interface techniques. This is one of the areas where the object-
oriented model has proved most impressive and helpful. Developers should be able to rely 
on graphical libraries to build interactive applications quickly and effectively.

Library evolution mechanisms 

Developing high-quality libraries is a long and arduous task. It is impossible to guarantee 
that the design of library will be perfect the first time around. An important problem, then, 
is to enable library developers to update and modify their designs without wreaking havoc 
in existing systems that depend on the library. This important criterion belongs to the 
library category, but also to the method and language category.

Reusable classes should be available to cover the most frequently needed 
data structures and algorithms.

Reusable classes should be available for developing applications which 
provide their users with pleasant graphical user interface.

Mechanisms should be available to facilitate library evolution with minimal 
disruption of client software.
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Library indexing mechanisms 

Another problem raised by libraries is the need for mechanisms to identify the classes 
addressing a certain need. This criterion affects all three categories: libraries, language (as 
there must be a way to enter indexing information within the text of each class) and tools 
(to process queries for classes satisfying certain conditions).

2.5  FOR MORE SNEAK PREVIEW

Although to understand the concepts in depth it is preferable to read this book sequentially, 
readers who would like to complement the preceding theoretical overview with an 
advance glimpse of the method at work on a practical example can at this point read 
chapter 20, a case study of a practical design problem, on which it compares an O-O 
solution with one employing more traditional techniques.

That case study is mostly self-contained, so that you will understand the essentials 
without having read the intermediate chapters. (But if you do go ahead for this quick peek, 
you must promise to come back to the rest of the sequential presentation, starting with 
chapter 3, as soon as you are done.)

2.6  BIBLIOGRAPHICAL NOTES AND OBJECT RESOURCES

This introduction to the criteria of object orientation is a good opportunity to list a 
selection of books that offer quality introductions to object technology in general.

[Waldén 1995] discusses the most important issues of object technology, focusing 
on analysis and design, on which it is probably the best reference.

[Page-Jones 1995] provides an excellent overview of the method.

[Cox 1990] (whose first edition was published in 1986) is based on a somewhat 
different view of object technology and was instrumental in bringing O-O concepts to a 
much larger audience than before.

[Henderson-Sellers 1991] (a second edition is announced) provides a short overview 
of O-O ideas. Meant for people who are asked by their company to “go out and find out 
what that object stuff is about”, it includes ready-to-be-photocopied transparency masters, 
precious on such occasions. Another overview is [Eliëns 1995].

The Dictionary of Object Technology [Firesmith 1995] provides a comprehensive 
reference on many aspects of the method.

Library classes should be equipped with indexing information allowing 
property-based retrieval.
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Chapter 29 dis-
cusses teaching 
the technology.
All these books are to various degrees intended for technically-minded people. There 
is also a need to educate managers. [M 1995] grew out of a chapter originally planned for 
the present book, which became a full-fledged discussion of object technology for 
executives. It starts with a short technical presentation couched in business terms and 
continues with an analysis of management issues (lifecycle, project management, reuse 
policies). Another management-oriented book, [Goldberg 1995], provides a 
complementary perspective on many important topics. [Baudoin 1996] stresses lifecycle 
issues and the importance of standards.

Coming back to technical presentations, three influential books on object-oriented 
languages, written by the designers of these languages, contain general methodological 
discussions that make them of interest to readers who do not use the languages or might 
even be critical of them. (The history of programming languages and books about them 
shows that designers are not always the best to write about their own creations, but in these 
cases they were.) The books are:

• Simula BEGIN [Birtwistle 1973]. (Here two other authors joined the language 
designers Nygaard and Dahl.)

• Smalltalk-80: The Language and its Implementation [Goldberg 1983].

• The C++ Programming Language, second edition [Stroustrup 1991].

More recently, some introductory programming textbooks have started to use object-
oriented ideas right from the start, as there is no reason to let “ontogeny repeat phylogeny”, 
that is to say, take the poor students through the history of the hesitations and mistakes 
through which their predecessors arrived at the right ideas. The first such text (to my 
knowledge) was [Rist 1995]. Another good book covering similar needs is [Wiener 
1996]. At the next level — textbooks for a second course on programming, discussing data 
structures and algorithms based on the notation of this book — you will find [Gore 1996]
and [Wiener 1997]; [Jézéquel 1996] presents the principles of object-oriented software 
engineering.

The Usenet newsgroup comp.object, archived on several sites around the Web, is the 
natural medium of discussion for many issues of object technology. As with all such 
forums, be prepared for a mixture of the good, the bad and the ugly. The Object 
Technology department of Computer (IEEE), which I have edited since it started in 1995, 
has frequent invited columns by leading experts.

Magazines devoted to Object Technology include:

• The Journal of Object-Oriented Programming (the first journal in the field, 
emphasizing technical discussions but for a large audience), Object Magazine (of a 
more general scope, with some articles for managers), Objekt Spektrum (German), 
Object Currents (on-line), all described at http://www.sigs.com.

• Theory and Practice of Object Systems, an archival journal.

• L’OBJET (French), described at http://www.tools.com/lobjet.
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The major international O-O conferences are OOPSLA (yearly, USA or Canada, see 
http://www.acm.org); Object Expo (variable frequency and locations, described at 
http://www.sigs.com); and TOOLS (Technology of Object-Oriented Languages and 
Systems), organized by ISE with three sessions a year (USA, Europe, Pacific), whose 
home page at http://www.tools.com also serves as a general resource on object technology 
and the topics of this book.



Part B: 
The road to object orientation
See the comments on 
this text on page 43.
The second [ precept I devised for myself ] was to divide each of the difficulties 
which I would examine into as many parcels as it would be possible and 
required to solve it better.

The third was to drive my thoughts in due order, beginning with these objects 
most simple and easiest to know, and climbing little by little, so to speak by 
degrees, up to the knowledge of the most composite ones; and assuming some 
order even between those which do not naturally precede one another.

René Descartes, Discourse on the Method (1637)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part B will examine the software engineering requirements that lead us, almost 
inexorably, to object technology. 



3  
Modularity 
From the goals of extendibility and reusability, two of the principal quality factors 
introduced in chapter 1, follows the need for flexible system architectures, made of 
autonomous software components. This is why chapter 1 also introduced the term 
modularity to cover the combination of these two quality factors. 

Modular programming was once taken to mean the construction of programs as 
assemblies of small pieces, usually subroutines. But such a technique cannot bring real 
extendibility and reusability benefits unless we have a better way of guaranteeing that the 
resulting pieces — the modules — are self-contained and organized in stable 
architectures. Any comprehensive definition of modularity must ensure these properties. 

A software construction method is modular, then, if it helps designers produce 
software systems made of autonomous elements connected by a coherent, simple 
structure. The purpose of this chapter is to refine this informal definition by exploring 
what precise properties such a method must possess to deserve the “modular” label. The 
focus will be on design methods, but the ideas also apply to earlier stages of system 
construction (analysis, specification) and must of course be maintained at the 
implementation and maintenance stages. 

As it turns out, a single definition of modularity would be insufficient; as with 
software quality, we must look at modularity from more than one viewpoint. This chapter 
introduces a set of complementary properties: five criteria, five rules and five principles 
of modularity which, taken collectively, cover the most important requirements on a 
modular design method. 

For the practicing software developer, the principles and the rules are just as 
important as the criteria. The difference is simply one of causality: the criteria are mutually 
independent — and it is indeed possible for a method to satisfy one of them while violating 
some of the others — whereas the rules follow from the criteria and the principles follow 
from the rules. 

You might expect this chapter to begin with a precise description of what a module 
looks like. This is not the case, and for a good reason: our goal for the exploration of 
modularity issues, in this chapter and the next two, is precisely to analyze the properties 
which a satisfactory module structure must satisfy; so the form of modules will be a 
conclusion of the discussion, not a premise. Until we reach that conclusion the word 



MODULARITY  §3.1 40

Decomposabil-
ity
“module” will denote the basic unit of decomposition of our systems, whatever it actually 
is. If you are familiar with non-object-oriented methods you will probably think of the 
subroutines present in most programming and design languages, or perhaps of packages 
as present in Ada and (under a different name) in Modula. The discussion will lead in a 
later chapter to the O-O form of module — the class — which supersedes these ideas. If 
you have encountered classes and O-O techniques before, you should still read this chapter 
to understand the requirements that classes address, a prerequisite if you want to use them 
well.

3.1  FIVE CRITERIA 

A design method worthy of being called “modular” should satisfy five fundamental 
requirements, explored in the next few sections: 

• Decomposability. 

• Composability. 

• Understandability. 

• Continuity. 

• Protection. 

Modular decomposability

The process will often be self-repeating since each subproblem may still be complex 
enough to require further decomposition.

A software construction method satisfies Modular Decomposability if it 
helps in the task of decomposing a software problem into a small number of 
less complex subproblems, connected by a simple structure, and independent 
enough to allow further work to proceed separately on each of them
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As discussed below, 
top-down design is 
not as well suited to 
other modularity 
criteria.

A top-down 
hierarchy

The term “temporal 
cohesion” comes 
from the method 
known as structured 
design; see the bibli-
ographical notes.
A corollary of the decomposability requirement is division of labor: once you have 
decomposed a system into subsystems you should be able to distribute work on these 
subsystems among different people or groups. This is a difficult goal since it limits the 
dependencies that may exist between the subsystems: 

• You must keep such dependencies to the bare minimum; otherwise the development 
of each subsystem would be limited by the pace of the work on the other subsystems. 

• The dependencies must be known: if you fail to list all the relations between 
subsystems, you may at the end of the project get a set of software elements that 
appear to work individually but cannot be put together to produce a complete system 
satisfying the overall requirements of the original problem. 

The most obvious example of a method meant to satisfy the decomposability 
criterion is top-down design. This method directs designers to start with a most abstract 
description of the system’s function, and then to refine this view through successive steps, 
decomposing each subsystem at each step into a small number of simpler subsystems, 
until all the remaining elements are of a sufficiently low level of abstraction to allow direct 
implementation. The process may be modeled as a tree.

A typical counter-example is any method encouraging you to include, in each 
software system that you produce, a global initialization module. Many modules in a 
system will need some kind of initialization — actions such as the opening of certain files 
or the initialization of certain variables, which the module must execute before it performs 
its first directly useful tasks. It may seem a good idea to concentrate all such actions, for 
all modules of the system, in a module that initializes everything for everybody. Such a 
module will exhibit good “temporal cohesion” in that all its actions are executed at the 
same stage of the system’s execution. But to obtain this temporal cohesion the method 
would endanger the autonomy of modules: you will have to grant the initialization module 
authorization to access many separate data structures, belonging to the various modules of 
the system and requiring specific initialization actions. This means that the author of the 
initialization module will constantly have to peek into the internal data structures of the 
other modules, and interact with their authors. This is incompatible with the 
decomposability criterion. 

In the object-oriented method, every module will be responsible for the initialization of 
its own data structures.

A

B D C

C1 I I1 C2 I2

Sequence

Loop Conditional

Topmost functional abstraction
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Composability
Modular composability

Where decomposability was concerned with the derivation of subsystems from overall 
systems, composability addresses the reverse process: extracting existing software 
elements from the context for which they were originally designed, so as to use them again 
in different contexts.

A modular design method should facilitate this process by yielding software 
elements that will be sufficiently autonomous — sufficiently independent from the 
immediate goal that led to their existence — as to make the extraction possible. 

Composability is directly connected with the goal of reusability: the aim is to find 
ways to design software elements performing well-defined tasks and usable in widely 
different contexts. This criterion reflects an old dream: transforming the software design 
process into a construction box activity, so that we would build programs by combining 
standard prefabricated elements. 

• Example 1: subprogram libraries. Subprogram libraries are designed as sets of 
composable elements. One of the areas where they have been successful is numerical 
computation, which commonly relies on carefully designed subroutine libraries to 
solve problems of linear algebra, finite elements, differential equations etc. 

• Example 2: Unix Shell conventions. Basic Unix commands operate on an input 
viewed as a sequential character stream, and produce an output with the same 
standard structure. This makes them potentially composable through the | operator 
of the command language (“shell”): A | B represents a program which will take A’s 
input, have A process it, send the output to B as input, and have it processed by B. 
This systematic convention favors the composability of software tools. 

• Counter-example: preprocessors. A popular way to extend the facilities of 
programming languages, and sometimes to correct some of their deficiencies, is to 

A method satisfies Modular Composability if it favors the production of 
software elements which may then be freely combined with each other to 
produce new systems, possibly in an environment quite different from the 
one in which they were initially developed.
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The figure illustrat-
ing top-down design 
was on page 41.

See “ABOUT 
SOFTWARE MAIN-
TENANCE”, 1.3, 
page 17.

Understan-
dability
use “preprocessors” that accept an extended syntax as input and map it into the 
standard form of the language. Typical preprocessors for Fortran and C support 
graphical primitives, extended control structures or database operations. Usually, 
however, such extensions are not compatible; then you cannot combine two of the 
preprocessors, leading to such dilemmas as whether to use graphics or databases.

Composability is independent of decomposability. In fact, these criteria are often at 
odds. Top-down design, for example, which we saw as a technique favoring 
decomposability, tends to produce modules that are not easy to combine with modules 
coming from other sources. This is because the method suggests developing each module 
to fulfill a specific requirement, corresponding to a subproblem obtained at some point in 
the refinement process. Such modules tend to be closely linked to the immediate context 
that led to their development, and unfit for adaptation to other contexts. The method 
provides neither hints towards making modules more general than immediately required, 
nor any incentives to do so; it helps neither avoid nor even just detect commonalities or 
redundancies between modules obtained in different parts of the hierarchy. 

That composability and decomposability are both part of the requirements for a 
modular method reflects the inevitable mix of top-down and bottom-up reasoning — a 
complementarity that René Descartes had already noted almost four centuries ago, as 
shown by the contrasting two paragraphs of the Discourse extract at the beginning of part B.

Modular understandability

The importance of this criterion follows from its influence on the maintenance process. 
Most maintenance activities, whether of the noble or not-so-noble category, involve 
having to dig into existing software elements. A method can hardly be called modular if a 
reader of the software is unable to understand its elements separately.

A method favors Modular Understandability if it helps produce software in 
which a human reader can understand each module without having to know 
the others, or, at worst, by having to examine only a few of the others.
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See also, later in this 
chapter, “Self-
Documentation”, 
page 54.

See “Extendibility”, 
page 6.
This criterion, like the others, applies to the modules of a system description at any 
level: analysis, design, implementation. 

• Counter-example: sequential dependencies. Assume some modules have been so 
designed that they will only function correctly if activated in a certain prescribed 
order; for example, B can only work properly if you execute it after A and before C, 
perhaps because they are meant for use in “piped” form as in the Unix notation 
encountered earlier:  

A | B | C 
Then it is probably hard to understand B without understanding A and C too. 

In later chapters, the modular understandability criterion will help us address two 
important questions: how to document reusable components; and how to index reusable 
components so that software developers can retrieve them conveniently through queries. 
The criterion suggests that information about a component, useful for documentation or 
for retrieval, should whenever possible appear in the text of the component itself; tools for 
documentation, indexing or retrieval can then process the component to extract the needed 
pieces of information. Having the information included in each component is preferable 
to storing it elsewhere, for example in a database of information about components. 

Modular continuity

This criterion is directly connected to the general goal of extendibility. As emphasized in 
an earlier chapter, change is an integral part of the software construction process. The 
requirements will almost inevitably change as the project progresses. Continuity means 
that small changes should affect individual modules in the structure of the system, rather 
than the structure itself. 

The term “continuity” is drawn from an analogy with the notion of a continuous 
function in mathematical analysis. A mathematical function is continuous if (informally) 
a small change in the argument will yield a proportionally small change in the result. Here 
the function considered is the software construction method, which you can view as a 
mechanism for obtaining systems from specifications: 

software_construction_method: Specification → System

A method satisfies Modular Continuity if, in the software architectures that 
it yields, a small change in a problem specification will trigger a change of 
just one module, or a small number of modules.
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Continuity

This will be one of 
our principles of 
style: Symbolic 
Constant Principle, 
page 884.

See “Uniform 
Access”, page 55.
This mathematical term only provides an analogy, since we lack formal notions of 
size for software. More precisely, it would be possible to define a generally acceptable 
measure of what constitutes a “small” or “large” change to a program; but doing the same 
for the specifications is more of a challenge. If we make no pretense of full rigor, however, 
the concepts should be intuitively clear and correspond to an essential requirement on any 
modular method. 

• Example 1: symbolic constants. A sound style rule bars the instructions of a program 
from using any numerical or textual constant directly; instead, they rely on symbolic 
names, and the actual values only appear in a constant definition (constant in Pascal 
or Ada, preprocessor macros in C, PARAMETER in Fortran 77, constant attributes in 
the notation of this book). If the value changes, the only thing to update is the 
constant definition. This small but important rule is a wise precaution for continuity 
since constants, in spite of their name, are remarkably prone to change. 

• Example 2: the Uniform Access principle. Another rule states that a single notation 
should be available to obtain the features of an object, whether they are represented 
as data fields or computed on demand. This property is sufficiently important to 
warrant a separate discussion later in this chapter. 

• Counter-example 1: using physical representations. A method in which program 
designs are patterned after the physical implementation of data will yield designs 
that are very sensitive to slight changes in the environment. 

• Counter-example 2: static arrays. Languages such as Fortran or standard Pascal, 
which do not allow the declaration of arrays whose bounds will only be known at run 
time, make program evolution much harder. 

Modular protection

A method satisfies Modular Protection if it yields architectures in which the 
effect of an abnormal condition occurring at run time in a module will remain 
confined to that module, or at worst will only propagate to a few neighboring 
modules.
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The question of how 
to handle abnormal 
cases is discussed in 
detail in chapter 12.

Protection 
violation

More on this topic in 
“Assertions are not an 
input checking mech-
anism”, page 345

On exception han-
dling, see chapter 12. 
The underlying issue, that of failures and errors, is central to software engineering. The 
errors considered here are run-time errors, resulting from hardware failures, erroneous 
input or exhaustion of needed resources (for example memory storage). The criterion does 
not address the avoidance or correction of errors, but the aspect that is directly relevant to 
modularity: their propagation.

• Example: validating input at the source. A method requiring that you make every 
module that inputs data also responsible for checking their validity is good for 
modular protection. 

• Counter-example: undisciplined exceptions. Languages such as PL/I, CLU, Ada, 
C++ and Java support the notion of exception. An exception is a special signal that 
may be “raised” by a certain instruction and “handled” in another, possibly remote 
part of the system. When the exception is raised, control is transferred to the handler. 
(Details of the mechanism vary between languages; Ada or CLU are more disciplined 
in this respect than PL/I.) Such facilities make it possible to decouple the algorithms 
for normal cases from the processing of erroneous cases. But they must be used 
carefully to avoid hindering modular protection. The chapter on exceptions will 
investigate how to design a disciplined exception mechanism satisfying the criterion.

3.2  FIVE RULES 

From the preceding criteria, five rules follow which we must observe to ensure 
modularity: 

• Direct Mapping. 

• Few Interfaces. 

• Small interfaces (weak coupling). 

• Explicit Interfaces. 

• Information Hiding. 

The first rule addresses the connection between a software system and the external 
systems with which it is connected; the next four all address a common issue — how 
modules will communicate. Obtaining good modular architectures requires that 
communication occur in a controlled and disciplined way. 
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Types of module 
interconnection 
structures
Direct Mapping 

Any software system attempts to address the needs of some problem domain. If you have 
a good model for describing that domain, you will find it desirable to keep a clear 
correspondence (mapping) between the structure of the solution, as provided by the 
software, and the structure of the problem, as described by the model. Hence the first rule:

This advice follows in particular from two of the modularity criteria: 

• Continuity: keeping a trace of the problem’s modular structure in the solution’s 
structure will make it easier to assess and limit the impact of changes. 

• Decomposability: if some work has already been done to analyze the modular 
structure of the problem domain, it may provide a good starting point for the modular 
decomposition of the software. 

Few Interfaces

The Few Interfaces rule restricts the overall number of communication channels between 
modules in a software architecture: 

Communication may occur between modules in a variety of ways. Modules may call 
each other (if they are procedures), share data structures etc. The Few Interfaces rule limits 
the number of such connections.

More precisely, if a system is composed of n modules, then the number of 
intermodule connections should remain much closer to the minimum, n–1, shown as (A)
in the figure, than to the maximum, n (n – 1) /2, shown as (B).

This rule follows in particular from the criteria of continuity and protection: if there 
are too many relations between modules, then the effect of a change or of an error may 

The modular structure devised in the process of building a software system 
should remain compatible with any modular structure devised in the process 
of modeling the problem domain.

Every module should communicate with as few others as possible.

(A) (B) (C)
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Communication
bandwidth 
between 
modules
propagate to a large number of modules. It is also connected to composability (if you want 
a module to be usable by itself in a new environment, then it should not depend on too 
many others), understandability and decomposability. 

Case (A) on the last figure shows a way to reach the minimum number of links, n  –
  1, through an extremely centralized structure: one master module; everybody else talks to 
it and to it only. But there are also much more “egalitarian” structures, such as (C) which 
has almost the same number of links. In this scheme, every module just talks to its two 
immediate neighbors, but there is no central authority. Such a style of design is a little 
surprising at first since it does not conform to the traditional model of functional, top-down 
design. But it can yield robust, extendible architectures; this is the kind of structure that 
object-oriented techniques, properly applied, will tend to yield. 

Small Interfaces 

The Small Interfaces or “Weak Coupling” rule relates to the size of intermodule 
connections rather than to their number: 

An electrical engineer would say that the channels of communication between 
modules must be of limited bandwidth:

The Small Interfaces requirement follows in particular from the criteria of continuity 
and protection.

An extreme counter-example is a Fortran practice which some readers will recognize: 
the “garbage common block”. A common block in Fortran is a directive of the form 

COMMON /common_name/ variable1,… variablen

indicating that the variables listed are accessible not just to the enclosing module but also 
to any other module which includes a COMMON directive with the same common_name. 
It is not infrequent to see Fortran systems whose every module includes an identical 
gigantic COMMON directive, listing all significant variables and arrays so that every 
module may directly use every piece of data. 

If two modules communicate, they should exchange as little information as 
possible

z

x, y
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The Body of a block 
is a sequence of 
instructions. The syn-
tax used here is com-
patible with the 
notation used in sub-
sequent chapters, so 
it is not exactly 
Algol’s. “--” intro-
duces a comment. 

On clusters see 
chapter 28. The 
O-O alternative to 
nesting is studied in 
“The architectural 
role of selective 
exports”, page 209.
The problem, of course, is that every module may also misuse the common data, and 
hence that modules are tightly coupled to each other; the problems of modular continuity 
(propagation of changes) and protection (propagation of errors) are particularly nasty. This 
time-honored technique has nevertheless remained a favorite, no doubt accounting for 
many a late-night debugging session.

Developers using languages with nested structures can suffer from similar troubles. 
With block structure as introduced by Algol and retained in a more restricted form by 
Pascal, it is possible to include blocks, delimited by begin … end pairs, within other 
blocks. In addition every block may introduce its own variables, which are only 
meaningful within the syntactic scope of the block. For example:

local-- Beginning of block B1
x, y: INTEGER

do
… Instructions of B1 …
local -- Beginning of block B2

z: BOOLEAN
do

… Instructions of B2 …
end --- of block B2

local -- Beginning of block B3
y, z: INTEGER

do
… Instructions of B3 …

end -- of block B3
… Instructions of B1 (continued) …

end -- of block B1
Variable x is accessible to all instructions throughout this extract, whereas the two 

variables called z (one BOOLEAN, the other INTEGER) have scopes limited to B2 and B3
respectively. Like x, variable y is declared at the level of B1, but its scope does not include 
B3, where another variable of the same name (and also of type INTEGER) locally takes 
precedence over the outermost y. In Pascal this form of block structure exists only for 
blocks associated with routines (procedures and functions).

With block structure, the equivalent of the Fortran garbage common block is the 
practice of declaring all variables at the topmost level. (The equivalent in C-based 
languages is to introduce all variables as external.) 

Block structure, although an ingenious idea, introduces many opportunities to 
violate the Small Interfaces rule. For that reason we will refrain from using it in the object-
oriented notation devised later in this book, especially since the experience of Simula, an 
object-oriented Algol derivative supporting block structure, shows that the ability to nest 
classes is redundant with some of the facilities provided by inheritance. The architecture 
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Data sharing
of object-oriented software will involve three levels: a system is a set of clusters; a cluster 
is a set of classes; a class is a set of features (attributes and routines). Clusters, an 
organizational tool rather than a linguistic construct, can be nested to allow a project leader 
to structure a large system in as many levels as necessary; but classes as well as features 
have a flat structure, since nesting at either of those levels would cause unnecessary 
complication.

Explicit Interfaces

With the fourth rule, we go one step further in enforcing a totalitarian regime upon the 
society of modules: not only do we demand that any conversation be limited to few 
participants and consist of just a few words; we also require that such conversations must 
be held in public and loudly!

Behind this rule stand the criteria of decomposability and composability (if you need 
to decompose a module into several submodules or compose it with other modules, any 
outside connection should be clearly visible), continuity (it should be easy to find out what 
elements a potential change may affect) and understandability (how can you understand A
by itself if B can influence its behavior in some devious way?). 

One of the problems in applying the Explicit Interfaces rule is that there is more to 
intermodule coupling than procedure call; data sharing, in particular, is a source of 
indirect coupling: 

Assume that module A modifies and module B uses the same data item x. Then A and 
B are in fact strongly coupled through x even though there may be no apparent connection, 
such as a procedure call, between them. 

Whenever two modules A and B communicate, this must be obvious from the 
text of A or B or both.

Module
A

Module
B

Data
item

x

modifies accesses
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Information Hiding 

The rule of Information Hiding may be stated as follows:

Application of this rule assumes that every module is known to the rest of the 
world (that is to say, to designers of other modules) through some official description, 
or public properties.

Of course, the whole text of the module itself (program text, design text) could serve 
as the description: it provides a correct view of the module since it is the module! The 
Information Hiding rule states that this should not in general be the case: the description 
should only include some of the module’s properties. The rest should remain non-public, 
or secret. Instead of public and secret properties, one may also talk of exported and private 
properties. The public properties of a module are also known as the interface of the 
module (not to be confused with the user interface of a software system). 

The fundamental reason behind the rule of Information Hiding is the continuity 
criterion. Assume a module changes, but the changes apply only to its secret elements, 
leaving the public ones untouched; then other modules who use it, called its clients, will 
not be affected. The smaller the public part, the higher the chances that changes to the 
module will indeed be in the secret part.

We may picture a module supporting Information Hiding as an iceberg; only the tip 
— the interface — is visible to the clients. 

The designer of every module must select a subset of the module’s properties 
as the official information about the module, to be made available to authors 
of client modules.

Secret Part

Public Part



MODULARITY  §3.2 52

See chapter 6, in par-
ticular “Abstract 
data types and infor-
mation hiding”, 
page 144. 

See the comments on 
conditional correct-
ness on page 4.
As a typical example, consider a procedure for retrieving the attributes associated 
with a key in a certain table, such as a personnel file or the symbol table of a compiler. The 
procedure will internally be very different depending on how the table is stored (sequential 
array or file, hash table, binary or B-Tree etc.). Information hiding implies that uses of this 
procedure should be independent of the particular implementation chosen. That way client 
modules will not suffer from any change in implementation. 

Information hiding emphasizes separation of function from implementation. Besides 
continuity, this rule is also related to the criteria of decomposability, composability and 
understandability. You cannot develop the modules of a system separately, combine 
various existing modules, or understand individual modules, unless you know precisely 
what each of them may and may not expect from the others. 

Which properties of a module should be public, and which ones secret? As a general 
guideline, the public part should include the specification of the module’s functionality; 
anything that relates to the implementation of that functionality should be kept secret, so 
as to preserve other modules from later reversals of implementation decisions. 

This first answer is still fairly vague, however, as it does not tell us what is the 
specification and what is the implementation; in fact, one might be tempted to reverse the 
definition by stating that the specification consists of whatever public properties the 
module has, and the implementation of its secrets! The object-oriented approach will give 
us a much more precise guideline thanks to the theory of abstract data types. 

To understand information hiding and apply the rule properly, it is important to avoid 
a common misunderstanding. In spite of its name, information hiding does not imply 
protection in the sense of security restrictions — physically prohibiting authors of client 
modules from accessing the internal text of a supplier module. Client authors may well be 
permitted to read all the details they want: preventing them from doing so may be 
reasonable in some circumstances, but it is a project management decision which does not 
necessarily follow from the information hiding rule. As a technical requirement, 
information hiding means that client modules (whether or not their authors are permitted 
to read the secret properties of suppliers) should only rely on the suppliers’ public 
properties. More precisely, it should be impossible to write client modules whose correct 
functioning depends on secret information. 

In a completely formal approach to software construction, this definition would be stated 
as follows. To prove the correctness of a module, you will need to assume some properties 
about its suppliers. Information hiding means that such proofs are only permitted to rely 
on public properties of the suppliers, never on their secret properties. 

Consider again the example of a module providing a table searching mechanism. 
Some client module, which might belong to a spreadsheet program, uses a table, and relies 
on the table module to look for a certain element in the table. Assume further that the 
algorithm uses a binary search tree implementation, but that this property is secret — not 
part of the interface. Then you may or may not allow the author of the table searching 
module to tell the author of the spreadsheet program what implementation he has used for 
tables. This is a project management decision, or perhaps (for commercially released 
software) a marketing decision; in either case it is irrelevant to the question of information 
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hiding. Information hiding means something else: that even if the author of the 
spreadsheet program knows that the implementation uses a binary search tree, he should 
be unable to write a client module which will only function correctly with this 
implementation — and would not work any more if the table implementation was changed 
to something else, such as hash coding. 

One of the reasons for the misunderstanding mentioned above is the very term 
“information hiding”, which tends to suggest physical protection. “Encapsulation”, 
sometimes used as a synonym for information hiding, is probably preferable in this 
respect, although this discussion will retain the more common term. 

As a summary of this discussion: the key to information hiding is not management 
or marketing policies as to who may or may not access the source text of a module, but 
strict language rules to define what access rights a module has on properties of its 
suppliers. As explained in the next chapter, “encapsulation languages” such as Ada and 
Modula-2 made the first steps in the right direction. Object technology will bring a more 
complete solution.

3.3  FIVE PRINCIPLES

From the preceding rules, and indirectly from the criteria, five principles of software 
construction follow: 

• The Linguistic Modular Units principle.

• The Self-Documentation principle.

• The Uniform Access principle. 

• The Open-Closed principle. 

• The Single Choice principle. 

Linguistic Modular Units

The Linguistic Modular Units principle expresses that the formalism used to describe 
software at various levels (specifications, designs, implementations) must support the 
view of modularity retained:

The language mentioned may be a programming language, a design language, a 
specification language etc. In the case of programming languages, modules should be 
separately compilable. 

Linguistic Modular Units principle

Modules must correspond to syntactic units in the language used.
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“About documen-
tation”, page 14. 
What this principle excludes at any level — analysis, design, implementation — is 
combining a method that suggests a certain module concept and a language that does not 
offer the corresponding modular construct, forcing software developers to perform manual 
translation or restructuring. It is indeed not uncommon to see companies hoping to apply 
certain methodological concepts (such as modules in the Ada sense, or object-oriented 
principles) but then implement the result in a programming language such as Pascal or C 
which does not support them. Such an approach defeats several of the modularity criteria: 

• Continuity: if module boundaries in the final text do not correspond to the logical 
decomposition of the specification or design, it will be difficult or impossible to 
maintain consistency between the various levels when the system evolves. A change 
of the specification may be considered small if it affects only a small number of 
specification modules; to ensure continuity, there must be a direct correspondence 
between specification, design and implementation modules. 

• Direct Mapping: to maintain a clear correspondence between the structure of the 
model and the structure of the solution, you must have a clear syntactical 
identification of the conceptual units on both sides, reflecting the division suggested 
by your development method.

• Decomposability: to divide system development into separate tasks, you need to 
make sure that every task results in a well-delimited syntactic unit; at the 
implementation stage, these units must be separately compilable. 

• Composability: how could we combine anything other than modules with 
unambiguous syntactic boundaries? 

• Protection: you can only hope to control the scope of errors if modules are 
syntactically delimited. 

Self-Documentation

Like the rule of Information Hiding, the Self-Documentation principle governs how we 
should document modules:

What this precludes is the common situation in which information about the module 
is kept in separate project documents.

The documentation under review here is internal documentation about components of 
the software, not user documentation about the resulting product, which may require 
separate products, whether paper, CD-ROM or Web pages — although, as noted in the 
discussion of software quality, one may see in the modern trend towards providing more 
and more on-line help a consequence of the same general idea.

The most obvious justification for the Self-Documentation principle is the criterion 
of modular understandability. Perhaps more important, however, is the role of this 

Self-Documentation principle
The designer of a module should strive to make all information about the 
module part of the module itself.
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principle in helping to meet the continuity criterion. If the software and its documentation 
are treated as separate entities, it is difficult to guarantee that they will remain compatible 
— “in sync” — when things start changing. Keeping everything at the same place, 
although not a guarantee, is a good way to help maintain this compatibility.

Innocuous as this principle may seem at first, it goes against much of what the 
software engineering literature has usually suggested as good software development 
practices. The dominant view is that software developers, to deserve the title of software 
engineers, need to do what other engineers are supposed to: produce a kilogram of paper 
for every gram of actual deliverable. The encouragement to keep a record of the software 
construction process is good advice — but not the implication that software and its 
documentation are different products. 

Such an approach ignores the specific property of software, which again and again 
comes back in this discussion: its changeability. If you treat the two products as separate, 
you risk finding yourself quickly in a situation where the documentation says one thing 
and the software does something else. If there is any worse situation than having no 
documentation, it must be having wrong documentation.

A major advance of the past few years has been the appearance of quality standards for 
software, such as ISO certification, the “2167” standard and its successors from the US 
Department of Defense, and the Capability Maturity Model of the Software Engineering 
Institute. Perhaps because they often sprang out of models from other disciplines, they 
tend to specify a heavy paper trail. Several of these standards could have a stronger effect 
on software quality (beyond providing a mechanism for managers to cover their bases in 
case of later trouble) by enforcing the Self-Documentation principle.

This book will draw on the Self-Documentation principle to define a method for 
documenting classes — the modules of object-oriented software construction — that 
includes the documentation of every module in the module itself. Not that the module is 
its documentation: there is usually too much detail in the software text to make it suitable 
as documentation (this was the argument for information hiding). Instead, the module 
should contain its documentation.

In this approach software becomes a single product that supports multiple views. 
One view, suitable for compilation and execution, is the full source code. Another is the 
abstract interface documentation of each module, enabling software developers to write 
client modules without having to learn the module’s own internals, in accordance with the 
rule of Information Hiding. Other views are possible.

We will need to remember this rule when we examine the question of how to 
document the classes of object-oriented software construction.

Uniform Access 

Although it may at first appear just to address a notational issue, the Uniform Access 
principle is in fact a design rule which influences many aspects of object-oriented design 
and the supporting notation. It follows from the Continuity criterion; you may also view 
it as a special case of Information Hiding. 
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Let x be a name used to access a certain data item (what will later be called an object) 
and f the name of a feature applicable to x. (A feature is an operation; this terminology will 
also be defined more precisely.) For example, x might be a variable representing a bank 
account, and f the feature that yields an account’s current balance. Uniform Access 
addresses the question of how to express the result of applying f to x, using a notation that 
does not make any premature commitment as to how f is implemented.

In most design and programming languages, the expression denoting the application 
of f to x depends on what implementation the original software developer has chosen for 
feature f: is the value stored along with x, or must it be computed whenever requested? 
Both techniques are possible in the example of accounts and their balances:

A1 • You may represent the balance as one of the fields of the record describing each 
account, as shown in the figure. With this technique, every operation that changes 
the balance must take care of updating the balance field.

A2 • Or you may define a function which computes the balance using other fields of the 
record, for example fields representing the lists of withdrawals and deposits. With 
this technique the balance of an account is not stored (there is no balance field) but 
computed on demand.

A common notation, in languages such as Pascal, Ada, C, C++ and Java, uses x    f in 
case A1 and f (x) in case A2.

Choosing between representations A1 and A2 is a space-time tradeoff: one 
economizes on computation, the other on storage. The resolution of this tradeoff in favor 
of one of the solutions is typical of representation decisions that developers often reverse 
at least once during a project’s lifetime. So for continuity’s sake it is desirable to have a 
feature access notation that does not distinguish between the two cases; then if you are in 
charge of x’s implementation and change your mind at some stage, it will not be necessary 
to change the modules that use f. This is an example of the Uniform Access principle.

deposits_list

withdrawals_list

balance

(A1)

(A2)
deposits_list

withdrawals_list
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In its general form the principle may be expressed as:

Few languages satisfy this principle. An older one that did was Algol W, where both 
the function call and the access to a field were written a (x). Object-oriented languages 
should satisfy Uniform Access, as did the first of them, Simula 67, whose notation is x   f
in both cases. The notation developed in part C will retain this convention.

The Open-Closed principle 

Another requirement that any modular decomposition technique must satisfy is the Open-
Closed principle:

The contradiction between the two terms is only apparent as they correspond to goals 
of a different nature: 

• A module is said to be open if it is still available for extension. For example, it should 
be possible to expand its set of operations or add fields to its data structures.

• A module is said to be closed if it is available for use by other modules. This assumes 
that the module has been given a well-defined, stable description (its interface in the 
sense of information hiding). At the implementation level, closure for a module also 
implies that you may compile it, perhaps store it in a library, and make it available 
for others (its clients) to use. In the case of a design or specification module, closing 
a module simply means having it approved by management, adding it to the project’s 
official repository of accepted software items (often called the project baseline), and 
publishing its interface for the benefit of other module authors. 

The need for modules to be closed, and the need for them to remain open, arise for 
different reasons. Openness is a natural concern for software developers, as they know that 
it is almost impossible to foresee all the elements — data, operations — that a module will 
need in its lifetime; so they will wish to retain as much flexibility as possible for future 
changes and extensions. But it is just as necessary to close modules, especially from a 
project manager’s viewpoint: in a system comprising many modules, most will depend on 
some others; a user interface module may depend on a parsing module (for parsing 
command texts) and on a graphics module, the parsing module itself may depend on a 

Uniform Access principle

All services offered by a module should be available through a uniform 
notation, which does not betray whether they are implemented through 
storage or through computation.

Open-Closed principle

Modules should be both open and closed.



MODULARITY  §3.3 58

A module and 
its clients

Old and new 
clients
lexical analysis module, and so on. If we never closed a module until we were sure it 
includes all the needed features, no multi-module software would ever reach completion: 
every developer would always be waiting for the completion of someone else’s job. 

With traditional techniques, the two goals are incompatible. Either you keep a 
module open, and others cannot use it yet; or you close it, and any change or extension can 
trigger a painful chain reaction of changes in many other modules, which relied on the 
original module directly or indirectly. 

The two figures below illustrate a typical situation where the needs for open and 
closed modules are hard to reconcile. In the first figure, module A is used by client 
modules B, C, D, which may themselves have their own clients (E, F, …).

Later on, however, the situation is disrupted by the arrival of new clients — B' and 
others — which need an extended or adapted version of A, which we may call A': 

With non-O-O methods, there seem to be only two solutions, equally unsatisfactory:

N1 • You may adapt module A so that it will offer the extended or modified functionality 
(A'  ) required by the new clients. 

N2 • You may also decide to leave A as it is, make a copy, change the module’s name to 
A' in the copy, and perform all the necessary adaptations on the new module. With 
this technique A' retains no further connection to A.

B A C E

D
Client of

F A'

G

IH

B A C E

D
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The potential for disaster with solution N1 is obvious. A may have been around for 
a long time and have many clients such as B, C and D. The adaptations needed to satisfy 
the new clients’ requirements may invalidate the assumptions on the basis of which the 
old ones used A; if so the change to A may start a dramatic series of changes in clients, 
clients of clients and so on. For the project manager, this is a nightmare come true: 
suddenly, entire parts of the software that were supposed to have been finished and sealed 
off ages ago get reopened, triggering a new cycle of development, testing, debugging and 
documentation. If many a software project manager has the impression of living the 
Sisyphus syndrome — the impression of being sentenced forever to carry a rock to the top 
of the hill, only to see it roll back down each time — it is for a large part because of the 
problems caused by this need to reopen previously closed modules. 

On the surface, solution N2 seems better: it avoids the Sisyphus syndrome since it 
does not require modifying any existing software (anything in the top half of the last 
figure). But in fact this solution may be even more catastrophic since it only postpones the 
day of reckoning. If you extrapolate its effects to many modules, many modification 
requests and a long period, the consequences are appalling: an explosion of variants of the 
original modules, many of them very similar to each other although never quite identical.

In many organizations, this abundance of modules, not matched by abundance of 
available functionality (many of the apparent variants being in fact quasi-clones), creates 
a huge configuration management problem, which people attempt to address through the 
use of complex tools. Useful as these tools may be, they offer a cure in an area where the 
first concern should be prevention. Better avoid redundancy than manage it.

Configuration management will remain useful, of course, if only to find the modules 
which must be reopened after a change, and to avoid unneeded module recompilations.

But how can we have modules that are both open and closed? How can we keep A
and everything in the top part of the figure unchanged, while providing A' to the bottom 
clients, and avoiding duplication of software? The object-oriented method will offer a 
particularly elegant contribution thanks to inheritance. 

The detailed study of inheritance appears in later chapters, but here is a preview of 
the basic idea. To get us out of the change or redo dilemma, inheritance will allow us to 
define a new module A' in terms of an existing module A by stating the differences only. 
We will write A' as 

class A' inherit
A redefine f, g, … end

feature
f …
g …
…
u …
…

end
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where the feature clause contains both the definition of the new features specific to A', 
such as u, and the redefinition of those features (such as f, g, …) whose form in A' is 
different from the one they had in A. 

The pictorial representation for inheritance will use an arrow from the heir (the new 
class, here A' ) to the parent (here A): 

Thanks to inheritance, O-O developers can adopt a much more incremental approach 
to software development than used to be possible with earlier methods. 

One way to describe the open-closed principle and the consequent object-oriented 
techniques is to think of them as a organized hacking. “Hacking” is understood here as a 
slipshod approach to building and modifying code (not in the more recent sense of breaking 
into computer networks, which, organized or not, no one should condone). The hacker may 
seem bad but often his heart is pure. He sees a useful piece of software, which is almost
able to address the needs of the moment, more general than the software’s original purpose. 
Spurred by a laudable desire not to redo what can be reused, our hacker starts modifying 
the original to add provisions for new cases. The impulse is good but the effect is often to 
pollute the software with many clauses of the form if that_special_case then…, so that 
after a few rounds of hacking, perhaps by a few different hackers, the software starts 
resembling a chunk of Swiss cheese that has been left outside for too long in August (if the 
tastelessness of this metaphor may be forgiven on the grounds that it does its best to convey 
the presence in such software of both holes and growth).

The organized form of hacking will enable us to cater to the variants without 
affecting the consistency of the original version.

A word of caution: nothing in this discussion suggests disorganized hacking. 
In particular:

• If you have control over the original software and can rewrite it so that it will address 
the needs of several kinds of client at no extra complication, you should do so.

F A'

G
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• Neither the Open-Closed principle nor redefinition in inheritance is a way to address 
design flaws, let alone bugs. If there is something wrong with a module, you should 
fix it — not leave the original as it is and try to correct the problem in a derived 
module. (The only potential exception to this rule is the case of flawed software 
which you are not at liberty to modify.) The Open-Closed principle and associated 
techniques are intended for the adaptation of healthy modules: modules that, 
although they may not suffice for some new uses, meet their own well-defined 
requirements, to the satisfaction of their own clients.

Single Choice

The last of the five modularity principles may be viewed as a consequence of both the 
Open-Closed and Information Hiding rules. 

Before examining the Single Choice principle in its full generality, let us look at a 
typical example. Assume you are building a system to manage a library (in the non-
software sense of the term: a collection of books and other publications, not software 
modules). The system will manipulate data structures representing publications. You may 
have declared the corresponding type as follows in Pascal-Ada syntax: 

type PUBLICATION =
record

author, title: STRING;
publication_ year: INTEGER

case pubtype: (book, journal, conference_proceedings) of
book: (publisher: STRING);
journal: (volume, issue: STRING);
proceedings: (editor, place: STRING)   -- Conference proceedings

end

This particular form uses the Pascal-Ada notion of “record type with variants” to 
describe sets of data structures with some fields (here author, title, publication_year) 
common to all instances, and others specific to individual variants.

The use of a particular syntax is not crucial here; Algol 68 and C provide an equivalent 
mechanism through the notion of union type. A union type is a type T defined as the union 
of pre-existing types A, B, …: a value of type T is either a value of type A, or a value of 
type B, … Record types with variants have the advantage of clearly associating a tag, here 
book, journal, conference_proceedings, with each variant.

Let A be the module that contains the above declaration or its equivalent using 
another mechanism. As long as A is considered open, you may add fields or introduce new 
variants. To enable A to have clients, however, you must close the module; this means that 
you implicitly consider that you have listed all the relevant fields and variants. Let B be a 
typical client of A. B will manipulate publications through a variable such as 

p: PUBLICATION
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and, to do just about anything useful with p, will need to discriminate explicitly between 
the various cases, as in: 

case p of
book: … Instructions which may access the field p   publisher …
journal: … Instructions which may access fields p   volume, p   issue …
proceedings: … Instructions which may access fields p   editor, p   place …

end

The case instruction of Pascal and Ada comes in handy here; it is of course on 
purpose that its syntax mirrors the form of the declaration of a record type with variants. 
Fortran and C will emulate the effect through multi-target goto instructions (switch in C). 
In these and other languages a multi-branch conditional instruction (if … then … elseif
… elseif … else … end) will also do the job. 

Aside from syntactic variants, the principal observation is that to perform such a 
discrimination every client must know the exact list of variants of the notion of publication 
supported by A. The consequence is easy to foresee. Sooner or later, you will realize the 
need for a new variant, such as technical reports of companies and universities. Then you 
will have to extend the definition of type PUBLICATION in module A to support the new 
case. Fair enough: you have modified the conceptual notion of publication, so you should 
update the corresponding type declaration. This change is logical and inevitable. Far 
harder to justify, however, is the other consequence: any client of A, such as B, will also 
require updating if it used a structure such as the above, relying on an explicit list of cases 
for p. This may, as we have seen, be the case for most clients. 

What we observe here is a disastrous situation for software change and evolution: 
a simple and natural addition may cause a chain reaction of changes across many client 
modules. 

The issue will arise whenever a certain notion admits a number of variants. Here the 
notion was “publication” and its initial variants were book, journal article, conference 
proceedings; other typical examples include: 

• In a graphics system: the notion of figure, with such variants as polygon, circle, 
ellipse, segment and other basic figure types.

• In a text editor: the notion of user command, with such variants as line insertion, line 
deletion, character deletion, global replacement of a word by another.

• In a compiler for a programming language, the notion of language construct, with 
such variants as instruction, expression, procedure.

In any such case, we must accept the possibility that the list of variants, although 
fixed and known at some point of the software’s evolution, may later be changed by the 
addition or removal of variants. To support our long-term, software engineering view of 
the software construction process, we must find a way to protect the software’s structure 
against the effects of such changes. Hence the Single Choice principle:
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By requiring that knowledge of the list of choices be confined to just one module, we 
prepare the scene for later changes: if variants are added, we will only have to update the 
module which has the information — the point of single choice. All others, in particular 
its clients, will be able to continue their business as usual. 

Once again, as the publications example shows, traditional methods do not provide 
a solution; once again, object technology will show the way, here thanks to two techniques 
connected with inheritance: polymorphism and dynamic binding. No sneak preview in 
this case, however; these techniques must be understood in the context of the full method. 

The Single Choice principle prompts a few more comments: 

• The number of modules that know the list of choices should be, according to the 
principle, exactly one. The modularity goals suggest that we want at most one 
module to have this knowledge; but then it is also clear that at least one module must 
possess it. You cannot write an editor unless at least one component of the system 
has the list of all supported commands, or a graphics system unless at least one 
component has the list of all supported figure types, or a Pascal compiler unless at 
least one component “knows” the list of Pascal constructs.

• Like many of the other rules and principles studied in this chapter, the principle is 
about distribution of knowledge in a software system. This question is indeed 
crucial to the search for extendible, reusable software. To obtain solid, durable 
system architectures you must take stringent steps to limit the amount of information 
available to each module. By analogy with the methods employed by certain human 
organizations, we may call this a need-to-know policy: barring every module from 
accessing any information that is not strictly required for its proper functioning. 

• You may view the Single Choice principle as a direct consequence of the Open-
Closed principle. Consider the publications example in light of the figure that 
illustrated the need for open-closed modules: A is the module which includes the 
original declaration of type PUBLICATION; the clients B, C, … are the modules that 
relied on the initial list of variants; A' is the updated version of A offering an extra 
variant (technical reports). 

• You may also understand the principle as a strong form of Information Hiding. The 
designer of supplier modules such as A and A' seeks to hide information (regarding 
the precise list of variants available for a certain notion) from the clients. 

Single Choice principle

Whenever a software system must support a set of alternatives, one and only 
one module in the system should know their exhaustive list.
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3.4  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• The choice of a proper module structure is the key to achieving the aims of 
reusability and extendibility. 

• Modules serve for both software decomposition (the top-down view) and software 
composition (bottom-up).

• Modular concepts apply to specification and design as well as implementation. 

• A comprehensive definition of modularity must combine several perspectives; the 
various requirements may sometimes appear at odds with each other, as with 
decomposability (which encourages top-down methods) and composability (which 
favors a bottom-up approach). 

• Controlling the amount and form of communication between modules is a 
fundamental step in producing a good modular architecture. 

• The long-term integrity of modular system structures requires information hiding, 
which enforces a rigorous separation of interface and implementation. 

• Uniform access frees clients from internal representation choices in their suppliers.

• A closed module is one that may be used, through its interface, by client modules. 

• An open module is one that is still subject to extension. 

• Effective project management requires support for modules that are both open and 
closed. But traditional approaches to design and programming do not permit this. 

• The principle of Single Choice directs us to limit the dissemination of exhaustive 
knowledge about variants of a certain notion.

3.5  BIBLIOGRAPHICAL NOTES 

The design method known as “structured design” [Yourdon 1979] emphasized the 
importance of modular structures. It was based on an analysis of module “cohesion” and 
“coupling”. But the view of modules implicit in structured design was influenced by the 
traditional notion of subroutine, which limits the scope of the discussion. 

The principle of uniform access comes originally (under the name “uniform 
reference”) from [Geschke 1975]. 

The discussion of uniform access cited the Algol W language, a successor to Algol 
60 and forerunner to Pascal (but offering some interesting mechanisms not retained in 
Pascal), designed by Wirth and Hoare and described in [Hoare 1966]. 

Information hiding was introduced in two milestone articles by David Parnas [Parnas 
1972] [Parnas 1972a].
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Configuration management tools that will recompile the modules affected by 
modifications in other modules, based on an explicit list of module dependencies, are 
based on the ideas of the Make tool, originally for Unix [Feldman 1979]. Recent tools — 
there are many on the market — have added considerable functionality to the basic ideas.

Some of the exercises below ask you to develop metrics to evaluate quantitatively 
the various informal measures of modularity developed in this chapter. For some results 
in O-O metrics, see the work of Christine Mingins [Mingins 1993] [Mingins 1995] and 
Brian Henderson-Sellers [Henderson-Sellers 1996a].

EXERCISES

E3.1  Modularity in programming languages

Examine the modular structures of any programming language which you know well and 
assess how they support the criteria and principles developed in this chapter. 

E3.2  The Open-Closed principle (for Lisp programmers) 

Many Lisp implementations associate functions with function names at run time rather 
than statically. Does this feature make Lisp more supportive of the Open-Closed principle 
than more static languages? 

E3.3  Limits to information hiding

Can you think of circumstances where information hiding should not be applied to 
relations between modules? 

E3.4  Metrics for modularity (term project) 

The criteria, rules and principles of modularity of this chapter were all introduced through 
qualitative definitions. Some of them, however, may be amenable to quantitative analysis. 
The possible candidates include: 

• Modular continuity. 
• Few Interfaces. 
• Small Interfaces. 
• Explicit Interfaces. 
• Information Hiding. 
• Single Choice. 

Explore the possibility of developing modularity metrics to evaluate how modular a 
software architecture is according to some of these viewpoints. The metrics should be 
size-independent: increasing the size of a system without changing its modular structure 
should not change its complexity measures. (See also the next exercise.) 
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E3.5  Modularity of existing systems
Apply the modularity criteria, rules and principles of this chapter to evaluate a system to 
which you have access. If you have answered the previous exercise, apply any proposed 
modularity metric. 
Can you draw any correlations between the results of this analysis (qualitative, 
quantitative or both) and assessments of structural complexity for the systems under study, 
based either on informal analysis or, if available, on actual measurements of debugging 
and maintenance costs? 

E3.6  Configuration management and inheritance
(This exercise assumes knowledge of inheritance techniques described in the rest of this 
book. It is not applicable if you have read this chapter as part of a first, sequential reading 
of the book.) 
The discussion of the open-closed principle indicated that in non-object-oriented 
approaches the absence of inheritance places undue burden on configuration management 
tools, since the desire to avoid reopening closed modules may lead to the creation of too 
many module variants. Discuss what role remains for configuration management in an 
object-oriented environment where inheritance is present, and more generally how the use 
of object technology affects the problem of configuration management. 
If you are familiar with specific configuration management tools, discuss how they 
interact with inheritance and other principles of O-O development. 



4  
Approaches to reusability 
“Follow the lead of hardware design! It is not right that every new 
development should start from scratch. There should be catalogs of software 
modules, as there are catalogs of VLSI devices: when we build a new system,
we should be ordering components from these catalogs and combining them,
rather than reinventing the wheel every time. We would write less software,
and perhaps do a better job at that which we do get to write. Wouldn’t then 
some of the problems that everybody complains about — the high costs, the 
overruns, the lack of reliability — just go away? Why is it not so?” 

You have probably heard remarks of this kind; perhaps you have uttered them yourself. As 
early as 1968, at the now famous NATO conference on software engineering, Doug McIlroy 
was advocating “mass-produced software components”. Reusability, as a dream, is not new. 

It would be absurd to deny that some reuse occurs in software development. In fact 
one of the most impressive developments in the industry since the first edition of this book 
was published in 1988 has been the gradual emergence of reusable components, often 
modest individually but regularly gaining ground; they range from small modules meant 
to work with Microsoft’s Visual Basic (VBX) and OLE 2 (OCX, now ActiveX) to full 
libraries, also known as “frameworks”, for object-oriented environments.

Another exciting development is the growth of the Internet: the advent of a wired 
society has eased or in some cases removed some of the logistic obstacles to reuse which, 
only a few years ago, might have appeared almost insurmountable.

But this is only a beginning. We are far from McIlroy’s vision of turning software 
development into a component-based industry. The techniques of object-oriented software 
construction make it possible for the first time to envision a state of the discipline, in the 
not too distant future, in which this vision will have become the reality, for the greatest 
benefit not just of software developers but, more importantly, of those who need their 
products — quickly, and at a high level of quality.

In this chapter we will explore some of the issues that must be addressed for 
reusability to succeed on such a large scale. The resulting concepts will guide the 
discussion of object-oriented techniques throughout the rest of this book.
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4.1  THE GOALS OF REUSABILITY

We should first understand why it is so important to improve software reusability. No need 
here for “motherhood and apple pie” arguments: as we will see, the most commonly touted 
benefits are not necessarily the most significant; by going beyond the obvious we can 
make sure that our quest for reuse will pursue the right targets, avoid mirages, and yield 
the highest return on our investment.

Expected benefits

From more reusable software you may expect improvements on the following fronts:

• Timeliness (in the sense defined in the discussion of software quality factors: speed 
of bringing projects to completion and products to market). By relying on existing 
components we have less software to develop and hence can build it faster.

• Decreased maintenance effort. If someone else is responsible for the software, that 
someone is also responsible for its future evolutions. This avoids the competent 
developer’s paradox: the more you work, the more work you create for yourself as 
users of your products start asking you for new functionalities, ports to new 
platforms etc. (Other than relying on someone else to do the job, or retiring, the only 
solution to the competent software developer’s paradox is to become an incompetent 
developer so that no one is interested in your products any more — not a solution 
promoted by this book.)

• Reliability. By relying on components from a reputed source, you have the 
guarantee, or at least the expectation, that their authors will have applied all the 
required care, including extensive testing and other validation techniques; not to 
mention the expectation, in most cases, that many other application developers will 
have had the opportunity to try these components before you, and to come across any 
remaining bugs. The assumption here is not necessarily that the component 
developers are any smarter than you are; simply that the components they build — 
be they graphics modules, database interfaces, sorting algorithms … — are their
official assignment, whereas for you they might just be a necessary but secondary 
chore for the attainment of your official goal of building an application system in 
your own area of development.

• Efficiency. The same factors that favor reusability incite the component developers 
to use the best possible algorithms and data structures known in their field of 
specialization, whereas in a large application project you can hardly expect to have 
an expert on board for every field touched on by the development. (Most people, 
when they think of the connection between reusability and efficiency, tend to see the 
reverse effect: the loss of fine-tuned optimizations that results from using general 
solutions. But this is a narrow view of efficiency: in a large project, you cannot 
realistically perform such optimizations on every piece of the development. You can, 
however, aim at the best possible solutions in your group’s areas of excellence, and 
for the rest rely on someone else’s expertise.)
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• Consistency. There is no good library without a strict emphasis on regular, coherent 
design. If you start using such a library — in particular some of the best current 
object-oriented libraries — its style will start to influence, through a natural process 
of osmosis, the style of the software that you develop. This is a great boost to the 
quality of the software produced by an application group.

• Investment. Making software reusable is a way to preserve the know-how and 
inventions of the best developers; to turn a fragile resource into a permanent asset.

Many people, when they accept reusability as desirable, think only of the first 
argument on this list, improving productivity. But it is not necessarily the most important 
contribution of a reuse-based software process. The reliability benefit, for example, is just 
as significant. It is extremely difficult to build guaranteeably reusable software if every new 
development must independently validate every single piece of a possibly huge 
construction. By relying on components produced, in each area, by the best experts around, 
we can at last hope to build systems that we trust, because instead of redoing what 
thousands have done before us — and, most likely, running again into the mistakes that they 
made — we will concentrate on enforcing the reliability of our truly new contributions.

This argument does not just apply to reliability. The comment on efficiency was 
based on the same reasoning. In this respect we can see reusability as standing apart from 
the other quality factors studied in chapter 1: by enhancing it you have the potential of 
enhancing almost all of the other qualities. The reason is economic: if, instead of being 
developed for just one project, a software element has the potential of serving again and 
again for many projects, it becomes economically attractive to submit it to the best 
possible quality-enhancing techniques — such as formal verification, usually too 
demanding to be cost-effective for most projects but the most mission-critical ones, or 
extensive optimization, which in ordinary circumstances can often be dismissed as undue 
perfectionism. For reusable components, the reasoning changes dramatically; improve 
just one element, and thousands of developments may benefit.

This reasoning is of course not completely new; it is in part the transposition to 
software of ideas that have fundamentally affected other disciplines when they turned 
from individual craftsmanship to mass-production industry. A VLSI chip is more 
expensive to build than a run-of-the-mill special-purpose circuit, but if well done it will 
show up in countless systems and benefit their quality because of all the design work that 
went into it once and for all.

Reuse consumers, reuse producers

If you examined carefully the preceding list of arguments for reusability, you may have 
noted that it involves benefits of two kinds. The first four are benefits you will derive from 
basing your application developments on existing reusable components; the last one, from 
making your own software reusable. The next-to-last (consistency) is a little of both.

This distinction reflects the two aspects of reusability: the consumer view, enjoyed 
by application developers who can rely on components; and the producer view, available 
to groups that build reusability into their own developments.
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In discussing reusability and reusability policies you should always make sure which 
one of these two views you have in mind. In particular, if your organization is new to 
reuse, remember that it is essentially impossible to start as a reuse producer. One often 
meets managers who think they can make development reusable overnight, and decree 
that no development shall henceforth be specific. (Often the injunction is to start 
developing “business objects” capturing the company’s application expertise, and ignore 
general-purpose components — algorithms, data structures, graphics, windowing and the 
like — since they are considered too “low-level” to yield the real benefits of reuse.) This 
is absurd: developing reusable components is a challenging discipline; the only known 
way to learn is to start by using, studying and imitating good existing components. Such 
an approach will yield immediate benefits as your developments will take advantage of 
these components, and it will start you, should you persist in your decision to become a 
producer too, on the right learning path.

4.2  WHAT SHOULD WE REUSE?

Convincing ourselves that Reusability Is Good was the easy part (although we needed to 
clarify what is really good about it). Now for the real challenge: how in the world are we 
going to get it?

The first question to ask is what exactly we should expect to reuse among the various 
levels that have been proposed and applied: reuse of personnel, of specifications, of 
designs, of “patterns”, of source code, of specified components, of abstracted modules.

Reuse of personnel 

The most common source of reusability is the developers themselves. This form of reuse 
is widely practiced in the industry: by transferring software engineers from project to 
project, companies avoid losing know-how and ensure that previous experience benefits 
new developments. 

This non-technical approach to reusability is obviously limited in scope, if only 
because of the high turnover in the software profession. 

Reuse of designs and specifications 

Occasionally you will encounter the argument that we should be reusing designs rather 
than actual software. The idea is that an organization should accumulate a repository of 
blueprints describing accepted design structures for the most common applications it 
develops. For example, a company that produces aircraft guidance systems will have a set 
of model designs summarizing its experience in this area; such documents describe 
module templates rather than actual modules. 

Reuse Path principle
Be a reuse consumer before you try to be a reuse producer.
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This approach is essentially a more organized version of the previous one — reuse 
of know-how and experience. As the discussion of documentation has already suggested, 
the very notion of a design as an independent software product, having its own life 
separate from that of the corresponding implementation, seems dubious, since it is hard to 
guarantee that the design and the implementation will remain compatible throughout the 
evolution of a software system. So if you only reuse the design you run the risk of reusing 
incorrect or obsolete elements. 

These comments are also applicable to a related form of reuse: reuse of specifications. 
To a certain extent, one can view the progress of reusability in recent years, aided by 

progress in the spread of object technology and aiding it in return, as resulting in part from 
the downfall of the old idea, long popular in software engineering circles, that the only 
reuse worthy of interest is reuse of design and specification. A narrow form of that idea 
was the most effective obstacle to progress, since it meant that all attempts to build actual 
components could be dismissed as only addressing trivial needs and not touching the truly 
difficult aspects. It used to be the dominant view; then a combination of theoretical 
arguments (the arguments of object technology) and practical achievements (the 
appearance of successful reusable components) essentially managed to defeat it.

“Defeat” is perhaps too strong a term because, as often happens in such disputes, the 
result takes a little from both sides. The idea of reusing designs becomes much more 
interesting with an approach (such as the view of object technology developed in this 
book) which removes much of the gap between design and implementation. Then the 
difference between a module and a design for a module is one of degree, not of nature: a 
module design is simply a module of which some parts are not fully implemented; and a 
fully implemented module can also serve, thanks to abstraction tools, as a module design. 
With this approach the distinction between reusing modules (as discussed below) and 
reusing designs tends to fade away.

Design patterns
In the mid-nineteen-nineties the idea of design patterns started to attract considerable 
attention in object-oriented circles. Design patterns are architectural ideas applicable 
across a broad range of application domains; each pattern makes it possible to build a 
solution to a certain design issue.

Here is a typical example, discussed in detail in a later chapter. The issue: how to 
provide an interactive system with a mechanism enabling its users to undo a previously 
executed command if they decide it was not appropriate, and to reexecute an undone 
command if they change their mind again. The pattern: use a class COMMAND with a 
precise structure (which we will study) and an associated “history list”. We will encounter 
many other design patterns.

One of the reasons for the success of the design pattern idea is that it was more than 
an idea: the book that introduced the concept, and others that have followed, came with a 
catalog of directly applicable patterns which readers could learn and apply.

Design patterns have already made an important contribution to the development of 
object technology, and as new ones continue to be published they will help developers to 
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benefit from the experience of their elders and peers. How can the general idea contribute 
to reuse? Design patterns should not encourage a throwback to the “all that counts is 
design reuse” attitude mentioned earlier. A pattern that is only a book pattern, however 
elegant and general, is a pedagogical tool, not a reuse tool; after all, computing science 
students have for three decades been learning from their textbooks about relational query 
optimization, Gouraud shading, AVL trees, Hoare’s Quicksort and Dijkstra’s shortest path 
algorithm without anyone claiming that these techniques were breakthroughs in 
reusability. In a sense, the patterns developed in the past few years are only incremental 
additions to the software professional’s bag of standard tricks. In this view the new 
contribution is the patterns themselves, not the idea of pattern.

As most people who have looked carefully at the pattern work have recognized, such 
a view is too limited. There seems to be in the very notion of pattern a truly new 
contribution, even if it has not been fully understood yet. To go beyond their mere 
pedagogical value, patterns must go further. A successful pattern cannot just be a book 
description: it must be a software component, or a set of components. This goal may 
seem remote at first because many of the patterns are so general and abstract as to seem 
impossible to capture in actual software modules; but here the object-oriented method 
provides a radical contribution. Unlike earlier approaches, it will enable us to build 
reusable modules that still have replaceable, not completely frozen elements: modules that 
serve as general schemes (patterns is indeed the appropriate word) and can be adapted to 
various specific situations. This is the notion of behavior class (a more picturesque term 
is programs with holes); it is based on O-O techniques that we will study in later chapters, 
in particular the notion of deferred class. Combine this with the idea of groups of 
components intended to work together — often known as frameworks or more simply as 
libraries — and you get a remarkable way of reconciling reusability with adaptability. 
These techniques hold, for the pattern movement, the promise of exerting, beyond the 
new-bag-of-important-tricks effect, an in-depth influence on reusability practices.

Reusability through the source code 

Personnel, design and specification forms of reuse, useful as they may be, ignore a key 
goal of reusability. If we are to come up with the software equivalent of the reusable parts 
of older engineering disciplines, what we need to reuse is the actual stuff of which our 
products are made: executable software. None of the targets of reuse seen so far — people, 
designs, specifications — can qualify as the off-the-shelf components ready to be included 
in a new software product under development. 

If what we need to reuse is software, in what form should we reuse it? The most 
natural answer is to use the software in its original form: source text. This approach has 
worked very well in some cases. Much of the Unix culture, for example, originally spread 
in universities and laboratories thanks to the on-line availability of the source code, 
enabling users to study, imitate and extend the system. This is also true of the Lisp world. 

The economic and psychological impediments to source code dissemination limit 
the effect that this form of reuse can have in more traditional industrial environments. But 
a more serious limitation comes from two technical obstacles: 
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• Identifying reusable software with reusable source removes information hiding. Yet 
no large-scale reuse is possible without a systematic effort to protect reusers from 
having to know the myriad details of reused elements.

• Developers of software distributed in source form may be tempted to violate 
modularity rules. Some parts may depend on others in a non-obvious way, violating 
the careful limitations which the discussion of modularity in the previous chapter 
imposed on inter-module communication. This often makes it difficult to reuse some 
elements of a complex system without having to reuse everything else. 
A satisfactory form of reuse must remove these obstacles by supporting abstraction 

and providing a finer grain of reuse. 

Reuse of abstracted modules 
All the preceding approaches, although of limited applicability, highlight important 
aspects of the reusability problem: 

• Personnel reusability is necessary if not sufficient. The best reusable components are 
useless without well-trained developers, who have acquired sufficient experience to 
recognize a situation in which existing components may provide help. 

• Design reusability emphasizes the need for reusable components to be of sufficiently 
high conceptual level and generality — not just ready-made solutions to special 
problems. The classes which we will encounter in object technology may be viewed 
as design modules as well as implementation modules. 

• Source code reusability serves as a reminder that software is in the end defined by 
program texts. A successful reusability policy must produce reusable program elements. 
The discussion of source code reusability also helps narrow down our search for the 

proper units of reuse. A basic reusable component should be a software element. (From 
there we can of course go to collections of software elements.) That element should be a 
module of reasonable size, satisfying the modularity requirements of the previous chapter; 
in particular, its relations to other software, if any, should be severely limited to facilitate 
independent reuse. The information describing the module’s capabilities, and serving as 
primary documentation for reusers or prospective reusers, should be abstract: rather than 
describing all the details of the module (as with source code), it should, in accordance with 
the principle of Information Hiding, highlight the properties relevant to clients.

The term abstracted module will serve as a name for such units of reuse, consisting 
of directly usable software, available to the outside world through a description which 
contains only a subset of each unit’s properties. 

The rest of part B of this book is devoted to devising the precise form of such 
abstracted modules; part C will then explore their properties.

The emphasis on abstraction, and the rejection of source code as the vehicle for reuse, do 
not necessarily prohibit distributing modules in source form. The contradiction is only 
apparent: what is at stake in the present discussion is not how we will deliver modules to 
their reusers, but what they will use as the primary source of information about them. It 
may be acceptable for a module to be distributed in source form but reused on the basis 
of an abstract interface description.
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4.3  REPETITION IN SOFTWARE DEVELOPMENT 

To progress in our search for the ideal abstracted module, we should take a closer look at 
the nature of software construction, to understand what in software is most subject to reuse. 

Anyone who observes software development cannot but be impressed by its 
repetitive nature. Over and again, programmers weave a number of basic patterns: sorting, 
searching, reading, writing, comparing, traversing, allocating, synchronizing…
Experienced developers know this feeling of déjà vu, so characteristic of their trade.

A good way to assess this situation (assuming you develop software, or direct people 
who do) is to answer the following question:

Table searching is defined here as the problem of finding out whether a certain element 
x appears in a table t of similar elements. The problem has many variants, depending on 
the element types, the data structure representation for t, the choice of searching 
algorithm. 

Chances are you or your colleagues will indeed have tackled this problem one or 
more times. But what is truly remarkable is that — if you are like others in the profession 
— the program fragment handling the search operation will have been written at the 
lowest reasonable level of abstraction: by writing code in some programming language, 
rather than calling existing routines. 

To an observer from outside our field, however, table searching would seem an 
obvious target for widely available reusable components. It is one of the most researched 
areas of computing science, the subject of hundreds of articles, and many books starting 
with volume 3 of Knuth’s famous treatise. The undergraduate curriculum of all computing 
science departments covers the most important algorithms and data structures. Certainly 
not a mysterious topic. In addition:

• It is hardly possible, as noted, to write a useful software system which does not 
include one or (usually) several cases of table searching. The investment needed to 
produce reusable modules is not hard to justify. 

• As will be seen in more detail below, most searching algorithms follow a common 
pattern, providing what would seem to be an ideal basis for a reusable solution. 

4.4  NON-TECHNICAL OBSTACLES

Why then is reuse not more common? 

Most of the serious impediments to reuse are technical; removing them will be the 
subject of the following sections of this chapter (and of much of the rest of this book). But 
of course there are also some organizational, economical and political obstacles. 

How many times over the past six months did you, or people working for you,
write some program fragment for table searching?
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The NIH syndrome 

An often quoted psychological obstacle to reuse is the famous Not Invented Here (“NIH”) 
syndrome. Software developers, it is said, are individualists, who prefer to redo everything 
by themselves rather than rely on someone else’s work. 

This contention (commonly heard in managerial circles) is not borne out by 
experience. Software developers do not like useless work more than anyone else. When a 
good, well-publicized and easily accessible reusable solution is available, it gets reused. 

Consider the typical case of lexical and syntactic analysis. Using parser generators 
such as the Lex-Yacc combination, it is much easier to produce a parser for a command 
language or a simple programming language than if you must program it from scratch. The 
result is clear: where such tools are available, competent software developers routinely 
reuse them. Writing your own tailor-made parser still makes sense in some cases, since the 
tools mentioned have their limitations. But the developers’ reaction is usually to go by 
default to one of these tools; it is when you want to use a solution not based on the reusable 
mechanisms that you have to argue for it. This may in fact cause a new syndrome, the 
reverse of NIH, which we may call HIN (Habit Inhibiting Novelty): a useful but limited 
reusable solution, so entrenched that it narrows the developers’ outlook and stifles 
innovation, becomes counter-productive. Try to convince some Unix developers to use a 
parser generator other than Yacc, and you may encounter HIN first-hand.

Something which may externally look like NIH does exist, but often it is simply the 
developers’ understandably cautious reaction to new and unknown components. They 
may fear that bugs or other problems will be more difficult to correct than with a solution 
over which they have full control. Often such fears are justified by unfortunate earlier 
attempts at reusing components, especially if they followed from a management mandate 
to reuse at all costs, not accompanied by proper quality checks. If the new components are 
of good quality and provide a real service, fears will soon disappear. 

What this means for the producer of reusable components is that quality is even more 
important here than for more ordinary forms of software. If the cost of a non-reusable, one-
of-a-kind solution is N, the cost R of a solution relying on reusable components is never 
zero: there is a learning cost, at least the first time; developers may have to bend their 
software to accommodate the components; and they must write some interfacing software, 
however small, to call them. So even if the reusability savings

and other benefits of reuse are potentially great, you must also convince the candidate 
reusers that the reusable solution’s quality is good enough to justify relinquishing control.

r N R–

N
------------=
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This explains why it is a mistake to target a company’s reusability policy to the potential 
reusers (the consumers, that is to say the application developers). Instead you should put 
the heat on the producers, including people in charge of acquiring external components, 
to ensure the quality and usefulness of their offering. Preaching reuse to application 
developers, as some companies do by way of reusability policy, is futile: because 
application developers are ultimately judged by how effectively they produce their 
applications, they should and will reuse not because you tell them to but because you have 
done a good enough job with the reusable components (developed or acquired) that it will 
be profitable for their applications to rely on these components.

The economics of procurement 

A potential obstacle to reuse comes from the procurement policy of many large 
corporations and government organizations, which tends to impede reusability efforts by 
focusing on short-term costs. US regulations, for example, make it hard for a government 
agency to pay a contractor for work that was not explicitly commissioned (normally as 
part of a Request For Proposals). Such rules come from a legitimate concern to protect 
taxpayers or shareholders, but can also discourage software builders from applying the 
crucial effort of generalization to transform good software into reusable components. 

On closer examination this obstacle does not look so insurmountable. As the concern 
for reusability spreads, there is nothing to prevent the commissioning agency from 
including in the RFP itself the requirement that the solution must be general-purpose and 
reusable, and the description of how candidate solutions will be evaluated against these 
criteria. Then the software developers can devote the proper attention to the generalization 
task and be paid for it. 

Software companies and their strategies 

Even if customers play their part in removing obstacles to reuse, a potential problem 
remains on the side of the contractors themselves. For a software company, there is a 
constant temptation to provide solutions that are purposely not reusable, for fear of not 
getting the next job from the customer — because if the result of the current job is too 
widely applicable the customer may not need a next job! 

I once heard a remarkably candid exposé of this view after giving a talk on reuse and 
object technology. A high-level executive from a major software house came to tell me 
that, although intellectually he admired the ideas, he would never implement them in his 
own company, because that would be killing the goose that laid the golden egg: more than 
90% of the company’s business derived from renting manpower — providing analysts and 
programmers on assignment to customers — and the management’s objective was to bring 
the figure to 100%. With such an outlook on software engineering, one is not likely to 
greet with enthusiasm the prospect of widely available libraries of reusable components. 

The comment was notable for its frankness, but it triggered the obvious retort: if it is 
at all possible to build reusable components to replace some of the expensive services of 
a software house’s consultants, sooner or later someone will build them. At that time a 
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company that has refused to take this route, and is left with nothing to sell but its 
consultants’ services, may feel sorry for having kept its head buried in the sand. 

It is hard not to think here of the many engineering disciplines that used to be heavily 
labor-intensive but became industrialized, that is to say tool-based — with painful 
economic consequences for companies and countries that did not understand early enough 
what was happening. To a certain extent, object technology is bringing a similar change to 
the software trade. The choice between people and tools need not, however, be an 
exclusive one. The engineering part of software engineering is not identical to that of 
mass-production industries; humans will likely continue to play the key role in the 
software construction process. The aim of reuse is not to replace humans by tools (which 
is often, in spite of all claims, what has happened in other disciplines) but to change the 
distribution of what we entrust to humans and to tools. So the news is not all bad for a 
software company that has made its name through its consultants. In particular: 

• In many cases developers using sophisticated reusable components may still benefit 
from the help of experts, who can advise them on how best to use the components. 
This leaves a meaningful role for software houses and their consultants.

• As will be discussed below, reusability is inseparable from extendibility: good 
reusable components will still be open for adaptation to specific cases. Consultants 
from a company that developed a library are in an ideal position to perform such 
tuning for individual customers. So selling components and selling services are not 
necessarily exclusive activities; a components business can serve as a basis for a 
service business. 

• More generally, a good reusable library can play a strategic role in the policy of a 
successful software company, even if the company sells specific solutions rather 
than the library itself, and uses the library for internal purposes only. If the library 
covers the most common needs and provides an extendible basis for the more 
advanced cases, it can enable the company to gain a competitive edge in certain 
application areas by developing tailored solutions to customers’ needs, faster and at 
lower cost than competitors who cannot rely on such a ready-made basis.

Accessing components 

Another argument used to justify skepticism about reuse is the difficulty of the component 
management task: progress in the production of reusable software, it is said, would result 
in developers being swamped by so many components as to make their life worse than if 
the components were not available. 

Cast in a more positive style, this comment should be understood as a warning to 
developers of reusable software that the best reusable components in the world are useless 
if nobody knows they exist, or if it takes too much time and effort to obtain them. The 
practical success of reusability techniques requires the development of adequate databases 
of components, which interested developers may search by appropriate keywords to find 
out quickly whether some existing component satisfies a particular need. Network 
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services must also be available, allowing electronic ordering and immediate downloading 
of selected components. 

These goals do raise technical and organizational problems. But we must keep things 
in proportion. Indexing, retrieving and delivering reusable components are engineering 
issues, to which we can apply known tools, in particular database technology; there is no 
reason why software components should be more difficult to manage than customer 
records, flight information or library books.

Reusability discussions used to delve forever into the grave question “how in the 
world are we going to make the components available to developers?”. After the advances 
in networking of the past few years, such debates no longer appear so momentous. With 
the World-Wide Web, in particular, have appeared powerful search tools (AltaVista, 
Yahoo…) which have made it far easier to locate useful information, either on the Internet 
or on a company’s Intranet. Even more advanced solutions (produced, one may expect, 
with the help of object technology) will undoubtedly follow. All this makes it increasingly 
clear that the really hard part of progress in reusability lies not in organizing reusable 
components, but in building the wretched things in the first place.

A note about component indexing 

On the matter of indexing and retrieving components, a question presents itself, at the 
borderline between technical and organizational issues: how should we associate indexing 
information, such as keywords, with software components? 

The Self-Documentation principle suggests that, as much as possible, information 
about a module — indexing information as well as other forms of module documentation 
— should appear in the module itself rather than externally. This leads to an important 
requirement on the notation that will be developed in part C of this book to write software 
components, called classes. Regardless of the exact form of these classes, we must equip 
ourselves with a mechanism to attach indexing information to each component. 

The syntax is straightforward. At the beginning of a module text, you will be invited 
to write a note clause of the form 

note
index_word1: value, value, value…
index_word2: value, value, value…
…
… Normal module definition (see part C) …

Each index_word is an identifier; each value is a constant (integer, real etc.), an 
identifier, or some other basic lexical element.

There is no particular constraint on index words and values, but an industry, a 
standards group, an organization or a project may wish to define their own conventions. 
Indexing and retrieval tools can then extract this information to help software developers 
find components satisfying certain criteria.
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As we saw in the discussion of Self-Documentation, storing such information in the 
module itself — rather than in an outside document or database — decreases the 
likelihood of including wrong information, and in particular of forgetting to update the 
information when updating the module (or conversely). Indexing clauses, modest as they 
may seem, play a major role in helping developers keep their software organized and 
register its properties so that others can find out about it.

Formats for reusable component distribution

Another question straddling the technical-organizational line is the form under which we 
should distribute reusable components: source or binary? This is a touchy issue, so we will 
limit ourselves to examining a few of the arguments on both sides.

For a professional, for-profit software developer, it often seems desirable to provide 
buyers of reusable components with an interface description (the short form discussed in 
a later chapter) and the binary code for their platform of choice, but not the source form. 
This protects the developer’s investment and trade secrets. 

Binary is indeed the preferred form of distribution for commercial application 
programs, operating systems and other tools, including compilers, interpreters and 
development environments for object-oriented languages. In spite of recurring attacks on 
the very idea, emanating in particular from an advocacy group called the League for 
Programming Freedom, this mode of commercial software distribution is unlikely to 
recede much in the near future. But the present discussion is not about ordinary tools or 
application programs: it is about libraries of reusable software components. In that case 
one can also find some arguments in favor of source distribution.

For the component producer, an advantage of source distribution is that it eases 
porting efforts. You stay away from the tedious and unrewarding task of adapting software 
to the many incompatible platforms that exist in today’s computer world, relying instead 
on the developers of object-oriented compilers and environments to do the job for you. 
(For the consumer this is of course a counter-argument, as installation from source will 
require more work and may cause unforeseen errors.)

Some compilers for object-oriented languages may let you retain some of the portability 
benefit without committing to full source availability: if the compiler uses C as 
intermediate generated code, as is often the case today, you can usually substitute portable 
C code for binary code. It is then not difficult to devise a tool that obscures the C form, 
making it almost as difficult to reverse-engineer as a binary form.

Also note that at various stages in the history of software, dating back to UNCOL 
(UNiversal COmputing Language) in the late fifties, people have been defining low-level 
instruction formats that could be interpreted on any platform, and hence could provide a 
portable target for compilers. The ACE consortium of hardware and software companies 
was formed in 1988 for that purpose. Together with the Java language has come the 
notion of Java bytecode, for which interpreters are being developed on a number of 
platforms. But for the component producer such efforts at first represent more work, not 
less: until you have the double guarantee that the new format is available on every 
platform of interest and that it executes target code as fast as platform-specific solutions, 
you cannot forsake the old technology, and must simply add the new target code format 
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to those you already support. So a solution that is advertized as an end-all to all portability 
problems actually creates, in the short term, more portability problems.

Perhaps more significant, as an argument for source code distribution, is the 
observation that attempts to protect invention and trade secrets by removing the source 
form of the implementation may be of limited benefit anyway. Much of the hard work in 
the construction of a good reusable library lies not in the implementation but in the design 
of the components’ interfaces; and that is the part that you are bound to release anyway. 
This is particularly clear in the world of data structures and algorithms, where most of the 
necessary techniques are available in the computing science literature. To design a 
successful library, you must embed these techniques in modules whose interface will 
make them useful to the developers of many different applications. This interface design 
is part of what you must release to the world.

Also note that, in the case of object-oriented modules, there are two forms of 
component reuse: as a client or, as studied in later chapters, through inheritance. The 
second form combines reuse with adaptation. Interface descriptions (short forms) are 
sufficient for client reuse, but not always for inheritance reuse. 

Finally, the educational side: distributing the source of library modules is a good way 
to provide models of the producer’s best engineering, useful to encourage consumers to 
develop their own software in a consistent style. We saw earlier that the resulting 
standardization is one of the benefits of reusability. Some of it will remain even if client 
developers only have access to the interfaces; but nothing beats having the full text. 

Be sure to note that even if source is available it should not serve as the primary 
documentation tool: for that role, we continue to use the module interface. 

This discussion has touched on some delicate economic issues, which condition in 
part the advent of an industry of software components and, more generally, the progress 
of the software field. How do we provide developers with a fair reward for their efforts 
and an acceptable degree of protection for their inventions, without hampering the 
legitimate interests of users? Here are two opposite views: 

• At one end of the spectrum you will find the positions of the League for 
Programming Freedom: all software should be free and available in source form. 

• At the other end you have the idea of superdistribution, advocated by Brad Cox in 
several articles and a book. Superdistribution would allow users to duplicate 
software freely, charging them not for the purchase but instead for each use. Imagine 
a little counter attached to each software component, which rings up a few pennies 
every time you make use of the component, and sends you a bill at the end of the 
month. This seems to preclude distribution in source form, since it would be too easy 
to remove the counting instructions. Although JEIDA, a Japanese consortium of 
electronics companies, is said to be working on hardware and software mechanisms 
to support the concept, and although Cox has recently been emphasizing 
enforcement mechanisms built on regulations (like copyright) rather than 
technological devices, superdistribution still raises many technical, logistic, 
economic and psychological questions.
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An assessment 

Any comprehensive approach to reusability must, along with the technical aspects, deal 
with the organizational and economical issues: making reusability part of the software 
development culture, finding the right cost structure and the right format for component 
distribution, providing the appropriate tools for indexing and retrieving components. Not 
surprisingly, these issues have been the focus of some of the main reusability initiatives 
from governments and large corporations, such as the STARS program of the US 
Department of Defense (Software Technology for Adaptable, Reliable Systems) and the 
“software factories” installed by some large Japanese companies. 

Important as these questions are in the long term, they should not detract our 
attention from the main roadblocks, which are still technical. Success in reuse requires the 
right modular structures and the construction of quality libraries containing the tens of 
thousands of components that the industry needs.

The rest of this chapter concentrates on the first of these questions; it examines why 
common notions of module are not appropriate for large-scale reusability, and defines the 
requirements that a better solution — developed in the following chapters — must satisfy.

4.5  THE TECHNICAL PROBLEM

What should a reusable module look like?

Change and constancy 

Software development, it was mentioned above, involves much repetition. To understand 
the technical difficulties of reusability we must understand the nature of that repetition. 

Such an analysis reveals that although programmers do tend to do the same kinds of 
things time and time again, these are not exactly the same things. If they were, the solution 
would be easy, at least on paper; but in practice so many details may change as to defeat 
any simple-minded attempt at capturing the commonality. 

A telling analogy is provided by the works of the Norwegian painter Edvard Munch, the 
majority of which may be seen in the museum dedicated to him in Oslo, the birthplace of 
Simula. Munch was obsessed with a small number of profound, essential themes: love, 
anguish, jealousy, dance, death… He drew and painted them endlessly, using the same 
pattern each time, but continually changing the technical medium, the colors, the 
emphasis, the size, the light, the mood. 

Such is the software engineer’s plight: time and again composing a new variation 
that elaborates on the same basic themes. 

Take the example mentioned at the beginning of this chapter: table searching. True, 
the general form of a table searching algorithm is going to look similar each time: start at 
some position in the table t; then begin exploring the table from that position, each time 
checking whether the element found at the current position is the one being sought, and, 
if not, moving to another position. The process terminates when it has either found the 
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element or probed all the candidate positions unsuccessfully. Such a general pattern is 
applicable to many possible cases of data representation and algorithms for table 
searching, including arrays (sorted or not), linked lists (sorted or not), sequential files, 
binary trees, B-trees and hash tables of various kinds.

It is not difficult to turn this informal description into an incompletely refined 
routine: 

has (t: TABLE, x: ELEMENT): BOOLEAN
-- Is there an occurrence of x in t?

local
pos: POSITION

do
from

pos := INITIAL_POSITION (x, t)
until

EXHAUSTED ( pos, t) or else FOUND (  pos, x, t)
loop

pos := NEXT (pos, x, t)
end

Result := not EXHAUSTED (pos, t)
end

(A few clarifications on the notation: from … until … loop … end describes a loop, 
initialized in the from clause, executing the loop clause zero or more times, and 
terminating as soon as the condition in the until clause is satisfied. Result denotes the 
value to be returned by the function. If you are not familiar with the or else operator, just 
accept it as if it were a boolean or.)

Although the above text describes (through its lower-case elements) a general 
pattern of algorithmic behavior, it is not a directly executable routine since it contains (in 
upper case) some incompletely refined parts, corresponding to aspects of the table 
searching problem that depend on the implementation chosen: the type of table elements 
(ELEMENT), what position to examine first (INITIAL_POSITION), how to go from a 
candidate position to the next (NEXT), how to test for the presence of an element at a 
certain position (FOUND), how to determine that all interesting positions have been 
examined (EXHAUSTED).

Rather than a routine, then, the above text is a routine pattern, which you can only 
turn into an actual routine by supplying refinements for the upper-case parts.

The reuse-redo dilemma 

All this variation highlights the problems raised by any attempt to come up with general-
purpose modules in a given application area: how can we take advantage of the common 
pattern while accommodating the need for so much variation? This is not just an 
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implementation problem: it is almost as hard to specify the module so that client modules 
can rely on it without knowing its implementation. 

These observations point to the central problem of software reusability, which 
dooms simplistic approaches. Because of the versatility of software — its very softness — 
candidate reusable modules will not suffice if they are inflexible. 

A frozen module forces you into the reuse or redo dilemma: reuse the module 
exactly as it is, or redo the job completely. This is often too limiting. In a typical situation, 
you discover a module that may provide you with a solution for some part of your current 
job, but not necessarily the exact solution. Your specific needs may require some 
adaptation of the module’s original behavior. So what you will want to do in such a case 
is to reuse and redo: reuse some, redo some — or, you hope, reuse a lot and redo a little. 
Without this ability to combine reuse and adaptation, reusability techniques cannot 
provide a solution that satisfies the realities of practical software development. 

So it is not by accident that almost every discussion of reusability in this book also 
considers extendibility (leading to the definition of the term “modularity”, which covers 
both notions and provided the topic of the previous chapter). Whenever you start looking 
for answers to one of these quality requirements, you quickly encounter the other. 

This duality between reuse and adaptation was also present in the earlier discussion 
of the Open-Closed principle, which pointed out that a successful software component 
must be usable as it stands (closed) while still adaptable (open).

The search for the right notion of module, which occupies the rest of this chapter and 
the next few, may be characterized as a constant attempt to reconcile reusability and 
extendibility, closure and openness, constancy and change, satisfying today’s needs and 
trying to guess what tomorrow holds in store. 

4.6  FIVE REQUIREMENTS ON MODULE STRUCTURES 

How do we find module structures that will yield directly reusable components while 
preserving the possibility of adaptation? 

The table searching issue and the has routine pattern obtained for it on the previous 
page illustrate the stringent requirements that any solution will have to meet. We can use 
this example to analyze what it takes to go from a relatively vague recognition of 
commonality between software variants to an actual set of reusable modules. Such a study 
will reveal five general issues: 

• Type Variation. 

• Routine Grouping. 

• Implementation Variation. 

• Representation Independence. 

• Factoring Out Common Behaviors. 
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Type Variation

The has routine pattern assumes a table containing objects of a type ELEMENT. A 
particular refinement might use a specific type, such as INTEGER or BANK_ACCOUNT, 
to apply the pattern to a table of integers or bank accounts. 

But this is not satisfactory. A reusable searching module should be applicable to 
many different types of element, without requiring reusers to perform manual changes to 
the software text. In other words, we need a facility for describing type-parameterized 
modules, also known more concisely as generic modules. Genericity (the ability for 
modules to be generic) will turn out to be an important part of the object-oriented method; 
an overview of the idea appears later in this chapter. 

Routine Grouping 

Even if it had been completely refined and parameterized by types, the has routine pattern 
would not be quite satisfactory as a reusable component. How you search a table depends 
on how it was created, how elements are inserted, how they are deleted. So a searching 
routine is not enough by itself as a unit or reuse. A self-sufficient reusable module would 
need to include a set of routines, one for each of the operations cited — creation, insertion, 
deletion, searching. 

This idea forms the basis for a form of module, the “package”, found in what may be 
called the encapsulation languages: Ada, Modula-2 and relatives. More on this below. 

Implementation Variation 

The has pattern is very general; there is in practice, as we have seen, a wide variety of 
applicable data structures and algorithms. Such variety indeed that we cannot expect a 
single module to take care of all possibilities; it would be enormous. We will need a family 
of modules to cover all the different implementations. 

A general technique for producing and using reusable modules will have to support 
this notion of module family. 

Representation Independence 

A general form of reusable module should enable clients to specify an operation without 
knowing how it is implemented. This requirement is called Representation Independence.

Assume that a client module C from a certain application system — an asset 
management program, a compiler, a geographical information system… — needs to 
determine whether a certain element x appears in a certain table t (of investments, of 
language keywords, of cities). Representation independence means here the ability for C
to obtain this information through a call such as 

present := has (t, x)
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without knowing what kind of table t is at the time of the call. C’s author should only need 
to know that t is a table of elements of a certain type, and that x denotes an object of that 
type. Whether t is a binary search tree, a hash table or a linked list is irrelevant for him; he 
should be able to limit his concerns to asset management, compilation or geography. 
Selecting the appropriate search algorithm based on t’s implementation is the business of 
the table management module, and of no one else. 

This requirement does not preclude letting clients choose a specific implementation 
when they create a data structure. But only one client will have to make this initial choice; 
after that, none of the clients that perform searches on t should ever have to ask what exact 
kind of table it is. In particular, the client C containing the above call may have received t
from one of its own clients (as an argument to a routine call); then for C the name t is just 
an abstract handle on a data structure whose details it may not be able to access.

You may view Representation Independence as an extension of the rule of 
Information Hiding, essential for smooth development of large systems: implementation 
decisions will often change, and clients should be protected. But Representation 
Independence goes further. Taken to its full consequences, it means protecting a module’s 
clients against changes not only during the project lifecycle but also during execution — 
a much smaller time frame! In the example, we want has to adapt itself automatically to 
the run-time form of table t, even if that form has changed since the last call. 

Satisfying Representation Independence will also help us towards a related principle 
encountered in the discussion of modularity: Single Choice, which directed us to stay 
away from multi-branch control structures that discriminate among many variants, as in 

if “t is an array managed by open hashing” then
“Apply open hashing search algorithm”

elseif “t is a binary search tree” then
“Apply binary search tree traversal”

elseif
(etc.)

end
It would be equally unpleasant to have such a decision structure in the module itself 

(we cannot reasonably expect a table management module to know about all present and 
future variants) as to replicate it in every client. The solution is to hide the multi-branch 
choice completely from software developers, and have it performed automatically by the 
underlying run-time system. This will be the role of dynamic binding, a key component 
of the object-oriented approach, to be studied in the discussion of inheritance. 

Factoring Out Common Behaviors

If Representation Independence reflects the client’s view of reusability — the ability to 
ignore internal implementation details and variants –, the last requirement, Factoring Out 
Common Behaviors, reflects the view of the supplier and, more generally, the view of 
developers of reusable classes. Their goal will be to take advantage of any commonality 
that may exist within a family or sub-family of implementations. 
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The variety of implementations available in certain problem areas will usually 
demand, as noted, a solution based on a family of modules. Often the family is so large 
that it is natural to look for sub-families. In the table searching case a first attempt at 
classification might yield three broad sub-families: 

• Tables managed by some form of hash-coding scheme. 

• Tables organized as trees of some kind. 

• Tables managed sequentially.

Each of these categories covers many variants, but it is usually possible to find 
significant commonality between these variants. Consider for example the family of 
sequential implementations — those in which items are kept and searched in the order of 
their original insertion.

Possible representations for a sequential table include an array, a linked list and a file. 
But regardless of these differences, clients should be able, for any sequentially managed 
table, to examine the elements in sequence by moving a (fictitious) cursor indicating the 
position of the currently examined element. In this approach we may rewrite the searching 
routine for sequential tables as: 

has (t: SEQUENTIAL_TABLE; x: ELEMENT): BOOLEAN
-- Is there an occurrence of x in t?

do
from start until

after or else found (x)
loop

forth
end
Result := not after

end
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This form relies on four routines which any sequential table implementation will be 
able to provide: 

• start, a command to move the cursor to the first element if any. 

• forth, a command to advance the cursor by one position. (Support for forth is of 
course one of the prime characteristics of a sequential table implementation.) 

• after, a boolean-valued query to determine if the cursor has moved past the last 
element; this will be true after a start if the table was empty. 

• found (x), a boolean-valued query to determine if the element at cursor position has 
value x. 

At first sight, the routine text for has at the bottom of the preceding page resembles 
the general routine pattern used at the beginning of this discussion, which covered 
searching in any table (not just sequential). But the new form is not a routine pattern any 
more; it is a true routine, expressed in a directly executable notation (the notation used to 
illustrate object-oriented concepts in part C of this book). Given appropriate 
implementations for the four operations start, forth, after and found which it calls, you can 
compile and execute the latest form of has. 

For each possible sequential table representation you will need a representation for 
the cursor. Three example representations are by an array, a linked list and a file.

The first uses an array of capacity items, the table occupying positions 1 to count. 
Then you may represent the cursor simply as an integer index ranging from 1 to count + 1. 
(The last value is needed to represent a cursor that has moved “after ” the last item.) 

The second representation uses a linked list, where the first cell is accessible through 
a reference first_cell and each cell is linked to the next one through a reference right. Then 
you may represent the cursor as a reference cursor. 

afteritem

index count1
forth

v1 v2 v3 v5v4

count1 capacity

v1 v2 v3 v5

index = 3

v4
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The third representation uses a sequential file, in which the cursor simply represents 
the current reading position.

The implementation of the four low-level operations start, forth, after and found will 
be different for each variant. The following table gives the implementation in each case. 
(The notation t @ i denotes the i-th element of array t, which would be written t [i] in 
Pascal or C; Void denotes a void reference; the Pascal notation f ↑, for a file f, denotes the 
element at the current file reading position.)

The challenge of reusability here is to avoid unneeded duplication of software by 
taking advantage of the commonality between variants. If identical or near-identical 
fragments appear in different modules, it will be difficult to guarantee their integrity and 
to ensure that changes or corrections get propagated to all the needed places; once again, 
configuration management problems may follow.

All sequential table variants share the has function, differing only by their 
implementation of the four lower-level operations. A satisfactory solution to the 
reusability problem must include the text of has in only one place, somehow associated 
with the general notion of sequential table independently of any choice of representation. 
To describe a new variant, you should not have to worry about has any more; all you will 
need to do is to provide the appropriae versions of start, forth, after and found. 

start forth after found (x)
Array i := 1 i := i + 1 i > count t @ i = x

Linked list c := first_
cell

c := c   right c = Void c   item = x

File rewind read end_of_file f ↑ = x

v1
Void

cursorfirst_cell

right v2 right v3 right v5v4 right

v2 v3 v4 v5

File reading position

v1
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4.7  TRADITIONAL MODULAR STRUCTURES 

Together with the modularity requirements of the previous chapter, the five requirements 
of Type Variation, Routine Grouping, Implementation Variation, Representation 
Independence and Factoring Out Common Behaviors define what we may expect from our 
reusable components — abstracted modules.

Let us study the pre-O-O solutions to understand why they are not sufficient — but 
also what we should learn and keep from them in the object-oriented world. 

Routines 

The classical approach to reusability is to build libraries of routines. Here the term routine 
denotes a software unit that other units may call to execute a certain algorithm, using 
certain inputs, producing certain outputs and possibly modifying some other data 
elements. A calling unit will pass its inputs (and sometimes outputs and modified 
elements) in the form of actual arguments. A routine may also return output in the form 
of a result; in this case it is known as a function. 

The terms subroutine, subprogram and procedure are also used instead of routine. The 
first two will not appear in this book except in the discussion of specific languages (the 
Ada literature talks about subprograms, and the Fortran literature about subroutines.) 
“Procedure” will be used in the sense of a routine which does not return a result, so that 
we have two disjoint categories of routine: procedures and functions. (In discussions of 
the C language the term “function” itself is sometimes used for the general notion of 
routine, but here it will always denote a routine that returns a result.) 

Routine libraries have been successful in several application domains, in particular 
numerical computation, where excellent libraries have created some of the earliest success 
stories of reusability. Decomposition of systems into routines is also what one obtains 
through the method of top-down, functional decomposition. The routine library approach 
indeed seems to work well when you can identify a (possibly large) set of individual 
problems, subject to the following limitations: 
R1 • Each problem admits a simple specification. More precisely, it is possible to 

characterize every problem instance by a small set of input and output arguments. 
R2 • The problems are clearly distinct from each other, as the routine approach does not 

allow putting to good use any significant commonality that might exist — except by 
reusing some of the design. 

R3 • No complex data structures are involved: you would have to distribute them among 
the routines using them, losing the conceptual autonomy of each module. 

The table searching problem provides a good example of the limitations of 
subroutines. We saw earlier that a searching routine by itself does not have enough context 
to serve as a stand-alone reusable module. Even if we dismissed this objection, however, 
we would be faced with two equally unpleasant solutions: 

• A single searching routine, which would try to cover so many different cases that it 
would require a long argument list and would be very complex internally. 
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• A large number of searching routines, each covering a specific case and differing 
from some others by only a few details in violation of the Factoring Out Common 
Behaviors requirement; candidate reusers could easily lose their way in such a maze.

More generally, routines are not flexible enough to satisfy the needs of reuse. We 
have seen the intimate connection between reusability and extendibility. A reusable 
module should be open to adaptation, but with a routine the only means of adaptation is to 
pass different arguments. This makes you a prisoner of the Reuse or Redo dilemma: either 
you like the routine as it is, or you write your own. 

Packages 

In the nineteen-seventies, with the progress of ideas on information hiding and data 
abstraction, a need emerged for a form of module more advanced than the routine. The 
result may be found in several design and programming languages of the period; the best 
known are CLU, Modula-2 and Ada. They all offer a similar form of module, known in 
Ada as the package. (CLU calls its variant the cluster, and Modula the module. This 
discussion will retain the Ada term.)

Packages are units of software decomposition with the following properties: 

P1 • In accordance with the Linguistic Modular Units principle, “package” is a construct 
of the language, so that every package has a name and a clear syntactic scope. 

P2 • Each package definition contains a number of declarations of related elements, such 
as routines and variables, hereafter called the features of the package. 

P3 • Every package can specify precise access rights governing the use of its features by 
other packages. In other words, the package mechanism supports information hiding. 

P4 • In a compilable language (one that can be used for implementation, not just 
specification and design) it is possible to compile packages separately. 

Thanks to P3, packages deserve to be seen as abstracted modules. Their major 
contribution is P2, answering the Routine Grouping requirement. A package may contain 
any number of related operations, such as table creation, insertion, searching and deletion. 
It is indeed not hard to see how a package solution would work for our example problem. 
Here — in a notation adapted from the one used in the rest of this book for object-oriented 
software — is the sketch of a package INTEGER_TABLE_HANDLING describing a 
particular implementation of tables of integers, through binary trees:

package INTEGER_TABLE_HANDLING feature
type INTBINTREE

record 
-- Description of representation of a binary tree, for example:

info: INTEGER
left, right: INTBINTREE

end
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new: INTBINTREE is 
-- Return a new INTBINTREE, properly initialized.

do … end
has (t: INTBINTREE; x: INTEGER): BOOLEAN

-- Does x appear in t?
do … Implementation of searching operation … end

put (t: INTBINTREE; x: INTEGER) is 
-- Insert x into t.

do … end
remove (t: INTBINTREE; x: INTEGER) is 

-- Remove x from t.
do … end

end -- package INTEGER_TABLE_HANDLING 
This package includes the declaration of a type (INTBINTREE), and a number of 

routines representing operations on objects of that type. In this case there is no need for 
variable declarations in the package (although the routines may have local variables). 

Client packages will now be able to manipulate tables by using the various features 
of INTEGER_TABLE_HANDLING. This assumes a syntactic convention allowing a client 
to use feature f from package P; let us borrow the CLU notation: P$f. Typical extracts from 
a client of INTEGER_TABLE_HANDLING may be of the form:

-- Auxiliary declarations:
x: INTEGER; b: BOOLEAN

-- Declaration of t using a type defined in INTEGER_TABLE_HANDLING:
t: INTEGER_TABLE_HANDLING$INTBINTREE

-- Initialize t as a new table, created by function new of the package: 
t := INTEGER_TABLE_HANDLING$new

-- Insert value of x into table, using procedure put from the package:
INTEGER_TABLE_HANDLING$put (t, x)

-- Assign True or False to b, depending on whether or not x appears in t
-- for the search, use function has from the package:

b := INTEGER_TABLE_HANDLING$has (t, x)

Note the need to invent two related names: one for the module, here INTEGER_
TABLE_HANDLING, and one for its main data type, here INTBINTREE. One of the key 
steps towards object orientation will be to merge the two notions. But let us not anticipate.

A less important problem is the tediousness of having to write the package name (here 
INTEGER_TABLE_HANDLING) repeatedly. Languages supporting packages solve this 
problem by providing various syntactic shortcuts, such as the following Ada-like form:

with INTEGER_TABLE_HANDLING then
… Here has means INTEGER_TABLE_HANDLING$has, etc. …

end
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Another obvious limitation of packages of the above form is their failure to deal with 
the Type Variation issue: the module as given is only useful for tables of integers. We will 
shortly see, however, how to correct this deficiency by making packages generic.

The package mechanism provides information hiding by limiting clients’ rights on 
features. The client shown on the preceding page was able to declare one of its own 
variables using the type INTBINTREE from its supplier, and to call routines declared in 
that supplier; but it has access neither to the internals of the type declaration (the record
structure defining the implementation of tables) nor to the routine bodies (their do 
clauses). In addition, you can hide some features of the package (variables, types, 
routines) from clients, making them usable only within the text of the package.

Languages supporting the package notion differ somewhat in the details of their 
information hiding mechanism. In Ada, for example, the internal properties of a type such 
as INTBINTREE will be accessible to clients unless you declare the type as private. 

Often, to enforce information hiding, encapsulation languages will invite you to 
declare a package in two parts, interface and implementation, relegating such secret 
elements as the details of a type declaration or the body of a routine to the implementation 
part. Such a policy, however, results in extra work for the authors of supplier modules, 
forcing them to duplicate feature header declarations. With a better understanding of 
Information Hiding we do not need any of this. More in later chapters. 

Packages: an assessment 

Compared to routines, the package mechanism brings a significant improvement to the 
modularization of software systems into abstracted modules. The possibility of gathering 
a number of features under one roof is useful for both supplier and client authors: 

• The author of a supplier module can keep in one place and compile together all the 
software elements relating to a given concept. This facilitates debugging and change. 
In contrast, with separate subroutines there is always a risk of forgetting to update 
some of the routines when you make a design or implementation change; you might 
for example update new, put and has but forget remove. 

• For client authors, it is obviously easier to find and use a set of related facilities if 
they are all in one place. 

The advantage of packages over routines is particularly clear in cases such as our table 
example, where a package groups all the operations applying to a certain data structure. 

But packages still do not provide a full solution to the issues of reusability. As noted, 
they address the Routine Grouping requirement; but they leave the others unanswered. In 
particular they offer no provision for factoring out commonality. You will have noted that 
INTEGER_TABLE_HANDLING, as sketched, relies on one specific choice of 
implementation, binary search trees. True, clients do not need to be concerned with this 
choice, thanks to information hiding. But a library of reusable components will need to 
provide modules for many different implementations. The resulting situation is easy to 
foresee: a typical package library will offer dozens of similar but never identical modules 
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in a given area such as table management, with no way to take advantage of the 
commonality. To provide reusability to the clients, this technique sacrifices reusability on 
the suppliers’ side. 

Even on the clients’ side, the situation is not completely satisfactory. Every use of a 
table by a client requires a declaration such as the above: 

t: INTEGER_TABLE_HANDLING$INTBINTREE 

forcing the client to choose a specific implementation. This defeats the Representation 
Independence requirement: client authors will have to know more about implementations 
of supplier notions than is conceptually necessary. 

4.8  OVERLOADING AND GENERICITY
Two techniques, overloading and genericity, offer candidate solutions in the effort to bring 
more flexibility to the mechanisms just described. Let us study what they can contribute. 

Syntactic overloading 

Overloading is the ability to attach more than one meaning to a name appearing in a 
program. 

The most common source of overloading is for variable names: in almost all 
languages, different variables may have the same name if they belong to different modules 
(or, in the Algol style of languages, different blocks within a module).

More relevant to this discussion is routine overloading, also known as operator 
overloading, which allows several routines to share the same name. This possibility is 
almost always available for arithmetic operators (hence the second name): the same 
notation, a + b, denotes various forms of addition depending on the types of a and b
(integer, single-precision real, double-precision real). But most languages do not treat an 
operation such as "+" as a routine, and reserve it for predefined basic types — integer, real 
and the like. Starting with Algol 68, which allowed overloading the basic operators, 
several languages have extended the overloading facility beyond language built-ins to 
user-defined operations and ordinary routines. 

In Ada, for example, a package may contain several routines with the same name, as 
long as the signatures of these routines are different, where the signature of a routine is 
defined here by the number and types of its arguments. (The general notion of signature 
also includes the type of the results, if any, but Ada resolves overloading on the basis of 
the arguments only.) For example, a package could contain several square functions: 

square (x: INTEGER): INTEGER do … end
square (x: REAL): REAL do … end
square (x: DOUBLE): DOUBLE do … end
square (x: COMPLEX): COMPLEX do … end
Then, in a particular call of the form square (y), the type of y will determine which 

version of the routine you mean. 
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A package could similarly declare a number of search functions, all of the form 

has (t: “SOME_TABLE_TYPE”; x: ELEMENT ) do … end

supporting various table implementations and differing by the actual type used in lieu of 
“SOME_TABLE_TYPE”. The type of the first actual argument, in any client’s call to has, 
suffices to determine which routine is intended. 

These observations suggest a general characterization of routine overloading, which 
will be useful when we later want to contrast this facility with genericity:

What does routine overloading really bring to our quest for reusability? Not much. It 
is a syntactic facility, relieving developers from having to invent different names for various 
implementations of an operation and, in essence, placing that burden on the compiler. But 
this does not solve any of the key issues of reusability. In particular, overloading does 
nothing to address Representation Independence. When you write the call 

has (t, x)

you must have declared t and so (even if information hiding protects you from worrying 
about the details of each variant of the search algorithm) you must know exactly what kind 
of table t is! The only contribution of overloading is that you can use the same name in all 
cases. Without overloading each implementation would require a different name, as in

has_binary_tree (t, x)
has_hash (t, x)
has_linked (t, x)

Is the possibility of avoiding different names a benefit after all? Perhaps not. A basic 
rule of software construction, object-oriented or not, is the principle of non-deception: 
differences in semantics should be reflected by differences in the text of the software. This 
is essential to improve the understandability of software and minimize the risk of errors. 
If the has routines are different, giving them the same name may mislead a reader of the 
software into believing that they are the same. Better force a little more wordiness on the 
client (as with the above specific names) and remove any danger of confusion. 

The further one looks into this style of overloading, the more limited it appears. The 
criterion used to disambiguate calls — the signature of argument lists — has no particular 
merit. It works in the above examples, where the various overloads of square and has are 
all of different signatures, but it is not difficult to think of many cases where the signatures 
would be the same. One of the simplest examples for overloading would seem to be, in a 
graphics system, a set of functions used to create new points, for example under the form

p1 := new_ point (u, v)

Role of overloading
Routine overloading is a facility for clients. It makes it possible to write the 
same client text when using different implementations of a certain concept.
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There are two basic ways to specify a new point: through its cartesian coordinates x
and y (the projections on the horizontal axis), and through its polar coordinates ρ and θ
(the distance to the origin, and the angle with the horizontal axis). But if we overload 
function new_point we are in trouble, since both versions will have the signature

new_point (p, q: REAL): POINT

This example and many similar ones show that type signature, the criterion for 
disambiguating overloaded versions, is irrelevant. But no better one has been proposed.

The recent Java language regrettably includes the form of syntactic overloading just 
described, in particular to provide alternative ways to create objects.

Semantic overloading (a preview)

The form of routine overloading described so far may be called syntactic overloading. 
The object-oriented method will bring a much more interesting technique, dynamic 
binding, which addresses the goal of Representation Independence. Dynamic binding may 
be called semantic overloading. With this technique, you will be able to write the 
equivalent of has (t, x), under a suitably adapted syntax, as a request to the machine that 
executes your software. The full meaning of the request is something like this: 

Dear Hardware-Software Machine:

Please look at what t is; I know that it must be a table, but not what table 
implementation its original creator chose — and to be honest about it I’d much 
rather remain in the dark. After all, my job is not table management but 
investment banking [or compiling, or computer-aided-design etc.]. The chief 
table manager here is someone else. So find out for yourself about it and, once 
you have the answer, look up the proper algorithm for has for that particular 
kind of table. Then apply that algorithm to determine whether x appears in t,
and tell me the result. I am eagerly waiting for your answer.

I regret to inform you that, beyond the information that t is a table of some kind 
and x a potential element, you will not get any more help from me.

With my sincerest wishes,

Your friendly application developer.

Unlike syntactic overloading, such semantic overloading is a direct answer to the 
Representation Independence requirement. It still raises the specter of violating the 
principle of non-deception; the answer will be to use assertions to characterize the 
common semantics of a routine that has many different variants (for example, the common 
properties which characterize has under all possible table implementations). 

Because semantic overloading, to work properly, requires the full baggage of object 
orientation, in particular inheritance, it is understandable that non-O-O languages such as 
Ada offer syntactic overloading as a partial substitute in spite of the problems mentioned 
above. In an object-oriented language, however, providing syntactic overloading on top of 
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dynamic binding can be confusing, as is illustrated by the case of C++ and Java which both 
allow a class to introduce several routines with the same name, leaving it to the compiler 
and the human reader to disambiguate calls. 

Genericity

Genericity is a mechanism for defining parameterized module patterns, whose parameters 
represent types.

This facility is a direct answer to the Type Variation issue. It avoids the need for 
many modules such as 

INTEGER_TABLE_HANDLING
ELECTRON_TABLE_HANDLING
ACCOUNT_TABLE_HANDLING

by enabling you instead to write a single module pattern of the form 

TABLE_HANDLING [G]

where G is a name meant to represent an arbitrary type and known as a formal generic 
parameter. (We may later encounter the need for two or more generic parameters, but for 
the present discussion we may limit ourselves to one.) 

Such a parameterized module pattern is known as a generic module, although it is 
not really a module, only a blueprint for many possible modules. To obtain one of these 
actual modules, you must provide a type, known as an actual generic parameter, to 
replace G; the resulting (non-generic) modules are written for example 

TABLE_HANDLING [INTEGER]
TABLE_HANDLING [ELECTRON]
TABLE_HANDLING [ACCOUNT]

using types INTEGER, ELECTRON and ACCOUNT respectively as actual generic 
parameters. This process of obtaining an actual module from a generic module (that is to 
say, from a module pattern) by providing a type as actual generic parameter will be known 
as generic derivation; the module itself will be said to be generically derived. 

Two small points of terminology. First, generic derivation is sometimes called generic 
instantiation, a generically derived module then being called a generic instance. This 
terminology can cause confusion in an O-O context, since “instance” also denotes the 
run-time creation of objects (instances) from the corresponding types. So for genericity 
we will stick to the “derivation” terminology.

Another possible source of confusion is “parameter”. A routine may have formal 
arguments, representing values which the routine’s clients will provide in each call. The 
literature commonly uses the term parameter (formal, actual) as a synonym for argument 
(formal, actual). There is nothing wrong in principle with either term, but if we have both 
routines and genericity we need a clear convention to avoid any misunderstanding. The 
convention will be to use “argument” for routines only, and “parameter” (usually in the 
form “generic parameter” for further clarification) for generic modules only. 
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Internally, the declaration of the generic module TABLE_HANDLING will resemble 
that of INTEGER_TABLE_HANDLING above, except that it uses G instead of INTEGER
wherever it refers to the type of table elements. For example: 

package TABLE_HANDLING [G] feature
type BINARY_TREE

record
info: G
left, right: BINARY_TREE

end
has (t: BINARY_TREE; x: G): BOOLEAN

-- Does x appear in t?
do … end

put (t: BINARY_TREE; x: G)
-- Insert x into t.
do … end

(Etc.)
end -- package TABLE_HANDLING 
It is somewhat disturbing to see the type being declared as BINARY_TREE, and 

tempting to make it generic as well (something like BINARY_TREE [G]). There is no 
obvious way to achieve this in a package approach. Object technology, however, will 
merge the notions of module and type, so the temptation will be automatically fulfilled. 
We will see this when we study how to integrate genericity into the object-oriented world. 

It is interesting to define genericity in direct contrast with the definition given earlier 
for overloading:

What help does genericity bring us towards realizing the goals of this chapter? 
Unlike syntactic overloading, genericity has a real contribution to make since as noted 
above it solves one of the main issues, Type Variation. The presentation of object 
technology in part C of this book will indeed devote a significant role to genericity. 

Basic modularity techniques: an assessment 
We have obtained two main results. One is the idea of providing a single syntactic home, 
such as the package construct, for a set of routines that all manipulate similar objects. The 
other is genericity, which yields a more flexible form of module. 

All this, however, only covers two of the reusability issues, Routine Grouping and 
Type Variation, and provides little help for the other three — Implementation Variation, 
Representation Independence and Factoring Out Common Behaviors. Genericity, in 
particular, does not suffice as a solution to the Factoring issue, since making a module 

Role of genericity
Genericity is a facility for the authors of supplier modules. It makes it 
possible to write the same supplier text when using the same implementation 
of a certain concept, applied to different kinds of object. 
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generic defines two levels only: generic module patterns, parameterized and hence open 
to variation, but not directly usable; and individual generic derivations, usable directly but 
closed to further variation. This does not allow us to capture the fine differences that may 
exist between competing representations of a given general concept. 

On Representation Independence, we have made almost no progress. None of the 
techniques seen so far — except for the short glimpse that we had of semantic overloading 
— will allow a client to use various implementations of a general notion without knowing 
which implementation each case will select.

To answer these concerns, we will have to turn to the full power of object-
oriented concepts. 

4.9  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• Software development is a highly repetitive activity, involving frequent use of 

common patterns. But there is considerable variation in how these patterns are used 
and combined, defeating simplistic attempts to work from off-the-shelf components. 

• Putting reusability into practice raises economical, psychological and organizational 
problems; the last category involves in particular building mechanisms to index, 
store and retrieve large numbers of reusable components. Even more important, 
however, are the underlying technical problems: commonly accepted notions of 
module are not adequate to support serious reusability.

• The major difficulty of reuse is the need to combine reuse with adaptation. The 
“reuse or redo” dilemma is not acceptable: a good solution must make it possible to 
retain some aspects of a reused module and adapt others. 

• Simple approaches, such as reuse of personnel, reuse of designs, source code reuse, 
and subroutine libraries, have experienced some degree of success in specific 
contexts, but all fall short of providing the full potential benefits of reusability. 

• The appropriate unit of reuse is some form of abstracted module, providing an 
encapsulation of a certain functionality through a well-defined interface. 

• Packages provide a better encapsulation technique than routines, as they gather a 
data structure and the associated operations. 

• Two techniques extend the flexibility of packages: routine overloading, or the reuse 
of the same name for more than one operation; genericity, or the availability of 
modules parameterized by types. 

• Routine overloading is a syntactic facility which does not solve the important issues 
of reuse, and harms the readability of software texts. 

• Genericity helps, but only deals with the issue of type variation. 

• What we need: techniques for capturing commonalities within groups of related data 
structure implementations; and techniques for isolating clients from having to know 
the choice of supplier variants. 
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4.10  BIBLIOGRAPHICAL NOTES
The first published discussion of reusability in software appears to have been McIlroy’s 
1968 Mass-Produced Software Components, mentioned at the beginning of this chapter. 
His paper [McIlroy 1976] was presented in 1968 at the first conference on software 
engineering, convened by the NATO Science Affairs Committee. (1976 is the date of the 
proceedings, [Buxton 1976], whose publication was delayed by several years.) McIlroy 
advocated the development of an industry of software components. Here is an extract: 

Software production today appears in the scale of industrialization somewhere 
below the more backward construction industries. I think its proper place is 
considerably higher, and would like to investigate the prospects for mass-
production techniques in software…
When we undertake to write a compiler, we begin by saying “What table 
mechanism shall we build ?”. Not “What mechanism shall we use?”…
My thesis is that the software industry is weakly founded [in part because of]
the absence of a software components subindustry… Such a components 
industry could be immensely successful.
One of the important points argued in the paper was the necessity of module families, 

discussed above as one of the requirements on any comprehensive solution to reuse.

Rather than the word “module”, McIlroy’s text used “routine”; in light of this chapter’s 
discussion, this is — with the hindsight of thirty years of further software engineering 
development — too restrictive.
A special issue of the IEEE Transactions on Software Engineering edited by 

Biggerstaff and Perlis [Biggerstaff 1984] was influential in bringing reusability to the 
attention of the software engineering community; see in particular, from that issue, 
[Jones 1984], [Horowitz 1984], [Curry 1984], [Standish 1984] and [Goguen 1984]. The 
same editors included all these articles (except the first mentioned) in an expanded 
two-volume collection [Biggerstaff 1989]. Another collection of articles on reuse is 
[Tracz 1988]. More recently Tracz collected a number of his IEEE Computer columns 
into a useful book [Tracz 1995] emphasizing the management aspects.

One approach to reuse, based on concepts from artificial intelligence, is embodied in 
the MIT Programmer’s Apprentice project; see [Waters 1984] and [Rich 1989],
reproduced in the first and second Biggerstaff-Perlis collections respectively. Rather than 
actual reusable modules, this system uses patterns (called clichés and plans) representing 
common program design strategies.

Three “encapsulation languages” were cited in the discussion of packages: Ada, 
Modula-2 and CLU. Ada is discussed in a later chapter, whose bibliography section gives 
references to Modula-2, CLU, as well as Mesa and Alphard, two other encapsulation 
languages of the “modular generation” of the seventies and early eighties. The equivalent 
of a package in Alphard was called a form.

The most important characteristic of a software components industry is that 
it will offer families of [modules] for a given job.
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An influential project of the nineteen-eighties, the US Department of Defense’s 
STARS, emphasized reusability with a special concern for the organizational aspects of 
the problem, and using Ada as the language for software components. A number of 
contributions on this approach may be found in the proceedings of the 1985 STARS DoD-
Industry conference [NSIA 1985].

The two best-known books on “design patterns” are [Gamma 1995] and [Pree 1994].
[Weiser 1987] is a plea for the distribution of software in source form. That article, 

however, downplays the need for abstraction; as pointed out in this chapter, it is possible 
to keep the source form available if needed but use a higher-level form as the default 
documentation for the users of a module. For different reasons, Richard Stallman, the 
creator of the League for Programming Freedom, has been arguing that the source form 
should always be available; see [Stallman 1992].

[Cox 1992] describes the idea of superdistribution.
A form of overloading was present in Algol 68 [van Wijngaarden 1975]; Ada (which 

extended it to routines), C++ and Java, all discussed in later chapters, make extensive use 
of the mechanism.

Genericity appears in Ada and CLU and in an early version of the Z specification 
language [Abrial 1980]; in that version the Z syntax is close to the one used for genericity 
in this book. The LPG language [Bert 1983] was explicitly designed to explore genericity. 
(The initials stand for Language for Programming Generically.)

The work cited at the beginning of this chapter as the basic reference on table 
searching is [Knuth 1973]. Among the many algorithms and data structures textbooks 
which cover the question, see [Aho 1974], [Aho 1983] or [M 1978].

Two books by the author of the present one explore further the question of reusability. 
Reusable Software [M 1994a], entirely devoted to the topic, provides design and 
implementation principles for building quality libraries, and the complete specification of 
a set of fundamental libraries. Object Success [M 1995] discusses management aspects, 
especially the areas in which a company interested in reuse should exert its efforts, and 
areas in which efforts will probably be wasted (such as preaching reuse to application 
developers, or rewarding reuse). See also a short article on the topic, [M 1996].



5  
Towards object technology
The three 
forces of 
computation
E xtendibility, reusability and reliability, our principal goals, require a set of conditions 
defined in the preceding chapters. To achieve these conditions, we need a systematic 
method for decomposing systems into modules.

This chapter presents the basic elements of such a method, based on a simple but far-
reaching idea: build every module on the basis of some object type. It explains the idea, 
develops the rationale for it, and explores some of the immediate consequences.

A word of warning. Given today’s apparent prominence of object technology, some 
readers might think that the battle has been won and that no further rationale is necessary. 
This would be a mistake: we need to understand the basis for the method, if only to avoid 
common misuses and pitfalls. It is in fact frequent to see the word “object-oriented” (like 
“structured” in an earlier era) used as mere veneer over the most conventional techniques. 
Only by carefully building the case for object technology can we learn to detect improper 
uses of the buzzword, and stay away from common mistakes reviewed later in this chapter.

5.1  THE INGREDIENTS OF COMPUTATION
The crucial question in our search for proper software architectures is modularization: 
what criteria should we use to find the modules of our software?

To obtain the proper answer we must first examine the contending candidates.

The basic triangle
Three forces are at play when we use software to perform some computations:

Action Object

Processor
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Concurrency is the 
topic of chapter 30.
To execute a software system is to use certain processors to apply certain actions to 
certain objects.

The processors are the computation devices, physical or virtual, that execute 
instructions. A processor can be an actual processing unit (the CPU of a computer), a 
process on a conventional operating system, or a “thread” if the OS is multi-threaded.

The actions are the operations making up the computation. The exact form of the 
actions that we consider will depend on the level of granularity of our analysis: at the 
hardware level, actions are machine language operations; at the level of the hardware-
software machine, they are instructions of the programming language; at the level of a 
software system, we can treat each major step of a complex algorithm as a single action. 

The objects are the data structures to which the actions apply. Some of these objects, 
the data structures built by a computation for its own purposes, are internal and exist only 
while the computation proceeds; others (contained in the files, databases and other 
persistent repositories) are external and may outlive individual computations.

Processors will become important when we discuss concurrent forms of 
computation, in which several sub-computations can proceed in parallel; then we will 
need to consider two or more processors, physical or virtual. But that is the topic of a later 
chapter; for the moment we can limit our attention to non-concurrent, or sequential
computations, relying on a single processor which will remain implicit.

This leaves us with actions and objects. The duality between actions and objects — 
what a system does vs. what it does it to — is a pervasive theme in software engineering.

A note of terminology. Synonyms are available to denote each of the two aspects: the 
word data will be used here as a synonym for objects; for action the discussion will often 
follow common practice and talk about the functions of a system.

The term “function” is not without disadvantages, since software discussions also use it 
in at least two other meanings: the mathematical sense, and the programming sense of 
subprogram returning a result. But we can use it without ambiguity in the phrase the 
functions of a system, which is what we need here.

The reason for using this word rather than “action” is the mere grammatical convenience 
of having an associated adjective, used in the phrase functional decomposition. “Action” 
has no comparable derivation. Another term whose meaning is equivalent to that of 
“action” for the purpose of this discussion is operation.

Any discussion of software issues must account for both the object and function 
aspects; so must the design of any software system. But there is one question for which 
we must choose — the question of this chapter: what is the appropriate criterion for 
finding the modules of a system? Here we must decide whether modules will be built as 
units of functional decomposition, or around major types of objects.

From the answer will follow the difference between the object-oriented approach 
and other methods. Traditional approaches build each module around some unit of 
functional decomposition — a certain piece of the action. The object-oriented method, 
instead, builds each module around some type of objects.
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“Modular continu-
ity”, page 44.

Top-down design 
was sketched in 
“Modular decom-
posability”, page 40.
This book, predictably, develops the latter approach. But we should not just embrace 
O-O decomposition because the title of the book so implies, or because it is the “in” thing 
to do. The next few sections will carefully examine the arguments that justify using object 
types as the basis for modularization — starting with an exploration of the merits and 
limitations of traditional, non-O-O methods. Then we will try to get a clearer 
understanding of what the word “object” really means for software development, although 
the full answer, requiring a little theoretical detour, will only emerge in the next chapter.

We will also have to wait until the next chapter for the final settlement of the 
formidable and ancient fight that provides the theme for the rest of the present discussion: 
the War of the Objects and the Functions. As we prepare ourselves for a campaign of 
slander against the functions as a basis for system decomposition, and of corresponding 
praise for the objects, we must not forget the observation made above: in the end, our 
solution to the software structuring problem must provide space for both functions and 
objects — although not necessarily on an equal basis. To discover this new world order, 
we will need to define the respective roles of its first-class and second-class citizens.

5.2  FUNCTIONAL DECOMPOSITION
We should first examine the merits and limitations of the traditional approach: using 
functions as a basis for the architecture of software systems. This will not only lead us to 
appreciate why we need something else — object technology — but also help us avoid, 
when we do move into the object world, certain methodological pitfalls such as premature 
operation ordering, which have been known to fool even experienced O-O developers.

Continuity
A key element in answering the question “should we structure systems around functions 
or around data?” is the problem of extendibility, and more precisely the goal called 
continuity in our earlier discussions. As you will recall, a design method satisfies this 
criterion if it yields stable architectures, keeping the amount of design change 
commensurate with the size of the specification change.

Continuity is a crucial concern if we consider the real lifecycle of software systems, 
including not just the production of an acceptable initial version, but a system’s long-term 
evolution. Most systems undergo numerous changes after their first delivery. Any model 
of software development that only considers the period leading to that delivery and 
ignores the subsequent era of change and revision is as remote from real life as those 
novels which end when the hero marries the heroine — the time which, as everyone 
knows, marks the beginning of the really interesting part.

To evaluate the quality of an architecture (and of the method that produced it), we 
should not just consider how easy it was to obtain this architecture initially: it is just as 
important to ascertain how well the architecture will weather change.

The traditional answer to the question of modularization has been top-down 
functional decomposition, briefly introduced in an earlier chapter. How well does top-
down design respond to the requirements of modularity?
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Top-down development

There was a most ingenious architect who had contrived a new method 
for building houses, by beginning at the roof, and working downwards 
to the foundation, which he justified to me by the like practice of those 
two prudent insects, the bee and the spider. 

Jonathan Swift: Gulliver’s Travels, Part III, A 
Voyage to Laputa, etc., Chapter 5.

The top-down approach builds a system by stepwise refinement, starting with a definition 
of its abstract function. You start the process by expressing a topmost statement of this 
function, such as

[C0]

“Translate a C program to machine code”

or:

[P0]

“Process a user command”

and continue with a sequence of refinement steps. Each step must decrease the level of 
abstraction of the elements obtained; it decomposes every operation into a combination of 
one or more simpler operations. For example, the next step in the first example (the C 
compiler) could produce the decomposition

[C1]

“Read program and produce sequence of tokens”
“Parse sequence of tokens into abstract syntax tree”
“Decorate tree with semantic information”
“Generate code from decorated tree”

or, using an alternative structure (and making the simplifying assumption that a C program 
is a sequence of function definitions):

[C'1]

from
“Initialize data structures”

until
“All function definitions processed”

loop
“Read in next function definition”
“Generate partial code”

end

“Fill in cross references”
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Top-down 
design: tree 
structure

(This figure first 
appeared on 
page 41.)
In either case, the developer must at each step examine the remaining incompletely 
expanded elements (such as “Read program …” and “All function definitions processed”) 
and expand them, using the same refinement process, until everything is at a level of 
abstraction low enough to allow direct implementation.

We may picture the process of top-down refinement as the development of a tree. 
Nodes represent elements of the decomposition; branches show the relation “B is part of 
the refinement of A”.

The top-down approach has a number of advantages. It is a logical, well-organized 
thought discipline; it can be taught effectively; it encourages orderly development of 
systems; it helps the designer find a way through the apparent complexity that systems 
often present at the initial stages of their design.

The top-down approach can indeed be useful for developing individual algorithms. 
But it also suffers from limitations that make it questionable as a tool for the design of 
entire systems:

• The very idea of characterizing a system by just one function is subject to doubt.

• By using as a basis for modular decomposition the properties that tend to change the 
most, the method fails to account for the evolutionary nature of software systems.

Not just one function

In the evolution of a system, what may originally have been perceived as the system’s 
main function may become less important over time.

Consider a typical payroll system. When stating his initial requirement, the customer 
may have envisioned just what the name suggests: a system to produce paychecks from 
the appropriate data. His view of the system, implicit or explicit, may have been a more 
ambitious version of this:

A

B D C

C1 I I1 C2 I2

Sequence

Loop Conditional

Topmost functional abstraction
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Structure of a 
simple payroll 
program
The system takes some inputs (such as record of hours worked and employee 
information) and produces some outputs (paychecks and so on). This is a simple enough 
functional specification, in the strict sense of the word functional: it defines the program 
as a mechanism to perform one function — pay the employees. The top-down functional 
method is meant precisely for such well-defined problems, where the task is to perform a 
single function — the “top” of the system to be built.

Assume, however, that the development of our payroll program is a success: the 
program does the requisite job. Most likely, the development will not stop there. Good 
systems have the detestable habit of giving their users plenty of ideas about all the other 
things they could do. As the system’s developer, you may initially have been told that all 
you had to do was to generate paychecks and a few auxiliary outputs. But now the requests 
for extensions start landing on your desk: Could the program gather some statistics on the 
side? I did tell you that next quarter we are going to start paying some employees monthly 
and others biweekly, did I not? And, by the way, I need a summary every month for 
management, and one every quarter for the shareholders. The accountants want their own 
output for tax preparation purposes. Also, you are keeping all this salary information, 
right? It would be really nifty to let Personnel access it interactively. I cannot imagine why 
that would be a difficult functionality to add.

This phenomenon of having to add unanticipated functions to successful systems 
occurs in all application areas. A nuclear code that initially just applied some algorithm to 
produce tables of numbers from batch input will be extended to handle graphical input and 
output or to maintain a database of previous results. A compiler that just translated valid 
source into object code will after a while double up as a syntax verifier, a static analyzer, 
a pretty-printer, even a programming environment.

This change process is often incremental. The new requirements evolve from the 
initial ones in a continuous way. The new system is still, in many respects, “the same 
system” as the old one: still a payroll system, a nuclear code, a compiler. But the original 
“main function”, which may have seemed so important at first, often becomes just one of 
many functions; sometimes, it just vanishes, having outlived its usefulness.

If analysis and design have used a decomposition method based on the function, the 
system structure will follow from the designers’ original understanding of the system’s main 
function. As the system evolves, the designers may feel sorry (or its maintainers, if different 
people, may feel angry) about that original assessment. Each addition of a new function, 
however incremental it seems to the customer, risks invalidating the entire structure.

It is crucial to find, as a criterion for decomposition, properties less volatile than the 
system’s main function.

Employee
 

Hours

PaychecksProduce Paychecks
Information

Worked 
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Finding the top

Top-down methods assume that every system is characterized, at the most abstract level, 
by its main function. Although it is indeed easy to specify textbook examples of 
algorithmic problems — the Tower of Hanoi, the Eight Queens and the like — through 
their functional “tops”, a more useful description of practical software systems considers 
each of them as offering a number of services. Defining such a system by a single function 
is usually possible, but yields a rather artificial view.

Take an operating system. It is best understood as a system that provides certain 
services: allocating CPU time, managing memory, handling input and output devices, 
decoding and carrying out users’ commands. The modules of a well-structured OS will 
tend to organize themselves around these groups of functions. But this is not the 
architecture that you will get from top-down functional decomposition; the method forces 
you, as the designer, to answer the artificial question “what is the topmost function?”, and 
then to use the successive refinements of the answer as a basis for the structure. If hard 
pressed you could probably come up with an initial answer of the form

“Process all user requests”

which you could then refine into something like

from
boot

until
halted or crashed

loop
“Read in a user’s request and put it into input queue”
“Get a request r from input queue”
“Process r”
“Put result into output queue”
“Get a result o from output queue”
“Output o to its recipient”

end

Refinements can go on. From such premises, however, it is unlikely that anyone can 
ever develop a reasonably structured operating system.

Even systems which may at first seem to belong to the “one input, one abstract 
function, one output” category reveal, on closer examination, a more diverse picture. 
Consider the earlier example of a compiler. Reduced to its bare essentials, or to the view 
of older textbooks, a compiler is the implementation of one input-to-output function: 
transforming source text in some programming language into machine code for a certain 
platform. But that is not a sufficient view of a modern compiler. Among its many services, 
a compiler will perform error detection, program formating, some configuration 
management, logging, report generation.
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Another example is a typesetting program, taking input in some text processing 
format — TEX, Microsoft Word, FrameMaker … — and generating output in HTML, 
Postscript or Adobe Acrobat format. Again we may view it at first as just an input-to-
output filter. But most likely it will perform a number of other services as well, so it seems 
more interesting, when we are trying to characterize the system in the most general way, 
to consider the various types of data it manipulates: documents, chapters, sections, 
paragraphs, lines, words, characters, fonts, running heads, titles, figures and others.

The seemingly obvious starting point of top-down design — the view that each new 
development fulfills a request for a specific function — is subject to doubt:

Functions and evolution

Not only is the main function often not the best criterion to characterize a system initially: 
it may also, as the system evolves, be among the first properties to change, forcing the 
top-down designer into frequent redesign and defeating our attempts to satisfy the 
continuity requirement.

Consider the example of a program that has two versions, a “batch” one which 
handles every session as a single big run over the problem, and an interactive one in which 
a session is a sequence of transactions, with a much finer grain of user-system 
communication. This is typical of large scientific programs, which often have a “let it run 
a big chunk of computation for the whole night” version and a “let me try out a few things 
and see the results at once then continue with something else” version.

The top-down refinement of the batch version might begin as

[B0] -- Top-level abstraction

“Solve a complete instance of the problem”

[B1] -- First refinement

“Read input values”

“Compute results”

“Output results”

and so on. The top-down development of the interactive version, for its part, could proceed 
in the following style:

Real systems have no top.
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[I1]

“Process one transaction”

[I2]

if “New information provided by the user” then
“Input information”
“Store it”

elseif “Request for information previously given” then 
“Retrieve requested information”
“Output it”

elseif “Request for result” then 
if “Necessary information available” then 

“Retrieve requested result”
“Output it”

else
“Ask for confirmation of the request”
if Yes then

“Obtain required information”
“Compute requested result”
“Output result”

end
end

else
(Etc.)

Started this way, the development will yield an entirely different result. The top-
down approach fails to account for the property that the final programs are but two 
different versions of the same software system — whether they are developed 
concurrently or one has evolved from the other.

This example brings to light two of the most unpleasant consequences of the top-
down approach: its focus on the external interface (implying here an early choice between 
batch and interactive) and its premature binding of temporal relations (the order in which 
actions will be executed).

Interfaces and software design

System architecture should be based on substance, not form. But top-down development 
tends to use the most superficial aspect of the system — its external interface — as a basis 
for its structure.

The focus on external interfaces is inevitable in a method that asks “What will the 
system do for the end user?” as the key question: the answer will tend to emphasize the 
most external aspects.
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Chapter 32 dis-
cusses techniques 
and tools for user 
interfaces.
The user interface is only one of the components of a system. Often, it is also among 
the most volatile, if only because of the difficulty of getting it right the first time; initial 
versions may be of the mark, requiring experimentation and user feedback to obtain a 
satisfactory solution. A healthy design method will try to separate the interface from the 
rest of the system, using more stable properties as the basis for system structuring.

It is in fact often possible to build the interface separately from the rest of the system, 
using one of the many tools available nowadays to produce elegant and user-friendly 
interfaces, often based on object-oriented techniques. The user interface then becomes 
almost irrelevant to the overall system design.

Premature ordering

The preceding examples illustrate another drawback of top-down functional 
decomposition: premature emphasis on temporal constraints. Each refinement expands a 
piece of the abstract structure into a more detailed control architecture, specifying the 
order in which various functions (various pieces of the action) will be executed. Such 
ordering constraints become essential properties of the system architecture; but they too 
are subject to change.

Recall the two alternative candidate structures for the first refinement of a compiler:
[C1]

“Read program and produce sequence of tokens”
“Parse sequence of tokens into abstract syntax tree”
“Decorate tree with semantic information”
“Generate code from decorated tree”

[C'1]
from

“Initialize data structures”
until

“All function definitions processed”
loop

“Read in next function definition”
“Generate partial code”

end
“Fill in cross references”

As in the preceding example we start with two completely different architectures. 
Each is defined by a control structure (a sequence of instructions in the first case, a loop 
followed by an instruction in the second), implying strict ordering constraints between the 
elements of the structure. But freezing such ordering relations at the earliest stages of 
design is not reasonable. Issues such as the number of passes in a compiler and the 
sequencing of various activities (lexical analysis, parsing, semantic processing, 
optimization) have many possible solutions, which the designers must devise by 
considering space-time tradeoffs and other criteria which they do not necessarily master 
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See the bibliogra-
phical notes for 
references on the 
methods cited.

Chapter 11 presents 
assertions.
at the beginning of a project. They can perform fruitful design and implementation work 
on the components long before freezing their temporal ordering, and will want to retain 
this sequencing freedom for as long as possible. Top-down functional design does not 
provide such flexibility: you must specify the order of executing operations before you 
have had a chance to understand properly what these operations will do.

Some design methods that attempt to correct some of the deficiencies of functional 
top-down design also suffer from this premature binding of temporal relationships. This 
is the case, among others, with the dataflow-directed method known as structured analysis 
and with Merise (a method popular in some European countries).

Object-oriented development, for its part, stays away from premature ordering. The 
designer studies the various operations applicable to a certain kind of data, and specifies 
the effect of each, but defers for as long as possible specifying the operations’ order of 
execution. This may be called the shopping list approach: list needed operations — all the 
operations that you may need; ignore their ordering constraints until as late as possible in 
the software construction process. The result is much more extendible architectures.

Ordering and O-O development

The observations on the risks of premature ordering deserve a little more amplification 
because even object-oriented designers are not immune. The shopping list approach is one 
of the least understood parts of the method and it is not infrequent to see O-O projects fall 
into the old trap, with damaging effects on quality. This can result in particular from 
misuse of the use case idea, which we will encounter in the study of O-O methodology.

The problem is that the order of operations may seem so obvious a property of a 
system that it will weasel itself into the earliest stages of its design, with dire consequences 
if it later turns out to be not so final after all. The alternative technique (under the 
“shopping list” approach), perhaps less natural at first but much more flexible, uses logical 
rather than temporal constraints. It relies on the assertion concept developed later in this 
book; we can get the basic idea now through a simple non-software example.

Consider the problem of buying a house, reduced (as a gross first approximation) to 
three operations: finding a house that suits you; getting a loan; signing the contract. With 
a method focusing on ordering we will describe the design as a simple sequence of steps:

[H]

find_house
get_loan
sign_contract

In the shopping list approach of O-O development we will initially refuse to attach 
too much importance to this ordering property. But of course constraints exist between the 
operations: you cannot sign a contract unless (let us just avoid saying until for the time 
being!) you have a desired house and a loan. We can express these constraints in logical 
rather than temporal form:
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Exercise E6.7, page 
162 (in the next 
chapter).

“Use cases”, page 
738.
[H'1]
find_property

ensure
property_found

get_loan
ensure

loan_approved

sign_contract
require

property_found and loan_approved

The notation will only be introduced formally in chapter 11, but it should be clear 
enough here: require states a precondition, a logical property that an operation requires 
for its execution; and ensure states a postcondition, a logical property that will follow 
from an operation’s execution. We have expressed that each of the first two operations 
achieves a certain property, and that the last operation requires both of these properties.

Why is the logical form of stating the constraints, H'1, better than the temporal form, 
H1? The answer is clear: H'1 expresses the minimum requirements, avoiding the 
overspecification of H1. And indeed H1 is too strong, as it rules out the scheme in which 
you get the loan first and then worry about the property — not at all absurd for a particular 
buyer whose main problem is financing. Another buyer might prefer the reverse order; we 
should support both schemes as long as they observe the logical constraint.

Now imagine that we turn this example into a realistic model of the process with the 
many tasks involved — title search, termite inspection, pre-qualifying for the loan, finding 
a real estate agent, selling your previous house if applicable, inviting your friends to the 
house-warming party… It may be possible to express the ordering constraints, but the 
result will be complicated and probably fragile (you may have to reconsider everything if 
you later include another task). The logical constraint approach scales up much more 
smoothly; each operation simply states what it needs and what it guarantees, all in terms 
of abstract properties.

These observations are particularly important for the would-be object designer, who 
may still be influenced by functional ideas, and might be tempted to rely on early 
identification of system usage scenarios (“use cases”) as a basis for analysis. This is 
incompatible with object-oriented principles, and often leads to top-down functional 
decomposition of the purest form — even when the team members are convinced that they 
are using an object-oriented method.

We will examine, in our study of O-O methodological principles, what role can be found 
for use cases in object-oriented software construction.

Reusability

After this short advance incursion into the fringes of object territory, let us resume our 
analysis of the top-down method, considering it this time in relation to one of our principal 
goals, reusability.
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The context of 
a module in 
top-down 
design

On the project and 
product culture see 
[M 1995].
Working top-down means that you develop software elements in response to 
particular subspecifications encountered in the tree-like development of a system. At a 
given point of the development, corresponding to the refinement of a certain node, you 
will detect the need for a specific function — such as analyzing an input command line — 
and write down its specification, which you or someone else will then implement.

The figure, which shows part of a top-down refinement tree, illustrates this property: 
C2 is written to satisfy some sub-requirement of C; but the characteristics of C2 are 
entirely determined by its immediate context — the needs of C. For example, C could be 
a module in charge of analyzing some user input, and C2 could be the module in charge 
of analyzing one line (part of a longer input).

This approach is good at ensuring that the design will meet the initial specification, 
but it does not promote reusability. Modules are developed in response to specific 
subproblems, and tend to be no more general than implied by their immediate context. 
Here if C is meant for input texts of a specific kind, it is unlikely that C2, which analyzes 
one line of those texts, will be applicable to any other kind of input.

One can in principle include the concern for extendibility and generality in a top-
down design process, and encourage developers to write modules that transcend the 
immediate needs which led to their development. But nothing in the method encourages 
generalization, and in practice it tends to produce modules with narrow specifications.

The very notion of top-down design suggests the reverse of reusability. Designing for 
reusability means building components that are as general as possible, then combining them 
into systems. This is a bottom-up process, at the opposite of the top-down idea of starting 
with the definition of  “the problem” and deriving a solution through successive 
refinements.

This discussion makes top-down design appear as a byproduct of what we can call 
the project culture in software engineering: the view that the unit of discourse is the 
individual project, independently of earlier and later projects. The reality is less simple: 
project n in a company is usually a variation on project n – 1, and a preview of project 
n + 1. By focusing on just one project, top-down design ignores this property of practical 
software construction,

C2 is written to satisfy a 
sub-requirement of C.

A

C

C2
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Quotation from 
[Jackson 1983], 
pages 370-371.
Production and description

One of the reasons for the original attraction of top-down ideas is that a top-down style 
may be convenient to explain a design once it is in place. But what is good to document 
an existing design is not necessarily the best way to produce designs. This point was 
eloquently argued by Michael Jackson in System Development:

Top-down is a reasonable way of describing things which are already fully 
understood... But top-down is not a reasonable way of developing, designing,
or discovering anything. There is a close parallel with mathematics. A 
mathematical textbook describes a branch of mathematics in a logical order:
each theorem stated and proved is used in the proofs of subsequent theorems.
But the theorems were not developed or discovered in this way, or in this order...

When the developer of a system, or of a program, already has a clear idea of 
the completed result in his mind, he can use top-down to describe on paper what 
is in his head. This is why people can believe that they are performing top-down 
design or development, and doing so successfully: they confuse the method of 
description with the method of development... When the top-down phase begins,
the problem is already solved, and only details remain to be solved.

Top-down design: an assessment

This discussion of top-down functional design shows the method to be poorly adapted to 
the development of significant systems. It remains a useful paradigm for small programs 
and individual algorithms; it is certainly a helpful technique to describe well-understood 
algorithms, especially in programming courses. But it does not scale up to large practical 
software. By developing a system top-down you trade short-term convenience for long-
term inflexibility; you unduly privilege one function over the others; you may be led to 
devoting your attention to interface characteristics at the expense of more fundamental 
properties; you lose sight of the data aspect; and you risk sacrificing reusability.

5.3  OBJECT-BASED DECOMPOSITION
The case for using objects (or more precisely, as seen below, object types) as the key to 
system modularization is based on the quality aims defined in chapter 1, in particular 
extendibility, reusability and compatibility.

The plea for using objects will be fairly short, since the case has already been made 
at least in part: many of the arguments against top-down, function-based design reappear 
naturally as evidence in favor of bottom-up, object-based design.

This evidence should not, however, lead us to dismiss the functions entirely. As noted 
at the beginning of this chapter, no approach to software construction can be complete 
unless it accounts for both the function and object parts. So we will need to retain a clear 
role for functions in the object-oriented method, even if they must submit to the objects in 
the resulting system architectures. The notion of abstract data type will provide us with a 
definition of objects which reserves a proper place for the functions.
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Extendibility

If the functions of a system, as discussed above, tend to change often over the system’s 
life, can we find a more stable characterization of its essential properties, so as to guide 
our choice of modules and meet the goal of continuity?

The types of objects manipulated by the system are more promising candidates. 
Whatever happens to the payroll processing system used earlier as an example, it likely 
will still manipulate objects representing employees, salary scales, company regulations, 
hours worked, pay checks. Whatever happens to a compiler or other language processing 
tool, it likely will still manipulate source texts, token sequences, parse trees, abstract 
syntax trees, target code. Whatever happens to a finite element system, it likely will still 
manipulate matrices, finite elements and grids. 

This argument is based on pragmatic observation, not on a proof that object types are 
more stable than functions. But experience seems to support it overwhelmingly.

The argument only holds if we take a high-level enough view of objects. If we 
understood objects in terms of their physical representations, we would not be much better 
off than with functions — as a matter of fact probably worse, since a top-down functional 
decomposition at least encourages abstraction. So the question of finding a suitably 
abstract description of objects is crucial; it will occupy all of the next chapter. 

Reusability

The discussion of reusability pointed out that a routine (a unit of functional decomposition) 
was usually not sufficient as a unit of reusability.

The presentation used a typical example: table searching. Starting with a seemingly 
natural candidate for reuse, a searching routine, it noted that we cannot easily reuse such 
a routine separately from the other operations that apply to a table, such as creation, 
insertion and deletion; hence the idea that a satisfactory reusable module for such a 
problem should be a collection of such operations. But if we try to understand the 
conceptual thread that unites all these operations, we find the type of objects to which they 
apply — tables.

Such examples suggest that object types, fully equipped with the associated 
operations, will provide stable units of reuse.

Compatibility

Another software quality factor, compatibility, was defined as the ease with which 
software products (for this discussion, modules) can be combined with each other.

It is difficult to combine actions if the data structures they access are not designed 
for that purpose. Why not instead try to combine entire data structures?
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5.4  OBJECT-ORIENTED SOFTWARE CONSTRUCTION
We have by now accumulated enough background to consider a tentative definition of 
object-oriented software construction. This will only be a first attempt; a more concrete 
definition will follow from the discussion of abstract data types in the next chapter.

An informal characterization of this approach may serve as a motto for the object-
oriented designer: 

To get a working implementation, you will of course, sooner or later, have to find out 
what it does. Hence the word first. Better later than sooner, says object-oriented wisdom. 
In this approach, the choice of main function is one of the very last steps to be taken in the 
process of system construction.

The developers will stay away, as long as possible, from the need to describe and 
implement the topmost function of the system. Instead, they will analyze the types of 
objects of the system. System design will progress through the successive improvements 
of their understanding of these object classes. It is a bottom-up process of building robust 
and extendible solutions to parts of the problem, and combining them into more and more 
powerful assemblies — until the final assembly which yields a solution of the original 
problem but, everyone hopes, is not the only possible one: the same components, 
assembled differently and probably combined with others, should be general enough to 
yield as a byproduct, if you have applied the method well and enjoyed your share of good 
luck, solutions to future problems as well.

For many software people this change in viewpoint is as much of a shock as may 
have been for others, in an earlier time, the idea of the earth orbiting around the sun rather 
than the reverse. It is also contrary to much of the established software engineering 
wisdom, which tends to present system construction as the fulfillment of a system’s 
function as expressed in a narrow, binding requirements document. Yet this simple idea — 
look at the data first, forget the immediate purpose of the system — may hold the key to 
reusability and extendibility.

Object-oriented software construction (definition 1)

Object-oriented software construction is the software development method 
which bases the architecture of any software system on modules deduced 
from the types of objects it manipulates (rather than the function or functions 
that the system is intended to ensure). 

OBJECT MOTTO

Ask not first what the system does:
Ask what it does it to!



§5.5   ISSUES 117

See chapter 22.
5.5  ISSUES

The above definition provides a starting point to discuss the object-oriented method. But 
besides providing components of the answer it also raises many new questions, such as: 

• How to find the relevant object types.

• How to describe the object types.

• How to describe the relations and commonalities between object types.

• How to use object types to structure software.

The rest of this book will address these issues. Let us preview a few answers.

Finding the object types

The question “how shall we find the objects?” can seem formidable at first. A later chapter 
will examine it in some detail (in its more accurate version, which deals with object types
rather than individual objects) but it is useful here to dispel some of the possible fears. The 
question does not necessarily occupy much of the time of experienced O-O developers, 
thanks in part to the availability of three sources of answers:

• Many objects are there just for the picking. They directly model objects of the 
physical reality to which the software applies. One of the particular strengths of 
object technology is indeed its power as a modeling tool, using software object types 
(classes) to model physical object types, and the method’s inter-object-type relations 
(client, inheritance) to model the relations that exist between physical object types, 
such as aggregation and specialization. It does not take a treatise on object-oriented 
analysis to convince a software developer that a call monitoring system, in a 
telecommunications application, will have a class CALL and a class LINE, or that a 
document processing system will have a class DOCUMENT, a class PARAGRAPH
and a class FONT.

• A source of object types is reuse: classes previously developed by others. This 
technique, although not always prominent in the O-O analysis literature, is often 
among the most useful in practice. We should resist the impulse to invent something 
if the problem has already been solved satisfactorily by others.

• Finally, experience and imitation also play a role. As you become familiar with 
successful object-oriented designs and design patterns (such as some of those 
described in this book and the rest of the O-O literature), even those which are not 
directly reusable in your particular application, you will be able to gain inspiration 
from these earlier efforts.

We will be in a much better position to understand these object-finding techniques 
and others once we have gained a better technical insight into the software notion of object 
— not to be confused with the everyday meaning of the word.
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Describing types and objects

A question of more immediate concern, assuming we know how to obtain the proper 
object types to serve as a basis for modularizing our systems, is how to describe these 
types and their objects.

Two criteria must guide us in answering this question:

• The need to provide representation-independent descriptions, for fear of losing (as 
noted) the principal benefit of top-down functional design: abstraction.

• The need to re-insert the functions, giving them their proper place in software 
architectures whose decomposition is primarily based on the analysis of object types 
since (as also noted) we must in the end accommodate both aspects of the object-
function duality.

The next chapter develops an object description technique achieving these goals.

Describing the relations and structuring software

Another question is what kind of relation we should permit between object types; since 
the modules will be based on object types, the answer also determines the structuring 
techniques that will be available to make up software systems from components.

In the purest form of object technology, only two relations exist: client and 
inheritance. They correspond to different kinds of possible dependency between two 
object types A and B:

• B is a client of A if every object of type B may contain information about one or more 
objects of type A.

• B is an heir of A if B denotes a specialized version of A.
Some widely used approaches to analysis, in particular information modeling 

approaches such as entity-relationship modeling, have introduced rich sets of relations to 
describe the many possible connections that may exist between the element of a system. 
To people used to such approaches, having to do with just two kinds of relation often 
seems restrictive at first. But this impression is not necessarily justified:

• The client relation is broad enough to cover many different forms of dependency. 
Examples include what is often called aggregation (the presence in every object of 
type B of a subobject of type A), reference dependency, and generic dependency.

• The inheritance relation covers specialization in its many different forms.
• Many properties of dependencies will be expressed in a more general form through 

other techniques. For example, to describe a 1-to-n dependency (every object of type 
B is connected to at least one and at most n objects of type A) we will express that B
is a client of A, and include a class invariant specifying the exact nature of the client 
relation. The class invariant, being expressed in the language of logic, covers many 
more cases than the finite set of primitive relations offered by entity-relationship 
modeling or similar approaches.
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5.6  KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Computation involves three kinds of ingredient: processors (or threads of control), 
actions (or functions), and data (or objects). 

• A system’s architecture may be obtained from the functions or from the object types.

• A description based on object types tends to provide better stability over time and 
better reusability than one based on an analysis of the system’s functions.

• It is usually artificial to view a system as consisting of just one function. A realistic 
system usually has more than one “top” and is better described as providing a set 
of services.

• It is preferable not to pay too much attention to ordering constraints during the early 
stages of system analysis and design. Many temporal constraints can be described 
more abstractly as logical constraints.

• Top-down functional design is not appropriate for the long-term view of software 
systems, which involves change and reuse.

• Object-oriented software construction bases the structure of systems on the types of 
objects they manipulate. 

• In object-oriented design, the primary design issue is not what the system does, but 
what types of objects it does it to. The design process defers to the last steps the 
decision as to what is the topmost function, if any, of the system.

• To satisfy the requirements of extendibility and reusability, object-oriented software 
construction needs to deduce the architecture from sufficiently abstract descriptions 
of objects.

• Two kinds of relation may exist between object types: client and inheritance.

5.7  BIBLIOGRAPHICAL NOTES

The case for object-based decomposition is made, using various arguments, in [Cox 1990] 
(original 1986), [Goldberg 1981], [Goldberg 1985], [Page-Jones 1995] and [M 1978], 
[M 1979], [M 1983], [M 1987], [M 1988].

The top-down method has been advocated in many books and articles. [Wirth 1971] 
developed the notion of stepwise refinement. 
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Of other methods whose rationales start with some of the same arguments that have 
led this discussion to object-oriented concepts, the closest is probably Jackson’s JSD 
[Jackson 1983], a higher-level extension of JSP [Jackson 1975]. See also Warnier’s data-
directed design method [Orr 1977]. For a look at the methods that object technology is 
meant to replace, see books on: Constantine’s and Yourdon’s structured design 
[Yourdon 1979]; structured analysis [DeMarco 1978], [Page-Jones 1980], 
[McMenamin 1984], [Yourdon 1989]; Merise [Tardieu 1984], [Tabourier 1986].

Entity-relationship modeling was introduced by [Chen 1976].
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Abstract data types
This opened my mind, I started to grasp what it means to use the tool known as algebra. I’ll 
be damned if anyone had ever told me before: over and again Mr. Dupuy [the mathematics 
teacher] was making pompous sentences on the subject, but not once would he say this 
simple word: it is a division of labor, which like any division of labor produces miracles,
and allows the mind to concentrate all of its forces on just one side of objects, on just one 
of their qualities.
What a difference it would have made for us if Mr. Dupuy had told us: This cheese is soft or 
it is hard; it is white, it is blue; it is old, it is young; it is yours, it is mine, it is light or it is 
heavy. Of so many qualities let us consider only the weight. Whatever that weight may be,
let us call it A. Now, without thinking of the weight any more, let us apply to A everything 
that we know of quantities. 
Such a simple thing; yet no one was saying it to us in that faraway province…

Stendhal, The Life of Henry Brulard, 1836.

For abstraction consists only in separating the perceptible qualities of bodies, either from 
other qualities, or from the bodies to which they apply. Errors arise when this separation is 
poorly done or wrongly applied: poorly done in philosophical questions, and wrongly 
applied in physical and mathematical questions. An almost sure way to err in philosophy is 
to fail to simplify enough the objects under study; and an infallible way to obtain defective 
results in physics and mathematics is to view the objects as less composite than they are. 

Denis Diderot, A Letter on the Blind for the Benefit of Those Who Can See, 1749.

L etting objects play the lead role in our software architectures requires that we describe 
them adequately. This chapter shows how.

You are perhaps impatient to dive into the depths of object technology and explore 
the details of multiple inheritance, dynamic binding and other joys; then you may at first 
look at this chapter as an undue delay since it is mostly devoted to the study of some 
mathematical concepts (although all the mathematics involved is elementary).

But in the same way that even the most gifted musician will benefit from learning a 
little music theory, knowing about abstract data types will help you understand and enjoy 
the practice of object-oriented analysis, design and programming, however attractive the 
concepts might already appear without the help of the theory. Since abstract data types 
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“Information Hid-
ing”, page 51.
establish the theoretical basis for the entire method, the consequences of the ideas 
introduced in this chapter will be felt throughout the rest of this book. 

There is more. As we will see at chapter end, these consequences actually extend 
beyond the study of software proper, yielding a few principles of intellectual investigation 
which one may perhaps apply to other disciplines. 

6.1  CRITERIA
To obtain proper descriptions of objects, we need a method satisfying three conditions:

• The descriptions should be precise and unambiguous.

• They should be complete — or at least as complete as we want them in each case (we 
may decide to leave some details out). 

• They should not be overspecifying.

The last point is what makes the answer non-trivial. It is after all easy to be precise, 
unambiguous and complete if we “spill the beans” by giving out all the details of the 
objects’ representation. But this is usually too much information for the authors of 
software elements that need to access the objects.

This observation is close to the comments that led to the notion of information 
hiding. The concern there was that by providing a module’s source code (or, more 
generally, implementation-related elements) as the primary source of information for the 
authors of software elements that rely on that module, we may drown them in a flood of 
details, prevent them from concentrating on their own job, and hamper prospects of 
smooth evolution. Here the danger is the same if we let modules use a certain data 
structure on the basis of information that pertains to the structure’s representation rather 
than to its essential properties.

6.2  IMPLEMENTATION VARIATIONS
To understand better why the need for abstract data descriptions is so crucial, let us explore 
further the potential consequences of using physical representation as the basis for 
describing objects.

A well-known and convenient example is the description of stack objects. A stack 
object serves to pile up and retrieve other objects in a last-in, first-out (“LIFO”) manner, 
the latest inserted element being the first one to be retrieved. The stack is a ubiquitous 
structure in computing science and in many software systems; the typical compiler or 
interpreter, for example, is peppered with stacks of many kinds. 

Stacks, it must be said, are also ubiquitous in didactic presentations of abstract data types, 
so much so that Edsger Dijkstra is said to have once quipped that “abstract data types are 
a remarkable theory, whose purpose is to describe stacks”. Fair enough. But the notion of 
abstract data type applies to so many more advanced cases in the rest of this book that I 
do not feel ashamed of starting with this staple example. It is the simplest I know which 
includes about every important idea about abstract data types.
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Three possible 
representations
for a stack
Stack representations 

Several possible physical representations exist for stacks: 

The figure illustrates three of the most common representations. Each has been given 
a name for ease of reference:

• ARRAY_UP: represent a stack through an array representation and an integer count
whose value ranges from 0 (for an empty stack) to capacity, the size of the array 
representation; stack elements are stored in the array at indices 1 up to count. 

• ARRAY_DOWN: like ARRAY_UP, but with elements stored from the end of the array 
rather than from the beginning. Here the integer is called free (it is the index of the 
highest free array position, or 0 if all positions are occupied) and ranges from 
capacity for an empty stack down to 0. The stack elements are stored in the array at 
indices capacity down to free + 1. 

• LINKED: a linked representation which stores each stack element in a cell with two 
fields: item representing the element, and previous containing a pointer to the cell 
containing the previously pushed element. The representation also needs last, a 
pointer to the cell representing the top.

 

representation

(ARRAY_UP)

“Push” operation:
count := count + 1
representation [count] := xcount

capacity

1

representation

(ARRAY_DOWN)

“Push” operation:
representation [free] := x
free := free – 1

free

capacity

1

(LINKED)

“Push” operation:
new (n)
n  item := x
n  previous := last
last := n

item

item

item

item

previous

previous

previous

previous

last
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Head-to-head 
representation 
for two stacks
Next to each representation, the figure shows a program extract (in Pascal-like 
notation) giving the corresponding implementation for a basic stack operation: pushing an 
element x onto the top. 

For the array representations, ARRAY_UP and ARRAY_DOWN, the instructions 
increase or decrease the top indicator (count or free) and assign x to the corresponding 
array element. Since these representations support stacks of at most capacity elements, 
robust implementations should include guards of the respective forms 

if count < capacity then …
if free > 0 then …

which the figure omits for simplicity. 

For LINKED, the linked representation, pushing an element requires four operations: 
create a new cell n (done here with Pascal’s new procedure, which allocates space for a 
new object); assign x to the new cell’s item field; chain the new cell to the earlier stack top 
by assigning to its previous field the current value of last; and update last so that it will 
now be attached to the newly created cell. 

Although these are the most frequently used stack representations, many others exist. 
For example if you need two stacks of elements of the same type, and have only limited 
space available, you may rely on a single array with two integer top markers, count as in 
ARRAY_UP and free as in ARRAY_DOWN; one of the stacks will grow up and the other will 
grow down. The representation is full if and only if count = free. 

The advantage, of course, is to lessen the risk of running out of space: with two 
arrays of capacity n representing stacks under ARRAY_UP or ARRAY_DOWN, you exhaust 
the available space whenever either stack reaches n elements; with a single array of size 
2n holding two head-to-head stacks, you run out when the combined size reaches 2n, a less 
likely occurrence if the two stacks grow independently. (For any variable values p and q, 
max ( p + q) ≤ max ( p) + max (q).) 

Each of these and other possible representations is useful in some cases. Choosing 
one of them as “the” definition of stacks would be a typical case of overspecification. Why 
should we consider ARRAY_UP, for example, more representative than LINKED? The most 
visible properties of ARRAY_UP — the array, the integer count, the upper bound — are 
irrelevant to an understanding of the underlying structure. 

representation
count

1

capacity

free

Stack 2

Stack 1
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See page 18.
The danger of overspecification 

Why is it so bad to use a particular representation as specification? 

The results of the Lientz and Swanson maintenance study, which you may recall, 
give a hint. More than 17% of software costs was found to come from the need to take into 
account changes of data formats. As was noted in the discussion, too many programs are 
closely tied to the physical structure of the data they manipulate. A method relying on the 
physical representation of data structures to guide analysis and design would not be likely 
to yield flexible software.

So if we are to use objects or object types as the basis of our system architectures, 
we should find a better description criterion than the physical representation. 

How long is a middle initial?

Lest stacks make us forget that, beyond the examples favored by computer scientists, data 
structures are ultimately connected with real-life objects, here is an amusing example, 
taken from a posting on the Risks forum (comp.risks Usenet newsgroup) of the dangers of 
a view of data that is too closely dependent on concrete properties:

My dear mother blessed (or perhaps cursed) all of her children with two middle initials,
in my case “D” and “E”. This has caused me a good deal of trouble.

It seems that TRW sells certain parts of your credit information, such as your name and 
a demographic profile. I recently got a new credit card from Gottchalks and found to my 
chagrin that my name had been truncated to “Darrell D. Long”. I went to the credit 
manager and was assured that things would be fixed. Well, two things happened: I got a 
new credit card, this time as “Darrell E. Long”, and TRW now has an annotation in my 
file to the effect “File variation: middle initial is E”. Soon after this I start getting mail 
for “Darrell E. Long” (along with the usual “Darrell Long” and “Darrell D. Long” and 
the occasional “Darrell D. E. Long”).

I called up the credit bureau and it seems that the programmer who coded up the TRW 
database decided that all good Americans are entitled to only one middle initial. As the 
woman on the phone patiently told me “They only allocated enough megabytes (sic) in 
the system for one middle initial, and it would probably be awfully hard to change”.

Aside from the typical example of technobabble justification (“megabytes”), the 
lesson here is the need to avoid tying software to the exact physical properties of data. 
TRW’s system seems similar to those programs, mentioned in an earlier discussion, which 
“knew” that postal codes consist of exactly five digits.

The author of the message reproduced above was mainly concerned about junk mail, 
an unpleasant but not life-threatening event; the archives of the Risks forum are full of 
computer-originated name confusions with more serious consequences. The “millenium 
problem”, mentioned in the discussion of software maintenance, is another example of the 
dangers of accessing data based on physical representation, this one with hundreds of 
millions of dollars’ worth of consequences.
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6.3  TOWARDS AN ABSTRACT VIEW OF OBJECTS 

How do we retain completeness, precision and non-ambiguity without paying the price of 
overspecification? 

Using the operations 

In the stack example, what unites the various representations in spite of all their 
differences is that they describe a “container” structure (a structure used to contain other 
objects), where certain operations are applicable and enjoy certain properties. By focusing 
not on a particular choice of representation but on these operations and properties, we may 
be able to obtain an abstract yet useful characterization of the notion of stack. 

The operations typically available on a stack are the following: 

• A command to push an element on top of a stack. Let us call that operation put. 

• A command to remove the stack’s top element, if the stack is not empty. Let us call 
it remove. 

• A query to find out what the top element is, if the stack is not empty. Let us call it item. 

• A query to determine whether the stack is empty. (This will enable clients to 
determine beforehand if they can use remove and item.) 

In addition we may need a creator operation giving us a stack, initially empty. Let us 
call it make. 

Two points may have caught your attention and will deserve more explanation later in 
this chapter. First, the operation names may seem surprising; for the moment, just think 
of put as meaning push, remove as meaning pop, and item as meaning top. Details 
shortly (on the facing page, actually). Second, the operations have been divided into 
three categories: creators, which yield objects; queries, which return information about 
objects; and commands, which can modify objects. This classification will also require 
some more comments. 

In a traditional view of data structures, we would consider that the notion of stack is 
given by some data declaration corresponding to one of the above representations, for 
example (representation ARRAY_UP, Pascal-like syntax): 

count: INTEGER
representation: array [1      capacity] of STACK_ELEMENT_TYPE

where capacity, a constant integer, is the maximum number of elements on the stack. Then 
put, remove, item, empty and make would be routines (subprograms) that work on the 
object structures defined by these declarations. 

The key step towards data abstraction is to reverse the viewpoint: forget for the 
moment about the representation; take the operations themselves as defining the data 
structure. In other words, a stack is any structure to which clients may apply the operations 
listed above. 
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A laissez-faire policy for the society of modules

The method just outlined for describing data structures shows a rather selfish approach to 
the world of data structures: like an economist of the most passionate supply-side, 
invisible-hand, let-the-free-market-decide school, we are interested in individual agents 
not so much for what they are internally as for what they have to offer to each other. The 
world of objects (and hence of software architecture) will be a world of interacting agents, 
communicating on the basis of precisely defined protocols. 

The economic analogy will indeed accompany us throughout this presentation; the 
agents — the software modules — are called suppliers and clients; the protocols will be 
called contracts, and much of object-oriented design is indeed Design by Contract, the 
title of a later chapter. 

As always with analogies, we should not get too carried away: this work is not a 
textbook on economics, and contains no hint of its author’s views in that field. It will 
suffice for the moment to note the remarkable analogies of the abstract data type approach 
to some theories of how human agents should work together. Later in this chapter we will 
again explore what abstract data types can tell us beyond their original area of application. 

Name consistency 

For the moment, let us get back to more immediate concerns, and make sure you are 
comfortable with the above example specification in all its details. If you have 
encountered stacks before, the operation names chosen for the discussion of stacks may 
have surprised or even shocked you. Any self-respecting computer scientist will know 
stack operations under other names:

Why use anything else than the traditional terminology? The reason is a desire to 
take a high-level view of data structures — especially “containers”, those data structures 
used to keep objects. 

Stacks are just one brand of container; more precisely, they belong to a category of 
containers which we may call dispensers. A dispenser provides its clients with a 
mechanism for storing (put), retrieving (item) and removing (remove) objects, but without 
giving them any control over the choice of object to be stored, retrieved or removed. For 
example, the LIFO policy of stacks implies that you may only retrieve or remove the 
element that was stored last. Another brand of dispenser is the queue, which has a first-in, 
first-out (FIFO) policy: you store at one end, retrieve and remove at the other; the element 

Common stack operation name Name used here
push put
pop remove
top item
new make
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that you retrieve or remove is the oldest one stored but not yet removed. An example of a 
container which is not a dispenser is an array, where you choose, through integer indices, 
the positions where you store and retrieve objects. 

Because the similarities between various kinds of container (dispensers, arrays and 
others) are more important than the differences between their individual storage, retrieval 
and removal properties, this book constantly adheres to a standardized terminology which 
downplays the differences between data structure variants and instead emphasizes the 
commonality. So the basic operation to retrieve an element will always be called item, the 
basic operation to remove an element will always be called remove and so on. 

These naming issues may appear superficial at first — “cosmetic”, as programmers 
sometimes say. But do not forget that one of our eventual aims is to provide the basis for 
powerful, professional libraries of reusable software components. Such libraries will 
contain tens of thousands of available operations. Without a systematic and clear 
nomenclature, both the developers and the users of these libraries would quickly be 
swamped in a flood of specific and incompatible names, providing a strong (and 
unjustifiable) obstacle to large-scale reuse. 

Naming, then, is not cosmetic. Good reusable software is software that provides the 
right functionality and provides it under the right names. 

The names used here for stack operations are part of a systematic set of naming 
conventions used throughout this book. A later chapter will introduce them in more detail. 

How not to handle abstractions 

In software engineering as in other scientific and technical disciplines, a seminal idea may 
seem obvious once you have been exposed to it, even though it may have taken a long time 
to emerge. The bad ideas and the complicated ones (they are often the same) often appear 
first; it takes time for the simple and the elegant to take over. 

This observation is true of abstract data types. Although good software developers 
have always (as a result of education or mere instinct) made good use of abstraction, many 
of the systems in existence today were designed without much consideration of this goal. 

I once did a little involuntary experiment which provided a good illustration of this 
state of affairs. While setting up the project part of a course which I was teaching, I 
decided to provide students with a sort of anonymous marketplace, where they could place 
mock “for sale” announcements of software modules, without saying who was the source 
of the advertisement. (The idea, which may or may not have been a good one, was to favor 
a selection process based only on a precise specification of the modules’ advertized 
facilities.) The mail facility of a famous operating system commonly favored by 
universities seemed to provide the right base mechanism (why write a new mail system 
just for a course project?); but naturally that mail facility shows the sender’s name when 
it delivers a message to its recipients. I had access to the source of the corresponding code 
— a huge C program — and decided, perhaps foolishly, to take that code, remove all 
references to the sender’s name in delivered messages, and recompile. 
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Aided by a teaching assistant, I thus embarked on a task which seemed obvious 
enough although not commonly taught in software engineering courses: systematic 
program deconstruction. Sure enough, we quickly found the first place where the program 
accessed the sender’s name, and we removed the corresponding code. This, we naïvely 
thought, would have done the job, so we recompiled and sent a test mail message; but the 
sender’s name was still there! Thus began a long and surreal process: time and again, 
believing we had finally found the last reference to the sender’s name, we would remove 
it, recompile, and mail a test message, only to find the name duly recorded once again in 
its habitual field. Like the Hydra in its famous fight, the mailer kept growing a new head 
every time we thought we had cut the last neck.

Finally, repeating for the modern era the earlier feat of Hercules, we slew the beast 
for good; by then we had removed more than twenty code extracts which all accessed, in 
some way or other, information about the message sender. 

Although the previous sections have only got us barely started on our road to abstract 
data types, it should be clear by now that any program written in accordance with even the 
most elementary concepts of data abstraction would treat MAIL_MESSAGE as a carefully 
defined abstract notion, supporting a query operation, perhaps called sender, which 
returns information about the message sender. Any portion of the mail program that needs 
this information would obtain it solely through the sender query. Had the mail program 
been designed according to this seemingly obvious principle, it would have been 
sufficient, for the purpose of my little exercise, to modify the code of the sender query. 
Most likely, the software would also then have provided an associated command operation 
set_sender to update sender information, making the job even easier. 

What is the real moral of that little story (besides lowering the reader’s guard in 
preparation for the surprise mathematical offensive of the next section)? After all, the mail 
program in question is successful, at least judging by its widespread use. But it typifies the 
current quality standard in the industry. Until we move significantly beyond that standard, 
the phrase “software engineering” will remain a case of wishful thinking. 

Oh yes, one more note. Some time after my brief encounter with the mail program, 
I read that certain network hackers had intruded into the computer systems of highly 
guarded government laboratories, using a security hole of that very mail program — a hole 
which was familiar, so the press reported, to all those in the know. I was not in the know; 
but, when I learned the news, I was not surprised. 

6.4  FORMALIZING THE SPECIFICATION 

The glimpse of data abstraction presented so far is too informal to be of durable use. 
Consider again our staple example: a stack, as we now understand it, is defined in terms 
of the applicable operations; but then we need to define these operations! 

Informal descriptions as above (put pushes an element “on top of ” the stack, remove
pops the element “last pushed” and so on) do not suffice. We need to know precisely how 
these operations can be used by clients, and what they will do for them. 
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An abstract data type specification will provide this information. It consists of four 
paragraphs, explained in the next sections: 

• TYPES. 

• FUNCTIONS. 

• AXIOMS. 

• PRECONDITIONS. 

These paragraphs will rely on a simple mathematical notation for specifying the 
properties of an abstract data type (ADT for short).

The notation — a mathematical formalism, not to be confused with the software 
notation of the rest of this book even though for consistency it uses a similar syntactic 
style — has no name and is not a programming language; it could serve as the starting 
point for a formal specification language, but we shall not pursue this avenue here, 
being content enough to use self-explanatory conventions for the unambiguous 
specification of abstract data types.

Specifying types 

The TYPES paragraph indicates the types being specified. In general, it may be 
convenient to specify several ADTs together, although our example has only one, STACK. 

By the way, what is a type? The answer to this question will combine all the ideas 
developed in the rest of this chapter; a type is a collection of objects characterized by 
functions, axioms and preconditions. If for the moment you just view a type as a set of 
objects, in the mathematical sense of the word “set” — type STACK as the set of all 
possible stacks, type INTEGER as the set of all possible integer values and so on — you 
are not guilty of any terrible misunderstanding. As you read this discussion you will be 
able to refine this view. In the meantime the discussion will not be too fussy about using 
“set” for “type” and conversely. 

On one point, however, you should make sure to avoid any confusion: an abstract 
data type such as STACK is not an object (one particular stack) but a collection of objects 
(the set of all stacks). Remember what our real goal is: finding a good basis for the 
modules of our software systems. As was noted in the previous chapter, basing a module 
on one particular object — one stack, one airplane, one bank account — would not make 
sense. O-O design will enable us to build modules covering the properties of all stacks, all 
airplanes, all bank accounts — or at least of some stacks, airplanes or accounts. 

An object belonging to the set of objects described by an ADT specification is called 
an instance of the ADT. For example, a specific stack which satisfies the properties of the 
STACK abstract data type will be an instance of STACK. The notion of instance will carry 
over to object-oriented design and programming, where it will play an important role in 
explaining the run-time behavior of programs. 
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The TYPES paragraph simply lists the types introduced in the specification. Here:

Our specification is about a single abstract data type STACK, describing stacks of 
objects of an arbitrary type G. 

Genericity 

In STACK [G], G denotes an arbitrary, unspecified type. G is called a formal generic 
parameter of the abstract data type STACK, and STACK itself is said to be a generic ADT. 
The mechanism permitting such parameterized specifications is known as genericity; we 
already encountered a similar concept in our review of package constructs.

It is possible to write ADT specifications without genericity, but at the price of 
unjustified repetition. Why have separate specifications for the types “stack of bank 
accounts”, “stack of integers” and so on? These specifications would be identical except 
where they explicitly refer to the type of the stack elements — bank accounts or integers. 
Writing them, and then performing the type substitutions manually, would be tedious. 
Reusability is desirable for specifications too — not just programs! Thanks to genericity, 
we can make the type parameterization explicit by choosing some arbitrary name, here G, 
to represent the variable type of stack elements. 

As a result, an ADT such as STACK is not quite a type, but rather a type pattern; to 
obtain a directly usable stack type, you must obtain some element type, for example 
ACCOUNT, and provide it as actual generic parameter corresponding to the formal 
parameter G. So although STACK is by itself just a type pattern, the notation 

STACK [ACCOUNT]

is a fully defined type. Such a type, obtained by providing actual generic parameters to a 
generic type, is said to be generically derived. 

The notions just seen are applicable recursively: every type should, at least in 
principle, have an ADT specification, so you may view ACCOUNT as being itself an 
abstract data type; also, a type that you use as actual generic parameter to STACK (to 
produce a generically derived type) may itself be generically derived, so it is perfectly all 
right to use

STACK [STACK [ACCOUNT]]
specifying a certain abstract data type: the instances of that type are stacks, whose 
elements are themselves stacks; the elements of these latter stacks are bank accounts. 

As this example shows, the preceding definition of “instance” needs some 
qualification. Strictly speaking, a particular stack is an instance not of STACK (which, as 
noted, is a type pattern rather than a type) but of some type generically derived from 
STACK, for example STACK [ACCOUNT]. It is convenient, however, to continue talking 

TYPES 
•  STACK [G] 



ABSTRACT DATA TYPES  §6.4 132

 Chapter 10 and 
appendix B.
about instances of STACK and similar type patterns, with the understanding that this 
actually means instances of their generic derivations. 

Similarly, it is not quite accurate to talk about STACK being an ADT: the correct term 
is “ADT pattern”. For simplicity, this discussion will continue omitting the word “pattern” 
when there is no risk of confusion. 

The distinction will carry over to object-oriented design and programming, but there we 
will need to keep two separate terms:

•The basic notion will be the class; a class may have generic parameters. 
•Describing actual data requires types. A non-generic class is also a type, but a generic class 

is only a type pattern. To obtain an actual type from a generic class, we will need to 
provide actual generic parameters, exactly as we derive the ADT STACK [ACCOUNT]
from the ADT pattern STACK. 

Later chapters will explore the notion of genericity as applied to classes, and how to 
combine it with the inheritance mechanism.

Listing the functions 

After the TYPES paragraph comes the FUNCTIONS paragraph, which lists the operations 
applicable to instances of the ADT. As announced, these operations will be the prime 
component of the type definition — describing its instances not by what they are but by 
what they have to offer. 

Below is the FUNCTIONS paragraph for the STACK abstract data type. If you are a 
software developer, you will find the style familiar: the lines of such a paragraph evoke 
the declarations found in typed programming languages such as Pascal or Ada. The line 
for new resembles a variable declaration; the others resemble routine headers.

Each line introduces a mathematical function modeling one of the operations on 
stacks. For example function put represents the operation that pushes an element onto the 
top of a stack. 

Why functions? Most software people will not naturally think of an operation such 
as put as a function. When the execution of a software system applies a put operation to 
a stack, it will usually modify that stack by adding an element to it. As a result, in the 
above informal classification of commands, put was a “command” — an operation which 
may modify objects. (The other two categories of operations were creators and queries).

FUNCTIONS 
•  put: STACK [G] × G → STACK [G] 
•  remove: STACK [G]  STACK [G] 
•  item: STACK [G]  G 

•  empty: STACK [G] → BOOLEAN 

•  new: STACK [G] 

→

→
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Applying the 
put function
An ADT specification, however, is a mathematical model, and must rely on well-
understood mathematical techniques. In mathematics the notion of command, or more 
generally of changing something, does not exist as such; computing the square root of the 
number 2 does not modify the value of that number. A mathematical expression simply 
defines certain mathematical objects in terms of certain other mathematical objects: unlike 
the execution of software on a computer, it never changes any mathematical object. 

Yet we need a mathematical concept to model computer operations, and here the 
notion of function yields the closest approximation. A function is a mechanism for 
obtaining a certain result, belonging to a certain target set, from any possible input 
belonging to a certain source set. For example, if R denotes the set of real numbers, the 
function definition 

square_ plus_one: R → R
square_ plus_one (x) = x2 + 1            (for any x in R)

introduces a function square_ plus_one having R as both source and target sets, and 
yielding as result, for any input, the square of the input plus one. 

The specification of abstract data types uses exactly the same notion. Operation put, 
for example, is specified as 

put: STACK [G] × G → STACK [G]
which means that put will take two arguments, a STACK of instances of G and an instance 
of G, and yield as a result a new STACK [G]. (More formally, the source set of function put
is the set STACK [G] × G, known as the cartesian product of STACK [G] and G; this is 
the set of pairs <s, x> whose first element s is in STACK [G] and whose second element x
is in G.) Here is an informal illustration: 

With abstract data types, we only have functions in the mathematical sense of the 
term; they will produce neither side effects nor in fact changes of any kind. This is the 
condition that we must observe to enjoy the benefits of mathematical reasoning. 

When we leave the ethereal realm of specification for the rough-and-tumble of 
software design and implementation, we will need to reintroduce the notion of change; 
because of the performance overhead, few people would accept a software execution 
environment where every “push” operation on a stack begins by duplicating the stack. 
Later we will examine the details of the transition from the change-free world of ADTs to 
the change-full world of software development. For the moment, since we are studying 
how best to specify types, the mathematical view is the appropriate one. 

 ( , )put =
(stack) (stack)(element)
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The role of the operations modeled by each of the functions in the specification of 
STACK is clear from the previous discussion: 

• Function put yields a new stack with one extra element pushed on top. The figure on 
the preceding page illustrates put (s, x) for a stack s and an element x.

• Function remove yields a new stack with the top element, if any, popped; like put, 
this function should yield a command (an object-changing operation, typically 
implemented as a procedure) at design and implementation time. We will see below 
how to take into account the case of an empty stack, which has no top to be popped. 

• Function item yields the top element, if any. 
• Function empty indicates whether a stack is empty; its result is a boolean value (true 

or false); the ADT BOOLEAN is assumed to have been defined separately. 
• Function new yields an empty stack. 

The FUNCTIONS paragraph does not fully define these functions; it only introduces 
their signatures — the list of their argument and result types. The signature of put is 

STACK [G] × G → STACK [G]
indicating that put accepts as arguments pairs of the form < s, x> where s is an instance of 
STACK [G] and x is an instance of G, and yields as a result an instance of STACK [G]. In 
principle the target set of a function (the type that appears to the right of the arrow in 
signature, here STACK [G]) may itself be a cartesian product; this can be used to describe 
operations that return two or more results. For simplicity, however, this book will only use 
single-result functions. 

The signature of functions remove and item includes a crossed arrow  instead of 
the standard arrow used by put and empty. This notation expresses that the functions are 
not applicable to all members of the source set; it will be explained in detail below. 

The declaration for function new appears as just 
new: STACK

with no arrow in the signature. This is in fact an abbreviation for 
new: → STACK

introducing a function with no arguments. There is no need for arguments since new must 
always return the same result, an empty stack. So we just remove the arrow for simplicity. 
The result of applying the function (that is to say, the empty stack) will also be written new, 
an abbreviation for new ( ), meaning the result of applying new to an empty argument list. 

Function categories

The operations on a type were classified informally at the beginning of this chapter into 
creators, queries and commands. With an ADT specification for a new type T, such as 
STACK [G] in the example, we can define the corresponding classification in a more 
rigorous way. The classification simply examines where T appears, relative to the arrow, 
in the signature of each function: 

→
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• A function such as new for which T appears only to the right of the arrow is a creator 
function. It models an operation which produces instances of T from instances of 
other types — or, as in the case of a constant creator function such as new, from no 
argument at all. (Remember that the signature of new is considered to contain an 
implicit arrow.) 

• A function such as item and empty for which T appears only on the left of the arrow 
is a query function. It models an operation which yields properties of instances of 
T, expressed in terms of instances of other types (BOOLEAN and the generic 
parameter G in the examples). 

• A function such as put or remove for which T appears on both sides of the arrow is a 
command function. It models an operation which yields new instances of T from 
existing instances of T (and possibly instances of other types).
An alternative terminology calls the three categories “constructor”, “accessor” and 
“modifier”. The terms retained here are more directly related to the interpretation of ADT 
functions as models of operations on software objects, and will carry over to class 
features, the software counterparts of our mathematical functions.

The AXIOMS paragraph 

We have seen how to describe a data type such as STACK through the list of functions 
applicable to its instances. The functions are known only through their signatures. 

To indicate that we have a stack, and not some other data structure, the ADT 
specification as given so far is not enough. Any “dispenser” structure, such as a first-in-
first-out queue, will also satisfy it. The choice of names for the operations makes this 
particularly clear: we do not even have stack-specific names such as push, pop or top to 
fool ourselves into believing that we have defined stacks and only stacks. 

This is not surprising, of course, since the FUNCTIONS paragraph declared the 
functions (in the same way that a program unit may declare a variable) but did not fully 
define them. In a mathematical definition such as the earlier example 

square_ plus_one: R → R

square_ plus_one (x) = x2 + 1       (for any x in R)

the first line plays the role of the signature declaration, but there is also a second line which 
defines the function’s value. How do we achieve the same for the functions of an ADT? 

Here we should not use an explicit definition in the style of the second line of 
square_ plus_one’s definition, because it would force us to choose a representation — and 
this whole discussion is intended to protect us from representation choices. 

Just to make sure we understand what an explicit definition would look like, let us 
write one for the stack representation ARRAY_UP as sketched above. In mathematical 
terms, choosing ARRAY_UP means that we consider any instance of STACK as a pair 
<count, representation>, where representation is the array and count is the number of 
pushed elements. Then an explicit definition of put is (for any instance x of G): 
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Applying the 
put function
put (<count, representation>, x)  =  <count + 1, representation [count+1: x]>

where the notation a [n: v] denotes the array obtained from a by changing the value of the 
element at index n so that it is now v, and keeping all other elements, if any, as they are. 

This definition of function put is just a mathematical version of the implementation 
of the put operation sketched in Pascal notation, next to representation ARRAY_UP, in the 
picture of possible stack representations at the beginning of this chapter.

But this is not what we want; “Free us from the yoke of representations!”, the motto 
of the Object Liberation Front and its military branch (the ADT brigade), is also ours. 

Because any explicit definition would force us to select a representation, we must 
turn to implicit definitions. We will refrain from giving the values of the functions of an 
ADT specification; instead we will state properties of these values — all the properties 
that matter, but those properties only. 

The AXIOMS paragraph states these properties. For STACK it will be:

The first two axioms express the basic LIFO (last-in, first-out) property of stacks. To 
understand them, assume we have a stack s and an instance x, and define s' to be put (s, x), 
that is to say the result of pushing x onto s. Adapting an earlier figure:

AXIOMS
     For any x: G, s: STACK [G],
A1  • item (put (s, x)) = x

A2 •  remove (put (s, x)) = s

A3 •  empty (new)
A4 •  not empty (put (s, x))

( , )= put

 s'  s  x
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Here axiom A1 tells us that the top of s' is x, the last element that we pushed; and 
axiom A2 tells us that if we remove the top element from s', we get back the stack s that 
we had before pushing x. These two axioms provide a concise description of the 
fundamental property of stacks in pure mathematical terms, without any recourse to 
imperative reasoning or representation properties. 

Axioms A3 and A4 tell us when a stack is empty and when it is not: a stack resulting 
from the creator function new is empty; any stack resulting from pushing an element on 
an existing stack (empty or not) is non-empty. 

These axioms, like the others, are predicates (in the sense of logic), expressing that 
a certain property is always true for every possible value of s and x. Some people prefer 
to read A3 and A4 in the equivalent form

under which you may also view them, informally at least, as defining function empty by 
induction on the size of stacks.

Two or three things we know about stacks 

ADT specifications are implicit. We have encountered two forms of implicitness: 

• The ADT method defines a set of objects implicitly, through the applicable 
functions. This was described above as defining objects by what they have, not what 
they are. More precisely, the definition never implies that the operations listed are 
the only ones; when it comes to a representation, you will often add other operations. 

• The functions themselves are also defined implicitly: instead of explicit definitions 
(such as was used for square_ plus_one, and for the early attempt to define put by 
reference to a mathematical representation), we use axioms describing the functions’ 
properties. Here too there is no claim of exhaustiveness: when you eventually 
implement the functions, they will certainly acquire more properties. 

This implicitness is a key aspect of abstract data types and, by implication, of their 
future counterparts in object-oriented software construction — classes. When we define 
an abstract data type or a class, we always talk about the type or class: we simply list the 
properties we know, and take these as the definition. Never do we imply that these are the 
only applicable properties. 

Implicitness implies openness: it should always be possible to add new properties to 
an ADT or a class. The basic mechanism for performing such extensions without 
damaging existing uses of the original form is inheritance. 

The consequences of this implicit approach are far-reaching. The “supplementary 
topics” section at the end of this chapter will include more comments about implicitness. 

     For any x: G, s: STACK [G]
A3' •  empty (new) = true
A4' •  empty (put (s, x)) = false
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Partial functions 
The specification of any realistic example, even one as basic as stacks, is bound to 
encounter the problems of undefined operations: some operations are not applicable to 
every possible element of their source sets. Here this is the case with remove and item: you 
cannot pop an element from an empty stack; and an empty stack has no top. 

The solution used in the preceding specification is to describe these functions as 
partial. A function from a source set X to a target set Y is partial if it is not defined for all 
members of X. A function which is not partial is total. A simple example of partial 
function in standard mathematics is inv, the inverse function on real numbers, whose value 
for any appropriate real number x is

inv (x) = 

Because inv is not defined for x = 0, we may specify it as a partial function on R, the 
set of all real numbers: 

inv: R  R
To indicate that a function may be partial, the notation uses the crossed arrow ; the 

normal arrow → will be reserved for functions which are guaranteed to be total. 
The domain of a partial function in X  Y is the subset of X containing those 

elements for which the function yields a value. Here the domain of inv is R – {0}, the set 
of real numbers other than zero. 

The specification of the STACK ADT applied these ideas to stacks by declaring put
and item as partial functions in the FUNCTIONS paragraph, as indicated by the crossed 
arrow in their signatures. This raises a new problem, discussed in the next section: how to 
specify the domains of these functions. 

In some cases it may be desirable to describe put as a partial function too; this is 
necessary to model implementations such as ARRAY_UP and ARRAY_DOWN, which only 
support a finite number of consecutive put operations on any given stack. It is indeed a 
good exercise to adapt the specification of STACK so that it will describe bounded stacks 
with a finite capacity, whereas the above form does not include any such capacity 
restriction. This is a new use for partial functions: to reflect implementation constraints. 
In contrast, the need to declare item and remove as partial functions reflected an abstract 
property of the underlying operations, applicable to all representations. 

Preconditions 
Partial functions are an inescapable fact of software development life, merely reflecting 
the observation that not every operation is applicable to every object. But they are also a 
potential source of errors: if f is a partial function from X to Y, we are not sure any more 
that the expression f (e) makes sense even if the value of e is in X: we must be able to 
guarantee that the value belongs to the domain of f. 

For this to be possible, any ADT specification which includes partial functions must 
specify the domain of each of them. This is the role of the PRECONDITIONS paragraph. 

For STACK, the paragraph will appear as:

1
x
---

→
→

→
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where, for each function, the require clause indicates what conditions the function’s 
arguments must satisfy to belong to the function’s domain. 

The boolean expression which defines the domain is called the precondition of the 
corresponding partial function. Here the precondition of both remove and item expresses 
that the stack argument must be non-empty. Before the require clause comes the name of 
the function with dummy names for arguments (s for the stack argument in the example), 
so that the precondition can refer to them. 

Mathematically, the precondition of a function f is the characteristic function of the 
domain of f. The characteristic function of a subset A of a set X is the total function 
ch: X → BOOLEAN such that ch (x) is true if x belongs to A, false otherwise. 

The complete specification 
The PRECONDITIONS paragraph concludes this simple specification of the STACK
abstract data type. For ease of reference it is useful to piece together the various 
components of the specification, seen separately above. Here is the full specification:

PRECONDITIONS 
•  remove (s: STACK [G]) require not empty (s)
•  item (s: STACK [G]) require not empty (s) 

ADT specification of stacks
TYPES 

•  STACK [G] 

FUNCTIONS 
•  put: STACK [G] × G → STACK [G] 
•  remove: STACK [G]  STACK [G] 
•  item: STACK [G]  G 
•  empty: STACK [G] → BOOLEAN 
•  new: STACK [G] 

AXIOMS
     For any x: G, s: STACK [G]
A1  • item (put (s, x)) = x
A2 •  remove (put (s, x)) = s
A3 •  empty (new)
A4 •  not empty (put (s, x))
PRECONDITIONS 

•  remove (s: STACK [G]) require not empty (s) 
•  item (s: STACK [G]) require not empty (s) 

→
→
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Nothing but the truth 
The power of abstract data type specifications comes from their ability to capture the 
essential properties of data structures without overspecifying. The stack specification 
collected on the preceding page expresses all there is to know about the notion of stack in 
general, excluding anything that only applies to some particular representations of stacks. 
All the truth about stacks; yet nothing but the truth. 

This provides a general model of computation with data structures. We may describe 
complex sequences of operations by mathematical expressions enjoying the usual 
properties of algebra; and we may view the process of carrying out the computation 
(executing the program) as a case of algebraic simplification. 

In elementary mathematics we have been taught to take an expression such as

cos2 (a – b) + sin2 (a + b – 2 × b)

and apply the rules of algebra and trigonometry to simplify it. A rule of algebra tells us 
that we may simplify a + b – 2 × b into a – b for any a and b; and a rule of trigonometry 
tells us that we can simplify cos2 (x) + sin2 (x) into 1 for any x. Such rules may be 
combined; for example the combination of the two preceding rules allow us to simplify 
the above expression into just 1.

In a similar way, the functions defined in an abstract data type specification allow us 
to construct possibly complex expressions; and the axioms of the ADT allow us to 
simplify such expressions to yield a simpler result. A complex stack expression is the 
mathematical equivalent of a program; the simplification process is the mathematical 
equivalent of a computation, that is to say, of executing such a program.

Here is an example. With the specification of the STACK abstract data type as given 
above, we can write the expression

item (remove (put (remove (put (put (
remove (put (put (put (new, x1), x2), x3)),
item (remove (put (put (new, x4), x5)))), x6)), x7)))

Let us call this expression stackexp for future reference. It is perhaps easier to 
understand stackexp if we define it in terms of a sequence of auxiliary expressions:

s1 = new
s2 = put (put (put (s1, x1), x2), x3)
s3 = remove (s2)
s4 = new
s5 = put (put (s4, x4), x5)
s6 = remove (s5)
y1 = item (s6)
s7 = put (s3, y1)
s8 = put (s7, x6)
s9 = remove (s8)
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Stack 
manipulations
s10 = put (s9, x7)
s11 = remove (s10)
stackexp = item (s11)

Whichever variant of the definition you choose, it is not hard to follow the 
computation of which stackexp is a mathematical model: create a new stack; push elements 
x1, x2, x3, in this order, on top of it; remove the last pushed element (x3), calling s3 the 
resulting stack; create another empty stack; and so on. Or you can think of it graphically:

You can easily find the value of such an ADT expression by drawing figures such as 
the above. (Here you would find x4.) But the theory enables you to obtain this result 
formally, without any need for pictures: just apply the axioms repeatedly to simplify the 
expression until you cannot simplify any further. For example:

• Applying A2 to simplify s3, that is to say remove (put (put (put (s1, x1), x2), x3)), 
yields put (put (s1, x1), x2)). (With A2, any consecutive remove-put pair cancels out.)

• The same axiom indicates that s6 is put (s4, x4); then we can use axiom A1 to deduce 
that y1, that is to say item (put (s4, x4)), is in fact x4, showing that (as illustrated by 
the arrow on the above figure) s7 is obtained by pushing x4 on top of s3. 

And so on. A sequence of such simplifications, carried out as simply and 
mechanically as the simplifications of elementary arithmetic, yields the value of the 
expression stackexp, which (as you are invited to check for yourself by performing the 
simplification process rigorously) is indeed x4.

This example gives a glimpse of one of the main theoretical roles of abstract data 
types: providing a formal model for the notion of program and program execution. This 
model is purely mathematical: it has none of the imperative notions of program state, 
variables whose values may change in time, or execution sequencing. It relies on the 
standard expression evaluation techniques of ordinary mathematics.

 s2  s3 s1

 x4

 x5

 x1

 x2

 x3

 s5  s6

 x1

 x2

 x4

s7 = put (s3, y1)

 (empty)
 s7

 x1

 x2

 x4

(also: s9, s11)
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6.5  FROM ABSTRACT DATA TYPES TO CLASSES 

We have the starting point of an elegant mathematical theory for modeling data structures 
and in fact, as we just saw, programs in general. But our subject is software architecture, 
not mathematics or even theoretical computing science! Have we strayed from our path?

Not by much. In the search for a good modular structure based on object types, 
abstract data types provide a high-level description mechanism, free of implementation 
concerns. They will lead us to the fundamental structures of object technology.

Classes 

ADTs will serve as the direct basis for the modules that we need in the search begun in 
chapter 3. More precisely, an object-oriented system will be built (at the level of analysis, 
design or implementation) as a collection of interacting ADTs, partially or totally 
implemented. The basic notion here is class:

So to obtain a class we must provide an ADT and decide on an implementation. The 
ADT is a mathematical concept; the implementation is its computer-oriented version. The 
definition, however, states that the implementation may be partial; the following 
terminology separates this case from that of a fully implemented class:

To obtain an effective class, you must provide all the implementation details. For a 
deferred class, you may choose a certain style of implementation but leave some aspects 
of the implementation open. In the most extreme case of “partial” implementation you 
may refrain from making any implementation decision at all; the resulting class will be 
fully deferred, and equivalent to an ADT. 

Definition: class

A class is an abstract data type equipped with a possibly partial 
implementation.

Definition: deferred, effective class

A class which is fully implemented is said to be effective. A class which is 
implemented only partially, or not at all, is said to be deferred. Any class is 
either deferred or effective.
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How to produce an effective class

Consider first the case of effective classes. What does it take to implement an ADT? Three 
kinds of element will make up the resulting effective class: 
E1 •  An ADT specification (a set of functions with the associated axioms and 

preconditions, describing the functions’ properties). 
E2 •  A choice of representation.
E3 •  A mapping from the functions (E1) to the representation (E2) in the form of a set 

of mechanisms, or features, each implementing one of the functions in terms of 
the representation, so as to satisfy the axioms and preconditions. Many of these 
features will be routines (subprograms) in the usual sense, although some may 
also appear as data fields, or “attributes”, as explained in the next chapters. 
For example, if the ADT is STACK, we may choose as representation (step E2) the 

solution called ARRAY_UP above, which implements any stack by a pair 
<representation, count>

where representation is an array and count an integer. For the function implementations (E3) 
we will have features corresponding to put, remove, item, empty and new, which achieve the 
corresponding effects; for example we may implement put by a routine of the form

put (x: G)
-- Push x onto stack.
-- (No check for possible stack overflow.)

do
count := count + 1
representation [count] := x

end
The combination of elements obtained under E1, E2 and E3 will yield a class, the 

modular structure of object technology. 

The role of deferred classes 

For an effective class, all of the implementation information (E2, E3 above) must be 
present. If any of it is missing, the class is deferred. 

The more deferred a class, the closer it is to an ADT, gussied up in the kind of 
syntactic dress that will help seduce software developers rather than mathematicians. 
Deferred classes are particularly useful for analysis and for design: 

• In object-oriented analysis, no implementation details are needed or desired: the 
method uses classes only for their descriptive power. 

• In object-oriented design, many aspects of the implementation will be left out; 
instead, a design should concentrate on high-level architectural properties of the 
system — what functionalities each module provides, not how it provides them. 

• As you move your design gradually closer to a full implementation, you will add 
more and more implementation properties until you get effective classes. 
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See the mention of 
vagueness in the 
middle of page 52. 

The ADT view 
of a module 
under 
information 
hiding
But the role of deferred classes does not stop there, and even in a fully implemented 
system you will often find many of them. Some of that role follows from their previous 
applications: if you started from deferred classes to obtain effective ones, you may be well 
inspired to keep the former as ancestors (in the sense of inheritance) to the latter, to serve 
as a living memory of the analysis and design process.

Too often, in software produced with non-object-oriented approaches, the final form 
of a system contains no record of the considerable effort that led to it. For someone who 
is asked to perform maintenance — extensions, ports, debugging — on the system, trying 
to understand it without that record is as difficult as it would be, for a geologist, to 
understand a landscape without having access to the sedimentary layers. Keeping the 
deferred classes in the final system is one of the best ways to maintain the needed record.

Deferred classes also have purely implementation-related uses. They serve to 
classify groups of related types of objects, provide some of the most important high-level 
reusable modules, capture common behaviors among a set of variants, and play a key role 
(in connection with polymorphism and dynamic binding) in guaranteeing that the software 
architecture remains decentralized and extendible. 

The next few chapters, which introduce the basic object-oriented techniques, will at 
first concentrate on effective classes. But keep in mind the notion of deferred class, whose 
importance will grow as we penetrate the full power of the object-oriented method. 

Abstract data types and information hiding

A particularly interesting consequence of the object-oriented policy of basing all modules 
on ADT implementations (classes) is that it provides a clear answer to a question that was 
left pending in the discussion of information hiding: how do we select the public and 
private features of a module — the visible and invisible parts of the iceberg?

Secret part:

• Choice of representation (E2)

• Implementation of functions
by features (E3)

Public part:
ADT specification (E1)
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If the module is a class coming from an ADT as outlined above, the answer is clear: 
of the three parts involved in the transition, E1, the ADT specification, is public; E2 and 
E3, the choice of representation and the implementation of the ADT functions in terms 
of this representation, should be secret. (As we start building classes we will encounter 
a fourth part, also secret: auxiliary features needed only for the internal purposes of 
these routines.)

So the use of abstract data types as the source of our modules gives us a practical, 
unambiguous guideline for applying information hiding in our designs. 

Introducing a more imperative view

The transition from abstract data types to classes involves an important stylistic 
difference: the introduction of change and imperative reasoning. 

As you will remember, the specification of abstract data types is change-free, or, to 
use a term from theoretical computing science, applicative. All features of an ADT are 
modeled as mathematical functions; this applies to creators, queries and commands. For 
example the push operation on stacks is modeled by the command function 

put: STACK [G] × G → STACK [G]

specifying an operation that returns a new stack, rather than changing an existing stack. 

Classes, which are closer to the world of design and implementation, abandon this 
applicative-only view and reintroduce commands as operations that may change objects. 

For example, put will appear as a routine which takes an argument of type G (the 
formal generic parameter), and modifies a stack by pushing a new element on top — 
instead of producing a new stack. 

This change of style reflects the imperative mood that prevails in software 
construction. (The word “operational” is also used as synonym for “imperative”.) It will 
require the corresponding change in the axioms of ADTs. Axioms A1 and A4 of stacks, 
which appeared above as 

will yield, in the imperative form, a clause known as a routine postcondition, introduced 
by the keyword ensure in 

A1  • item (put (s, x)) = x

A4 •  not empty (put (s, x))
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“THE ADT CON-
NECTION”, 11.10, 
page 373. 
put (x: G)
-- Push x on top of stack

require
… The precondition, if any …

do
… The appropriate implementation, if known …

ensure
item = x
not empty

end

Here the postcondition expresses that on return from a call to routine put, the value 
of item will be x (the element pushed) and the value of empty will be false. 

Other axioms of the ADT specification will yield a clause known as the class 
invariant. Postconditions, class invariants and other non-applicative avatars of an 
ADT’s preconditions and axioms will be studied as part of the discussion of assertions 
and Design by Contract.

Back to square one? 

If you followed carefully, starting with the chapter on modularity, the line of reasoning that 
led to abstract data types and then classes, you may be a little puzzled here. We started with 
the goal of obtaining the best possible modular structures; various arguments led to the 
suggestion that objects, or more precisely object types, would provide a better basis than 
their traditional competitors — functions. This raised the next question: how to describe 
these object types. But when the answer came, in the form of abstract data types (and their 
practical substitutes, classes), it meant that we must base the description of data on… the 
applicable functions! Have we then come full circle? 

No. Object types, as represented by ADTs and classes, remain the undisputed basis 
for modularization. 

It is not surprising that both the object and function aspects should appear in the final 
system architecture: as noted in the previous chapter, no description of software issues can 
be complete if it misses one of these two components. What fundamentally distinguishes 
object-oriented methods from older approaches is the distribution of roles: object types are 
the undisputed winners when it comes to selecting the criteria for building modules. 
Functions remain their servants. 

In object-oriented decomposition, no function ever exists just by itself: every 
function is attached to some object type. This carries over to the design and 
implementation levels: no feature ever exists just by itself; every feature is attached to 
some class. 
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See page 116 for the 
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Object-oriented software construction

The study of abstract data types has given us the answer to the question asked at the 
beginning of this chapter: how to describe the object types that will serve as the backbone 
of our software architecture.

We already had a definition of object-oriented software construction: remaining at a 
high level of generality, it presented the method as “basing the architecture of any software 
system on modules deduced from the types of objects it manipulates”. Keeping that first 
definition as the framework, we can now complement it with a more technical one:

This will be our working definition. Its various components are all important:

• The basis is the notion of abstract data type.

• For our software we need not the ADTs themselves, a mathematical notion, but ADT 
implementations, a software notion.

• These implementations, however, need not be complete; the “possibly partial ” 
qualification covers deferred classes — including the extreme case of a fully 
deferred class, where none of the features is implemented.

• A system is a collection of classes, with no one particularly in charge — no top or 
main program.

• The collection is structured thanks to two inter-class relations: client and inheritance.

6.6  BEYOND SOFTWARE

As we are completing our study of abstract data types it is worth taking a moment to reflect 
on the significance of this notion outside of its immediate intended application area. 

What the ADT approach tells us is that a successful intellectual investigation should 
renounce as futile any attempt at knowing things from the inside, and concentrate instead 
on their usable properties. Do not tell me what you are; tell me what you have — what I 
can get out of you. If we need a name for this epistemological discipline, we should call it 
the principle of selfishness. 

If I am thirsty, an orange is something I can squeeze; if I am a painter, it is color 
which might inspire my palette; if I am a farmer, it is produce that I can sell at the market; 
if I am an architect, it is slices that tell me how to design my new opera house, overlooking 
the harbor; but if I am none of these, and have no other use for the orange, then I should 
not talk about it, as the concept of orange does not for me even exist. 

Object-oriented software construction (definition 2)
Object-oriented software construction is the building of software systems as 
structured collections of possibly partial abstract data type implementations.
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The principle of selfishness — you are but what you have — is an extreme form of 
an idea that has played a central role in the development of science: abstraction, or the 
importance of separating concerns. The two quotations at the beginning of this chapter, 
each in its own remarkable way, express the importance of this idea. Their authors, Diderot 
and Stendhal, were writers rather than scientists, although both obviously had a good 
understanding of the scientific method (Diderot was the living fire behind the Great 
Encyclopedia, and Stendhal prepared for admission into the École Polytechnique, 
although in the end he decided that he could do better things with his life). It is striking to 
see how both quotations are applicable to the use of abstraction in software development. 

Yet there is more than abstraction to the principle of selfishness: the idea, almost 
shocking at first, that a property is not worth talking about unless it is useful in some direct 
way to the talker. 

This suggests a more general observation as to the intellectual value of our field.

Over the years many articles and talks have claimed to examine how software 
engineers could benefit from studying philosophy, general systems theory, “cognitive 
science”, psychology. But to a practicing software developer the results are disappointing. 
If we exclude from the discussion the generally applicable laws of rational investigation, 
which enlightened minds have known for centuries (at least since Descartes) and which of 
course apply to software science as to anything else, it sometimes seems that experts in the 
disciplines mentioned may have more to learn from experts in software than the reverse. 

Software builders have tackled — with various degrees of success — some of the 
most challenging intellectual endeavors ever undertaken. Few engineering projects, for 
example, match in complexity the multi-million line software projects commonly being 
launched nowadays. Through its more ambitious efforts the software community has 
gained precious insights on such issues and concepts as size, complexity, structure, 
abstraction, taxonomy, concurrency, recursive reasoning, the difference between 
description and prescription, language, change and invariants. All this is so recent and so 
tentative that the profession itself has not fully realized the epistemological implications 
of its own work.

Eventually someone will come and explain what lessons the experience of software 
construction holds for the intellectual world at large. No doubt abstract data types will 
figure prominently in the list. 

6.7  SUPPLEMENTARY TOPICS 

The view of abstract data types presented so far will suffice for the uses of ADTs in the 
rest of this book. (To complement it, doing the exercises will help you sharpen your 
understanding of the concept.) 

If, as I hope, you have been conquered by the elegance, simplicity and power of 
ADTs, you may want to explore a few more of their properties, even though the discussion 
of object-oriented methods will not use them directly. These supplementary topics, which 
may be skipped on first reading, are presented in the next few pages: 
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• Implicitness and its relationship to the software construction process.

• The difference between specification and design.

• The differences between classes and records.

• Potential alternatives to the use of partial functions. 

• Deciding whether a specification is complete or not. 

The bibliographical references to this chapter point to more advanced literature on 
abstract data types. 

More on implicitness 

The implicit nature of abstract data types and classes, discussed above, reflects an 
important problem of software construction. 

One may legitimately ask what difference there is between a simplified ADT 
specification, using the function declarations 

x: POINT → REAL
y: POINT → REAL

and the record type declaration which we may express in a traditional programming 
language such as Pascal under the form

type
POINT =

record
x, y: real

end
At first sight, the two definitions appear equivalent: both state that any instance of 

type POINT has two associated values x and y, of type REAL. But there is a crucial if 
subtle difference:

• The Pascal form is closed and explicit: it indicates that a POINT object is made of 
the two given fields, and no other.

• The ADT function declarations carry no such connotation. They indicate that one 
may query a point about its x and its y, but do not preclude other queries — such as 
a point’s mass and velocity in a kinematics application. 

From a simplified mathematical perspective, you may consider that the above Pascal 
declaration is a definition of the mathematical set POINT as a cartesian product: 

POINT  REAL × REAL

where  means “is defined as”: this defines POINT fully. In contrast, the ADT 
specification does not explicitly define POINT through a mathematical model such as the 
cartesian product; it just characterizes POINT implicitly by listing two of the queries 
applicable to objects of this type.

=Δ

=Δ
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If at some stage you think you are done with the specification of a certain notion, you 
may want to move it from the implicit world to the explicit world by identifying it with 
the cartesian product of the applicable simple queries; for example you will identify points 
with <x, y> pairs. We may view this identification process as the very definition of the 
transition from analysis and specification to design and implementation.

Specification versus design

The last observation helps clarify a central issue in the study of software: the difference 
between the initial activities of software development — specification, also called analysis 
— and later stages such as design and implementation.

The software engineering literature usually defines this as the difference between 
“defining the problem” and “building a solution”. Although correct in principle, this 
definition is not always directly useful in practice, and it is sometimes hard to determine 
where specification stops and design begins. Even in the research community, people 
routinely criticize each other on the theme “you advertize notation x as a specification 
language, but what it really expresses is designs”. The supreme insult is to accuse the 
notation of catering to implementation; more on this in a later chapter.

The above definition yields a more precise criterion: to cross the Rubicon between 
specification and design is to move from the implicit to the explicit; in other words:

The subsequent transition — from design to implementation — is simply the move 
from one explicit form to another: the design form is more abstract and closer to 
mathematical concepts, the implementation form is more concrete and computer-oriented, 
but they are both explicit. This transition is less dramatic than the preceding one; indeed, 
it will become increasingly clear in the pages that follow that object technology all but 
removes the distinction between design and implementation. With good object-oriented 
notations, what our computers directly execute (with the help of our compilers) is what to 
the non-O-O world would often appear as designs.

Classes versus records

Another remarkable property of object technology, also a result of the focus on implicit 
definition, is that you can keep your descriptions implicit for a much longer period than 
with any other approach. The following chapters will introduce a notation enabling us to 
define a class under the form 

class POINT feature
x, y: REAL

end

Definition: transition from analysis (specification) to design
To go from specification to design is to identify each abstraction with the 
cartesian product of its simple queries.
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This looks suspiciously close to the above Pascal record type definition. But in spite 
of appearances the class definition is different: it is implicit! The implicitness comes from 
inheritance; the author of the class or (even more interestingly) someone else may at any 
time define a new class such as 

class MOVING_POINT inherit
POINT

feature
mass: REAL
velocity: VECTOR [REAL]

end
which extends the original class in ways totally unplanned for by the initial design. Then 
a variable (or entity, to use the terminology introduced later) of type POINT, declared as 

p1: POINT
may become attached to objects which are not just of type POINT but also of any 
descendant type such as MOVING_POINT. This occurs in particular through 
“polymorphic assignments” of the form 

p1 := mp1
where mp1 is of type MOVING_POINT. 

These possibilities illustrate the implicitness and openness of the class definition: the 
corresponding entities represent not just points in the narrow sense of direct instances of 
class POINT as initially defined, but, more generally, instances of any eventual class that 
describes a concept derived from the original. 

The ability to define software elements (classes) that are directly usable while 
remaining implicit (through inheritance) is one of the major innovations of object 
technology, directly answering the Open-Closed requirement. Its full implications will 
unfold progressively in the following chapters. 

Not surprisingly for such a revolutionary concept, the realm of new possibilities that 
it opens still scares many people, and in fact many object-oriented languages restrict the 
openness in some way. Later chapters will mention examples. 

Alternatives to partial functions 
Among the techniques of this chapter that may have caused you to raise your eyebrows is 
its use of partial functions. The problem that it addresses is inescapable: any specification 
needs to deal with operations that are not always defined; for example, it is impossible to 
pop an empty stack. But is the use of partial functions the best solution?

It is certainly not the only possible one. Another technique that comes to mind, and 
is indeed used by some of the ADT literature, is to make the function total but introduce 
special error values to denote the results of operations applied to impossible cases. 

For every type T, this method introduces a special “error” value; let us write it ωT. 
Then for any function f of signature 

f: … Input types … → T
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it specifies that any application of f to an object for which the corresponding computer 
operation may not be executed will produce the value ωT. 

Although usable, this method leads to mathematical and practical unpleasantness. 
The problem is that the special values are rather bizarre animals, which may unduly 
disturb the lives of innocent mathematical creatures. 

Assume for example that we consider stacks of integers — instances of the generic 
derivation STACK [INTEGER], where INTEGER is the ADT whose instances are integers. 
Although we do not need to write the specification of INTEGER completely for this 
discussion, it is clear that the functions defining this ADT should model the basic 
operations (addition, subtraction, “less than” and the like) defined on the mathematical set 
of integers. The axioms of the ADT should be consistent with ordinary properties of 
integers; typical among these properties is that, for any integer n: 

[Z1]
n + 1 ≠ n

Now let n be the result of requesting the top of an empty stack, that is to say, the value 
of item (new), where new is an empty stack of integers. With the “special error element” 
approach, n must be the special value ωINTEGER. What then is the value of the expression 
n + 1? If the only values at our disposal are normal integers and ωINTEGER, then we ought 
to choose ωINTEGER as the answer: 

ωINTEGER + 1 = ωINTEGER

This is the only acceptable choice: any other value for ωINTEGER + 1, that is to say, 
any “normal” integer q, would mean in practical terms that after we attempt to access the 
top of an empty stack, and get an error value as a result, we can miraculously remove any 
trace of the error, simply by adding one to the result! This might have passed when all it 
took to erase the memory of a crime was a pilgrimage to Santiago de Compostela and the 
purchase of a few indulgences; modern mores and computers are not so lenient. 

But choosing ωINTEGER as the value of n + 1 when n is ωINTEGER violates the above 
Z1 property. More generally, ωINTEGER + p will be ωINTEGER for any p. This means we 
must develop a new axiom system for the updated abstract data type (INTEGER enriched 
with an error element), to specify that every integer operation yields ωINTEGER whenever 
any one of its arguments is ωINTEGER. Similar changes will be needed for every type.

The resulting complication seems unjustifiable. We cannot change the specification 
of integers just for the purpose of modeling a specific data structure such as the stack. 

With partial functions, the situation is simpler. You must of course verify, for every 
expression involving partial functions, that the arguments satisfy the corresponding 
preconditions. This amounts to performing a sanity check — reassuring yourself that the 
result of the computation will be meaningful. Having completed this check, you may 
apply the axioms without further ado. You need not change any existing axiom systems. 



§6.7   SUPPLEMENTARY TOPICS 153
Is my specification complete? 

Another question may have crossed your mind as you were reading the above example of 
abstract data type specification: is there is any way to be sure that such a specification 
describes all the relevant properties of the objects it is intended to cover? Students who are 
asked to write their first specifications (for example when doing the exercises at the end 
of this chapter) often come back with the same question: when do I know that I have 
specified enough and that I can stop? 

In more general terms: does a method exist to find out whether an ADT specification 
is complete? 

If the question is asked in this simple form, the answer is a plain no. This is true of 
formal specifications in general: to say that a specification is complete is to claim that it 
covers all the needed properties; but this is only meaningful with respect to some 
document listing these properties and used as a reference. Then we face one of two equally 
disappointing situations: 

• If the reference document is informal (a natural-language “requirements document” 
for a project, or perhaps just the text of an exercise), this lack of formality precludes 
any attempt to check systematically that the specification meets all the requirements 
described in that document. 

• If the reference document is itself formal, and we are able to check the completeness 
of our specification against it, this merely pushes the problem further: how do we 
ascertain the completeness of the reference document itself ? 

In its trivial form, then, the completeness question is uninteresting. But there is a 
more useful notion of completeness, derived from the meaning of this word in 
mathematical logic. For a mathematician, a theory is complete if its axioms and rules of 
inference are powerful enough to prove the truth or falsity of any formula that can be 
expressed in the language of the theory. This meaning of completeness, although more 
limited, is intellectually satisfying, since it indicates that whenever the theory lets us 
express a property it also enables us to determine whether the property holds. 

How do we transpose this idea to an ADT specification? Here the “language of the 
theory” is the set of all the well-formed expressions, those expressions which we may 
build using the ADT’s functions, applied to arguments of the appropriate types. For 
example, using the specification of STACK and assuming a valid expression x of type G, 
the following expressions are well-formed:

new
put (new, x)
item (new) -- If this seems strange, see comments on the next page.
empty (put (new, x))
stackexp -- The complex expression defined on page 140.
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The “queries” in 
our example, return-
ing a result of type 
other than STACK, 
are item and empty. 
See “Function cate-
gories”, page 134.
The expressions put (x) and put (x, new), however, are not well-formed, since they 
do not abide by the rules: put always requires two arguments, the first of type STACK [G]
and the second of type G; so put (x) is missing an argument, and put (x, new) has the wrong 
argument types.

The third example in the preceding box, item (new), does not describe a meaningful 
computation since new does not satisfy the precondition of item. Such an expression, 
although well-formed, is not correct. Here is the precise definition of this notion:

Do not confuse “correct” with “well-formed”. Well-formedness is a structural 
property, indicating whether all the functions in an expression have the right number and 
types of arguments; correctness, which is only defined for a well-formed expression, 
indicates whether the expression defines a meaningful computation. As we have seen, the 
expression put (x) is not well-formed (and so it is pointless to ask whether it is correct), 
whereas the expression item (new) is well-formed but not correct.

An expression well-formed but not correct, such as item (new), is similar to a 
program that compiles (because it is built according to the proper syntax and satisfies all 
typing constraints of the programming language) but will crash at run time by performing 
an impossible operation such as division by zero or popping an empty stack.

Of particular interest for completeness, among well-formed expressions, are query 
expressions, those whose outermost function is a query. Examples are: 

empty (put (put (new, x1), x2))
item (put (put (new, x1), x2))
stackexp -- See page 140
A query expression denotes a value which (if defined) belongs not to the ADT under 

definition, but to another, previously defined type. So the first query expression above has 
a value of type BOOLEAN; the second and third have values of type G, the formal generic 
parameter — for example INTEGER if we use the generic derivation STACK [INTEGER]. 

Query expressions represent external observations that we may make about the 
results of a certain computation involving instances of the new ADT. If the ADT 
specification is useful, it should always enable us to find out whether such results are 
defined and, if so, what they are. The stack specification appears to satisfy this property, 
at least for the three example expressions above, since it enables us to determine that the 
three expressions are defined and, by applying the axioms, to determine their values: 

empty (put (put (new, x1), x2)) = False
item (put (put (new, x1), x2)) = x2
stackexp = x4

Definition: correct ADT expression

Let f (x1, …, xn ) be a well-formed expression involving one or more functions 
on a certain ADT. This expression is correct if and only if all the xi are 
(recursively) correct, and their values satisfy the precondition of f, if any. 
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Transposed to the case of arbitrary ADT specifications, these observations suggest a 
pragmatic notion of completeness, known as sufficient completeness, which expresses that 
the specification contains axioms powerful enough to enable us to find the result of any 
query expression, in the form of a simple value.

Here is the precise definition of sufficient completeness. (Non-mathematically 
inclined readers should skip the rest of this section.)

In S2, expression e is of the form f (x1, …, xn) where f is a query function, such as 
empty and item for stacks. S1 tells us that e has a value, but this is not enough; in this case 
we also want to know what the value is, expressed only in terms of values of other types (in 
the STACK example, values of types BOOLEAN and G). If the axioms are strong enough to 
answer this question in all possible cases, then the specification is sufficiently complete. 

Sufficient completeness is a useful practical guideline to check that no important 
property has been left out of a specification, answering the question raised above: when 
do I know I can stop looking for new properties to describe in the specification? It is good 
practice to apply this check, at least informally, to any ADT specification that you write 
— starting with your answers to the exercises of this chapter. Often, a formal proof of 
sufficient correctness is possible; the proof given below for the STACK specification 
defines a model which can be followed in many cases. 

As you may have noted, S2 is optimistic in talking about “the” value of e: what if the 
axioms yield two or more? This would make the specification useless. To avoid such a 
situation we need a further condition, known from mathematical logic as consistency:

The two properties are complementary. For any query expression we want to be 
able to deduce exactly one value: at least one (sufficient completeness), but no more 
than one (consistency). 

Definition: sufficient completeness

An ADT specification for a type T is sufficiently complete if and only if the 
axioms of the theory make it possible to solve the following problems for any 
well-formed expression e: 
S1 • Determine whether e is correct.
S2 • If e is a query expression and has been shown to be correct under S1, 

express e’s value under a form not involving any value of type T. 

Definition: ADT consistency

An ADT specification is consistent if and only if, for any well-formed query 
expression e, the axioms make it possible to infer at most one value for e. 
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Proving sufficient completeness 

(This section and the rest of this chapter are supplementary material and its results are not 
needed in the rest of the book.)

The sufficient completeness of an abstract data type specification is, in general, an 
undecidable problem. In other words, no general proof method exists which, given an 
arbitrary ADT specification, would tell us in finite time whether or not the specification is 
sufficiently complete. Consistency, too, is undecidable in the general case.

It is often possible, however, to prove the sufficient completeness and the consistency 
of a particular specification. To satisfy the curiosity of mathematically inclined readers, it 
is interesting to prove, as a conclusion to this chapter, that the specification of STACK is 
indeed sufficiently complete. The proof of consistency will be left as an exercise. 

Proving the sufficient completeness of the stack specification means devising a valid 
rule addressing problems S1 and S2 above; in other words the rule must enable us, for an 
arbitrary stack expression e: 

S1 • To determine whether e is correct. 

S2 • If e is correct under S1 and its outermost function is item or empty (one of the two 
query functions), to express its value in terms of BOOLEAN and G values only, 
without any reference to values of type STACK [G] or to the functions of STACK’s 
specification. 

It is convenient for a start to consider only well-formed expressions which do not 
involve any of the two query functions item and empty — so that we only have to deal with 
expressions built out of the functions new, put and remove. This means that only problem 
S1 (determining whether an expression is defined) is relevant at this stage. Query functions 
and S2 will be brought in later. 

The following property, which we must prove, yields a rule addressing S1:

Here the “weight” of an expression represents the number of elements in the 
corresponding stack; it is also the difference between the number of nested occurrences of 
put and remove. Here is the precise definition of this notion: 

Weight Consistency rule 

A well-formed stack expression e, involving neither item nor empty, is 
correct if and only if its weight is non-negative, and any subexpression of e
is (recursively) correct.
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Informally, the Weight Consistency rule tells us that a stack expression is correct if 
and only if the expression and every one of its subexpressions, direct or indirect, has at 
least as many put operations (pushing an element on top) as it has remove operations 
(removing the top element); if we view the expression as representing a stack computation, 
this means that we never try to pop more than we have pushed. Remember that at this stage 
we are only concentrating on put and remove, ignoring the queries item and empty.

This intuitively seems right but of course we must prove that the Weight Consistency 
rule indeed holds. It will be convenient to introduce a companion rule and prove the two 
rules simultaneously:

The proof uses induction on the nesting level (maximum number of nested 
parentheses pairs) of the expression. Here again, for ease of reference, are the earlier 
axioms applying to function empty: 

An expression e with nesting level 0 (no parentheses) may only be of the form new; 
so its weight is 0, and it is correct since new has no precondition. Axiom A3 indicates that 
empty (e) is true. This takes care of the base step for both the Weight Consistency rule and 
the Zero Weight rule. 

For the induction step, assume that the two rules are applicable to all expressions of 
nesting level n or smaller. We must prove that they apply to an arbitrary expression e of 
nesting level n + 1. Since for the time being we have excluded the query functions from 
our expressions, one of the following two forms must apply to e:

Definition: weight
The weight of a well-formed stack expression not involving item or empty is 
defined inductively as follows: 
W1 •  The weight of the expression new is 0. 
W2 •  The weight of the expression put (s, x) is ws + 1, where ws is the 

weight of s. 
W3 •  The weight of the expression remove (s) is ws — 1, where ws is the 

weight of s. 

Zero Weight rule
Let e be a well-formed and correct stack expression not involving item or 
empty. Then empty (e) is true if and only if e has weight 0. 

STACK AXIOMS
For any x: G, s: STACK [G]
A3 • empty (new)
A4 • not empty (put (s, x))
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E1 • e = put (s, x) 
E2 • e = remove (s) 
where x is of type G, and s has nesting level n. Let ws be the weight of s. 

In case E1, since put is a total function, e is correct if and only if s is correct, that is 
to say (by the induction hypothesis) if and only if s and all its subexpressions have non-
negative weights. This is the same as saying that e and all its subexpressions have non-
negative weights, and so proves that the Weight Consistency rule holds in this case. In 
addition, e has the positive weight ws + 1, and (by axiom A4) is not empty, proving that 
the Zero Weight rule also holds. 

In case E2, expression e is correct if and only if both of the following conditions hold: 
EB1 • s and all its subexpressions are correct. 
EB2 • not empty (s) (this is the precondition of remove). 

Because of the induction hypothesis, condition EB2 means that ws, the weight of s, is 
positive, or, equivalently, that ws – 1, the weight of e, is non-negative. So e satisfies the 
Weight Consistency rule. To prove that it also satisfies the Zero Weight rule, we must prove 
that e is empty if and only if its weight is zero. Since the weight of s is positive, s must 
contain at least one occurrence of put, which also appears in e. Consider the outermost 
occurrence of put in e; this occurrence is enclosed in a remove (since e has a remove at the 
outermost level). This means that a subexpression of e, or e itself, is of the form 

remove (put (stack_expression, g_expression))
which axiom A2 indicates may be reduced to just stack_expression. Performing this 
replacement reduces the weight of e by 2; the resulting expression, which has the same 
value as e, satisfies the Zero Weight rule by the induction hypothesis. This proves the 
induction hypothesis for case E2. 

The proof has shown in passing that in any well-formed and correct expression 
which does not involve the query functions item and empty we may “remove every 
remove”, that is to say, obtain a canonical form that involves only put and new, by applying 
axiom A2 wherever possible. For example, the expression 

put (remove (remove (put (put (remove (put (put (new, x1), x2)), x3), x4))), x5)
has the same value as the canonical form

put (put (new, x1), x5)
For the record, let us give this mechanism a name and a definition:

This takes care of the proof of sufficient completeness but only for expressions that 
do not involve any of the query functions, and consequently for property S1 only (checking 

Canonical Reduction rule
Any well-formed and correct stack expression involving neither item nor 
empty has an equivalent “canonical” form that does not involve remove (that 
is to say, may only involve new and put). The canonical form is obtained by 
applying the stack axiom A2 as many times as possible.



§6.8   KEY CONCEPTS INTRODUCED IN THIS CHAPTER 159
the correctness of an expression). To finish the proof, we must now take into account 
expressions that involve the query functions, and deal with problem S2 (finding the values 
of these query expressions). This means we need a rule to determine the correctness and 
value of any well-formed expression of the form f (s), where s is a well-formed expression 
and f is either empty or item. 

The rule and the proof of its validity use induction on the nesting level, as defined 
above. Let n be the nesting level of s. If n is 0, s can only be new since all the other 
functions require arguments, and so would have at least one parenthesis pair. Then the 
situation is clear for both of the query functions: 

• empty (new) is correct and has value true (axiom A3). 
• item (new) is incorrect since the precondition of item is not empty (s). 

For the induction step, assume that s has a nesting depth n of one or more. If any 
subexpression u of s has item or empty as its outermost function, then u has a depth of at 
most n – 1, so the induction hypothesis indicates that we can determine whether u is 
correct and, if it is, obtain the value of u by applying the axioms. By performing all such 
possible subexpression replacements, we obtain for s a form which involves no stack 
function other than put, remove and new.

Next we may apply the idea of canonical form introduced above to get rid of all 
occurrences of remove, so that the resulting form of s may only involve put and new. The 
case in which s is just new has already been dealt with; it remains the case for which s is 
of the form put (s', x). Then for the two expressions under consideration: 

• empty (s) is correct, and axiom A3 indicates that the value of this expression is false. 
• item (s) is correct, since the precondition of item is precisely not empty (s); axiom 

A1 indicates that the value of this expression is x. 
This concludes the proof of sufficient completeness since we have now proved the 

validity of a set of rules — the Weight Consistency rule and the Canonical Reduction rule 
— enabling us to ascertain whether an arbitrary stack expression is correct and, for a 
correct query expression, to determine its value in terms of BOOLEAN and G values only. 

6.8  KEY CONCEPTS INTRODUCED IN THIS CHAPTER
• The theory of abstract data types (ADT) reconciles the need for precision and 

completeness in specifications with the desire to avoid overspecification. 
• An abstract data type specification is a formal, mathematical description rather than 

a software text. It is applicative, that is to say change-free. 
• An abstract data type may be generic and is defined by functions, axioms and 

preconditions. The axioms and preconditions express the semantics of a type and are 
essential to a full, unambiguous description. 

• To describe operations which are not always defined, partial functions provide a 
convenient mathematical model. Every partial function has a precondition, stating 
the condition under which it will yield a result for any particular candidate argument. 

• An object-oriented system is a collection of classes. Every class is based on an 
abstract data type and provides a partial or full implementation for that ADT. 
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• A class is effective if it is fully implemented, deferred otherwise. 

• Classes should be designed to be as general and reusable as possible; the process of 
combining them into systems is often bottom-up. 

• Abstract data types are implicit rather than explicit descriptions. This implicitness, 
which also means openness, carries over to the entire object-oriented method.

• No formal definition exists for the intuitively clear concept of an abstract data type 
specification being “complete”. A rigorously defined notion, sufficient
completeness, usually provides the answer. Although no method is possible to 
ascertain the sufficient completeness of an arbitrary specification, proofs are often 
possible for specific cases; the proof given in this chapter for the stack specification 
may serve as a guide for other examples. 

6.9  BIBLIOGRAPHICAL NOTES

A few articles published in the early nineteen-seventies made the discovery of abstract 
data types possible. Notable among these are Hoare’s paper on the “proof of correctness 
of data representations” [Hoare 1972a], which introduced the concept of abstraction 
function, and Parnas’s work on information hiding mentioned in the bibliographical notes 
to chapter 3. 

Abstract data types, of course, go beyond information hiding, although many 
elementary presentations of the concept stop there. ADTs proper were introduced by 
Liskov and Zilles [Liskov 1974]; more algebraic presentations were given in [M 1976]
and [Guttag 1977]. The so-called ADJ group (Goguen, Thatcher, Wagner) explored the 
algebraic basis of abstract data types, using category theory. See in particular their 
influential article [Goguen 1978], published as a chapter in a collective book. 

Several specification languages have been based on abstract data types. Two resulting 
from the work of the ADJ group are CLEAR [Burstall 1977] [Burstall 1981] and OBJ-2 
[Futatsugi 1985]. See also Larch by Guttag, Horning and Wing [Guttag 1985]. ADT ideas 
have influenced formal specification languages such as Z in its successive incarnations 
[Abrial 1980] [Abrial 1980a] [Spivey 1988] [Spivey 1992] and VDM [Jones 1986]. The 
notion of abstraction function plays a central role in VDM. Recent extensions to Z have 
established a closer link to object-oriented ideas; see in particular Object Z [Duke 1991] 
and further references in chapter 11.

The phrase “separation of concerns” is central in the work of Dijkstra; see in 
particular his “Discipline of Programming” [Dijkstra 1976]. 

The notion of sufficient completeness was first published by Guttag and Horning 
(based on Guttag’s 1975 thesis) in [Guttag 1978]. 

The idea that going from specification to design means switching from the implicit 
to the explicit by identifying an ADT with the cartesian product of its simple queries was 
suggested in [M 1982] as part of a theory for describing data structures at three separate 
levels (physical, structural, implicit).
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EXERCISES

E6.1  Points

Write a specification describing the abstract data type POINT, modeling points in plane 
geometry. The specification should cover the following aspects: cartesian and polar 
coordinates; rotation; translation; distance of a point to the center; distance to another point. 

E6.2  Boxers

Members of the Association Dijonnaise des Tapeventres, a boxing league, regularly 
compete in games to ascertain their comparative strength. A game involves two boxers; it 
either results in a winner and a loser or is declared a tie. If not a tie, the outcome of a game 
is used to update the ranking of players in the league: the winner is declared better than 
the loser and than any boxer b such that the loser was previously better than b. Other 
comparative rankings are left unchanged. 

Specify this problem as a set of abstract data types: ADT_LEAGUE, BOXER, GAME. 
(Hint: do not introduce the notion of “ranking” explicitly, but model it by a function better
expressing whether a player is better than another in the league.) 

E6.3  Bank accounts

Write an ADT specification for a “bank account” type with operations such as “deposit”, 
“withdraw”, “current balance”, “holder”, “change holder”. 

How would you add functions representing the opening and closing of an account? (Hint: 
these are actually functions on another ADT.) 

E6.4  Messages

Consider an electronic mail system with which you are familiar. In light of this chapter’s 
discussion, define MAIL_MESSAGE as an abstract data type. Be sure to include not just 
query functions but also commands and creators. 

E6.5  Names 

Devise a NAME abstract data type taking into account the different components of a 
person’s name. 

E6.6  Text 

Consider the notion of text, as handled by a text editor. Specify this notion as an abstract 
data type. (This statement of the exercise leaves much freedom to the specifier; make sure 
to include an informal description of the properties of text that you have chosen to model 
in the ADT.) 
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“Ordering and O-
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E6.7  Buying a house

Write an abstract data type specification for the problem of buying a house, sketched in the 
preceding chapter. Pay particular attention to the definition of logical constraints, expressed 
as preconditions and axioms in the ADT specification.

E6.8  More stack operations
Modify the ADT specification of stacks to account for operations count (returning the 
number of elements on a stack), change_top (replacing the top of the stack by a given 
element) and wipe_out (remove all elements). Make sure to include new axioms and 
preconditions as needed. 

E6.9  Bounded stacks 
Adapt the specification of the stack ADT presented in this chapter so that it will describe 
stacks of bounded capacity. (Hint: introduce the capacity as an explicit query function; 
make put partial.) 

E6.10  Queues
Describe queues (first-in, first-out) as an abstract data type, in the style used for STACK. 
Examine closely the similarities and differences. (Hint: the axioms for item and remove
must distinguish, to deal with put (s, x), the cases in which s is empty and non-empty.)

E6.11  Dispensers
(This exercise assumes that you have answered the previous one.)

Specify a general ADT DISPENSER covering both stack and queue structures. 
Discuss a mechanism for expressing more specialized ADT specifications such as those 
of stacks and queues by reference to more general specifications, such as the specification 
of dispensers. (Hint: look at the inheritance mechanism studied in later chapters.)

E6.12  Booleans
Define BOOLEAN as an abstract data type in a way that supports its use in the ADT 
definitions of this chapter. You may assume that equality and inequality operations 
(= and ≠) are automatically defined on every ADT. 

E6.13  Sufficient completeness
(This exercise assumes that you have answered one or more of the preceding ones.) 
Examine an ADT specification written in response to one of the preceding exercises, and 
try to prove that it is sufficiently complete. If it is not sufficiently complete, explain why, 
and show how to correct or extend the specification to satisfy sufficient completeness. 

E6.14  Consistency

Prove that the specification of stacks given in this chapter is consistent.
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“But”, I said, “when you discovered the marks on the snow and on the 
branches, you did not yet know [the horse] Brownie. In a certain way these 
marks were telling us about all horses, or at least about all horses of that kind.
Should we not say then that the book of nature talks to us only in terms of 
essences, as taught by some very distinguished theologians?”

“Not at all, my Dear Adso”, replied the master. […] “The imprint in that place 
and at that time of day told me that at least one among all possible horses had 
passed there. So that I found myself half-way between the study of the concept 
of horse and the knowledge of one individual horse. And in any case what I knew 
of the universal horse was given to me by the mark, which was singular. You 
could say that at that time I was held prisoner between the singularity of that 
mark and my ignorance, which took the very hazy form of a universal idea. If 
you see something afar, and do not understand what it is, you will satisfy 
yourself by defining it as a large body. Once you have come closer you will 
define it as being an animal, even if you do not yet know whether it is a horse 
or an ass. And finally, when it is closer, you will be able to say that it is a horse 
even if you do not know yet whether it is Brownie or Fanny. And only when you 
are at the right distance will you see that it is Brownie (in other words that horse 
and not another, however you decide to call it). And that will be the full 
knowledge, the intuition of the singular.” […]
“Thus the ideas, which I had used before to imagine a horse which I had not 
seen yet, were pure signs, as were pure signs of the horse idea the imprint on the 
snow: and we use signs, and signs of signs, only when we lack the things.”

Umberto Eco, The Name of the Rose, Day One, Terce.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part C will cover in detail the set of concepts and techniques that form the basis of 
object technology.



7  
The static structure: classes 
Objects are stud-
ied in detail in the 
next chapter. 
Examining the software engineering background of our discussion, you have seen the 
reasons for demanding a better approach to modular design: reusability and extendibility. 
You have realized the limitations of traditional approaches: centralized architectures 
limiting flexibility. You have discovered the theory behind the object-oriented approach: 
abstract data types. You have heard enough about the problems. On to the solution! 

This chapter and the others in part C introduce the fundamental techniques of object-
oriented analysis, design and programming. As we go along, we will develop the 
necessary notation. 

Our first task is to examine the basic building blocks: classes. 

7.1  OBJECTS ARE NOT THE SUBJECT 

What is the central concept of object technology? 

Think twice before you answer “object”. Objects are useful, but they are not new. 
Ever since Cobol has had structures; ever since Pascal has had records; ever since the first 
C programmer wrote the first C structure definition, humanity has had objects. 

Objects remain important to describe the execution of an O-O system. But the basic 
notion, from which everything in object technology derives, is class, previewed in the 
preceding chapter. Here again is the definition:

Abstract data types are a mathematical notion, suitable for the specification stage 
(also called analysis). Because it introduces implementations, partial or total, the notion 
of class establishes the necessary link with software construction — design and 
implementation. Remember that a class is said to be effective if the implementation is 
total, deferred otherwise. 

Definition: class
A class is an abstract data type equipped with a possibly partial 
implementation. 



THE STATIC STRUCTURE: CLASSES  §7.2 166

The next section, for 
readers who do not 
like the belaboring 
of the obvious, is 
“THE ROLE OF 
CLASSES”, 7.3, 
page 169.
Like an ADT, a class is a type: it describes a set of possible data structures, called the 
instances of the class. Abstract data types too have instances; the difference is that an 
instance of an ADT is a purely mathematical element (a member of some mathematical 
set), whereas an instance of a class is a data structure that may be represented in the 
memory of a computer and manipulated by a software system. 

For example if we have defined a class STACK by taking the ADT specification of 
the previous chapter and adding adequate representation information, the instances of that 
class will be data structures representing individual stacks. Another example, developed 
in the rest of this chapter, is a class POINT modeling the notion of point in a two-
dimensional space, under some appropriate representation; an instance of that class is a 
data structure representing a point. Under one of the representations studied below, the 
cartesian representation, each instance of POINT is a record with two fields representing 
the horizontal and vertical coordinates, x and y, of a point. 

The definition of “class” yields as a byproduct a definition of “object”. An object is 
simply an instance of some class. For example an instance of class STACK — a data 
structure representing a particular stack — is an object; so is an instance of class POINT, 
representing a particular point in two-dimensional space. 

The software texts that serve to produce systems are classes. Objects are a run-time 
notion only: they are created and manipulated by the software during its execution.

The present chapter is devoted to the basic mechanisms for writing software 
elements and combining them into systems; as a consequence, its focus is on classes. In 
the next chapter, we will explore the run-time structures generated by an object-oriented 
system; this will require us to study some implementation issues and to take a closer look 
at the nature of objects.           

7.2  AVOIDING THE STANDARD CONFUSION

A class is a model, and an object is an instance of such a model. This property is so obvious 
that it would normally deserve no comments beyond the preceding definitions; but is has 
been the victim of so much confusion in the more careless segment of the literature that 
we must take some time to clarify the obvious. (If you feel that you are immune to such a 
danger, and have avoided exposure to sloppy object-oriented teaching, you may wish to 
skip this section altogether as it essentially belabors the obvious.) 

What would you think of this?

Among the countries in Europe we may identify the Italian. The Italian has a 
mountain chain running through him North-South and he likes good cooking,
often using olive oil. His climate is of the Mediterranean type, and he speaks 
a beautifully musical language.
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If someone in a sober state talked or wrote to you in this fashion, you might suspect a new 
neurological disease, the inability to distinguish between categories (such as the Italian 
nation) and individuals members of these categories (such as individual Italians), reason 
enough to give to the ambulance driver the address of Dr. Sacks’s New York clinic. 

Yet in the object-oriented software literature similar confusions are common. 
Consider the following extract from a popular book on O-O analysis, which uses the 
example of an interactive system to discuss how to identify abstractions:

In the same breath this text uses the word objects, user and thing in two meanings 
belonging to entirely different levels of abstraction:

• A typical user of the interactive system under discussion. 

• The concept of user in general. 

Although this is probably a slip of terminology (a peccadillo which few people can 
claim never to have committed) rather than a true confusion on the authors’ part, it is 
unfortunately representative of how some of the literature deals with the model-instance 
distinction. If you start the study of a new method with this kind of elementary mix-up, 
real or apparent, you are not likely to obtain a rational approach to software construction. 

The mold and the instance 

Take this book — the copy which you are currently reading. Consider it as an object in the 
common sense of the term. It has its own individual features: the copy may be brand new, 
or already thumbed by previous readers; perhaps you wrote your name on the first page; 
or it belongs to a library and has a local identification code impressed on its spine. 

The basic properties of the book, however, such as its title, publisher, author and 
contents, are determined by a general description which applies to every individual copy: 
the book is entitled Object-Oriented Software Construction, it is published by Prentice 
Hall, it talks about the object-oriented method, and so on. This set of properties defines 
not an object but a class of objects (also called, in this case, the type of these objects; for 
the time being the notions of type and class may be considered synonymous). 

Call the class OOSC. It defines a certain mold. Objects built from this mold, such as 
your copy of the book, are called instances of the class. Another example of mold would 
be the plaster cast that a sculptor makes to obtain an inverted version of the design for a 
set of identical statues; any statue derived from the cast is an instance of the mold. 

[W]e might identify a “User” Object in a problem space where the system 
does not need to keep any information about the user. In this case, the system 
does not need the usual identification number, name, access privilege, and 
the like. However, the system does need to monitor the user, responding to 
requests and providing timely information. And so, because of required 
Services on behalf of the real world thing (in this case, User), we need to add 
a corresponding Object to the model of the problem space.
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In the quotation from The Name of the Rose which opens part C, the Master is explaining 
how he was able to determine, from traces of the snow, that Brownie, the Abbot’s horse, 
earlier walked here. Brownie is an instance of the class of all horses. The sign on the 
snow, although imprinted by one particular instance, includes only enough information to 
determine the class (horse), not its identity (Brownie). Since the class, like the sign, 
identifies all horses rather than a particular horse, the extract calls it a sign too. 

Exactly the same concepts apply to software objects. What you will write in your 
software systems is the description of classes, such as a class LINKED_STACK describing 
properties of stacks in a certain representation. Any particular execution of your system 
may use the classes to create objects (data structures); each such object is derived from a 
class, and is called an instance of that class. For example the execution may create a 
linked stack object, derived from the description given in class LINKED_STACK; such an 
object is an instance of class LINKED_STACK. 

The class is a software text. It is static; in other words, it exists independently of any 
execution. In contrast, an object derived from that class is a dynamically created data 
structure, existing only in the memory of a computer during the execution of a system.

This, of course, is in line with the earlier discussion of abstract data types: when 
specifying STACK as an ADT, we did not describe any particular stack, but the general 
notion of stack, a mold from which one can derive individual instances ad libitum. 

The statements “x is an instance of T ” and “x is an object of type T ” will be 
considered synonymous for this discussion. 

With the introduction of inheritance we will need to distinguish between the direct 
instances of a class (built from the exact pattern defined by the class) and its instances in 
the more general sense (direct instances of the class or any of its specializations).

Metaclasses 

Why would so many books and articles confuse two so clearly different notions as class 
and object? One reason — although not an excuse — is the appeal of the word “object”, a 
simple term from everyday language. But it is misleading. As we already saw in the 
discussion of seamlessness, although some of the objects (class instances) which O-O 
systems manipulate are the computer representations of objects in the usual sense of the 
term, such as documents, bank accounts or airplanes, many others have no existence 
outside of the software; they include in particular the objects introduced for design and 
implementation purposes — instances of classes such as STATE or LINKED_LIST. 

Another possible source of confusion between objects and classes is that in some 
cases we may need to treat classes themselves as objects. This need arises only in special 
contexts, and is mainly relevant to developers of object-oriented development 
environments. For example a compiler or interpreter for an O-O language will manipulate 
data structures representing classes written in that language. The same would hold of other 
tools such as a browser (a tool used to locate classes and find out about their properties) 
or a configuration management system. If you produce such tools, you will create objects 
that represent classes. 
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Pursuing an analogy used earlier, we may compare this situation to that of a Prentice Hall 
employee who is in charge of preparing the catalog of software engineering titles. For the 
catalog writer, OOSC, the concept behind this book, is an object — an instance of a class 
“catalog entry”. In contrast, for the reader of the book, that concept is a class, of which 
the reader’s particular copy is an instance. 

Some object-oriented languages, notably Smalltalk, have introduced a notion of 
metaclass to handle this kind of situation. A metaclass is a class whose instances are 
themselves classes — what the Name of the Rose extract called “signs of signs”. 

We will avoid metaclasses in this presentation, however, since they bring more 
problems than benefits. In particular, the addition of metaclasses makes it difficult to have 
static type checking, a required condition of the production of reliable software. The main 
applications of metaclasses are better obtained through other mechanisms anyway: 

• You can use metaclasses to make a set of features available to many or all classes. 
We will achieve the same result by arranging the inheritance structure so that all 
classes are descendants of a general-purpose, customizable class ANY, containing the 
declarations of universal features. 

• A few operations may be viewed as characterizing a class rather than its instances, 
justifying their inclusion as features of a metaclass. But these operations are few and 
known; the most obvious one is object creation — sufficiently important to deserve 
a special language construct, the creation instruction. (Other such operations, such 
as object duplication, will be covered by features of class ANY.) 

• There remains the use of metaclasses to obtain information about a class, such as a 
browser may need: name of the class, list of features, list of parents, list of suppliers 
etc. But we do not need metaclasses for that. It will suffice to devise a library class, 
E_CLASS, so that each instance of E_CLASS represents a class and its properties. 
When we create such an instance, we pass to the creation instruction an argument 
representing a certain class C; then by applying the various features of E_CLASS to 
that instance, we can learn all about C. 

In practice, then, we can do without a separate concept of metaclass. But even in a 
method, language or environment that would support this notion, the presence of 
metaclasses is no excuse for confusing molds and their instances — classes and objects. 

7.3  THE ROLE OF CLASSES 

Having taken the time to remove an absurd but common and damaging confusion, we may 
now come back to the central properties of classes, and in particular study why they are so 
important to object technology. 

To understand the object-oriented approach, it is essential to realize that classes play 
two roles which pre-O-O approaches had always treated as separate: module and type. 
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Modules and types 

Programming languages and other notations used in software development (design 
languages, specification languages, graphical notations for analysis) always include both 
some module facility and some type system. 

A module is a unit of software decomposition. Various forms of module, such as 
routines and packages, were studied in an earlier chapter. Regardless of the exact choice 
of module structure, we may call the notion of module a syntactic concept, since the 
decomposition into modules only affects the form of software texts, not what the software 
can do; it is indeed possible in principle to write any Ada program as a single package, or 
any Pascal program as a single main program. Such an approach is not recommended, of 
course, and any competent software developer will use the module facilities of the 
language at hand to decompose his software into manageable pieces. But if we take an 
existing program, for example in Pascal, we can always merge all the modules into a single 
one, and still get a working system with equivalent semantics. (The presence of recursive 
routines makes the conversion process less trivial, but does not fundamentally affect this 
discussion.) So the practice of decomposing into modules is dictated by sound engineering 
and project management principles rather than intrinsic necessity. 

Types, at first sight, are a quite different concept. A type is the static description of 
certain dynamic objects: the various data elements that will be processed during the 
execution of a software system. The set of types usually includes predefined types such as 
INTEGER and CHARACTER as well as developer-defined types: record types (also 
known as structure types), pointer types, set types (as in Pascal), array types and others. 
The notion of type is a semantic concept, since every type directly influences the 
execution of a software system by defining the form of the objects that the system will 
create and manipulate at run time. 

The class as module and type 

In non-O-O approaches, the module and type concepts remain distinct. The most 
remarkable property of the notion of class is that it subsumes these two concepts, merging 
them into a single linguistic construct. A class is a module, or unit of software 
decomposition; but it is also a type (or, in cases involving genericity, a type pattern). 

Much of the power of the object-oriented method derives from this identification. 
Inheritance, in particular, can only be understood fully if we look at it as providing both 
module extension and type specialization. 

What is not clear yet is how it is possible in practice to unify two concepts which 
appear at first so distant. The discussion and examples in the rest of this chapter will 
answer this question. 
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7.4  A UNIFORM TYPE SYSTEM 

An important aspect of the O-O approach as we will develop it is the simplicity and 
uniformity of the type system, deriving from a fundamental property:

The Object rule will apply not just to composite, developer-defined objects (such as 
data structures with several fields) but also to basic objects such as integers, real numbers, 
boolean values and characters, which will all be considered to be instances of predefined 
library classes (INTEGER, REAL, DOUBLE, BOOLEAN, CHARACTER). 

This zeal to make every possible value, however simple, an instance of some class 
may at first appear exaggerated or even extravagant. After all, mathematicians and 
engineers have used integers and reals successfully for a long time, without knowing they 
were manipulating class instances. But insisting on uniformity pays off for several reasons: 

• It is always desirable to have a simple and uniform framework rather than many 
special cases. Here the type system will be entirely based on the notion of class. 

• Describing basic types as ADTs and hence as classes is simple and natural. It is not 
hard, for example, to see how to define the class INTEGER with features covering 
arithmetic operations such as "+", comparison operations such as "<=", and the 
associated properties, derived from the corresponding mathematical axioms.

• By defining the basic types as classes, we allow them to take part in all the O-O 
games, especially inheritance and genericity. If we did not treat the basic types as 
classes, we would have to introduce severe limitations and many special cases. 

As an example of inheritance, classes INTEGER, REAL and DOUBLE will be heirs to more 
general classes: NUMERIC, introducing the basic arithmetic operations such as "+", "–"
and "∗", and COMPARABLE, introducing comparison operations such as "<". As an 
example of genericity, we can define a generic class MATRIX whose generic parameter 
represents the type of matrix elements, so that instances of MATRIX [INTEGER] represent 
matrices of integers, instances of MATRIX [REAL] represent matrices of reals and so on. As 
an example of combining genericity with inheritance, the preceding definitions also allow 
us to use the type MATRIX [NUMERIC], whose instances represent matrices containing 
objects of type INTEGER as well as objects of type REAL and objects of any new type T
defined by a software developer so as to inherit from NUMERIC. 

With a good implementation, we do not need to fear any negative consequence from 
the decision to define all types from classes. Nothing prevents a compiler from having 
special knowledge about the basic classes; the code it generates for operations on values 
of types such as INTEGER and BOOLEAN can then be just as efficient as if these were 
built-in types in the language. 

Object rule
Every object is an instance of some class.
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Reaching the goal of a fully consistent and uniform type system requires the 
combination of several important O-O techniques, to be seen only later: expanded classes, 
to ensure proper representation of simple values; infix and prefix operators, to enable 
usual arithmetic syntax (such as a < b or –a rather than the more cumbersome a  less_
than (b) or a  negated ); constrained genericity, needed to define classes which may be 
adapted to various types with specific operations, for example a class MATRIX that can 
represent matrices of integers as well as matrices of elements of other numeric types. 

7.5  A SIMPLE CLASS 
Let us now see what classes look like by studying a simple but typical example, which 
shows some of the fundamental properties applicable to almost all classes. 

The features 

The example is the notion of point, as it could appear in a two-dimensional graphics system.

To characterize type POINT as an abstract data type, we would need the four query 
functions x, y, ρ, θ. (The names of the last two will be spelled out as rho and theta in 
software texts.) Function x gives the abscissa of a point (horizontal coordinate), y its 
ordinate (vertical coordinate), ρ its distance to the origin, θ the angle to the horizontal axis. 
The values of x and y for a point are called its cartesian coordinates, those of ρ and θ its 
polar coordinates. Another useful query function is distance, which will yield the distance 
between two points. 

Then the ADT specification would list commands such as translate (to move a point 
by a given horizontal and vertical displacement), rotate (to rotate the point by a certain 
angle, around the origin) and scale (to bring the point closer to or further from the origin 
by a certain factor). 

It is not difficult to write the full ADT specification including these functions and 
some of the associated axioms. For example, two of the function signatures will be 

x: POINT → REAL
translate: POINT × REAL × REAL → POINT

and one of the axioms will be (for any point p and any reals a, b): 

x (translate ( p1, a, b)) = x ( p1) + a 

expressing that translating a point by <a, b> increases its abscissa by a.

θ

ρ
p1

x

y
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You may wish to complete this ADT specification by yourself. The rest of this 
discussion will assume that you have understood the ADT, whether or not you have 
written it formally in full, so that we can focus on its implementation — the class. 

Attributes and routines 

Any abstract data type such as POINT is characterized by a set of functions, describing the 
operations applicable to instances of the ADT. In classes (ADT implementations), 
functions will yield features — the operations applicable to instances of the class. 

We have seen that ADT functions are of three kinds: queries, commands and 
creators. For features, we need a complementary classification, based on how each feature 
is implemented: by space or by time. 

The example of point coordinates shows the difference clearly. Two common 
representations are available for points: cartesian and polar. If we choose cartesian 
representation, each instance of the class will contain two fields representing the x and y
of the corresponding point:

If p1 is the point shown, getting its x or its y simply requires looking up the 
corresponding field in this structure. Getting ρ or θ, however, requires a computation: for 

ρ we must compute , and for θ we must compute arctg (y / x) with non-zero x. 

If we use polar representation, the situation is reversed: ρ and θ are now accessible 
by simple field lookup, x and y require small computations (of ρ cos θ and ρ sin θ).

This example shows the need for two kinds of feature: 

• Some features will be represented by space, that is to say by associating a certain 
piece of information with every instance of the class. They will be called attributes. 
For points, x and y are attributes in cartesian representation; rho and theta are 
attributes in polar representation. 

x

y

(CARTESIAN_POINT)

x2 y2
+

rho

theta

(POLAR_POINT)
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• Some features will be represented by time, that is to say by defining a certain 
computation (an algorithm) applicable to all instances of the class. They will be 
called routines. For points, rho and theta are routines in cartesian representation; x
and y are routines in polar representation. 

A further distinction affects routines (the second of these categories). Some routines 
will return a result; they are called functions. Here x and y in polar representation, as well 
as rho and theta in cartesian representation, are functions since they return a result, of type 
REAL. Routines which do not return a result correspond to the commands of an ADT 
specification and are called procedures. For example the class POINT will include 
procedures translate, rotate and scale. 

Be sure not to confuse the use of “function” to denote result-returning routines in classes 
with the earlier use of this word to denote the mathematical specifications of operations 
in abstract data types. This conflict is unfortunate, but follows from well-established 
usage of the word in both the mathematics and software fields.

The following tree helps visualize this classification of features:

This is an external classification, in which the principal question is how a feature will 
look to its clients (its users).

We can also take a more internal view, using as primary criterion how each feature 
is implemented in the class, and leading to a different classification:

Procedure

Function

Function Attribute

Returns result: QueryNo result: Command

No argumentArguments

Computation Memory

Feature

ROUTINE
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Uniform access 

One aspect of the preceding classifications may at first appear disturbing and has perhaps 
caught your attention. In many cases, we should be able to manipulate objects, for 
example a point p1, without having to worry about whether the internal representation of 
p1 is cartesian, polar or other. Is it appropriate, then, to distinguish explicitly between 
attributes and functions? 

The answer depends on whose view we consider: the supplier’s view (as seen by the 
author of the class itself, here POINT) or the client’s view (as seen by the author of a class 
that uses POINT). For the supplier, the distinction between attributes and functions is 
meaningful and necessary, since in some cases you will want to implement a feature by 
storage and in others by computation, and the decision must be reflected somewhere. 
What would be wrong, however, would be to force the clients to be aware of the 
difference. If I am accessing p1, I want to be able to find out its x or its ρ without having 
to know how such queries are implemented. 

The Uniform Access principle, introduced in the discussion of modularity, answers 
this concern. The principle states that a client should be able to access a property of an 
object using a single notation, whether the property is implemented by memory or by 
computation (space or time, attribute or routine). We shall follow this important principle 
in devising a notation for feature call below: the expression denoting the value of the x
feature for p1 will always be 

p1  x

whether its effect is to access a field of an object or to execute a routine.

As you will have noted, the uncertainty can only exist for queries without arguments, 
which may be implemented as functions or as attributes. A command must be a procedure; 
a query with arguments must be a function, since attributes cannot have arguments. 

Procedure

Routine

Function

Attribute

Returns resultNo result

Computation Memory

Feature
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The Uniform Access principle is essential to guarantee the autonomy of the 
components of a system. It preserves the class designer’s freedom to experiment with 
various implementation techniques without disturbing the clients. 

Pascal, C and Ada violate the principle by providing a different notation for a function 
call and for an attribute access. For such non-object-oriented languages this is 
understandable (although we have seen that Algol W, a 1966 predecessor to Pascal, 
satisfied uniform access). More recent languages such as C++ and Java also do not 
enforce the principle. Departing from Uniform Access may cause any internal 
representation change (such as the switch from polar to cartesian or some other 
representation) to cause upheaval in many client classes. This is a primary source of 
instability in software development. 

The Uniform Access principle also yields a requirement on documentation 
techniques. If we are to apply the principle consistently, we must ensure that it is not 
possible to determine, from the official documentation on a class, whether a query without 
arguments is a function or an attribute. This will be one of the properties of the standard 
mechanism for documenting a class, known as the short form. 

The class 

Here is a version of the class text for POINT. (Any occurrence of consecutive dashes --
introduces a comment, which extends to the end of the line; comments are explanations 
intended for the reader of the class text and do not affect the semantics of the class.)

note

description: "Two-dimensional points"

class POINT feature 

x, y: REAL
-- Abscissa and ordinate

rho: REAL
-- Distance to origin (0, 0) 

do
Result := sqrt (x ^ 2 + y ^ 2)

end

theta: REAL is 
-- Angle to horizontal axis

do
…Left to reader (exercise E7.3, page 216) º

end
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distance (p: POINT): REAL
-- Distance to p

do
Result := sqrt ((x – p  x) ^ 2 + (y – p  y) ^ 2)

end

translate (a, b: REAL)
-- Move by a horizontally, b vertically.

do
x := x + a
y := y + b

end

scale (factor: REAL)
-- Scale by factor.

do
x := factor ∗ x
y := factor ∗ y

end

rotate (p: POINT; angle: REAL)
-- Rotate around p by angle.

do
…Left to reader (exercise E7.3, page 216) …

end
end
The next few sections explain in detail the non-obvious aspects of this class text. 

The class mainly consists of a clause listing the various features and introduced by 
the keyword feature. There is also a note clause giving general description information, 
useful to readers of the class but with no effect on its execution semantics. Later on we 
will learn three optional clauses: inherit for inheritance, creation for non-default creation 
and invariant for introducing class invariants; we will also see how to include two or 
more feature clauses in one class.

7.6  BASIC CONVENTIONS 
Class POINT shows a number of techniques which will be used throughout later examples. 
Let us first look at the basic conventions. 

Recognizing feature kinds

Features x and y are just declared as being of type REAL, with no associated algorithm; so 
they can only be attributes. All other features have a clause of the form 

do
… Instructions…

end
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which defines an algorithm; this indicates the feature is a routine. Routines rho, theta and 
distance are declared as returning a result, of type REAL in all cases, as indicated by 
declarations of the form

rho: REAL = …

This defines them as functions. The other two, translate and scale, do not return a 
result (since they do not have a result declaration of the form :T for some type T ), and so 
they are procedures. 

Since x and y are attributes, while rho and theta are functions, the representation 
chosen in this particular class for points is cartesian. 

Routine bodies and header comments

The body of a routine (the do clause) is a sequence of instructions. You can use 
semicolons, in the Algol-Pascal tradition, to separate successive instructions and 
declarations, but the semicolons are optional. We will omit them for simplicity between 
elements on separate lines, but will always include them to delimit instructions or 
declarations appearing on the same line.

All the instructions in the routines of class POINT are assignments; for assignment, 
the notation uses the := symbol (again borrowed from the Algol-Pascal conventions). This 
symbol should of course not be confused with the equality symbol =, used, as in 
mathematics, as a comparison operator. 

Another convention of the notation is the use of header comments. As already noted, 
comments are introduced by two consecutive dashes --. They may appear at any place in 
a class text where the class author feels that readers will benefit from an explanation. A 
special role is played by the header comment which, as a general style rule, should appear 
at the beginning of every routine, after the keyword is, indented as shown by the examples 
in class POINT. Such a header comment should tersely express the purpose of the routine.

Attributes should also have a header comment immediately following their 
declaration, aligned with routine’s header comments, as illustrated here with x and y.

The note clause

At the beginning of the class comes a clause starting with the keyword note. It contains a 
single entry, labeled description. The note clause has no effect on software execution, but 
serves to associate information with the class. In its general form it contains zero or more 
entries of the form

index_word: index_value, index_value, …

where the index_word is an arbitrary identifier, and each index_value is an arbitrary 
language element (identifier, integer, string…).
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The benefit is twofold:

• Readers of the class get a summary of its properties, without having to see the details.
• In a software development environment supporting reuse, query tools (often known 

as browsers) can use the indexing information to help potential users find out about 
available classes; the tools can let the users enter various search words and match 
them with the index words and values.
The example has a single indexing entry, with description as index word and, as 

index value, a string describing the purpose of the class. All classes in this book, save for 
short examples, will include a description entry. You are strongly encouraged to follow 
this example and begin every class text with a note clause providing a concise overview 
of the class, in the same way that every routine begins with a header comment.

Both indexing (note) clauses and header comments are faithful applications of the 
Self-Documentation principle: as much as possible of a module’s documentation should 
appear in the text of the module itself.

Denoting a function’s result 

We need another convention to understand the texts of the functions in class POINT: rho, 
theta and distance. 

Any language that supports functions (value-returning routines) must offer a 
notation allowing the body of a function to set the value which will be returned by any 
particular call. The convention used here is simple: it relies on a predefined entity name, 
Result, denoting the value that the call will return. For example, the body of rho contains 
an assignment to Result: 

Result := sqrt (x ^ 2 + y ^ 2)
Result is a reserved word, and may only appear in functions. In a function declared 

as having a result of type T, Result is treated in the same way as other entities, and may be 
assigned values through assignment instructions such as the above. 

Any call to the function will return, as its result, the final value assigned to Result
during the call’s execution. That value always exists since language rules (to be seen in 
detail later) require every execution of the routine, when it starts, to initialize Result to a 
preset value. For a REAL the initialization value is zero; so a function of the form 

non_negative_value (x: REAL): REAL
-- The value of x if positive; zero otherwise.

do
if x > 0.0 then

Result := x
end

end
will always return a well-defined value (as described by the header comment) even though 
the conditional instruction has no else part. 
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The discussion section of this chapter examines the rationale behind the Result
convention and compares it with other techniques such as return instructions. Although 
this convention addresses an issue that arises in all design and programming languages, it 
blends particularly well with the rest of the object-oriented approach. 

Style rules

The class texts in this book follow precise style conventions regarding indentation, fonts 
(for typeset output), choice of names for features and classes, use of lower and upper case.

The discussion will point out these conventions, under the heading “style rules”, as 
we go along. They should not be dismissed as mere cosmetics: quality software requires 
consistency and attention to all details, of form as well as of content. The reusability goal 
makes these observations even more important, since it implies that software texts will 
have a long life, during which many people will need to understand and improve them.

You should apply the style rules right from the time you start writing a class. For 
example you should never write a routine without immediately including its header 
comment. This does not take long, and is not wasted time; in fact it is time saved for all 
future work on the class, whether by you or by others, whether after half an hour or after 
half a decade. Using regular indentation, proper spelling for comments and identifiers, 
adequate lexical conventions — a space before each opening parenthesis but not after, and 
so on — does not make your task any longer than ignoring these rules, but compounded 
over months of work and heaps of software produces a tremendous difference. Attention 
to such details, although not sufficient, is a necessary condition for quality software (and 
quality, the general theme of this book, is what defines software engineering).

The elementary style rules are clear from the preceding class example. Since our 
immediate goal is to explore the basic mechanisms of object technology, their precise 
description will only appear in a later chapter.

Inheriting general-purpose facilities 

Another aspect of class POINT which requires clarification is the presence of calls to the 
sqrt function (in rho and distance). This function should clearly return the square root of 
a real number, but where does it come from? 

Since it does not seem appropriate to encumber a general-purpose language with 
specialized arithmetic operations, the best technique is to define such operations as 
features of some specialized class — say ARITHMETIC — and then simply require any 
class that needs these facilities to inherit from the specialized class. As will be seen in 
detail in a later chapter, it suffices then to write POINT as 

class POINT inherit
ARITHMETIC

feature
… The rest as before …

end
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This technique of inheriting general-purpose facilities is somewhat controversial; one can 
argue that O-O principles suggest making a function such as sqrt a feature of the class 
representing the object to which it applies, for example REAL. But there are many 
operations on real numbers, not all of which can be included in the class. Square root may 
be sufficiently fundamental to justify making it a feature of class REAL; then we would 
write a  sqrt rather than sqrt (x). We will return, in the discussion of design principles, to 
the question of whether “facilities” classes such as ARITHMETIC are desirable.

7.7  THE OBJECT-ORIENTED STYLE OF COMPUTATION

Let us now move to the fundamental properties of class POINT by trying to understand a 
typical routine body and its instructions, then studying how the class and its features may 
be used by other classes — clients. 

The current instance 

Here again is the text of one of our example routines, procedure translate: 

translate (a, b: REAL)
-- Move by a horizontally, b vertically

do
x := x + a
y := y + b

end

At first sight this text appears clear enough: to translate a point by a horizontally, b
vertically, we add a to its x and b to its y. But if you look at it more carefully, it may not 
be so obvious anymore! Nowhere in the text have we stated what point we were talking 
about. To whose x and whose y are we adding a and b? In the answer to this question will 
lie one of the most distinctive aspects of the object-oriented development style. Before we 
are ready to discover that answer we must understand a few intermediate topics.

A class text describes the properties and behavior of objects of a certain type, points 
in this example. It does so by describing the properties and behavior of a typical instance 
of that type — what we could call the “point in the street” in the way newspapers report 
the opinion of the “man or woman in the street”. We will settle for a more formal name: 
the current instance of the class.

Once in a while, we may need to refer to the current instance explicitly. The 
reserved word 

Current

will serve that purpose. In a class text, Current denotes the current instance of the enclosing 
class. As an example of when Current is needed, assume we rewrite distance so that it 
checks first whether the argument p is the same point as the current instance, in which case 
the result is 0 with no need for further computation. Then distance will appear as 
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distance (p: POINT): REAL

-- Distance to p

do
if p /= Current then

Result := sqrt ((x — p  x) ^ 2 + (y — p  y) ^ 2)

end
end

(/= is the inequality operator. Because of the initialization rule mentioned above, the 
conditional instruction does not need an else part: if p = Current the result is zero.) 

In most circumstances, however, the current instance is implicit and we will not need 
to refer to Current by its name. For example, references to x in the body of translate and 
the other routines simply mean, if not further qualified: “the x of the current instance”. 

This only pushes back the mystery, of course: “who” really is Current? The answer 
will come with the study of routine calls below. As long as we only look at the routine text, 
it will suffice to know that all operations are relative, by default, to an implicitly defined 
object, the current instance. 

Clients and suppliers 

Ignoring for a few moments the enigma of Current’s identity, we know how to define 
simple classes. We must now study how to use their definitions. Such uses will be in other 
classes — since in a pure object-oriented approach every software element is part of some 
class text. 

There are only two ways to use a class such as POINT. One is to inherit from it; this 
is studied in detail in later chapters. The other one is to become a client of POINT. 

The simplest and most common way to become a client of a class is to declare an 
entity of the corresponding type:

In this definition, a may be an attribute or function of C, or a local entity or argument 
of a routine of C. 

For example, the declarations of x, y, rho, theta and distance above make class POINT
a client of REAL. Other classes may in turn become clients of POINT. Here is an example: 

Definition: client, supplier
Let S be a class. A class C which contains a declaration of the form a: S is 
said to be a client of S. S is then said to be a supplier of C. 
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The origin
class GRAPHICS feature
p1: POINT

…

some_routine
-- Perform some actions with p1.

do
… Create an instance of POINT and attach it to p1 …
p1  translate (4.0, –1.5) -- ∗∗

end
…

end
Before the instruction marked ∗∗ gets executed, the attribute p1 will have a value 

denoting a certain instance of class POINT. Assume that this instance represents the origin, 
of coordinates x = 0, y = 0: 

Entity p1 is said to be attached to this object. We do not worry at this point about 
how the object has been created (by the unexplained line that reads “…Create object…”) 
and initialized; such topics will be discussed as part of the object model in the next chapter. 
Let us just assume that the object exists and that p1 is attached to it. 

Feature call 

The starred instruction, 

p1  translate (4.0, –1.5)

deserves careful examination since it is our first complete example of what may be called 
the basic mechanism of object-oriented computation: feature call. In the execution of 
an object-oriented software system, all computation is achieved by calling certain features 
on certain objects. 

This particular feature call means: apply to p1 the feature translate of class POINT, 
with arguments 4.0 and –1.5, corresponding to a and b in the declaration of translate as it 
appears in the class. More generally, a feature call appears in its basic form as one of 

x  f
x  f (u, v, …)

x

y

(POINT)

0.0

0.0
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In such a call, x, called the target of the call, is an entity or expression (which at run 
time will be attached to a certain object). As any other entity or expression, x has a certain 
type, given by a class C; then f must be one of the features of C. More precisely, in the first 
form, f must be an attribute or a routine without arguments; in the second form, f must be 
a routine with arguments, and u, v, …, called the actual arguments for the call, must be 
expressions matching in type and number the formal arguments declared for f in C. 

In addition, f must be available (exported) to the client containing this call. This is 
the default; a later section will show how to restrict export rights. For the moment, all 
features are available to all clients. 

The effect of the above call when executed at run time is defined as follows:

The Single Target principle

What is so special about feature call? After all, every software developer knows how to 
write a procedure translate which moves a point by a certain displacement, and is called 
in the traditional form (available, with minor variants, in all programming languages): 

translate (p1, 4.0, –1.5)
Unlike the object-oriented style of feature call, however, this call treats all arguments 

on an equal basis. The O-O form has no such symmetry: we choose a certain object (here 
the point  p1) as target, relegating the other arguments, here the real numbers 4.0 and –1.5, 
to the role of supporting cast. This way of making every call relative to a single target 
object is a central part of the object-oriented style of computing:

To novices, this is often the most disconcerting aspect of the method. In object-
oriented software construction, we never really ask: “Apply this operation to these objects”. 
Instead we say: “Apply this operation to this object here.” And perhaps (in the second 
form): “Oh, by the way, I almost forgot, you will need those values there as arguments”. 

What we have seen so far does not really suffice to justify this convention; in fact its 
negative consequences will, for a while, overshadow its advantages. An example of 
counter-intuitive effect appears with the function distance of class POINT, declared above 
as distance (p: POINT): REAL, implying that a typical call will be written 

p1  distance (p2)
which runs against the perception of distance as a symmetric operation on two arguments. 
Only with the introduction of inheritance will the Single Target principle be fully vindicated. 

Effect of calling a feature f on a target x 
Apply feature f to the object attached to x, after having initialized each formal 
argument of f (if any) to the value of the corresponding actual argument.

Single Target principle
Every operation of object-oriented computation is relative to a certain object, 
the current instance at the time of the operation’s execution.
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The module-type identification 

The Single Target principle is a direct consequence of the module-type merge, presented 
earlier as the starting point of object-oriented decomposition: if every module is a type, 
then every operation in the module is relative to a certain instance of that type (the current 
instance). Up to now, however, the details of that merge remained a little mysterious. A 
class, it was said above, is both a module and a type; but how can we reconcile the 
syntactic notion of module (a grouping of related facilities, forming a part of a software 
system) with the semantic notion of type (the static description of certain possible run-
time objects)? The example of POINT makes the answer clear:

This identification between the operations on instances of a type and the services 
provided by a module lies at the heart of the structuring discipline enforced by the object-
oriented method. 

The role of Current 

With the help of the same example, we are now also in a position to clear the remaining 
mystery: what does the current instance really represent? 

The form of calls indicates why the text of a routine (such as translate in POINT) 
does not need to specify “who” Current is: since every call to the routine will be relative 
to a certain target, specified explicitly in the call, the execution will treat every feature 
name appearing in the text of the routine (for example x in the text of translate) as applying 
to that particular target. So for the execution of the call 

p1  translate (4.0, –1.5)

every occurrence of x in the body of translate, such as those in the instruction 

x := x + a

means: “the x of p1”. 

The exact meaning of Current follows from these observations. Current means: “the 
target of the current call”. For example, for the duration of the above call, Current will 
denote the object attached to p1. In a subsequent call, Current will denote the target of that 
new call. That this all makes sense follows from the extreme simplicity of the object-
oriented computation model, based on feature calls and on the Single Target principle:

How the module-type merge works
The facilities provided by class POINT, viewed as a module, are precisely the 
operations available on instances of class POINT, viewed as a type.
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Qualified and unqualified calls 

It was said above that all object-oriented computation relies on feature calls. A 
consequence of this rule is that software texts actually contain more calls than meet the 
eye at first. The calls seen so far were of one of the two forms introduced above: 

x  f
x  f (u, v, …)
Such calls use so-called dot notation (with the “  ” symbol) and are said to be 

qualified because the target of the call is explicitly identified: it is the entity or expression 
(x in both cases above) that appears before the dot. 

Other calls, however, will be unqualified because their targets are implicit. As an 
example, assume that we want to add to class POINT a procedure transform that will both 
translate and scale a point. The procedure’s text may rely on translate and scale: 

transform (a, b, factor: REAL)
-- Move by a horizontally, b vertically, then scale by factor.

do
translate (a, b)
scale ( factor)

end
The routine body contains calls to translate and scale. Unlike the earlier examples, 

these calls do not show an explicit target, and do not use dot notation. Such calls are said 
to be unqualified. 

Unqualified calls do not violate the property called F2 in the Feature Call principle: 
like qualified calls, they have a target. As you have certainly guessed, the target in this case 
is the current instance. When procedure transform is called on a certain target, its body 
calls translate and scale on the same target. It could in fact have been written

do
Current  translate (a, b)
Current  scale ( factor)

More generally, you may rewrite any unqualified call as a qualified call with Current
as its target. The unqualified form is of course simpler and just as clear. 

The unqualified calls that we have just examined were calls to routines. The same 
discussion applies to attributes, although the presence of calls is perhaps less obvious in 
this case. It was noted above that, in the body of translate, the occurrence of x in the 
expression x + a denotes the x field of the current instance. Another way of expressing this 

Feature Call principle
F1 • No software element ever gets executed except as part of a routine call. 
F2 • Every call has a target.



§7.7   THE OBJECT-ORIENTED STYLE OF COMPUTATION 187

The Object rule was 
given on page 171.
property is that x is actually a feature call, so that the expression as a whole could have 
been written as Current  x + a. 

More generally, any instruction or expression of one of the forms 

f
f (u, v, …)

is in fact an unqualified call, and you may also write it in qualified form as (respectively) 

Current  f
Current  f (u, v, …)

although the unqualified forms are more convenient. If you use such a notation as an 
instruction, f must be a procedure (with no argument in the first form, and with the 
appropriate number and types of arguments in the second). If it is an expression, f may be 
an attribute (in the first form only, since attributes have no arguments) or a function.

Be sure to note that this syntactical equivalence only applies to a feature used as an 
instruction or an expression. So in the following assignment from procedure translate 

x := x + a

only the occurrence of x on the right-hand side is an unqualified call: a is a formal 
argument, not a feature; and the occurrence of x on the left is not an expression (one cannot 
assign a value to an expression), so it would be meaningless to replace it by Current  x.

Operator features 

A further look at the expression x + a leads to a useful notion: operator features. This 
notion (and the present section) may be viewed as pure “cosmetics”, that is to say, 
covering only a syntactical facility without bringing anything really new to the object-
oriented method. But such syntactical properties can be important to make developers’ life 
easier if they are present — or miserable if they are absent. Operator features also provide 
a good example of how successful the object-oriented paradigm can be at integrating 
earlier approaches smoothly.

Here is the idea. Although you may not have guessed it, the expression x + a contains 
not just one call — the call to x, as just seen — but two. In non-O-O computation, we 
would consider + as an operator, applied here to two values x and a, both declared of type 
REAL. In a pure O-O model, as noted, the only computational mechanism is feature call; 
so you may consider the addition itself, at least in theory, to be a call to an addition feature. 

To understand this better, consider how we could define the type REAL. The Object 
rule stated earlier implied that every type is based on some class. This applies to 
predefined types such as REAL as well as developer-defined types such as POINT. 
Assume you are requested to write REAL as a class. It is not hard to identify the relevant 
features: arithmetic operations (addition, subtraction, negation…), comparison operations 
(less than, greater than…). So a first sketch could appear as:
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note
description: "Real numbers (not final version!)"

class REAL feature 
 plus (other: REAL): REAL

-- Sum of current value and other
do

…
end

minus (other: REAL) REAL
-- Difference of current value and other

do
…

end
negated: REAL

-- Current value but with opposite sign
do

…
end

less_than (other: REAL): BOOLEAN
-- Is current value strictly less than other?

do
…

end
… Other features … 

end
With such a form of the class, you could not write an arithmetic expression such as

x + a any more; instead, you would use a call of the form 
x  plus (a)
Similarly, you would have to write x  negated instead of the usual –x. 
One might try to justify such a departure from usual mathematical notation on the 

grounds of consistency with the object-oriented model, and invoke the example of Lisp to 
suggest that it is sometimes possible to convince a subset of the software development 
community to renounce standard notation. But this argument contains it owns limitations: 
usage of Lisp has always remained marginal. It is rather dangerous to go against notations 
which have been in existence for centuries, and which people have been using since 
elementary school, especially when there is nothing wrong with these notations.

A simple syntactical device reconciles the desire for consistency (requiring here a 
single computational mechanism based on feature call) and the need for compatibility with 
traditional notations. It suffices to consider that an expression of the form 

x + a

is in fact a call to the addition feature of class REAL; the only difference with the plus
feature suggested above is that we must rewrite the declaration of the corresponding 
feature to specify that calls will use operator notation rather than dot notation. 
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Here is the form of a class that achieves this goal: 

note
description: "Real numbers"

class REAL feature
infix "+" (other: REAL): REAL

-- Sum of current value and other
do

…
end

infix "–" (other: REAL) REAL
-- Difference of current value and other

do
…

end
prefix "–": REAL

-- Current value but with opposite sign
do

…
end

infix "<" (other: REAL): BOOLEAN
-- Is current value strictly less than other?

do
…

end
… Other features …

end
Two new keywords have been introduced: infix and prefix. The only syntactical 

extension is that from now on we may choose feature names which, instead of identifiers 
(such as distance or plus), are of one of the two forms 

infix "§"
prefix "§"

where § stands for an operator symbol chosen from a list which includes +, –, ∗, <, <= and 
a few other possibilities listed below. A feature may have a name of the infix form only if 
it is a function with one argument, such as the functions called plus, minus and less_than
in the original version of class REAL; it may have a name of the prefix form only if it is a 
function with no argument, or an attribute. 

Infix and prefix features, collectively called operator features, are treated exactly 
like other features (called identifier features) with the exception of the two syntactical 
properties already seen: 

• The name of an operator feature as it appears in the feature’s declaration is of the 
form infix "§" or prefix "§", rather than an identifier. 

• Calls to operator features are of the form u § v (in the infix case) or § u (in the prefix 
case) rather than using dot notation. 
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As a consequence of the second property, operator features only support qualified 
calls. If a routine of class REAL contained, in the first version given earlier, an unqualified 
call of the form plus (y), yielding the sum of the current number and y, the corresponding 
call will have to be written Current + y in the second version. With an identifier feature, 
the corresponding notation, Current  plus (y), is possible but we would not normally use it 
in practice since it is uselessly wordy. With an operator feature we do not have a choice.

Other than the two syntactical differences noted, operator features are fully 
equivalent to identifier features; for example they are inherited in the same way. Any class, 
not just the basic classes such as REAL, can use operator features; for example, it may be 
convenient in a class VECTOR to have a vector addition function called infix "+". 

The following rule will apply to the operators used in operator features. An operator 
is a sequence of one or more printable characters, containing no space or newline, and 
beginning with one of

+  –  ∗  /  <  >  =  \  ^  @  #  |  &
In addition, the following keywords, used for compatibility with usual boolean 

notation, are permitted as operators:
not  and  or  xor  and then  or else  implies
In the non-keyword case, the reason for restricting the first character is to preserve 

the clarity of software texts by ensuring that any use of an infix or prefix operator is 
immediately recognizable as such from its first character.

Basic classes (INTEGER etc.) use the following, known as standard operators:
• Prefix: +  –  not. 
• Infix: +  –  ∗  /  <  >  <=  >=  //  \\  ^  and  or  xor  and then  or else  implies. 

The semantics is the usual one. // is used for integer division, \\ for integer remainder, ^
as the power operation, xor as exclusive or. In class BOOLEAN, and then and or else are 
variants of and and or, the difference being explained in a later chapter, and implies is 
the implication operator, such that a implies b is the same as (not a) or else b.

Operators not in the “standard” list are called free operators. Here are two examples 
of possible operator features using free operators: 

• When we later introduce an ARRAY class, we will use the operator feature infix "@"
for the function that returns an array element given by its index, so that the i-th 
element of an array a may be written simply as a @ i. 

• In class POINT, we could have used infix "|–|" instead of distance, so that the 
distance between p1 and p2 is written p1 |–| p2 instead of p1  p2. 
The precedence of all operators is fixed; standard operators have their usual 

precedence, and all free operators bind tighter than standard operators. 

The use of operator features is a convenient way to maintain compatibility with well-
accepted expression notation while ensuring the goal of a fully uniform type system (as 
stated by the Object Rule) and of a single fundamental mechanism for computation. In the 
same way that treating INTEGER and other basic types as classes does not need to cause 
any performance problem, treating arithmetic and boolean operations as features does not 
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need to affect efficiency. Conceptually, a + x is a feature call; but any good compiler will 
know about the basic types and their features, and will be able to handle such a call so as 
to generate code at least as good as the code generated for a + x in C, Pascal, Ada or any 
other language in which + is a special hard-wired language construct. 

When using operators such as +, < and others in expressions, we may forget, most 
of the time, that they actually stand for feature calls; the effect of these operators is the one 
we would expect in traditional approaches. But it is pleasant to know that, thanks to the 
theoretical context of their definition, they do not cause any departure from object-
oriented principles, and fit in perfectly with the rest of the method. 

7.8  SELECTIVE EXPORTS AND INFORMATION HIDING

In the examples seen so far all the features of a class were exported to all possible clients. 
This is of course not always acceptable; we know from earlier discussion how important 
information hiding is to the design of coherent and flexible architectures. 

Let us take a look at how we can indeed restrict features to no clients, or to some 
clients only. This section only introduces the notation; the chapter on the design of class 
interfaces will discuss its proper use.

Full disclosure

By default, as noted, features declared without any particular precaution are available to 
all clients. In a class of the form 

class S1 feature
f …
g …
…

end

features f, g, … are available to all clients of S1. This means that in a class C, for an entity 
x declared of type S1, a call

x  f …
is valid, provided the call satisfies the other validity conditions on calls to f, regarding the 
number and types of arguments if any. (For simplicity the discussion will use identifier 
features as examples, but it applies in exactly the same way to operator features, for which 
the clients will use calls in infix or prefix form rather than dot notation.)

Restricting client access

To restrict the set of clients that can call a certain feature h, we will use the possibility for 
a class to have two or more feature clauses. The class will then be of the form 



THE STATIC STRUCTURE: CLASSES  §7.8 192

This is not the rec-
ommended style; see 
S5 below.

“The architectural 
role of selective 
exports”, page 209.

“SELECTIVE 
EXPORTS”, 23.5, 
page 796.
class S2 feature
f …
g …

feature {A, B}
h …
…

end

Features f and g have the same status as before: available to all clients. Feature h is 
available only to A and B, and to their descendants (the classes that inherit directly or 
indirectly from A or B). This means that with x declared of type S2 a call of the form 

x  h …

is invalid unless it appears in the text of A, B, or one of their descendants. 

As a special case, if you want to hide a feature i from all clients, you may declare it 
as exported to an empty list of clients: 

class S3 feature { }
i …

end

In this case a call of the form x  i (…) is always invalid. The only permitted calls to 
i are unqualified calls of the form 

i (…)

appearing in the text of a routine of S3 itself, or one of its descendants. This mechanism 
ensures full information hiding. 

The possibility of hiding a feature from all clients, as illustrated by i, is present in 
many O-O languages. But most do not offer the selective mechanism illustrated by h: 
exporting a feature to certain designated clients and their proper descendants. This is 
regrettable since many applications will need this degree of fine control. 

 The discussion section of the present chapter explains why selective exports are a 
critical part of the architectural mechanisms of the object-oriented approach, avoiding the 
need for “super-modules” that would hamper the simplicity of the method.

We will encounter various examples of selective exports in subsequent chapters, and 
will study their methodological role in the design of good modular interfaces.

Style for declaring secret features

A small point of style. A feature declared in the form used above for i is secret, but perhaps 
this property does not stand out strongly enough from the syntax. In particular, the 
difference with a public feature may not be visible enough, as in 
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class S4 feature
exported…

feature { }
secret …

end
where feature exported is available to all clients whereas secret is available to no client. 
The difference between feature { }, with an empty list in braces, and feature, with no 
braces, is a little weak. For that reason, the recommended notation uses not an empty list 
but a list consisting of the single class NONE, as in 

class S5 feature
… Exported …

feature {NONE}
… Secret …

end
Class NONE, which will be studied in a later chapter in connection with inheritance, 

is a Base library class which is so defined as to have no instances and no descendants. So 
exporting a feature to NONE only is, for all practical purposes, the same as keeping it 
secret. As a result there is no meaningful difference between the forms illustrated by S4
and S5; for reasons of clarity and readability, however, the second form is preferred, and 
will be employed in the rest of this book whenever we need to introduce a secret feature. 

Exporting to yourself

A consequence of the rules seen so far is that a class may have to export a secret feature. 
Assume the declaration

note
note: "Invalid as it stands (see explanations below)"

class S6 feature
x: S6
my_routine do … print (x  secret) … end

feature {NONE}
secret: INTEGER

end
By declaring x of type S6 and making the call x  secret, the class becomes its own 

client. But this call is invalid, since secret is exported to no class! That the unauthorized 
client is S6 itself does not make any difference: the {NONE} export status of secret makes 
any call x  secret invalid. Permitting exceptions would damage the simplicity of the rule.

The solution is simple: instead of feature {NONE} the header of the second feature
clause should read feature {S6}, exporting the feature to the class itself and its descendants.

Be sure to note that this is only needed if you want to use the feature in a qualified 
call such as appears in print (x  secret). If you are simply using secret by itself, as in the 
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instruction print (secret), you of course do not need to export it at all. Features declared in 
a class must be usable by the routines of the class and its descendants; otherwise we could 
never do anything with a secret feature! Only if you use the feature indirectly in a qualified 
call do you need to export it to yourself.

7.9  PUTTING EVERYTHING TOGETHER 

The previous discussions have introduced the basic mechanisms of object-oriented 
computation, but we are still missing the big picture: how does anything ever get executed? 

Answering this question will help us piece everything together and understand how 
to build executable systems from individual classes. 

General relativity 

What is a little mind-boggling is that every description given so far of what happens at run 
time has been relative. The effect of a routine such as translate is relative to the current 
instance; within the class text, as noted, the current instance is not known. So we can only 
try to understand the effect of a call with respect to a specific target, such as p1 in

p1  translate (u, v)

But this brings the next question: what does p1 actually denote? Here again the 
answer is relative. The above call must appear in the text of some class such as 
GRAPHICS. Assume that p1 is an attribute of class GRAPHICS. Then the occurrence of 
p1 in the call, as noted above, may be viewed as a call: p1 stands for Current  p1. So we 
have only pushed the problem further, as we must know what object Current stood for at 
the time of the above call! In other words, we must look at the client that called the routine 
of class GRAPHICS containing that call. 

So this attempt at understanding a feature call starts off a chain of reasoning, which 
we will not be able to follow to the end unless we know where execution started. 

The Big Bang

To understand what is going on let us generalize the above example to an arbitrary call. If 
we do understand that arbitrary call, we will indeed understand all of O-O computation, 
thanks to the Feature Call principle which stated that

Any call will be of one of the following two forms (the argument list may be absent 
in either case): 

• Unqualified: f (a, b, …)
• Qualified: x  g (u, v, …)

F1 • No software element ever gets executed except as part of a routine call. 
F2 • Every call has a target.
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The call appears in the body of a routine r. It can only get executed as part of a call 
to r. Assume we know the target of that call, some object OBJ. Then the target t is easy to 
determine in each case: 
T1 • For the unqualified form, t is simply OBJ. Cases T2, T3 and T4 will apply to the 

qualified form. 
T2 • If x is an attribute, the x field of OBJ has a value which must be attached to some 

object; t is that object.
T3 • If x is a function, we must first execute the (unqualified) call to x; the result gives 

us t. 
T4 • If x is a local entity of r, earlier instructions will have given x a value, which at the 

time of the call must be attached to a certain object; t is that object. 

The only problem with these answers is of course that they are relative: they only 
help us if we know the current instance OBJ. What is OBJ? Why, the target of the current 
call, of course! As in the traditional song (the kid was eaten by the cat, the cat was bitten 
by the dog, the dog was beaten by the stick…), we do not see the end of the chain. 

To transform these relative answers into absolute ones, then, we must know what 
happened when everything started — at Big Bang time. Here is the rule:

At Big Bang time, an object gets created, and a creation procedure gets started. The 
root object is an instance of a certain class, the system’s root class; the creation procedure 
is one of the procedures of the root class. In all but trivial systems, the creation procedure 
will itself create new objects and call routines on them, triggering more object creations 
and more routine calls. System execution as a whole is the successive deployment of all 
the pieces in a giant and complex firework, all resulting directly or indirectly from the 
initial lighting of a minuscule spark. 

Once we know where everything starts, it is not difficult to trace the fate of Current
throughout this chain reaction. The first current object, at the start of everything (Big Bang 
time, when the root’s creation procedure is called), is the root object. Then at any stage 
during system execution let r be the latest routine to have been called; if OBJ was the 
current object at the time of the call to r, here is what becomes of Current during the 
execution of r: 

C1 • If r executes an instruction which does not call a routine (for example an 
assignment), we keep the same object as current object.

C2 • Starting an unqualified call also keeps the same object as current object. 

Definition: system execution
Execution of an object-oriented software system consists of the following 
two steps: 

• Create a certain object, called the root object for the execution. 
• Apply a certain procedure, called a creation procedure, to that object.
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C3 • Starting a qualified call x  f … causes the target object of that call, which is the 
object attached to x (determined from OBJ through the rules called T1 to T4 at the 
top of the previous page), to become the new current object. When the call 
terminates, OBJ resumes its role as current object. 

In cases C2 and C3 the call may be to a routine that itself includes further calls, 
qualified or not; so this rule must be understood recursively. 

There is nothing mysterious or confusing, then, in the rule for determining the target 
of any call, even though that rule is relative and in fact recursive. What is mind-boggling 
is the power of computers, the power we use to play sorcerer’s apprentice by writing a 
deceptively small software text and then executing it to create objects and perform 
computations on them in numbers so large — number of objects, number of computations 
— as to appear almost infinite when measured on the scale of human understanding. 

Systems 

The emphasis in this chapter is on classes: the individual components of object-oriented 
software construction. To obtain executable code, we must assemble classes into systems. 

The definition of a system follows from the previous discussion. To make up a 
system we need three things: 

• A set CS of classes, called the system’s class set.

• The indication of which class in CS is the root class. 

• The indication of which procedure of the root class is the root creation procedure. 

To yield a meaningful system, these elements must satisfy a consistency condition, 
system closure: any class needed directly or indirectly by the root class must be part of CS. 

Let us be a little more precise:

• A class C needs directly a class D if the text of C refers to D. There are two basic 
ways in which C may need directly D: C may be a client of D, as defined earlier in 
this chapter, and C may inherit from D, according to the inheritance relation which 
we will study later. 

• A class C needs a class E, with no further qualification, if C is E or C needs directly 
a class D which (recursively) needs E. 

With these definitions we may state the closure requirement as follows:

If the system is closed, a language-processing tool, such as a compiler, will be able 
to process all its classes, starting with the root class, and recursively handling needed 

Definition: system closure
A system is closed if and only if its class set contains all classes needed by 
the root class. 
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classes as it encounters their names. If the tool is a compiler, it will then produce the 
executable code corresponding to the entire system. 

This act of tying together the set of classes of a system, to generate an executable 
result, is called assembly and is the last step in the software construction process. 

Not a main program 

The discussions in the previous chapters repeatedly emphasized that systems developed 
with the object-oriented method have no notion of main program. By introducing the 
notion of root class, and requiring the system specification to indicate a particular creation 
procedure, have we not brought main programs back through a side door? 

Not quite. What is wrong with the traditional notion of main program is that it 
merges two unrelated concepts: 

• The place where execution begins. 

• The top, or fundamental component of the system’s architecture. 

The first of these is obviously necessary: every system will begin its execution 
somewhere, so we must have a way to let developers specify the starting point; here they 
will do so by specifying a root class and a creation procedure. (In the case of concurrent 
rather than sequential computation we may have to specify several starting points, one per 
independent thread of computation.)

On the concept of top, enough abuse has been heaped in earlier chapters to make 
further comments unnecessary.

But regardless of the intrinsic merit of each of the two notions, there is no reason to 
merge them: no reason to assume that the starting point of a computation will play a 
particularly important role in the architecture of the corresponding system. Initialization 
is just one of many aspects of a system. To take a typical example, the initialization of an 
operating system is its booting procedure, usually a small and relatively marginal 
component of the OS; using it as the top of the system’s design would not lead to an 
elegant or useful architecture. The notion of system, and object technology in general, rely 
in fact on the reverse assumption: that the most important property of a system is the set 
of classes that it contains, the individual capabilities of these classes, and their 
relationships. In this view the choice of a root class is a secondary property, and should be 
easy to change as the system evolves. 

As discussed extensively in an earlier chapter, the quest for extendibility and 
reusability requires that we shed the practice of asking “what is the main function?” at an 
early stage of the system’s design and of organizing the architecture around the answer. 
Instead, the approach promotes the development of reusable software components, built 
as abstract data type implementations — classes. Systems are then built as reconfigurable 
assemblies of such components. 

In fact, you will not always build systems in the practice of O-O software 
development. An important application of the method is to develop libraries of reusable 
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components — classes. A library is not a system, and has no root class. When developing 
a library, you may of course need to produce, compile and execute one or more systems 
along the way, but such systems are a means, not an end: they help test the components, 
and will usually not be part of the library as finally delivered. The actual delivered product 
is the set of classes making up the library, which other developers will then use to produce 
their own systems — or again their own libraries. 

Assembling a system

The process of putting together a number of classes (one of which is designated as root) 
to produce an executable system was called “assembly” above. How in practice do we 
assemble a system? 

Let us assume an operating system of the usual form, where we will keep our class 
texts stored in files. The language processing tool in charge of this task (compiler, 
interpreter) will need the following information: 

A1 • The name of the root class. 

A2 • A universe, or set of files which may contain the text of classes needed by the root 
(in the above precise sense of “needed”). 

This information should not be included in the class texts themselves. Identifying a 
class as root in its own text (A1) would violate the “no main program” principle. Letting 
a class text include information about the files where the needed classes reside would tie 
the class to a particular location in the file system of a given installation; this would 
prevent use of the class by another installation and is clearly inappropriate. 

These observations suggest that the system assembly process will need to rely on 
some information stored outside of the text of the classes themselves. To provide this 
information we will rely on a little control language called Lace. Let us observe the 
process, but not until we have noted that the details of Lace are not essential to the method; 
Lace is just an example of a control language, allowing us to keep the O-O components 
(the classes) autonomous and reusable, and to rely on a separate mechanism for their 
actual assembly into systems.

A typical Lace document, known as an Ace file, might appear as follows: 

system painting root
GRAPHICS ("painting_application")

cluster
base_library: " \ library \ base";
graphical_library: " \ library \ graphics";
painting_application: " \ user \ application"

end -- system painting

The cluster clause defines the universe (the set of files containing class texts). It is 
organized as a list of clusters; a cluster is a group of related classes, representing a 
subsystem or a library.
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In practice, an operating system such as Windows, VMS or Unix provides a 
convenient mechanism to support the notion of cluster: directories. Its file system is 
structured as a tree, where only the terminal nodes (leaves), called “plain files”, contain 
directly usable information; the internal nodes, called directories, are sets of files (plain 
files or again directories).

We may associate each cluster with a directory. This convention is used in Lace as 
illustrated above: every cluster, with a Lace name such as base_library, has an associated 
directory, whose name is given as a string in double quotes, such as " \ library \ base". This 
file name assumes Windows conventions (names of the form  \ dir1 \ dir2 \ …), but this is 
just for the sake of the example. You can obtain the corresponding Unix names by 
replacing the backslash characters \ by slashes /.

Although by default you may use the hierarchical structure of directories to represent cluster 
nesting, Lace has a notion of subcluster through which you can define the logical structure 
of the cluster hierarchy, regardless of the clusters’ physical locations in the file system.

The directories listed in the cluster clause may contain files of all kinds. To 
determine the universe, the system assembly process will need to know which ones of 
these files may contain class texts. A simple convention is to require the text of any class 
of name NAME to be stored in a file of name name  e (lower case). Let us assume this 
convention (which can easily be extended for more flexibility) for the rest of this 
discussion. Then the universe is the set of files having names of the form name  e in the 
list of directories appearing in the cluster clause. 

The root clause of Lace serves to designate the root class of the system. Here the root 
class is GRAPHICS and, as indicated in parentheses, it appears in the painting_application
cluster. If there is only one class called GRAPHICS in the universe, it is not necessary to 
specify the cluster. 

Assume that you start a language processing tool, for example a compiler, to process 
the system described by the above Ace. Assume further that none of the classes in the 
system has been compiled yet. The compiler finds the text of the root class, GRAPHICS, 
in the file graphics  e of the cluster painting_application; that file appears in the directory 

Root directory

Subdirectory

Non-directory
file

d3d2d1

d4

f3



THE STATIC STRUCTURE: CLASSES  §7.9 200
 \ user \ application. By analyzing the text of class GRAPHICS, the compiler will find the 
names of the classes needed by GRAPHICS and will look for files with the corresponding 
  e names in the three cluster directories. It will then apply the same search to the classes 
needed by these new classes, repeating the process until it has located all the classes 
needed directly or indirectly by the root. 

An important property of this process is that it should be automatic. As a software 
developer, you should not have to write lists of dependencies between modules (known as 
“Make files”), or to indicate in each file the names of the files that will be needed for its 
compilation (through what is known in C and C++ as “Include directives”). Not only is it 
tedious to have to create and maintain such dependency information manually; this 
process also raises the possibility of errors when the software evolves. All that the Ace 
requires you to provide is the information that no tool can find by itself: the name of the 
root class, and the list of locations in the file system where needed classes — what earlier 
was called the class set of the system — may appear. 

To simplify the work of developers further, a good compiler will, when called in a 
directory where no Ace is present, construct a template Ace whose cluster clause includes 
the basic libraries (kernel, fundamental data structures and algorithms, graphics etc.) and 
the current directory, so that you will only have to fill in the name of the system and of its 
root class, avoiding the need to remember the syntax of Lace. 

The end result of the compilation process is an executable file, whose name is the 
one given after system in the Ace — painting in the example. 

The Lace language includes a few other simple constructs, used to control the actions 
of language processing tools, in particular compiler options and assertion monitoring 
levels. We will encounter some of them as we explore further O-O techniques. Lace, as 
noted, also supports the notion of logical subcluster, so that you can use it to describe 
complex system structures, including the notions of subsystem and multi-level libraries.

Using a system description language such as Lace, separate from the development 
language, allows classes to remain independent from the system or systems in which they 
intervene. Classes are software components, similar to chips in electronic design; a system 
is one particular assembly of classes, similar to a board or a computer made by assembling 
a certain set of chips. 

Printing your name 

Reusable software components are great, but sometimes all you want to do is just a simple 
task, such as printing a string. You may have been wondering how to write a “program” 
that will do it. Having introduced the notion of system, we can answer this burning 
question. (Some people tend to be nervous about the whole approach until they see how 
to do this, hence this little digression.) 

The following little class has a procedure which will print a string: 
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class SIMPLE creation
make

feature
make

-- Print an example string.
do

print_line ("Hello Sarah!")
end

end
The procedure print_line can take an argument of any type; it prints a default 

representation of the corresponding object, here a string, on a line. Also available is print
which does not go to a new line after printing. Both procedures are available to all classes, 
coming from a universal ancestor, GENERAL, as explained in a later chapter.

To obtain a system that will print the given string, do the following: 
E1 • Put the above class text in a file called simple  e in some directory. 
E2 • Start the compiler.
E3 • If you have not provided an Ace, you will be prompted to edit a new one, 

automatically generated from a template; just fill in the name of the root class, 
SIMPLE, the name of the system — say my_ first — and the cluster directory.

E4 • Exit from the editor; the compiler will assemble the system and produce an 
executable file called my_ first. 

E5 • Execute the result. On platforms such as Unix with a notion of command-line 
execution a command will have been generated, of name my_ first; simply type that 
name. On graphical platforms, a new icon will have appeared, labeled my_ first; 
just double-click on that icon.

The result of the last step will be, as desired, to print on your console the message

Structure and order: the software developer as arsonist 

We now have an overall picture of the software construction process in the object-oriented 
method — assembling classes into systems. We also know how to reconstruct the chain of 
events that will lead to the execution of a particular operation. Assume this operation is

[A]
x  g (u, v, …)

appearing in the text of a routine r of a class C, of which we assume x to be an attribute. 
How does it ever get executed? Let us recapitulate. You must have included C in a system, 
and assembled that system with the help of an appropriate Ace. Then you must have 
started an execution of that system by creating an instance of its root class. The root’s 

Hello Sarah!
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creation procedure must have executed one or more operations which, directly or 
indirectly, caused the creation of an instance C_OBJ of C, and the execution of a call of 
the form 

[B]
a  r (…)

where a was at the time attached to C_OBJ. Then the call shown as [A] will execute g, 
with the arguments given, using as target the object attached to the x field of C_OBJ. 

So by now we know (as well we should) how to find out the exact sequence of events 
that will occur during the execution of a system. But this assumes we look at the entire 
system. In general we will not be able, just by examining the text of a given class, to 
determine the order in which clients will call its various routines. The only ordering 
property that is immediately visible is the order in which a given routine executes the 
instructions of its body. 

Even at the system level, the structure is so decentralized that the task of predicting 
the precise order of operations, although possible in principle, is often difficult. More 
importantly, it is usually not very interesting. Remember that we treat the root class as a 
somewhat superficial property of the system — a particular choice, made late in the 
development process, of how we are going to combine a set of individual components and 
schedule their available operations. 

This downplaying of ordering constraints is part of object technology’s constant 
push for decentralization in system architectures. The emphasis is not on “the” execution 
of “the” program (as in Pascal or C programming and many design methods) but on the 
services provided by a set of classes through their features. The order in which the services 
will be exercised, during the execution of a particular system built from these classes, is a 
secondary property. 

The method goes in fact further by prescribing that even if you know the order of 
execution you should not base any serious system design decision on it. The reason for 
this rule was explored in earlier chapters: it is a consequence of the concern for 
extendibility and reusability. It is much easier to add or change services in a decentralized 
structure than to change the order of operations if that order was one of the properties used 
to build the architecture. This reluctance of the object-oriented method to consider the 
order of operations as a fundamental property of software systems — what an earlier 
discussion called the shopping list approach — is one of its major differences with most 
of the other popular software design methods.

These observations once again evoke the picture of the software developer as 
firework expert or perhaps arsonist. He prepares a giant conflagration, making sure that 
all the needed components are ready for assembly and all the needed connections present. 
He then lights up a match and watches the blaze. But if the structure has been properly set 
up and every component is properly attached to its neighbors, there is no need to follow 
or even try to predict the exact sequence of lightings; it suffices to know that every part 
that must burn will burn, and will not do so before its time has come. 
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7.10  DISCUSSION
As a conclusion to this chapter, let us consider the rationale behind some of the decisions 
made in the design of the method and notation, exploring along the way a few alternative 
paths. Similar discussion sections will appear at the end of most chapters introducing new 
constructs; their aim is to spur the reader’s own thinking by presenting a candid, 
uncensored view of a few delicate issues.

Form of declarations 

To hone our critical skills on something that is not too life-threatening, let us start with a 
syntactical property. One point worth noting is the notation for feature declarations. For 
routines, there are none of the keywords procedure or function such as they appear in 
many languages; the form of a feature determines whether it is an attribute, a procedure or 
a function. The beginning of a feature declaration is just the feature name, say 

f …

When you have read this, you must still keep all possibilities open. If a list of 
arguments comes next, as in 

g (a1: A; b1: B; …) …

then you know g is a routine; it could still be either a function or a procedure. Next a type 
may come: 

f: T …
g (a1: A; b1: B; …): T …

In the first example, f can still be either an attribute or a function without arguments; 
in the second, however, the suspense stops, as g can only be a function. Coming back to f, 
the ambiguity will be resolved by what appears after T: if nothing, f is an attribute, as in

my_ file: FILE

But if an is is present, followed by a routine body (do or the variants once and 
external to be seen later), as in 

f: T
-- …

do … end
f is a function. Yet another variant is: 

f: T is some_value
which defines f as a constant attribute of value some_value. 

The syntax is designed to allow easy recognition of the various kinds of feature, 
while emphasizing the fundamental similarities. The very notion of feature, covering 
routines as well as attributes, is in line with the Uniform Access principle — the goal of 
providing clients with abstract facilities and downplaying their representation differences. 
The similarity between feature declarations follows from the same ideas. 
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Attributes vs. functions 

Let us explore further the consequences of the Uniform Access principle and of grouping 
attributes and routines under a common heading — features.

The principle stated that clients of a module should be able to use any service 
provided by the module in a uniform way, regardless of how the service is implemented 
— through storage or through computation. Here the services are the features of the class; 
what is meaningful for clients is the availability of certain features and their properties. 
Whether a given feature is implemented by storing appropriate data or by computing the 
result on demand is, for most purposes, irrelevant. 

Assume for example a class PERSON containing a feature age of type INTEGER, 
with no arguments. If the author of a client class writes the expression 

Isabelle  age
the only important information is that age will return an integer, the age field of an 
instance of PERSON attached, at run-time, to the entity Isabelle. Internally, age may be 
either an attribute, stored with each object, or a function, computed by subtracting the 
value of a birth_date attribute from the current year. But the author of the client class does 
not need to know which one of these solutions was chosen by the author of PERSON. 

The notation for accessing an attribute, then, is the same as for calling a routine; and 
the notations for declaring these two kinds of feature are as similar as conceptually possible. 
Then if the author of a supplier class reverses an implementation decision (implementing 
as a function a feature that was initially an attribute, or conversely), clients will not be 
affected; they will require neither change, possibly not even recompilation.

The contrast between the supplier’s and client’s view of the features of a module was 
apparent in the two figures which helped introduce the notion of feature earlier in this 
chapter. The first used as its primary criterion the distinction between routines and 
attributes, reflecting the internal (implementation) view, which is also the supplier’s view. 
In the second figure, the primary distinction was between commands and queries, the 
latter further subdivided into queries with and without arguments. This is the external view 
— the client’s view. 

The decision to treat attributes and functions without arguments as equivalent for 
clients has two important consequences, which later chapters will develop:

• The first consequence affects software documentation. The standard client 
documentation for a class, known as the short form of the class, will be devised so 
as not to reveal whether a given feature is an attribute or a function (in cases for 
which it could be either).

• The second consequence affects inheritance, the major technique for adapting 
software components to new circumstances without disrupting existing software. If 
a certain class introduces a feature as a function without arguments, descendant 
classes will be permitted to redefine the feature as an attribute, substituting memory 
for computation. 
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Exporting attributes 

A consequence of the preceding observations is that classes may export attributes. For 
example, class POINT, in the cartesian implementation introduced earlier, has attributes x
and y, and exports them to clients in exactly the same way as the functions rho and theta. 
To obtain the value of an attribute for a certain object, you simply use feature call notation, 
as in my_ point  x or my_ point  theta.

This ability to export attributes differs from the conventions that exist in many O-O 
languages. Typical of these is Smalltalk, where only routines (called “methods”) may be 
exported by a class; attributes (“instance variables”) are not directly accessible to clients. 

A consequence of the Smalltalk approach is that if you want to obtain the effect of 
exporting an attribute you have to write a small exported function whose only purpose is 
to return the attribute’s value. So in the POINT example we could call the attributes 
internal_ x and internal_ y, and write the class as follows (using the notation of this book 
rather than the exact Smalltalk syntax, and calling the functions abscissa and ordinate
rather than x and y to avoid any confusion): 

class POINT feature -- Public features:
abscissa: REAL

-- Horizontal coordinate
do Result := internal_ x end

ordinate: REAL
-- Vertical coordinate

do Result := internal_ y end
… Other features as in the earlier version …

feature {NONE} -- Features inaccessible to clients: 
internal_ x, internal_ y: REAL

end
This approach has two drawbacks: 

• It forces authors of supplier classes to write many small functions such as abscissa 
and ordinate. Although in practice such functions will be short (since the syntax of 
Smalltalk is terse, and makes it possible to give the same name to an attribute and a 
function, avoiding the need to devise special attribute names such as internal_ x and 
internal_ y), writing them is still a waste of effort on the part of the class author, and 
reading them is a useless distraction for the class reader. 

• The method entails a significant performance penalty: every access to a field of an 
object now requires a routine call. No wonder object technology has developed a 
reputation for inefficiency in some circles. (It is possible to develop an optimizing 
compiler which will expand calls to abscissa-style functions in-line, but then what is 
the role of these functions?)
The technique discussed in this chapter seems preferable. It avoids the need for 

cluttering class texts with numerous little extra functions, and instead lets the class 
designers export attributes as needed. Contrary to what a superficial examination might 
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suggest, this policy does not violate information hiding; it is in fact a direct 
implementation of this principle and of the associated principle of Uniform Access. To 
satisfy these requirements it suffices to make sure that attributes, as seen by clients, are 
indistinguishable from functions without arguments, and that they have the same 
properties for inheritance and class documentation. 

This technique reconciles the goals of Uniform Access (essential for the clients), ease 
of writing class texts (essential for the suppliers), and efficiency (essential for everyone). 

The client’s privileges on an attribute

Exporting an attribute, using the techniques just discussed, allows clients to access the 
value of an attribute for a certain object, as in my_ point  x It does not allow clients to 
modify that value. You may not assign to an attribute; the assignment

my_ point  x := 3.7

is syntactically illegal. The syntax rule is simple: a  attrib, if attrib is an attribute (or for 
that matter a function) is an expression, not an entity, so you cannot assign to it, any more 
than you can assign to the expression a + b.

To make attrib accessible in modification mode, you must write and export an 
appropriate procedure, of the form: 

set_attrib (v: G)
-- Set to v the value of attrib.

do
attrib := v

end

Instead of this convention, one could imagine a syntax for specifying access rights, 
such as

class C feature [AM]
…

feature [A] {D, E}
…

where A would mean access and M modification. (Specifying A could be optional: if you 
export something you must at least allow clients to access it in read mode). This would 
avoid the frequent need for writing procedures similar to set_attrib.

Besides not justifying the extra language complication, this solution is not flexible 
enough. In many cases, you will want to export specific ways of modifying an attribute. 
For example, the following class exports a counter, and the right to modify it not arbitrarily 
but only by increments of +1 or –1: 
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class COUNTING feature
counter: INTEGER
increment

-- Increment counter
do

count := count + 1
end

decrement
-- Decrement counter

do
count := count — 1

end
end
Similarly, class POINT as developed in this chapter does not let its clients set the x

and y of a point directly; clients can change the values of these attributes, but only by going 
through the specific mechanisms that have been exported for that purpose, procedures 
translate and scale.

When we study assertions we will see another fundamental reason why it is 
inappropriate to let clients perform direct assignments of the a  attrib := some_value form: 
not all some_value are acceptable. You may define a procedure such as

set_polygon_size (new_size: INTEGER)
-- Set the number of polygon vertices to new_size.

require
new_size >= 3

do
size := new_size

end
requiring any actual argument to be 3 or more. Direct assignments would make it 
impossible to enforce this constraint; a call could then produce an incorrect object.

These considerations show that a class writer must have at his disposal, for each 
attribute, five possible levels for granting access privileges to clients:

Level 0 is total protection: clients have no way of accessing the attribute. At level 1 
and above, you make the attribute available for access, but at level 1 you do not grant any 
modification right. At level 2, you let clients modify the attribute through specific 
algorithms. At level 3, you let them set the value, but only if it satisfies certain constraints, 
as in the polygon size example. Level 4 removes the constraints.

No access Read only Restricted write Protected write

(0) (1) (2) (3)

Unrestricted 

(4)
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The solution described in this chapter is a consequence of this analysis. Exporting an 
attribute only gives clients access permission (level 1); permission to modify is specified 
by writing and exporting appropriate procedures, which give clients restricted rights as in 
the counter and point examples (level 2), direct modification rights under some constraints 
(3) or unrestricted rights (4).

This solution is an improvement over the ones commonly found in O-O languages:

• In Smalltalk, as noted, you have to write special encapsulation functions, such as the 
earlier abscissa and ordinate, just to let clients access an attribute at level 1; this may 
mean both extra work for the developer and a performance overhead. Here there is 
no need to write routines for attribute access; only for attribute modifications (levels 
2 and above) do we require writing a routine, since it is conceptually necessary for 
the reasons just seen.

• C++ and Java are the other extreme: if you export an attribute then it is up for grabs 
at level 4: clients can set it through direct assignments in the my_ point  x := 3.7
style as well as access its value. The only way to achieve level 2 (not 3 in the 
absence of an O-O assertion mechanism in these languages) is to hide the attribute 
altogether, and then write exported routines, both procedures for modification 
(levels 2 or 4) and functions for access (level 1). But then you get the same 
behavior as with the Smalltalk approach.

This discussion of a fairly specific language trait illustrates two of the general 
principles of language design: do not needlessly bother the programmer; know when to 
stop introducing new language constructs at the point of diminishing returns. 

Optimizing calls

At levels 2 and 3 of the preceding discussion, the use of explicit procedure calls such as 
my_ polygon  set_size (5) to change an attribute value is inevitable. At level 4, one could 
fear the effect on performance of using the set_attrib-style. The compiler, however, can 
generate the same code for my_ point  set_ x (3.7) as it would for my_ point  x := 3.7 had this 
last phrasing been legal.

ISE’s compiler achieves this through a general in-line expansion mechanism, which 
eliminates certain routine calls by inserting the routine body directly, with appropriate 
argument substitutions, into the caller’s code.

In-line expansion is indeed one of the transformations that we may expect from an 
optimizing compiler for an object-oriented language. The modular style of development 
fostered by object technology produces many small routines. It would be unacceptable for 
developers to have to worry about the effect of the corresponding calls on performance. 
They should just use the clearest and most robust architecture they can devise, according 
to the modularity principles studied in this book, and expect the compiler to get rid of any 
calls which may be relevant to the design but not necessary for the execution.
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In some programming languages, notably Ada and C++, developers specify what 
routines they want expanded in-line. I find it preferable to treat this task as an automatic 
optimization, for several reasons:

• It is not always correct to expand a call in-line; since the compiler must, for 
correctness, check that the optimization applies, it may just as well spare developers 
the trouble of requesting it in the first place.

• With changes in the software, in particular through inheritance, a routine which was 
inlinable may become non-inlinable. A software tool is better than a human at 
detecting such cases.

• On a large system, compilers will always be more effective. They are better equipped 
to apply the proper heuristics — based on routine size and number of calls — to 
decide what routines should be inlined. This is again especially critical as the 
software changes; we cannot expect a human to track the evolution of every piece.

• Software developers have better things to do with their time.

The modern software engineering view is that such tedious, automatable and delicate 
optimizations should be handled by software tools, not people. The policy of leaving them 
to the responsibility of developers is one of the principal criticisms that have been leveled 
at C++ and Ada. We will encounter this debate again in studying two other key 
mechanisms of object technology: memory management, and dynamic binding.

The architectural role of selective exports

The selective export facility is not just a convenience; it is essential to object-oriented 
architecture. It enables a set of conceptually related classes to make some of their features 
accessible to each other without releasing them to the rest of the world, that is to say, 
without violating the rule of Information Hiding. It also helps us understand a frequently 
debated issue: whether we need modules above the level of classes.

Without selective exports, the only solution (other than renouncing Information 
Hiding altogether) would be to introduce a new modular structure to group classes. Such 
super-modules, similar to Ada’s or Java’s packages, would have their own rules for hiding 
and exporting. By adding a completely new and partly incompatible module level to the 
elegant framework defined by classes, they would yield a bigger, hard-to-learn language.

Rather than using a separate package construct, the super-modules could themselves 
be classes; this is the approach of Simula, which permits class nesting. It too brings its 
share of extra complexity, for no clear benefit.

We have seen that the simplicity of object technology relies for a good part on the 
use of a single modular concept, the class; its support for reusability relies on our ability 
to extract a class from its context, keeping only its logical dependencies. With a super-
module concept we run the risk of losing these advantages. In particular, if a class belongs 
to a package or an enclosing class we will not be able to reuse it by itself; if we want to 
include it in another super-module we will need either to import the entire original super-
module, or to make a copy of the class — not an attractive form of reuse.
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The need will remain to group classes in structured collections. This will be 
addressed in a later chapter through the notion of cluster. But the cluster is a management 
and organizational notion; making it a language construct would jeopardize the simplicity 
of the object-oriented approach and its support for modularity.

When we want to let a group of classes grant each other special privileges, we do not 
need a super-module; selective exports, a modest extension to basic information hiding, 
provide a straightforward solution, allowing classes to retain their status of free-standing 
software components. This is, in my opinion, a typical case of how a simple, low-tech idea 
can outperform the heavy artillery of a “powerful” mechanism.

Listing imports 

Each class lists, in the headers of its feature clauses, the features that it makes available 
to others. Why not, one might ask, also list features obtained from other classes? The 
encapsulation language Modula-2 indeed provides an import clause.

In a typed approach to O-O software construction, however, such a clause would not 
serve any purpose other than documentation. To use a feature f from another class C, you 
must be a client or (through inheritance) a descendant of that class. In the first case, the 
only one seen so far, this means that every use of f is of the form 

a  f

where, since our notation is typed, a must have been declared: 

a: C

showing without any ambiguity that f came from the C. In the descendant case the 
information will be available from the official class documentation, its “flat-short form”.

So there is no need to bother developers with import clauses.

There is a need, however, to help developers with import documentation. A good 
graphical development environment should include mechanisms that enable you, by 
clicking a button, to see the suppliers and ancestors of a class, and follow the import chain 
further by exploring their own suppliers and ancestors.

Denoting the result of a function 

An interesting language issue broached earlier in this chapter is how to denote function 
results. It is worth exploring further although it applies to non-O-O languages as well. 

Consider a function — a value-returning routine. Since the purpose of any call to the 
function is to compute a certain result and return it to the caller, the question arises of how 
to denote that result in the text of the function itself, in particular in the instructions which 
initialize and update the result. 

The convention introduced in this chapter uses a special entity, Result, treated as a 
local entity and initialized to the appropriate default value; the result returned by a call is 
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the final value of Result. Because of the initialization rules, that value is always defined 
even if the routine body contains no assignment to Result. For example, the function 

f: INTEGER
do

if some_condition then Result := 10 end
end

will return the value 10 if some_condition is satisfied at the time of the call, and 0 (the 
default initialization value for INTEGER) otherwise. 

The technique using Result originated, as far as I know, with the notation developed 
in this book. (Since the first edition it has found its way into at least one other language, 
Borland’s Delphi.) Note that it would not work in a language allowing functions to be 
declared within functions, as the name Result would then be ambiguous. Among the 
techniques used in earlier languages, the most common are: 

A • Explicit return instructions (C, C++/Java, Ada, Modula-2). 

B • Treating the function name as a variable (Fortran, Algol 60, Simula, Algol 68, 
Pascal). 

Convention A relies on an instruction of the form return e whose execution 
terminates the current execution of the enclosing function, returning e as the result. This 
technique has the benefit of clarity, since it makes the returned value stand out clearly from 
the function text. But it suffers from several drawbacks: 

A1 • Often, the result must in practice be obtained through some computation: an 
initialization and a few subsequent updates. This means you must introduce and 
declare an extraneous variable (an entity in the terminology of this chapter) just for 
the purpose of holding the intermediate results of the computation. 

A2 • The technique tends to promote multiple-exit modules, which are contrary to the 
principles of good program structuring. 

A3 • The language definition must specify what will happen if the last instruction 
executed by a call to the function is not a return. The Ada result in this case is to 
raise … a run-time exception! (This may be viewed as the ultimate in buck-
passing, the language designers having transferred the responsibility for language 
design issues not just to software developers, but finally to the end-users of the 
programs developed in the language!) 

Note that it is possible to solve the last two problems by treating return not as an 
instruction, but as a syntactic clause which would be a required part of any function text: 

function name (arguments): TYPE
do

…
return

expression
end
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This solution remains compatible in spirit with the idea of a return instruction while 
addressing its most serious deficiencies. No common language, however, uses it, and of 
course it still leaves problem A1 open. 

The second common technique, B, treats a function’s name as a variable within the 
text of the function. The value returned by a call is the final value of that variable. (This 
avoids introducing a special variable as mentioned under A1.) 

The above three problems do not arise in this approach. But it raises other difficulties 
because the same name now ambiguously denotes both a function and a variable. This is 
particularly confusing in a language allowing recursion, where a function body may use 
the function’s name to denote a recursive call. Because an occurrence of the function’s 
name now has two possible meanings, the language must define precise conventions as to 
when it denotes the variable, and when it denotes a function call. Usually, in the body of 
a function f, an occurrence of the name f as the target of an assignment (or other contexts 
implying a value to be modified) denotes the variable, as in 

f := x

and an occurrence of f  in an expression (or other contexts implying a value to be accessed) 
denotes a recursive function call, as in 

x := f

which is valid only if f  has no arguments. But then an assignment of the form 
f := f + 1

will be either rejected by the compiler (if f has arguments) or, worse, understood as 
containing a recursive call whose result gets assigned to f (the variable). The latter 
interpretation is almost certainly not what the developer had in mind: if f had been a 
normal variable, the instruction would simply have increased its value by one. Here the 
assignment will usually cause a non-terminating computation. To obtain the desired effect, 
the developer will have to introduce an extra variable; this takes us back to problem A1
above and defeats the whole purpose of using technique B. 

The convention introduced in this chapter, relying on the predefined entity Result, 
avoids the drawbacks of both A and B. An extra advantage, in a language providing for 
default initialization of all entities including Result, is that it simplifies the writing of 
functions: if, as often happens, you want the result to be the default value except in specific 
cases, you can use the scheme

do
if some_condition then Result := “Some specific value” end

end
without worrying about an else clause. The language definition must, of course, specify 
all default values in an unambiguous and platform-independent way; the next chapter will 
introduce such conventions for our notation.

A final benefit of the Result convention will become clear when we study Design by 
Contract: we can use Result to express an abstract property of a function’s result, 
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independent of its implementation, in the routine’s postcondition. None of the other 
conventions would allow us to write

prefix "|_": INTEGER
-- Integer part

do
… Implementation omitted …

ensure
no_greater: Result <= Current
smallest_possible: Result + 1 > Current

end
The postcondition is the ensure clause, stating two properties of the result: that it is 

no greater than the value to which the function is applied; and that adding 1 to it yields a 
result greater than that value.

Complement: a precise definition of entities 
It will be useful, while we are considering notational problems, to clarify a notion that has 
repeatedly been used above, but not yet defined precisely: entities. Rather than a critical 
concept of object technology, this is simply a technical notion, generalizing the traditional 
notion of variable; we need a precise definition.

Entities as used in this book cover names that denote run-time values, themselves 
attached to possible objects. We have now seen all three possible cases:

Case E2 indicates that the entity Result is treated, for all purposes, as a local entity; 
other local entities are introduced in the local clause. Result and other local entities of a 
routine are initialized anew each time the routine is called. 

All entities except formal arguments (E3) are writable, that is to say may appear as 
the target x of an assignment x := some_value.

7.11  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• The fundamental concept of object technology is the notion of class. A class is an 

abstract data type, partially or fully implemented. 
• A class may have instances, called objects. 
• Do not confuse objects (dynamic items) with classes (the static description of the 

properties common to a set of run-time objects). 
• In a consistent approach to object technology, every object is an instance of a class. 

Definition: entity
An entity is one of the following:
E1 • An attribute of a class. 
E2 • A routine’s local entity, including the predefined entity Result for a function.
E3 • A formal argument of a routine.
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• The class serves as both a module and a type. The originality and power of the O-O 
model come in part from the fusion of these two notions. 

• A class is characterized by features, including attributes (representing fields of the 
instances of the class) and routines (representing computations on these instances). 
A routine may be a function, which returns a result, or a procedure, which does not. 

• The basic mechanism of object-oriented computation is feature call. A feature call 
applies a feature of a class to an instance of that class, possibly with arguments. 

• Feature call uses either dot notation (for identifier features) or operator notation, 
prefix or infix (for operator features). 

• Every operation is relative to a “current instance” of a class. 

• For clients of a class (other classes which use its features), an attribute is 
indistinguishable from a function without arguments, in accordance with the 
Uniform Access principle. 

• An executable assembly of classes is called a system. A system contains a root class 
and all the classes which the root needs directly or indirectly (through the client and 
inheritance relations). To execute the system is to create an instance of the root class 
and to call a creation procedure on that instance. 

• Systems should have a decentralized architecture. Ordering relations between the 
operations are inessential to the design. 

• A small system description language, Lace, makes it possible to specify how a 
system should be assembled. A Lace specification, or Ace, indicates the root class 
and the set of directories where the system’s clusters reside. 

• The system assembly process should be automatic, with no need for Make files or 
Include directives. 

• The Information Hiding mechanism needs flexibility: besides being hidden or 
generally available, a feature may need to be exported to some clients only; and an 
attribute may need to be exported for access only, access and restricted modification, 
or full modification.

• Exporting an attribute gives clients the right to access it. Modifying it requires 
calling the appropriate exported procedure.

• Selective exports are necessary to enable groups of closely related classes to gain 
special access to each other’s features.

• There is no need for a super-module construct above classes. Classes should remain 
independent software components.

• The modular style promoted by object-oriented development leads to many small 
routines. Inlining, a compiler optimization, removes any potential efficiency 
consequence. Detecting inlinable calls should be the responsibility of the compiler, 
not software developers.
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7.12  BIBLIOGRAPHICAL NOTES 

The notion of class comes from the Simula 67 language; see the bibliographical references 
of the corresponding chapter. A Simula class is both a module and a type, although this 
property was not emphasized in the Simula literature, and was dropped by some 
successors of Simula.

The Single Target principle may be viewed as a software equivalent of a technique 
that is well known in mathematical logic and theoretical computing science: currying. To 
curry a two-argument function f  is to replace it by a one-argument function g yielding a 
one-argument function as a result, such that for any applicable x and y: 

(g (x)) (y) = f (x, y)

To curry a function, in other words, is to specialize it on its first argument. This is 
similar to the transformation described in this chapter to replace a traditional two-
argument routine rotate, called under the form 

rotate (some_point, some_angle)

by a one-argument function with a target, called under the form 

some_point  rotate (some_angle)

[M 1990]describes currying and some of its applications to computing science, in 
particular the formal study of programming language syntax and semantics. We will 
encounter currying again in the discussion of graphical user interfaces.

A few language designs have used the concept of object as a software construct 
rather than just a run-time notion as described in this chapter. In such approaches, meant 
for exploratory programming, there may be no need for a notion of class. The most notable 
representative of this school of thought is the Self language [Chambers 1991], which uses 
“prototypes” rather than classes. 

The detail of the conventions for infix and prefix operators, in particular the 
precedence table, is given in [M 1992].

James McKim brought to my attention the final argument for the Result convention 
(its use for postconditions).
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EXERCISES

E7.1  Clarifying the terminology 

[This exercise requires two well-sharpened pencils, one blue and the other red.]
Study the textbook extract used earlier in this chapter to illustrate the confusion between 
objects and classes; for each use of the word “object”, “thing” or “user” in that extract, 
underline the word in blue if you think that the authors really meant object; underline the 
word in red if you think that they really meant class. 

E7.2  POINT as an abstract data type

Write an abstract data type specification for the notion of two-dimensional point, as 
suggested in the informal introduction of that notion. 

E7.3  Completing POINT 

Complete the text of class POINT by filling in the missing details and adding a procedure 
rotate (to rotate a point around the origin) as well as any other feature that you feel is 
necessary. 

E7.4  Polar coordinates

Write the text of class POINT so as to use a polar, rather than cartesian, representation. 



8  
The run-time structure: objects
In the previous chapter we saw that classes may have instances, called objects. We must 
now turn our attention to these objects and, more generally, to the run-time model of 
object-oriented computation. 

Where the previous chapters were mostly concerned with conceptual and structural 
issues, the present one will, for the first time in this book, include implementation aspects. 
In particular it will describe how the execution of object-oriented software uses memory 
— a discussion continued by the study of garbage collection in the next chapter. As 
already noted, one of the benefits of object technology is to restore implementation issues 
to their full status; so even if your interest is mostly in analysis and design topics you 
should not be afraid of this excursion into implementation territory. It is impossible to 
understand the method unless you have some idea of its influence on run-time structures.

The study of object structures in this chapter indeed provides a particularly good 
example of how wrong it is to separate implementation aspects from supposedly higher-
level issues. Throughout the discussion, whenever we realize the need for a new O-O 
technique or mechanism, initially introduced for some implementation-related purpose, 
the real reason will almost always turn out to be deeper: we need the facility just as much 
for purely descriptive, abstract purposes. A typical example will be the distinction 
between references and expanded values, which might initially appear to be an obscure 
programming technique, but in reality provides a general answer to the question of sharing 
in whole-to-parts relations, an issue that figures prominently in many discussions of 
object-oriented analysis.

This contribution of implementation is sometimes hard to accept for people who have 
been influenced by the view, still prevalent in the software literature, that all that counts is 
analysis. But it should not be so surprising. To develop software is to develop models. A 
good implementation technique is often a good modeling technique as well; it may be 
applicable, beyond software systems, to systems from various fields, natural and artificial. 

More than implementation in the strict sense of the term, then, the theme of this 
chapter is modeling: how to use object structures to construct realistic and useful 
operational descriptions of systems of many kinds. 
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8.1  OBJECTS 
At any time during its execution, an O-O system will have created a certain number of 
objects. The run-time structure is the organization of these objects and of their relations. 
Let us explore its properties. 

What is an object? 

First we should recall what the word “object” means for this discussion. There is nothing 
vague in this notion; a precise technical definition was given in the previous chapter: 

A software system that includes a class C may at various points of its execution 
create (through creation and cloning operations, whose details appear later in this chapter) 
instances of C; such an instance is a data structure built according to the pattern defined 
by C; for example an instance of the class POINT introduced in the previous chapter is a 
data structure consisting of two fields, associated with the two attributes x and y declared 
in the class. The instances of all possible classes constitute the set of objects.

The above definition is the official one for object-oriented software. But “object” 
also has a more general meaning, coming from everyday language. Any software system 
is related to some external system, which may contain “objects”: points, lines, angles, 
surfaces and solids in a graphics system: employees, pay checks and salary scales in a 
payroll system; and so on. Some of the objects created by the software will be in direct 
correspondence with such external objects, as in a payroll system that includes a class 
EMPLOYEE, whose run-time instances are computer models of employees. 

This dual use of the word “object” has some good consequences, which follow from 
the power of the object-oriented method as a modeling tool. Better than any other method, 
object technology highlights and supports the modeling component of software 
development. This explains in part the impression of naturalness which it exudes, the 
attraction it exerts on so many people, and its early successes — still among the most 
visible — in such areas as simulation and user interfaces. The method here enjoys the 
direct mapping property which an earlier chapter described as a principal requirement of 
good modular design. With software systems considered to be direct or indirect models of 
real systems, it is not surprising that some classes will be models of external object types 
from the problem domain, so that the software objects (the instances of these classes) are 
themselves models of the corresponding external objects. 

But we should not let ourselves get too carried away by the word “object”. As always 
in science and technology, it is a bit risky to borrow words from everyday language and 
give them technical meanings. (The only discipline which seems to succeed in this delicate 
art is mathematics, which routinely hijacks such innocent words as “neighborhood”, 
“variety” or “barrel” and uses them with completely unexpected meanings — perhaps the 

Definition: object
An object is a run-time instance of some class.
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reason why no one seems to have any trouble.) The term “object” is so overloaded with 
everyday meanings that in spite of the benefits just mentioned its use in a technical 
software sense has caused its share of confusion. In particular: 

• As pointed out in the discussion of direct mapping, not all classes correspond to 
object types of the problem domain. The classes introduced for design and 
implementation have no immediate counterparts in the modeled system. They are 
often among the most important in practice, and the most difficult to find. 

• Some concepts from the problem domain may yield classes in the software (and 
objects in the software’s execution) even though they would not necessarily be 
classified as objects in the usual sense of the term if we insist on a concrete view of 
objects. A class such as STATE in the discussion of the form-based interactive 
system, or COMMAND (to be studied in a later chapter in connection with undo-redo 
mechanisms) fall in this category. 

When the word “object” is used in this book, the context will clearly indicate whether 
the usual meaning or (more commonly) the technical software meaning is intended. When 
there is a need to distinguish, one may talk about external objects and software objects. 

Basic form 

A software object is a rather simple animal once you know what class it comes from.

Let O be an object. The definition on the previous page indicates that it is an instance 
of some class. More precisely, it is a direct instance of just one class, say C. 

Because of inheritance, O will then be an instance, direct or not, of other classes, the 
ancestors of C; but that is a matter for a future chapter, and for the present discussion we 
only need the notion of direct instance. The word “direct” will be dropped when there is 
no possible confusion. 

C is called the generating class, or just generator, of O. C is a software text; O is a 
run-time data structure, produced by one of the object creation mechanisms studied below. 

Among its features, C has a certain number of attributes. These attributes entirely 
determine the form of the object: O is simply a collection of components, or fields, one 
for each attribute. 

Consider class POINT from the previous chapter. The class text was of the form: 

class POINT feature
x, y: REAL
… Routine declarations …

end
The routines have been omitted, and for good reason: the form of the corresponding 

objects (the direct instances of the class) is solely determined by the attributes, although 
the operations applicable to the objects depend on the routines. Here the class has two 
attributes, x and y, both of type REAL, so a direct instance of POINT is an object with two 
fields containing values of that type, for example: 
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See “Graphical con-
ventions”, page 271.

“STRINGS”, 13.5, 
page 456.
Notice the conventions used here and in the rest of this book for representing an object as 
a set of fields, shown as adjacent rectangles containing the associated values. Below the 
object the name of the generating class, here POINT, appears in parentheses and in italics; 
next to each field, also in italics, there appears the name of the corresponding attribute, 
here x and y. Sometimes a name in roman (here P_OBJ) will appear above the object; it 
has no counterpart in the software but identifies the object in the discussion.

In diagrams used to show the structure of an object-oriented system, or more commonly 
of some part of such a system, classes appear as ellipses. This convention, already used 
in the figures of the previous chapter, avoids any confusion between classes and objects.

Simple fields 

Both attributes of class POINT are of type REAL. As a consequence, each of the 
corresponding fields of a direct instance of POINT contains a real value. 

This is an example of a field corresponding to an attribute of one of the “basic types”. 
Although these types are formally defined as classes, their instances take their values from 
predefined sets implemented efficiently on computers. They include:

• BOOLEAN, which has exactly two instances, representing the boolean values true 
and false.

• CHARACTER, whose instances represent characters.

• INTEGER, whose instances represent integers. 

• REAL and DOUBLE, whose instances represent single-precision and double-
precision floating-point numbers. 

Another type which for the time being will be treated as a basic type, although we 
will later see that it is actually in a different category, is STRING, whose instances 
represent finite sequences of characters. 

For each of the basic types we will need the ability to denote the corresponding 
values in software texts and on figures. The conventions are straightforward: 

• For BOOLEAN, the two instances are written True and False. 

• To denote an instance of CHARACTER you will write a character enclosed in single 
quotes, such as 'A'.

3.4

–8.09

x

y

(POINT)

P_OBJ
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An object 
representing a 
book

Warning: not per-
mitted in the O-O 
notation! For dis-
cussion only.
• To denote an instance of STRING, write a sequence of characters in double quotes, 
as in "A STRING". 

• To denote an instance of INTEGER, write a number in an ordinary decimal notation 
with an optional sign, as in 34, –675 and +4. 

• You can also write an instance of REAL or DOUBLE in ordinary notation, as in 
3.5 or –0.05. Use the letter e to introduce a decimal exponent, as in –5.e–2
which denotes the same value as the preceding example.

A simple notion of book

Here is a class with attribute types taken from the preceding set: 

class BOOK1 feature
title: STRING
date, page_count: INTEGER

end
A typical instance of class BOOK1 may appear as follows:

Since for the moment we are only interested in the structure of objects, all the 
features in this class and the next few examples are attributes — none are routines.

This means that our objects are similar at this stage to the records or structure types 
of non-object-oriented languages such as Pascal and C. But unlike the situation in these 
languages there is little we can do with such a class in a good O-O language: because of 
the information hiding mechanisms, a client class has no way of assigning values to the 
fields of such objects. In Pascal, or in C with a slightly different syntax, a record type with 
a similar structure would allow a client to include the declaration and instruction 

b1: BOOK1
…
b1  page_count := 355

which at run time will assign value 355 to the page_count field of the object attached to 
b1. With classes, however, we should not provide any such facility: letting clients change 
object fields as they please would make a mockery of the rule of information hiding, which 

"The Red and the Black"

1830

title

date

(BOOK1)

341page_count
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[Arnold 1996], 
page 40.

See also “If it is 
baroque, fix it”, 
page 670.

A “writer” 
object
implies that the author of each class controls the precise set of operations that clients may 
execute on its instances. No such direct field assignment is possible in an O-O context; 
clients will perform field modifications through procedures of the class. Later in this 
chapter we will add to BOOK1 a procedure that gives clients the effect of the above 
assignment, if the author of the class indeed wishes to grant them such privileges.

We have already seen that C++ and Java actually permit assignments of the form 
b1  page_count := 355. But this simply reflects the inherent limits of attempts to integrate 
object technology in a C context.
As the designers of Java themselves write in their book about the language: “A 
programmer could still mess up the object by setting [a public] field, because the field [is]
subject to change” through direct assignment instructions. Too many languages require 
such “don’t do this” warnings. Rather than propose a language and then explain at length 
how not to use it, it is desirable to define hand in hand the method and a notation that will 
support it.

In proper O-O development, classes without routines, such as BOOK1, have little 
practical use (except as ancestors in an inheritance hierarchy, where descendants will 
inherit the attributes and provide their own routines; or to represent external objects which 
the O-O part can access but not modify, for example sensor data in a real-time system). 
But they will help us go through the basic concepts; then we will add routines.

Writers

Using the types mentioned above, we can also define a class WRITER describing a simple 
notion of book author: 

class WRITER feature
name, real_name: STRING
birth_  year, death_  year: INTEGER

end

References 

Objects whose fields are all of basic types will not take us very far. We need objects with 
fields that represent other objects. For example we will want to represent the property that 
a book has an author — denoted by an instance of class WRITER. 

"Stendhal"

"Henri Beyle"

name

real_name

1783birth_year

1842death_year

(WRITER)
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Two “book” 
objects with 
“writer” 
subobjects
A possibility is to introduce a notion of subobject. For example we might think of a 
book object, in a new version BOOK2 of the book class, as having a field author which is 
itself an object, as informally suggested by the following picture:

Such a notion of subobject is indeed useful and we will see, later in this chapter, how 
to write the corresponding classes.

But here it is not exactly what we need. The example represents two books with the 
same author; we ended up duplicating the author information, which now appears as two 
subobjects, one in each instance of BOOK2. This duplication is probably not acceptable:

• It wastes memory space. Other examples would make this waste even more 
unacceptable: imagine for example a set of objects representing people, each one 
with a subobject representing the country of citizenship, where the number of people 
represented is large but the number of countries is small. 

• Even more importantly, this technique fails to account for the need to express 
sharing. Regardless of representation choices, the author fields of the two objects 
refer to the same instance of WRITER; if you update the WRITER object (for example 
to record an author’s death), you will want the change to affect all book objects 
associated with the given author. 

Here then is a better picture of the desired situation, assuming yet another version of 
the book class, BOOK3: 

"Life of Rossini"

1823

title

date

(BOOK2)

307page_
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Two “book” 
objects with 
references to 
the same 
“writer” object

An object with 
a void 
reference field

(“Candide” was 
published anony-
mously.)
The author field of each instance of BOOK3 contains what is known as a reference
to a possible object of type WRITER. It is not difficult to define this notion precisely:

In the last figure, the author reference fields of the BOOK3 instances are both 
attached to the WRITER instance, as shown by the arrows, which are conventionally used 
on such diagrams to represent a reference attached to an object. The following figure has 
a void reference (perhaps to indicate an unknown author), showing the graphical 
representation of void references: 

Definition: reference 
A reference is a run-time value which is either void or attached. 
If attached, a reference identifies a single object. (It is then said to be attached 
to that particular object.)
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The definition of references makes no mention of implementation properties. A 
reference, if not void, is a way to identify an object; an abstract name for the object. This 
is similar to a social security number that uniquely identifies a person, or an area code that 
identifies a phone area. Nothing implementation-specific or computer-specific here.

The reference concept of course has a counterpart in computer implementations. In 
machine-level programming it is possible to manipulate addresses; many programming 
languages offer a notion of pointer. The notion of reference is more abstract. Although a 
reference may end up being represented as an address, it does not have to; and even when 
the representation of a reference includes an address, it may include other information.

Another property sets references apart from addresses, although pointers in typed 
languages such as Pascal and Ada (not C) also enjoy it: as will be explained below, a 
reference in the approach described here is typed. This means that a given reference may 
only become attached to objects of a specific set of types, determined by a declaration in 
the software text. This idea again has counterparts in the non-computer world: a social 
security number is only meant for persons, and area codes are only meant for phone areas. 
(They may look like normal integers, but you would not add two area codes.)

Object identity 
The notion of reference brings about the concept of object identity. Every object created 
during the execution of an object-oriented system has a unique identity, independent of the 
object’s value as defined by its fields. In particular: 

I1 •  Two objects with different identities may have identical fields. 
I2 •  Conversely, the fields of a certain object may change during the execution of a 

system; but this does not affect the object’s identity.

These observations indicate that a phrase such as “a denotes the same object as b” 
may be ambiguous: are we talking about objects with different identities but the same 
contents (I1)? Or about the states of an object before and after some change is applied to 
its fields (I2)? We will use the second interpretation: a given object may take on new 
values for its constituent fields during an execution, while remaining “the same object”. 
Whenever confusion is possible the discussion will be more explicit. For case I1 we may 
talk of equal (but distinct) objects; equality will be defined more precisely below. 

A point of terminology may have caught your attention. It is not a mistake to say (as in 
the definition of I2) that the fields of an object may change. The term “field” as defined 
above denotes one of the values that make up an object, not the corresponding field 
identifier, which is the name of one of the attributes of the object’s generating class.

For each attribute of the class, for example date in class BOOK3, the object has a field, 
for example 1832 in the object of the last figure. During execution the attributes will 
never change, so each object’s division into fields will remain the same; but the fields 
themselves may change. For example an instance of BOOK3 will always have four fields, 
corresponding to attributes title, date, page_count, author; these fields — the four values 
that make up a given object of type BOOK3 — may change. 

The study of how to make objects persistent will lead us to explore further properties 
of object identity.
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See page 272.

Direct and 
indirect self-
reference
Declaring references 

Let us see how to extend the initial book class, BOOK1, which only had attributes of basic 
types, to the new variant BOOK3 which has an attribute representing references to 
potential authors. Here is the class text, again just showing the attributes; the only 
difference is an extra attribute declaration at the end: 

class BOOK3 feature
title: STRING
date, page_count: INTEGER
author: WRITER -- This is the new attribute.

end
The type used to declare author is simply the name of the corresponding class: 

WRITER. This will be a general rule: whenever a class is declared in the standard form 
class C feature … end

then any entity declared of type C through a declaration of the form 
x: C

denotes values that are references to potential objects of type C. The reason for this 
convention is that using references provides more flexibility, and so are appropriate in the 
vast majority of cases. You will find further examination of this rule (and of the other 
possible conventions) in the discussion section of this chapter. 

Self-reference 

Nothing in the preceding discussion precludes an object O1 from containing a reference 
field which (at some point of a system’s execution) is attached to O1 itself. This kind of 
self-reference can also be indirect. In the situation pictured below, the object with 
"Almaviva" in its name field is its own landlord (direct reference cycle); the object 
"Figaro" loves "Susanna" which loves "Figaro" (indirect reference cycle). 

(PERSON1)

"Almaviva"name

landlord

loved_one

(PERSON1)

"Figaro"name

landlord

loved_one

(PERSON1)

"Susanna" name

landlord

loved_one
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A possible run-
time object 
structure
Such cycles in the dynamic structure can only exist if the client relation among the 
corresponding classes also has direct or indirect cycles. In the above example, the class 
declaration is of the form 

class PERSON1 feature
name: STRING
loved_one, landlord: PERSON1

end

showing a direct cycle (PERSON1 is a client of PERSON1).

The reverse property is not true: the presence of a cycle in the client relation does not 
imply that the run-time structure will have cycles. For example you may declare a class 

class PERSON2 feature
mother, father: PERSON2

end

which is a client of itself; but if this models the relations between people suggested by the 
attributes’ names, there can be no reference cycle in the run-time structure, as it would 
imply that a certain person is his own parent or indirect ancestor. 

A look at the run-time object structure 

From what we have seen so far emerges a first picture of the structure of an object-oriented 
system during its execution. 
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The system is made of a certain number of objects, with various fields. Some of these 
fields are values of basic types (integer fields such as 27, character fields such as 'Z ' and 
so on); others are references, some void, others attached to objects. Each object is an 
instance of some type, always based on a class and indicated below the object in the figure. 
Some types may be represented by just one instance, but more commonly there will be 
many instances of a given type; here TYPE1 has two instances, the others only one. An 
object may have reference fields only; this is the case here with the TYPE4 instance, or 
basic fields only, as with the TYPE5 instance. There may be self-references: direct, as with 
the top field of the TYPE2 instance, or indirect, as with the clock-wise reference cycle 
starting from and coming back to the TYPE1 instance at the top.

This kind of structure may look unduly complicated at first — an impression 
reinforced by the last figure, which is meant to show many of the available facilities and 
does not purport to model any real system. The expression “spaghetti bowl” comes to mind. 

But this impression is not justified. The concern for simplicity applies to the software 
text and not necessarily to the run-time object structure. The text of a software system 
embodies certain relations (such as “is child of  ”, “loves”, “has as landlord”); a particular 
run-time object structure embodies what we may call an instance of these relations — how 
the relations hold between members of a certain set of objects. The relations modeled by 
the software may be simple even if their instances for a particular set of objects are 
complex. Someone who considers the basic idea behind the relation “loves” fairly simple 
might find the instance of the relation for a particular group of people — the record of who 
loves whom — hopelessly entangled. 

So it is often impossible to prevent the run-time object structures of our O-O systems 
from becoming big (involving large numbers of objects) and complex (involving many 
references with a convoluted structure). A good software development environment will 
provide tools that help explore object structures for testing and debugging.

Such run-time complexity does not have to affect the static picture. We should try to 
keep the software itself — the set of classes and their relations — as simple as possible. 

The observation that simple models can have complex instances is in part a reflection 
on the power of computers. A small software text can describe huge computations; a 
simple O-O system can at execution time yield millions of objects connected by many 
references. A cardinal goal of software engineering is to keep the software simple even 
when its instances are not. 

8.2  OBJECTS AS A MODELING TOOL 

We can use the techniques introduced so far to improve our understanding of the method’s 
modeling power. It is important in particular two clarify two aspects: the various worlds 
touched by software development; and the relationship of our software to external reality. 
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Molds and 
their instances
The four worlds of software development 

From the preceding discussions it appears that when talking about object-oriented 
software development we should distinguish between four separate worlds: 

• The modeled system, also known as the external system (as opposed to the software 
system) and described through object types and their abstract relations. 

• A particular instantiation of the external system, made of objects between which 
relations may hold. 

• The software system, made of classes connected by the relations of the object-
oriented method (client and inheritance). 

• An object structure, as may exist during the execution of the software system, made 
of software objects connected through references. 

The following picture suggests the mappings that exist between these worlds. 

On both the software level (lower part of the picture) and the external level (higher 
part) it is important to distinguish between the general notions (classes and abstract 
relations, appearing on the left) and their specific instances (objects and relation instances, 
appearing on the right). This point has already been emphasized in the previous chapter’s 
discussion of the comparative role of classes and objects. It also applies to relations: we 
must distinguish between the abstract relation loved_one and the set of loved_one links 
that exist between the elements of a certain set of objects. 

This distinction is emphasized neither by the standard mathematical definitions of 
relations nor, in the software field, by the theory of relational databases. Limiting 
ourselves to binary relations, a relation is defined in both mathematics and relational 
databases as a set of pairs, all of the form <x, y> where every x is a member a given set TX
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and every y is a member of a given set TY. (In software terminology: all x are of type TX
and all y are of type TY.) Appropriate as such definitions may be mathematically, they are 
not satisfactory for system modeling, as they fail to make the distinction between an 
abstract relation and one of its particular instances. For system modeling, if not for 
mathematics and relational databases, the loves relation has its own general and abstract 
properties, quite independent of the record of who loves whom in a particular group of 
people at a particular time.

This discussion will be extended in a later chapter when we look at transformations on 
both abstract and concrete objects and give a name to the vertical arrows of the preceding 
figure: the abstraction function.

Reality: a cousin twice removed 

You may have noted how the above discussion (and previous ones on neighboring topics) 
stayed clear of any reference to the “real world”. Instead, the expression used above in 
reference to what the software represents is simply “the modeled system”.

This distinction is not commonly made. Many of the discussions in information 
modeling talk about “modeling the real world”, and similar expressions abound in books 
about O-O analysis. So we should take a moment to reflect on this notion. Talking about 
the “reality” behind a software system is deceptive for at least four reasons. 

First, reality is in the eyes of the beholder. Without being accused of undue chauvinism 
for his profession, a software engineer may with some justification ask his customers why 
their systems are more real than his. Take a program that performs mathematical 
computations — proving the four-color conjecture in graph theory, integrating some 
differential equations, or solving geometrical problems in a four-dimensional Riemann 
surface. Are we, the software developers, to quarrel with our mathematician friends (and 
customers) as to whose artefacts are more real: a piece of software written in some 
programming language, or a complete subspace with negative curvature? 

Second, the notion of real world collapses in the not infrequent case of software that 
solves software problems — reflexive applications, as they are sometimes called. Take a 
C compiler written in Pascal. The “real” objects that it processes are C programs. Why 
should we consider these programs more real than the compiler itself? The same 
observation applies to other systems handling objects that only exist in a computer: an 
editor, a CASE tool, even a document processing system (since the documents it 
manipulates are computer objects, the printed version being only their final form). 

The third reason is a generalization of the second. In the early days of computers, it 
may have been legitimate to think of software systems as being superimposed on a pre-
existing, independent reality. But today the computers and their software are more and 
more a part of that reality. Like a quantum physicist finding himself unable to separate the 
measure from the measurement, we can seldom treat “the real world” and “the software” 
as independent entities. The MIS field (Management Information Systems, that is to say, 
business data processing) provides some of the most vivid evidence: although it may have 
been the case with the first MIS applications, a few decades ago, that companies 
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introduced computers and the associated software simply with the aim of automating 
existing procedures, the situation today is radically different, as many existing procedures 
already involve computers and their software. To describe the operations of a modern bank 
is to describe mechanisms of which software is a fundamental component. The same is 
true of most other application areas; many of the activities of physicists and other natural 
scientists, for example, rely on computers and software not as auxiliary tools but as a 
fundamental part of the operational process. One may reflect here about the expression 
“virtual reality”, and its implication that what software produces is no less real than what 
comes from the outside world. In all such cases the software is not disjoint from the reality, 
as if we had a feedback loop in which operating the software injects some new and 
important inputs into the model. 

The last reason is even more fundamental. A software system is not a model of 
reality; it is at best a model of a model of some part of some reality. A hospital’s patient 
monitoring system is not a model of the hospital, but the implementation of someone’s 
view of how certain aspects of the hospital management should be handled — a model of 
a model of a subset of the hospital’s reality. An astronomy program is not a model of the 
universe; it is a software model of someone’s model of some properties of some part of 
the universe. A financial information system is not a model of the stock exchange; it is a 
software transposition of a model devised by a certain company to describe those aspects 
of the stock exchange which are relevant to the company’s goals.

The general theme of the object-oriented method, abstract data types, helps 
understand why we do not need to delude ourselves with the flattering but illusory notion 
that we deal with the real world. The first step to object orientation, as expressed by the 
ADT theory, is to toss out reality in favor of something less grandiose but more palatable: 
a set of abstractions characterized by the operations available to clients, and their formal 
properties. (This gave the ADT modeler’s motto — tell me not what you are but what you 
have.) Never do we make any pretense that these are the only possible operations and 
properties: we choose the ones that serve our purposes of the moment, and reject the 
others. To model is to discard.

To a software system, the reality that it addresses is, at best, a cousin twice removed. 

8.3  MANIPULATING OBJECTS AND REFERENCES 
Let us come back to more mundane matters and see how our software systems are going 
to deal with objects so as to create and use flexible data structures. 

Dynamic creation and reattachment 

What the description of the run-time object structure has not yet shown is the highly 
dynamic nature of a true object-oriented model. As opposed to static and stack-oriented 
policies of object management, illustrated at the programming language level by Fortran 
and Pascal respectively, the policy in a proper O-O environment is to let systems create 
objects as needed at run time, according to a pattern which is usually impossible to predict 
by a mere static examination of the software text. 
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From an initial state in which (as described in the previous chapter) only one object 
has been created — the root object — a system will repetitively perform such operations 
on the object structure as creating a new object, attach a previously void reference to an 
object, make a reference void, or reattach a previously attached reference to a different 
object. The dynamic and unpredictable nature of these operations is part of the reason for 
the flexibility of the approach, and its ability to support the dynamic data structures that 
are necessary if we are to use advanced algorithms and model the fast-changing properties 
of many external systems. 

The next sections explore the mechanisms needed to create objects and manipulate 
their fields, in particular references. 

The creation instruction 

Let us see how to create an instance of a class such as BOOK3. This can only be done by 
a routine of a class which is a client of BOOK3, such as 

class QUOTATION feature

source: BOOK3

page: INTEGER

make_book

-- Create a BOOK3 object and attach source to it.

do

… See below …

end

end

which might serve to describe a quotation of a book, appearing in another publication and 
identified by two fields: a reference to the quoted book and the number of the page which 
quotes the book. 

The (soon to be explained) mechanism that creates an instance of type QUOTATION
will also by default initialize all its fields. An important part of the default initialization 
rule is that any reference field, such as the one associated with attribute source, will be 
initialized to a void reference. In other words, creating an object of type QUOTATION
does not by itself create an object of type BOOK3. 

The general rule is indeed that, unless you do something to it, a reference remains 
void. To change this, you may create a new object through a creation instruction. This can 
be done by procedure make_book, which should then read as follows: 
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The “standard 
default values” 
mentioned in step 
C2 appear in the 
next box. 
make_book

-- Create a BOOK3 object and attach source to it.

do

create source

end

This illustrates the simplest form of the creation instruction: create x, where x is an 
attribute of the enclosing class or (as will be seen later) a local entity of the enclosing 
routine. We will see a few extensions to this basic notation later.

The entity x named in the instruction (source in the above example) is called the 
target of the creation instruction. 

This form of the creation instruction is known as a “basic creation instruction”. 
(Another form, involving a call to a procedure of the class, will appear shortly.) Here is 
the precise effect of a basic creation instruction: 

Step C1 will create an instance of C. Step C2 will set the values of each field to a 
predetermined value, which depends on the type of the corresponding attribute. Here are 
these values:

Effect of a basic creation instruction

The effect of a creation instruction of the form create x, where the type of 
the target x is a reference type based on a class C, is to execute the following 
three steps: 

C1 • Create a new instance of C (made of a collection of fields, one for 
each attribute of C). Let OC be the new instance. 

C2 • Initialize each field of OC according to the standard default values. 

C3 • Attach the value of x (a reference) to OC. 

Default initialization values

For a reference, the default value is a void reference. 

For a BOOLEAN, the default value is False. 

For a CHARACTER, the default value is the null character. 

For a number (of type INTEGER, REAL or DOUBLE), the default value is 
zero (that is to say, the zero value of the appropriate type). 
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So for a target source of type BOOK3, where the above class declaration read 
class BOOK3 feature

title: STRING
date, page_count: INTEGER
author: WRITER

end
the creation instruction create source, executed as part of a call to procedure make_book
of class QUOTATION, will yield an object of the following form: 

The integer fields have been initialized to zero. The reference field for author has 
been initialized to a void reference. The field for title, a STRING, also shows a void 
reference. This is because type STRING (of which the above initialization rules said 
nothing) is in fact a reference type too, although as noted we may for most practical 
purposes treat it as a basic type. 

The global picture 

It is important not to lose track of the order in which things happen. For the above instance 
of BOOK3 to be created, the following two events must occur: 
B1 • An instance of QUOTATION gets created. Let Q_OBJ be that instance and let a be 

an entity whose value is a reference attached to Q_OBJ. 
B2 • Some time after step B1, a call of the form a  make_book executes procedure make_

book with Q_OBJ as its target.
It is legitimate of course to ask how we ever get to step B1 — how Q_OBJ itself will 

be created. This only pushes the problem further. But by now you know the answer to this 
question: it all comes back to the Big Bang. To execute a system, you must provide a root 
class and the name of a procedure of that class, the creation procedure. At the start of the 
execution, you are automatically provided with one object, the root object — an instance 
of the root class. The root object is the only one that does not need to be created by the 
software text itself; it comes from the outside, as an objectus ex machina. Starting with 
that one providential object, the software can now create other objects in the normal way, 
through routines that execute creation instructions. The first routine to be executed is the 
creation procedure, automatically applied to the root object; in all but the most trivial cases 
it will include at least one creation instruction so as to start what the previous chapter 
compared to a giant firework: the process of producing as many new objects as a particular 
execution will need.

0
title
date

(BOOK3)

0page_count
author
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Why explicit creation? 

Object creation is explicit. Declaring an entity such as 
b: BOOK3

does not cause an object to be created at run time: creation will only occur when some 
element of the system executes an operation 

create b

You may have wondered why this was so. Should the declaration of b not be 
sufficient if we need an object at run time? What good is it to declare an entity if we do 
not create an object? 

A moment’s reflection, however, shows that the distinction between declaration and 
creation is actually the only reasonable solution. 

The first argument is by reductio ad absurdum. Assume that somehow we start 
processing the declaration of b and immediately create the corresponding book object. But 
this object is an instance of class BOOK3, which has an attribute author, itself of a 
reference type WRITER, so that the author field is a reference, for which we must create 
an object right away. Now this object has reference fields (remember that STRING is in 
fact a reference type) and they will require the same treatment: we are starting on a long 
path of recursive object creation before we have even begun any useful processing! 

This argument would be even more obvious with a self-referential class, such as 
PERSON1 seen above: 

class PERSON1 feature
name: STRING
loved_one, landlord: PERSON1

end
Treating every declaration as yielding an object would mean that every creation of 

an instance of PERSON1 would cause creation of two more such objects (corresponding 
to loved_one and landlord), entering into an infinite loop. Yet we have seen that such self-
referential definitions, either direct as here or indirect, are common and necessary.

Another argument simply follows from a theme that runs through this chapter: the 
use of object technology as a powerful modeling technique. If every reference field were 
initialized to a newly created object, we would have room neither for void references nor 
for multiple references attached to a single object. Both are needed for realistic modeling 
of practical systems: 

• In some cases the model may require that a certain reference be left not attached to 
any object. We used this technique when leaving the author field void to indicate that 
a book is by an unknown author. 

• In other cases two references should be attached, again for conceptual reasons 
coming from the model, to the same object. In the self-reference example we saw the 
loved_one fields of two PERSON1 instances attached to the same object. It would 



THE RUN-TIME STRUCTURE: OBJECTS  §8.4 236

“Polymorphic cre-
ation”, page 479.

“CHOOSING THE 
RIGHT NAMES”, 
26.2, page 879.
not make sense in that case to create an object for each field on creation; what you 
need is, rather than a creation instruction, an assignment operation (studied later in 
this chapter) that attaches a reference to an already existing object. This observation 
applies even more clearly to the self-referential field from the same example (field 
landlord for the top object). 

The object management mechanism never attaches a reference implicitly. It creates 
objects through creation instructions (or clone operations, seen below and explicit too), 
initializing their reference fields to void references; only through explicit instructions will 
these fields, in turn, become attached to objects.

In the discussion of inheritance we will see that a creation instruction may use the syntax 
create {T} x to create an object whose type T is a descendant of the type declared for x.

8.4  CREATION PROCEDURES
All the creation instructions seen so far relied on default initializations. In some cases, you 
may be unhappy with the language-defined initializations, wanting instead to provide 
specific information to initialize the created object. Creation procedures address this need.

Overriding the default initializations

To use an initialization other than the default, give the class one or more creation 
procedures. A creation procedure is a procedure of the class, which is listed in a clause 
starting with the keyword creation at the beginning of the class, before the first feature 
clause. The scheme is this:

note
…

class C creation
p1, p2, …

feature
… Feature declarations, including declarations for procedures p1, p2, …

end
A style suggestion: the recommended name for creation procedures in simple cases is 
make, for a class that has only one creation procedure; for a class that has two or more 
creation procedures it is generally desirable to give them a name starting with make_ and 
continuing with some qualifying word, as in the POINT example that follows.

The corresponding creation instruction is not just create x any more, but of the form

create x  p (…)

where p is one of the creation procedures listed in the creation clause, and (…) is a valid 
actual argument list for p. The effect of such an instruction is to create the object using the 
default values as in the earlier form, and to apply p, with the given arguments, to the result. 
The instruction is called a creation call; it is a combination of creation instruction and 
procedure call.
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The new step
We can for example add creation procedures to the class POINT to enable clients to 
specify initial coordinates, either cartesian or polar, when they create a point object. We 
will have two creation procedures, make_cartesian and make_ polar. Here is the scheme:

class POINT1 creation
make_cartesian, make_ polar

feature
… The features studied in the preceding version of the class:
    x, y, ro, theta, translate, scale, …

feature {NONE} -- See explanations below about this export status.
make_cartesian (a, b: REAL)

-- Initialize point with cartesian coordinates a and b.
do

x := a; y := b
end

make_ polar (r, t: REAL)
-- Initialize point with polar coordinates r and t.

do
x := r ∗ cos (t); y := r ∗ sin (t)

end
end

With this class text, a client will create a point through such instructions as

create my_ point  make_cartesian (0, 1)
create my_ point  make_ polar (1, Pi/2)

both having the same effect if Pi has the value suggested by its name.

Here is the rule defining the effect of such creation calls. The first three steps are the 
same as for the basic form seen earlier:

Effect of a creation call
The effect of a creation call of the form create x  p (…), where the type of the 
target x is a reference type based on a class C, p is a creation procedure of 
class C, and (…) represents a valid list of actual arguments for this procedure 
if necessary, is to execute the following four steps: 
C1 • Create a new instance of C (made of a collection of fields, one for 

each attribute of C). Let OC be the new instance. 
C2 • Initialize each field of OC according to standard default values. 
C3 • Attach the value of x (a reference) to OC. 
C4 • Call procedure p, with the arguments given, on OC.
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The export status of creation procedures
In POINT1 the two creation procedures have been declared in a feature clause starting 
with feature {NONE}. This means they are secret, but only for normal calls, not for 
creation calls. So the two example creation calls just seen are valid; normal calls of the 
form my_ point  make_cartesian (0, 1) or my_ point  make_ polar (1, Pi/2) are invalid since 
the features have not been made available for calling by any client.

The decision to make the two procedures secret means we do not want clients, once 
a point object exists, to set their coordinates directly, although they may set them indirectly 
through the other procedures of the class such as translate and scale. Of course this is only 
one possible policy; you may very well decide to export make_cartesian and make_ polar
in addition to making them creation procedures.

It is possible to give a procedure a selective creation status as well by including a set 
of classes in braces in its creation clause, as in 

class C creation {A, B, …}
p1, p2, 

…

although this is less frequent than limiting the export status of a feature through the similar 
syntax feature {A, B, …} or feature {NONE}. Remember in any case that the creation 
status of a procedure is independent of its call export status.

Rules on creation procedures
The two forms of creation instructions, the basic form create x and the creation call 
create x  p (…), are mutually exclusive. As soon as a class has a creation clause, then only the 
creation call is permitted; the basic form will be considered invalid and rejected by the compiler.

This convention may seem strange at first, but is justified by considerations of object 
consistency. An object is not just a collection of fields; it is the implementation of an 
abstract data type, which may impose consistency constraints on the fields. Here is a 
typical example. Assume an object representing a person, with a field for the birth year 
and another for the age. Then you cannot set these two fields independently to arbitrary 
values, but must ensure a consistency constraint: the sum of the age field and the birth year 
field must equal either the current year or the one before. (In a later chapter we will learn 
how to express such constraints, often reflecting axioms from the underlying ADT, as 
class invariants.) A creation instruction must always yield a consistent object. The basic 
form of the creation instruction — create x with no call — is only acceptable if setting all 
the fields to the default values yields a consistent object. If this is not the case, you will 
need creation procedures, and should disallow the basic form of the creation instruction.

In some infrequent cases you may want to accept the default initializations (as they 
satisfy the class invariant) while also defining one or more creation procedures. The 
technique to apply in this case is to list nothing among the creation procedures. Feature 
nothing is a procedure without arguments, inherited from the universal class ANY, which 
has an empty body (the feature declaration is simply: nothing do end) so that it does 
exactly what the name indicates. Then you can write:
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class C creation
nothing, some_creation_ procedure, some_other_creation_ procedure…

feature
…

Although the form create x is still invalid in this case, clients can achieve the 
intended effect by writing the instruction as create x  nothing

Finally, note that as a special case the rule on creation instructions gives a way to define 
a class that no client will be permitted to instantiate. A class declaration of the form

class C creation
-- There is nothing here!

feature
… Rest of class text …

end
has a creation clause — an empty one. The above rule states that if there is a creation
clause the only permitted creation instructions are creation calls using a creation 
procedure; here, since there are no creation procedures, no creation call is permitted.

Being able to disallow class instantiation is of little interest if we limit ourselves to 
the object-oriented mechanisms seen so far. But when we move on to inheritance this little 
facility may prove handy if we want to specify that a certain class should only be used as 
ancestor to other classes, never directly to create objects.

Another way to achieve this is to make the class deferred, but a deferred class must have 
at least one deferred feature, and we will not always have a role for such a feature.

Multiple creation and overloading
In advance of the discussion section, it is illuminating to compare the mechanism of 
multiple creation procedures with the C++/Java approach. The need is universal: 
providing several ways to initialize an object on creation. C++ and Java, however, rely on 
a different technique, name overloading.

In these languages all the creation procedures of a class (its “constructors”) have the 
same name, which is in fact the class name; if a class POINT contains a constructor with 
two real arguments corresponding to make_cartesian, the expression new POINT (0, 1)
will create a new instance. To differentiate between two constructors, the languages rely 
on the signatures (the types of the arguments).

The problem is of course, as we saw in the discussion of overloading, that the 
argument signature is not the appropriate criterion: if we also want a constructor providing 
the equivalent of make_ polar we are stuck, since the arguments would be the same, two 
real numbers. This is the general problem of overloading: using the same name for 
different operations, thereby causing potential ambiguity — compounded here by the use 
of that name as a class name as well as a procedure name.

The technique developed earlier seems preferable in all respects: minimum hassle (no 
creation procedure) if default initializations suffice; prevent creation, if desired, through an 
empty creation clause; to provide several forms of creation, define as many creation 
procedures as needed; do not introduce any confusion between class names and feature 
names; let the effect of every operation stand out clearly from its names, as with make_ polar.
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8.5  MORE ON REFERENCES 
The run-time model gives an important role to references. Let us examine some of their 
properties, in particular the notion of void reference, and some of the issues they raise.

States of a reference 

A reference may be in either of two states: void and attached. We have seen that a 
reference is always void initially and can be come attached through creation. Here is a 
more complete picture. 

Other than creation, a reference may change state through assignment, as will be 
studied shortly. For the moment, please make sure you understand the difference between 
the three notions — object, reference and entity — which recur through this chapter: 

• “Object” is a run-time notion; any object is an instance of a certain class, created at 
execution time and made of a number of fields. 

• “Reference” is also a run-time notion: a reference is a value that is either void or 
attached to an object. We have seen a precise definition of “attached”: a reference is 
attached to an object if it identifies that object unambiguously. 

• In contrast, “entity” is a static notion — that is to say, applying to the software text. 
An entity is an identifier appearing in the text of a class, and representing a run-time 
value or a set of successive run-time values. (Readers used to traditional forms of 
software development may think of the notion of entity as covering variables, 
symbolic constants, routine arguments and function results.)

If b is an entity of reference type, its run-time value is a reference, which may be 
attached to an object O. By an abuse of language we can say that b itself is attached to O.

Void references and calls 

In most situations we expect a reference to be attached to an object, but the rules also 
permit a reference to be void. Void references play an important role — if only by making 
a nuisance of themselves — in the object-oriented model of computation. As discussed 
extensively in the previous chapter, the fundamental operation in that model is feature call: 
apply to an instance of a class a feature of that class. This is written 

VOID
STATE

ATTACHED
STATE

b := Void

b := c (where c is void)

create b

b := c (where c is attached)
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some_entity  some_ feature (arg1, …)

where some_entity is attached to the desired target object. For the call to work, some_entity
must indeed be attached to an object. If some_entity is of a reference type and happens to 
have a void value at the time of the call, the call cannot proceed, as some_ feature needs a 
target object. 

To be correct, an object-oriented system must never attempt at run time to execute a 
feature call whose target is void. The effect will be an exception; the notion of exception, 
and the description of how it is possible to recover from an exception, will be discussed in 
a later chapter. 

It would be desirable to let compilers check the text of a system to guarantee that no 
such event will occur at run time, in the same way that they can check the absence of type 
incompatibilities by enforcing type rules. Unfortunately such a general goal is currently 
beyond the reach of compilers (unless we place unacceptable restrictions on the language). 
So it remains the software developer’s responsibility to ensure that the execution will 
never attempt a feature call on a void target. There is of course an easy way to do so: 
always write x  f (…) as 

if “x is not void” then
x  f (…)

else
…

end

but this is too unwieldy to be acceptable as a universal requirement. Sometimes (as when 
a call x  f immediately follows a creation create x) it is clear from the context that x is not 
void, and you do not want to test.

The question of non-vacuity of references is part of the larger question of software 
correctness. To prove a system correct, it is necessary to prove that no call is ever applied 
to a void reference, and that all the software’s assertions (as studied in a later chapter) are 
satisfied at the appropriate run-time instants. For non-vacuity as well as for assertion 
correctness, it would be desirable to have an automatic mechanism (a program prover, 
either integrated with the compiler or designed as a separate software tool) to ascertain that 
a software system is correct. In the absence of such tools, the result of a violation is a run-
time error — an exception. Developers may protect their software against such situations 
in two ways: 

• When writing the software, trying to prevent the erroneous situations from arising at 
run time, using all means possible: systematic and careful development, class 
inspections, use of tools that perform at least partial checks. 

• If any doubt remains and run-time failures are unacceptable, equipping the software 
with provisions for handling exceptions. 
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8.6  OPERATIONS ON REFERENCES 

We have seen one way of changing the value of a reference x: using a creation instruction 
of the form create x, which creates a new object and attaches x to it. A number of other 
interesting operations are available on references. 

Attaching a reference to an object 

So far the classes of this chapter have had attributes but no routines. As noted, this makes 
them essentially useless: it is not possible to change any field in an existing object. We 
need ways to modify the value of references, without resorting to instructions of the 
Pascal-C-Java-C++ form my_beloved  loved_one := me (to set the loved_one field of an 
object directly), which violates information hiding and is syntactically illegal in our 
notation.

To modify fields of foreign objects, a routine will need to call other routines that the 
authors of the corresponding classes have specifically designed for that purpose. Let us 
adapt class PERSON1 to include such a procedure, which will change the loved_one field 
to attach it to a new object. Here is the result: 

class PERSON2 feature
name: STRING

loved_one, landlord: PERSON2

set_loved (l: PERSON2)
-- Attach the loved_one field of current object to l.

do
loved_one := l

end
end

Procedure set_loved assigns to the loved_one field of the current instance of 
PERSON2, a reference field, the value of another reference, l. Reference assignments (like 
assignments of simple values such as integers) rely on the := symbol, with the 
assignment’s source on the right and the target on the left. In this case, since both source 
and target are of reference types, the assignment is said to be a reference assignment. 

The effect of a reference assignment is exactly what the name suggests: the target 
reference gets reattached to the object to which the source reference is attached — or 
becomes void if the source was void. Assume for example that we start with the situation 
shown at the top of the facing page; to avoid cluttering the picture, the landlord fields and 
the irrelevant loved_one fields have been left blank. 

Assume that we execute the procedure call 

a  set_loved (r)
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where a is attached to the top object (O1) and r to the bottom-right object (O3). From the 
way set_loved has been written, this will execute the assignment 

loved_one := l

with O1 as the current object and l having the same value as r, a reference to O3. The result 
is to reattach the loved_one field of O1: 

(PERSON2)

"Almaviva"name

loved_one

landlord

O1
a r

(PERSON2)

"Susanna"name

loved_one

landlord

(PERSON2)

"Rosina"name

loved_one

landlord

O3O2

(PERSON2)

"Almaviva"name

loved_one

landlord

O1
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(PERSON2)

"Susanna"name

loved_one

landlord

(PERSON2)

"Rosina"name

loved_one

landlord

O3O2
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If r had been a void reference, the assignment would have made the loved_one field 
of O1 void too.

A natural question at this stage is: what happens to the object to which the modified field 
was initially attached — O2 in the figure? Will the space it occupies be automatically 
recycled for use by future creation instructions?

This question turns out to be so important as to deserve a chapter of its own — the next 
chapter, on memory management and garbage collection. So please hold your breath until 
then. But it is not too early for a basic observation: regardless of the final answer, a policy 
that would always recycle the object’s space would be incorrect. In the absence of further 
information about the system from which the above run-time structure is extracted, we do 
not know whether some other reference is still attached to O2. So a reference assignment 
by itself does not tell us what to do with the previously attached object; any mechanism 
for recycling objects will need more context. 

Reference comparison 

In the same way that we have an operation (the := assignment) to attach a reference to an 
object, we need a way to test whether two references are attached to the same object. This 
is simply provided by the usual equality operator =. 

If x and y are entities of reference types, the expression 

x = y

is true if and only if the corresponding references are either both void or both attached to 
the same objects. The opposite operator, “not equal”, is written /= (a notation borrowed 
from Ada). 

For example, the expression 

r = a  loved_one

has value true on the last figure, where both sides of the = sign denote references attached 
to the object O3, but not on the next-to-last figure, where a  loved_one is attached to O2
and r is attached to O3.

In the same way that an assignment to a reference is a reference operation, not an 
operation on objects, the expressions x = y and x /= y compare references, not objects. So 
if x and y are attached to two distinct objects, x = y has value false even if these objects are 
field-by-field identical. Operations which compare objects rather than reference will be 
introduced later. 

The void value 

Although it is easy to get a void reference — since all reference fields are by default 
initialized to Void –, we will find it convenient to have a name for a reference value 
accessible in all contexts and known always to be void. The predefined feature

Void

will play that role.
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De-attaching a 
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Two common uses of Void are to test whether a certain reference is void, as in 

if x = Void then …

and to make a reference void, using the assignment 

x := Void

This last assignment has the effect of putting the reference back to the void state, and 
so of de-attaching it from the attached object, if any:

The comment made in the general discussion of reference assignment is worth repeating 
here: the assignment of Void to x has no immediate effect on the attached object (O1 in 
the figure); it simply cuts the link between the reference and the object. It would be 
incorrect to understand it as freeing the memory associated with O1, since some other 
reference may still be attached to O1 even after x has been de-attached from it. See the 
discussion of memory management in the next chapter.

Object cloning and equality 

Reference assignments may cause two or more references to become attached to a single 
object. Sometimes you will need a different form of assignment, which works on the 
object itself: rather than attaching a reference to an existing object, you will want to create 
a new copy of an existing object. 

This goal is achieved through a call to a function called clone. If y is attached to an 
object OY, the expression 

clone (y)

O1

O1

x

x

BEFORE

AFTER
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denotes a new object OX, such that OX has the same number of fields as OY, each field 
of OX being identical to the corresponding field of OY. If y is void, the value of clone (y)
is also void. 

To duplicate the object attached to y and attach the resulting object to x (or make x 
void if y is void), you may use a call to clone in an assignment: 

[1]
x := clone (y)

Here is an illustration of this mechanism.

We similarly need a mechanism to compare two objects. The expression x = y, as 
noted, fulfills another purpose: comparing references. For objects, we will use function 
equal. The call 

equal (x, y)

returns a boolean value, true if and only if x and y are either both void, or attached to two 
objects whose corresponding fields have the same values. If a system executes the clone 
assignment [1], the state immediately following that assignment will satisfy equal (x, y).

You may wonder why function clone has an argument, and equal two arguments treated 
symmetrically, rather than being called under forms closer to the usual object-oriented 
style, for example y  twin and x  is_equal (y). The answer appears in the discussion 
section, but it is not too early to try to guess it. 

OY
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'A'

783

y x



§8.6   OPERATIONS ON REFERENCES 247

See chapter 11 about 
assertions.
Object copying 

Function clone creates a new object as a carbon copy of an existing one. Sometimes the 
target object already exists; all we want to do is to overwrite its fields. Procedure copy
achieves this. It is called through the instruction

x  copy (y)

for x and y of the same type; its effect is to copy the fields of the object attached to y onto 
the corresponding ones of the object attached to x. 

As with all feature calls, any call to copy requires the target x to be non-void. In 
addition, y must also be non-void. This inability to deal with void values distinguishes 
copy from clone. 

The requirement that y must be non-void is so important that we should have a way to 
express it formally. The problem is in fact more general: how a routine can state the 
preconditions on the arguments passed by its callers. Such preconditions, a case of the 
more general notion of assertion, will be discussed in detail in a later chapter. Similarly, 
we will learn to express as postconditions such fundamental semantic properties as the 
observation made above that the result of a clone will satisfy equal.

Procedure copy may be considered more fundamental than function clone in the 
sense that we can, at least for a class with no creation procedure, express clone in terms of 
copy through the following equivalent function: 

clone (y: SOME_TYPE)
-- Void if y is void; otherwise duplicate of object attached to y

do
if y /= Void then

create Result -- Valid only in the absence of creation procedures
Result  copy (y)

end
end

On execution of a function call, Result is automatically initialized using the same 
rules defined above for attributes. This is the reason why the if needs no else: since Result
is initialized to Void, the result of the above function is a void value if y is void.

Deep clone and comparison 

The form of copy and comparison achieved by routines clone, equal and copy may be 
called shallow since these operations work on an object at the first level only, never trying 
to follow references. There will also be a need for deep variants which recursively 
duplicate an entire structure.



THE RUN-TIME STRUCTURE: OBJECTS  §8.6 248
To understand the differences assume for example that we start with the object 
structure appearing in black (except for the attribute and class names) under A in the figure 
on the facing page, where the entity a is attached to the object labeled O1.

For purposes of comparison, consider first the simple reference assignment
b := a

As pictured under B, this simply attaches the assignment’s target b to the same object 
O1 to which the source a was attached. No new object is created.

Next consider the cloning operation
c := clone (a)
This instruction will, as shown under C, create a single new object O4, field-by-field 

identical to O1. It copies the two reference fields onto the corresponding fields of O4, 
yielding references that are attached to the same objects O1 and O3 as the originals. But it 
does not duplicate O3 itself, or any other object other than O1. This is why the basic clone 
operation is known as shallow: it stops at the first level of the object structure.

Note that a self-reference has disappeared: the landlord field of O1 was attached to O1 
itself. In O4 this field becomes a reference to the original O1.

In other cases, you may want to go further and duplicate a structure recursively, 
without introducing any sharing of references such as occurred in the creation of O4. The 
function deep_clone achieves this. Instead of stopping at the object attached to y, the 
process of creating deep_clone (y) recursively follows any reference fields contained in 
that object and duplicates the entire structure. (If y is void the result is void too.) The 
function will of course process cyclic reference structures properly. 

The bottom part of the figure, labeled D, illustrates the result of executing 
d := deep_clone (a)
This case introduces no new sharing; all the objects accessible directly or indirectly 

from O1 (the object attached to a) will be duplicated, yielding new objects O5, O6 and O7. 
There is no connection between the old objects (O1, O2 and O3) and the new. Object O5, 
mimicking O1, has a self-reference.

In the same way that we need both deep and shallow clone operations, equality must 
have a deep variant. The deep_equal function compares two object structures to determine 
whether they are structurally identical. In the figure’s example, deep_equal holds between 
any two of a, b and d; but whereas equal (a, c) is true, since the corresponding objects O1 
and O4 are field-by-field identical, equal (a, d) is false. In fact equal does not hold 
between d and any of the other three. (Both equal (a, b) and equal (b, c) hold.) In the 
general case we may note the following properties: 

• After an assignment x := clone (y) or a call x  copy (y), the expression equal (x, y) has 
value true. (For the first assignment this property holds whether or not y is void.) 

• After x := deep_clone (y), the expression deep_equal (x, y) has value true. 

These properties will be expressed as postconditions of the corresponding routines. 
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Deep storage: a first view of persistence

The study of deep copy and equality leads to another mechanism which, in environments 
where it is available, provides one of the great practical advantages of the O-O method. 

So far, the discussion has not examined the question of input and output. But of 
course an object-oriented system will need to communicate with other systems and with 
the rest of the world. Since the information it manipulates is in the form of objects, this 
means it must be able to write and read objects to and from files, databases, 
communication lines and various devices. 

For simplicity this section will assume that the problem is to write to and write from files, 
and will use the terms “storage” and “retrieval” for these operations (“input” and “output” 
would also be adequate.) But the mechanisms studied must also be applicable for 
exchanging objects with the outside world through other means of communication, for 
example by sending and receiving objects through a network.

For instances of such classes as POINT or BOOK1, storage and retrieval of objects 
raise no particular novelty. These classes, used as the first examples at the beginning of 
this chapter, have attributes of types such as INTEGER, REAL and STRING, for which 
well-understood external representations are available. Storing an instance of such a class 
into a file, or retrieving it from that file, is similar to performing an output or input 
operation on a Pascal record or a C structure. Account must be taken, of course, of the 
peculiarities of data representations on different machines and in different languages (C, 
for example, has a special convention for strings, which the language expects to be 
terminated by a null character); but these are well-known technical problems for which 
standard solutions exist. So it is reasonable to expect that for such objects a good O-O 
environment could provide general-purpose procedures, say read and write, which, in the 
manner of clone, copy and consorts, would be available to all classes. 

But such mechanisms will not take us very far because they do not handle a major 
component of the object structure: references. Since references can be represented in 
memory (as addresses or otherwise) it is possible to find an external representation as well. 
That is not the difficult part of the problem. What matters is the meaning of these 
references. A reference attached to an object is worthless without that object. 

So as soon as we start dealing with non-trivial objects — objects that contain 
references — we cannot satisfy ourselves any more with a storage and retrieval 
mechanism that would just work on individual objects; the mechanism must process, 
together with an object, all its dependents according to the following definition:

Definition: direct dependents, dependents
The direct dependents of an object are the objects attached to its reference 
fields, if any. 
The dependents of an object are the object itself and (recursively) the 
dependents of its direct dependents
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Three mutually 
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“Book” and 
“Writer” 
objects
With the object structure shown below (identical to earlier examples), it would be 
meaningless to store into a file, or transmit over a network, just the object O1. The 
operation must also include the dependents of O1: O2 and O3. 

In this example any one of the three objects has the other two as dependents. In the 
BOOK3 example reproduced below, we may store W1 by itself, and whenever we store 
B1 or B2 we must store W1 as well. 

The notion of dependent was implicitly present in the presentation of deep_equal. 
Here is the general rule:
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The basic mechanism which will achieve this for our purposes is known as the 
STORABLE facility from the name of the Base library class which includes the 
corresponding features. The basic features of STORABLE are of the form: 

store ( f: IO_MEDIUM)

retrieved ( f: IO_MEDIUM): STORABLE

The effect of a call of the form x  store ( f ) is to store the object attached to x, together 
with all its dependents, in the file associated with f. The object attached to x is said to be 
the head object of the stored structure. The generating class of x must be a descendant of 
STORABLE (that is to say, it must inherit directly or indirectly from STORABLE); so you 
will have to add STORABLE to the list of its parents if it is not already there. This applies 
only to the generating class of the head object; there is no particular requirement on the 
generating classes of the dependent objects — fortunately, since a head object can have an 
arbitrary number of direct and indirect dependents, instances of arbitrary classes.

Class IO_MEDIUM is another Base library class, covering not only files but also 
structures for network transmission. Clearly f must be non-void and the attached file or 
transmission medium must be writable. 

The result of a call retrieved ( f ) is an object structure recursively identical, in the sense 
of deep_clone, to the complete object structure stored in f   by an earlier call to store. Feature 
retrieved is a function; its result is a reference to the head object of the retrieved structure. 

If you have already acquired a basic understanding of inheritance and of the associated 
type rules, you may have noted that retrieved raises a typing problem. The result of this 
function is of type STORABLE; but it seems that its normal use will be in assignments of 
the form x := retrieved ( f ) where the type of x is a proper descendant of STORABLE, not 
STORABLE itself, even though the type rules will permit x := y only if the type of y is a 
descendant of the type of x — not the other way around. The key to this problem will be 
an important construct, the assignment attempt. All this will be examined in detail when 
we study inheritance and the associated type rules.

The STORABLE mechanism is our first example of what is known as a persistence
facility. An object is persistent if it survives individual sessions of the systems that 
manipulate it. STORABLE only provides a partial solution to the persistence problem, 
suffering from several limitations: 

Persistence Closure principle
Whenever a storage mechanism stores an object, it must store with it the 
dependents of that object. Whenever a retrieval mechanism retrieves a 
previously stored object, it must also retrieve any dependent of that object 
that has not yet been retrieved. 
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Chapter 31.
• In the structure stored and retrieved, only one object is known individually: the head 
object. It may be desirable to retain the identity of other objects too. 

• As a consequence, the mechanism is not directly usable to retrieve objects 
selectively through contents-based or keyword-based queries as in database 
management systems. 

• A call to retrieved recreates the entire object structure. This means that you cannot use 
two or more such calls to retrieve various parts of a structure, unless they are disjoint. 

To address this problem is to move from a mere persistence mechanism to the notion 
of object-oriented database, presented in a later chapter, which also discusses a number of 
issues associated with STORABLE and other persistence mechanisms, such as schema 
evolution (what happens when you retrieve an object and its class has changed?) and 
persistent object identity.

But the above limitations should not obscure the considerable practical benefits of 
the STORABLE mechanism as described above. In fact one may conjecture that the 
absence of such a mechanism has been one of the major obstacles to the use of 
sophisticated data structures in traditional development environments. Without 
STORABLE or its equivalent, storing a data structure becomes a major programming 
effort: for every kind of structure that you want to endow with persistence properties you 
must write a special input and output mechanism, including a set of mutually recursive 
procedures (one for each type) and special-purpose traversal mechanisms (which are 
particularly tricky to write in the case of possibly cyclic structures). But the worst part is 
not even the work that you have to do initially: as usual, the real trouble comes when the 
structure changes and you have to update the procedures. 

With STORABLE a predefined mechanism is available regardless of your object 
structure, its complexity, and the software’s evolution. 

A typical application of the STORABLE mechanism is a SAVE facility. Consider an 
interactive system, for example a text editor, a graphical editor, a drafting program or a 
computer-aided design system; it needs to provide its users with a SAVE command to store 
the state of the current session into a file. The information stored should be sufficient to 
restart the session at any later time, so it must include all the important data structures of 
the system. Writing such a procedure in an ad hoc fashion suffers from the difficulties 
mentioned; in particular, you will have to update it whenever you change a class during 
development. But with the STORABLE mechanism and a good choice of head object, you 
can implement the SAVE facility using a single instruction:

head  store (save_ file)

Just by itself, this mechanism would suffice to recommend an object-oriented 
environment over its more traditional counterparts. 
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8.7  COMPOSITE OBJECTS AND EXPANDED TYPES 
The preceding discussion described the essentials of the run-time structure. It gives an 
important role to references. To complete the picture, we must see how to handle values 
which are not references to objects, but the objects themselves. 

References are not sufficient 

The values considered so far, save for integers, booleans and the like, were references to 
objects. Two reasons suggest that we may also need entities whose values are objects:

• An important goal announced in the last chapter is to have a completely uniform type 
system, in which basic types (such as BOOLEAN and INTEGER) are handled in the 
same way as developer-defined types (such as POINT or BOOK). But if you use an 
entity n to manipulate an integer, you will almost always want the value of n to be 
an integer, for example 3, not a reference to an object containing the value 3. The 
reason is partly efficiency — think of the penalty in both time and space that we 
would have to incur if every integer access were indirect; just as important in this 
case is the goal of faithful modeling. An integer is conceptually not the same thing 
as a reference to an integer. 

• Even with complex, developer-defined objects, we may prefer in some cases to 
consider that object O1 contains a subobject O2, rather than a reference to another 
object O2. The reason again may be efficiency, faithful modeling or both. 

Expanded types 

The answer to the need for modeling composite objects is simple. Let C be a class 
declared, as all classes so far, under the form 

class C feature
…

end
C may be used as a type. Any entity declared of type C represents a reference; for 

that reason C is called a reference type. 

Now assume that we need an entity x whose value at run time will be an instance of 
C — not a reference to such an instance. We may obtain this effect by declaring x as 

x : expanded C

This notation uses a new keyword, expanded. The notation expanded C denotes a 
type. The instances of this type are exactly the same as the instances of C. The only 
difference affects declarations using these types: an entity of type C denotes a reference 
which may become attached to an instance of C; an entity of type expanded C, such as x 
above, directly denotes an instance of C. 

This mechanism adds the notion of composite object to the structure defined in the 
preceding sections. An object O is said to be composite if one or more of its fields are 
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A composite 
object with one 
subobject
themselves objects — called subobjects of O. The following example class (routines 
again omitted) shows how to describe composite objects: 

class COMPOSITE feature
ref: C
sub: expanded C

end

This class relies on C declared as above. COMPOSITE has two attributes: ref, 
denoting a reference, and sub, denoting a subobject; sub is what makes the class 
composite. Any direct instance of COMPOSITE may look like this: 

The ref  field is a reference attached to an instance of C (or void). The sub field 
(which cannot be void) contains an instance of C. 

A notational extension is convenient here. You may sometimes write a class E with 
the intention that all entities declared of type E should be expanded. To make this intention 
explicit, declare the class as 

expanded class E feature
… The rest as for any other class …

end

A class defined in this manner is said to be an expanded class. Here too the new 
declaration changes nothing for instances of E: they are the same as if the class had been 
declared as just class E … But an entity declared of type E will now denote an object, not 
a reference. As a consequence of this new possibility, the notion of “expanded type” 
includes two cases:

Definition: expanded type
A type is said to be expanded in the following two cases: 

• It is of the form expanded C. 

• It is of the form E, where E is an expanded class.

ref

(COMPOSITE)

sub (C)(C)
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It is not a mistake to declare an entity x as being of type expanded E if E is an 
expanded class, just useless, since the result in this case is the same as if you declare x to 
be just of type E. 

We now have two kinds of type; a type which is not expanded is a reference type (a 
term already used in this chapter). We may apply the same terminology to the entities 
correspondingly declared: reference entities and expanded entities. Similarly, a class is an 
expanded class if it has been declared as expanded class…, a reference class otherwise. 

The role of expanded types 

Why do we need expanded types? They play three major roles: 

• Improving efficiency. 

• Providing better modeling. 

• Supporting basic types in a uniform object-oriented type system. 

The first application may be the most obvious at first: without expanded types, you 
would have to use references every time you need to describe composite objects. This 
means that accessing their subobjects would require an operation to follow a reference — 
“dereferencing”, as it is sometimes called – which implies a time penalty. There is also a 
space penalty, as the run-time structure must devote space to the references themselves. 

This performance argument is not, however, the prime justification. The key 
argument, in line with this chapter’s general emphasis on object-oriented software 
construction as a modeling activity, is the need to model composite objects separately 
from objects that contain references to other objects. This is not an implementation issue 
but a conceptual one.

Consider the two attribute declarations 

D1 • ref: S

D2 • exp: expanded S 

appearing in a class C (and assuming that S is a reference class). Declaration D1 simply 
expresses that every instance of C “knows about” a certain instance of S (unless ref is 
void). Declaration D2 is more committing: it states that every instance of C contains an 
instance of S. Aside from any implementation issue, this is a quite different relation.

In particular, the “contains” relation as provided by expanded types does not allow 
any sharing of the contained elements, whereas the “knows about” relation allows two or 
more references to be attached to the same object. 

You may apply this property to ensure proper modeling of relations between objects. 
Consider for example this class declaration:



§8.7   COMPOSITE OBJECTS AND EXPANDED TYPES 257

All classes shown 
are assumed to be 
reference (non-
expanded) classes.

“Knows about” 
and “contains” 
relations 
between 
objects

See “A UNIFORM 
TYPE SYSTEM”, 7.4,
page 171. The outline 
of class REAL was on 
page 189.
class WORKSTATION feature
k: expanded KEYBOARD
c: expanded CPU
m: expanded MONITOR
n: NETWORK
…

end
Under this model a computer workstation has a keyboard, a CPU (central processing 

unit) and a monitor, and is attached to a network. The keyboard, CPU and monitor are part 
of a single workstation, and cannot be shared between two or more workstations. The 
network component, however, is shared: many workstations can be hooked up to the same 
network. The class definition reflects these properties by using expanded types for the first 
three attributes, and a reference type for the network attribute. 

So the concept of expanded type, which at first sight appears to be an 
implementation-level technique, actually helps describe some of the relations used in 
information modeling. The “contains” relation, and its inverse often known as “is-part-
of  ”, are central to any effort at building models of external systems; they appear in 
analysis methods and in database modeling. 

The third major application of expanded types is in fact a special case of the second. 
The previous chapter emphasized the desirability of a uniform type system, based on the 
notion of class, which must encompass both developer-defined types and basic types. The 
example of REAL was used to show how, with the help of infix and prefix features, we can 
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indeed model the notion of real number as a class; we can do the same for the other basic 
types BOOLEAN, CHARACTER, INTEGER, DOUBLE. But a problem remains. If these 
classes were treated as reference classes, an entity declared of a basic type, such as 

r: REAL

would at run time denote a reference to a possible object containing a value (here of type 
REAL). This is unacceptable: to conform to common practice, the value of r should be the 
real value itself. The solution follows from the earlier discussion: define class REAL as 
expanded. Its declaration will be

expanded class REAL feature 
… Feature declarations exactly as given earlier (see page 189) …

end 
All the other basic types are similarly defined by expanded classes.

Aggregation

In some areas of computing science — databases, information modeling, requirements 
analysis — authors have developed a classification of the relations that may hold between 
elements of a modeled system. Often mentioned in this context is the “aggregation” 
relation, which serves to express that every object of a certain type is a combination (an 
aggregate) of zero or more objects, each of a specified type. For example we might define 
“car” as an aggregation of “engine”, “body” etc.

Expanded types provide the equivalent mechanism. We may for example declare 
class CAR with features of types expanded ENGINE and expanded BODY. Another way 
to express this observation is to note that aggregation is covered by the “expanded client” 
relation, where a class C is said to be an expanded client of a class S if it contains a 
declaration of a feature of type expanded S (or just S if S is expanded). One advantage of 
this modeling approach is that “expanded client” is just a special case of the general client 
relation, so that we can use a single framework and notation to combine aggregation-like 
dependencies (that is to say, dependencies on subobjects, such as the relation between 
WORKSTATION and KEYBOARD in the earlier example) with dependencies that permit 
sharing (such as the relation between WORKSTATION and NETWORK).

With the object-oriented approach, one can avoid the multiplicity of relations found 
in the information modeling literature, and cover all possible cases with just two relations: 
client (expanded or not) and inheritance.

Properties of expanded types 

Consider an expanded type E (of either form) and an expanded entity x of type E. 
Since the value of x is always an object, it can never be void. So the expression 
x = Void

will always yield the value false, and a call of the form x  some_  feature (arg1, …) will 
never raise the exception “call on void target” that was possible in the case of references.
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Let object O be the value of x. As with the case of a non-void reference, x is said to 
be attached to O. So for any non-void entity we may talk of the attached object, whether 
the entity is of reference or expanded type. 

What about creation? The instruction 
create x

may be applied to an expanded x. For reference x, its effect was to perform three steps: 
(C1) create a new object; (C2) initialize its fields to the default values; (C3) attach it to x. 
For expanded x, step C1 is inappropriate, and step C3 is unneeded; so the only effect is to 
set all fields to their default values. 

More generally, the presence of expanded types affects the default initialization 
performed as part of C2. Assume a class, expanded or not, having one or more 
expanded attributes: 

class F feature
u: BOOLEAN
v: INTEGER
w: REAL
x: C
y: expanded C
z: E
…

end
where E is expanded but C is not. The initialization of a direct instance of F involves 
setting the u field to false, the v field to 0, the w field to 0.0, the x field to a void reference, 
and the y and z to instances of C and E respectively, whose fields are themselves initialized 
according to the standard rules. This initialization process is to be applied recursively, 
since C and E may themselves include expanded fields. 

As you may have realized, a restriction is necessary for expanded types to be usable 
(to ensure that the recursive process just defined always remains finite): although, as 
discussed earlier, the client relation may in general include cycles, such cycles must make 
no use of expanded attributes. For example it is not permitted for class C to have an 
attribute of type expanded D if class D has an attribute of type expanded C; this would 
mean that every object of type C includes a subobject of type D and conversely — a clear 
impossibility. Hence the following rule, based on the notion of “expanded client” already 
introduced informally above:

Expanded Client rule
Let “expanded client” the relation between classes be defined as follows: C
is an expanded client of S if some attribute of C is of an expanded type based 
on S (that is to say expanded S, or just S if S is an expanded class). 
Then the expanded client relation may not include any cycles.
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In other words there may not be a set of classes A, B, C, … N such that A is an 
expanded client of B, B an expanded client of C etc., with N being an expanded client of 
A. In particular, A may not have an attribute of type expanded A, as this would make A an 
expanded client of itself. 

No references to subobjects

A final comment about expanded types will answer the question of how to mix references 
and subobjects. An expanded class, or an expanded type based on a reference class, may 
have reference attributes. So a subobject may contain references attached to objects: 

The situation pictured assumes the following declarations: 

class COMPOSITE1 feature
other: SOME_TYPE
sub: expanded C

end

class C feature
ref: D
x: OTHER_TYPE; y: YET_ANOTHER_TYPE

end

class D feature
…

end

Each COMPOSITE instance, such as O_COMP in the figure, has a subobject (OC in 
the figure) containing a reference ref which may be attached to an object (OD in the figure). 

But the reverse situation, where a reference would become attached to a subobject, 
is impossible. (This will follow from the rules on assignment and argument passing, 
studied in the next section.) So the run-time structure can never come to the state 
described by the picture on the facing page, where OE contains a reference to OC, a 
subobject of O_CMP1, and OC similarly contains a reference to itself. 

other
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sub

(D)
(C)
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O_COMP

ref
x
y
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This rule is open to criticism since it limits the modeling power of the approach. 
Earlier versions of this book’s notation did in fact permit references to subobjects. But this 
possibility was found to cause more problems than it was worth:

• From the implementation’s perspective, the garbage collection mechanism must be 
prepared to deal with subobject references even if in a given execution there are few 
such references, or none at all. This caused a significant performance degradation.

• From the viewpoint of modeling, excluding subobject references actually turned out 
to simplify system descriptions by defining a single unit of referencing, the object.

The discussion will point out what precise attachment rule would have to be 
modified to revert to the scheme in which references may be attached to subobjects.

8.8  ATTACHMENT: REFERENCE AND VALUE SEMANTICS
(This section covers more specialized information and you may skip it on first reading.)

The introduction of expanded types means that we must take a second look at two 
fundamental operations studied earlier in this chapter: assignment, written :=, which 
attaches a reference to an object, and the associated comparison operation, written =. Since 
entities may now denote objects as well as references to objects, we must decide what 
assignment and equality will mean in the first of these cases.

Attachment
The semantics of assignment will actually cover more than this operation. Another case in 
which the value of an entity may change is argument passing in routine calls. Assume a 
routine (procedure or function) of the form 

r (…, x: SOME_TYPE, …)
Here entity x is one of the formal arguments of r. Now consider a particular call to 

r, of one of the possible two forms (unqualified and qualified): 
r (…, y, …)
t  r (…, y, …)

where expression y is the actual argument having the same position in the list of actual 
arguments as x has in the list of formal arguments. 

other

(COMPOSITE1)

sub

(E)

(C)

OE

OC

O_CMP1

ref
x
y

WARNING: 
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(FOR PURPOSES OF 
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Whenever r gets started as a result of one of these calls, it initializes each of its 
formal arguments with the value of the corresponding actual argument, such as y for x. 

For simplicity and consistency, the rules governing such actual-formal argument 
associations are the same as the rules governing assignment. In other words, the initial 
effect on x of such a call is exactly as if x were the target of assignment of the form 

x := y

This rule yields a definition:

Exactly the same rules will be applicable in both cases to determine whether an 
attachment is valid (depending on the types of its target and source) and, if it is, what effect 
it will have at execution time. 

Reference and copy attachment 

We have seen a first rule for the effect of attachment when studying reference assignment. 
If both source and target are references, then the effect of an assignment 

x := y

and of the corresponding argument passing is to make x denote the same reference as y. 
This was illustrated through several examples. If y is void prior to the attachment, the 
operation will make x void too; if y is attached to an object, x will end up attached to the 
same object. 

What now if the types of x and y are expanded? Reference assignment would not 
make sense, but a copy (the shallow form) is possible. The meaning of an attachment of 
an expanded source to an expanded target will indeed be a copy. With the declarations 

x, y: expanded SOME_CLASS

the assignment x := y will copy every field of the object attached to y onto the 
corresponding field of the object attached to x, producing the same effect as 

x  copy (y)

which of course is still legal in this case. (In the case of reference types, x := y and 
x  copy (y) are both legal but have different effects.) 

Definition: attachment
An attachment of y to x is either of the following two operations: 

• An assignment of the form x := y. 
• The initialization of x at the time of a routine call, where x is a formal 

argument of a routine and y is the corresponding actual argument in 
the call. 

In both cases, x is the target of the attachment and y its source.
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This copy semantics for expanded types yields the expected effect in the case of the 
basic types which, as noted above, are all expanded. For example if m and n have been 
declared of type INTEGER, you will expect the assignment m := n, or a corresponding 
argument passing, to copy the value of n onto that of m. 

The analysis just applied to attachment transposes immediately to a related operation: 
comparison. Consider the boolean expressions x = y and x /= y, which will have opposite 
values. For x and y of reference types, as already noted, the tests compare references: x =
y yields true if and only if x and y are either both void or both attached to the same object. 
For expanded x and y, this would not make sense; the only acceptable semantics is to use 
field-by-field comparison, so that in this case x = y will have the same value as equal (x, y).

It is possible, as we will see in the discussion of inheritance, to adapt the semantics of 
equal to support a specific notion of equality for the instances of some class. This has no 
effect on the semantics of =, which, for safety and simplicity, is always that of the original 
function standard_equal.

The basic rule for attachment and comparison, then, is summarized by the 
following observation:

Hybrid attachments 
In the cases seen so far, the source and target types of an attachment are of the same 
category — both expanded or both reference. What if they are of different categories? 

First consider x := y where the target x is of an expanded type and the source y is of a 
reference type. Because reference assignment does not make sense for x, the only acceptable 
semantics for this attachment is copy semantics: copy the fields of the object attached to y
onto the corresponding fields of the object attached to x. This is indeed the effect of the 
assignment in this case; but it only makes sense if y is non-void at the time of execution 
(otherwise there is no attached object). If y is void, the result will be to trigger an exception. 
The effect of exceptions, and the specification of how to recover from an exception, are 
discussed in a later chapter. 

For expanded x, the test x = Void does not cause any abnormal event; it simply yields the 
result false. But there is no way we can find an acceptable semantics for the assignment 
x := Void, so any attempt at executing it causes an exception. 
Now consider the other case: x := y where x is of a reference type and y is of an 

expanded type. Then at run time y is always attached to an object, which we may call OY, 
and the attachment should also attach x to an object. One possibility would be to attach x to 
OY. This convention, however, would introduce the possibility of references to subobjects, 
as in routine reattach below: 

An attachment of y to x is a copy of objects x if x and y are of expanded types 
(including any of the basic types). It is a reference attachment if x and y are 
of reference types.
Similarly, an equality or inequality test x = y or x /= y is a comparison of 
objects for x and y of expanded types; it is a comparison of references if x and 
y are of reference types.
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Effect of 
attachment 
x := y
class C feature
…

end

class COMPOSITE2 feature
x: C
y: expanded C

reattach
do x := y end

end

If, as suggested earlier, we prohibit references to subobjects, we may in such a case 
prescribe that the attachment perform a clone of OY. This will indeed be the effect of the 
attachment for expanded source and reference target: attach the target to a clone of the 
source object. 

The following table summarizes the semantics of attachment in the cases studied:

To allow references to subobjects, it would suffice to replace the clone semantics 
defined in the top-right entry by the semantics of reference attachment.

Equality comparison 

The semantics of equality comparison (the = and /= signs) should be compatible with 
the semantics of attachment: if y /= z is true and you execute x := y, then both x = y and 
x /= z should be true immediately after the assignment.

Besides =, we have seen that there is an operation equal applicable to objects. Which 
of these operations is available depends on the circumstances:

E1 • If x and y are references, you can test both for reference equality and, if the 
references are not void, for object equality. We have defined the operation x = y as 
denoting reference equality in this case. The equal function was introduced to 
cover object equality; for completeness it also applies when x or y is void 
(returning true in this case only if both are).

 Type of source y →

↓ Type of target x
 

Reference Expanded

 
Reference

Reference attachment Clone; effect of 
x := clone (y)

 
Expanded

Copy; effect of 
x  copy (y) 

(will fail if y is void)

Copy; effect of 
x  copy (y)
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Meaning of 
comparison 
x = y
E2 • If x and y are expanded, the only operation that makes sense is object comparison. 

E3 • If x is a reference and y is expanded, object equality is also the only meaningful 
operation — again extended to accept void x, in which case it will return false since 
y cannot be void.

This analysis yields the desirable interpretation for = in all cases. For object 
comparison, equal is always available, conveniently extended to deal with cases in which 
one or both operands are void. = serves to apply reference comparison when it makes 
sense, defaulting to equal in other cases:

By comparing with the preceding table, you may check that = and /= are indeed 
compatible with := in the sense defined above. Recall in particular that equal (x, y) will be 
true as a result of x := clone (y) or x  copy (y).

This issue that we have just settled arises in any language which includes pointer or 
references (such as Pascal, Ada, Modula-2, C, Lisp etc.), but is particularly acute in an 
object-oriented language in which all non-basic types are reference types; in addition, for 
reasons explained in the discussion section, the syntax does not explicitly show them to 
be references, so we need to be particularly careful.

8.9  DEALING WITH REFERENCES: BENEFITS AND DANGERS

Two properties of the run-time model, as introduced in the preceding sections, deserve 
further examination. One is the important role of references; the other is the dual 
semantics of basic operations such as assignment, argument passing and equality tests 
which, as we have seen, produce different effects for reference and expanded operands. 

Dynamic aliasing 

If x and y are of reference types and y is not void, the assignment x := y, or the 
corresponding attachment in a call, causes x and y to be attached to the same object.

     Type of y →

↓ Type of x
 

Reference Expanded

 
Reference

Reference comparison equal (x, y) 
i.e. object comparison if x 
non-void, false if x void.

 
Expanded

equal (x, y) 
i.e. object comparison if y
non-void, false if y void.

equal (x, y) 
i.e. object comparison.
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Sharing as a 
result of an 
attachment
The result is to bind x and y in a durable way (until any further assignment to any of 
them). In particular, an operation of the form x  f, where f is some feature of the 
corresponding class, will have the same effect as y  f since they affect the same object. 

The attachment of x to the same object as y is known as dynamic aliasing: aliasing 
because the assignment makes an object accessible through two references, like a person 
known under two names; dynamic because the aliasing occurs at run time. 

Static aliasing, where a software text specifies that two names will always denote the 
same value regardless of what happens at execution time, is also possible in some 
programming languages: the Fortran EQUIVALENCE directive states that two variables 
will always denote the contents of the same memory location; and the C preprocessor 
directive #define x y specifies that any further occurrence of x in the program text means 
exactly the same thing as y. 

Because of dynamic aliasing, attachment operations have a more far-reaching effect 
on entities of reference types than on those of expanded types. If x and y are of type 
INTEGER, an example of expanded type, the assignment x := y only resets the value of x
using that of y; but it does not durably bind x and y. For reference types, the assignment 
causes x and y to become aliases for the same object. 

The semantics of aliasing 

A somewhat shocking consequence of aliasing (static or dynamic) is that an operation may 
affect an entity that it does not even cite. 

Models of computation that do not involve aliasing enjoy a pleasant property: the 
correctness of such extracts as

[NO SURPRISE]
-- Assume that here P ( y) holds

x := y
C (x)

-- Then here P ( y) still holds.

This example assumes that P (y) is an arbitrary property of y, and C (x) some 
operation whose textual description in the software may involve x but does not involve y. 
Correctness here means that the property of “NO SURPRISE” expressed by the comments 
is indeed satisfied: if P ( y) is true initially, then no action on x can invalidate this property. 
An operation on x does not affect a property of y.

'A'

783

x y
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With entities of expanded types, property NO SURPRISE indeed holds. Here is s 
typical example, assuming x and y of type INTEGER: 

-- Assume that here y >= 0
x := y
x := –1
-- Then here y >= 0 still holds.

In no way can the assignment to x have any effect on y in this case. But now consider 
a similar one involving dynamic aliasing. Let x and y be of type C, where class C is of the form 

class C feature
boolattr: BOOLEAN 

-- Boolean attribute, modeling some object property.
set_true

-- Make boolattr true.
do

boolattr := True
end

… Other features …
end
Assume that y is of type C and that its value at some run-time instant is not void. 

Then the following instance of the above scheme violates property NO SURPRISE: 
[SURPRISE, SURPRISE!]

-- Assume that y  boolattr is false.
x := y

-- Here it is still true that y  boolattr is false.
x  set_true

-- But then here y  boolattr is true!

The last instruction of this extract does not involve y in any way; yet one of its effects 
is to change the properties of y, as indicated by the final comment. 

Coming to terms with dynamic aliasing 

Having seen the disturbing consequences of reference assignments and dynamic aliasing, 
one may legitimately ask why we should keep such a facility in our model of computation. 

The answer is twofold — partly theoretical and partly practical: 
• We need reference assignments if we are to benefit from the full power of the object-

oriented method, in particular to describe complex data structures. The issue here is 
again to make sure that our tools are versatile enough for our modeling needs. 

• In the practice of object-oriented software construction, encapsulation makes it 
possible to avoid the dangers of reference manipulations. 

Let us examine these two important aspects in turn. 

x
y

boolattrFalse True
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A linked 
circular list

Page 226.
Aliasing in software and elsewhere 

The first observation is simply that many of the data structures we will need require 
references and reference sharing. Some standard data structures, for example, include 
cyclically chained elements, which you cannot implement without references. In 
representing list and tree structures, it is often convenient to let every node contain a 
reference to its neighbor or parent. The figure below shows a circular list representation, 
combining both of these ideas. Open any textbook on fundamental data structures and 
algorithms, as used in introductory computing science courses, and you will find many 
such examples. With object technology we will want, if anything, to use even more 
sophisticated structures.

In fact the need for references, reference attachment and reference sharing already 
arises with quite unsophisticated data structures. Recall the classes used above to describe 
books; one of the variants was 

class BOOK3 feature
… Other features; …
author: WRITER

end
Here the need for reference sharing is simply a consequence of the property that two 

or more books may have the same author. Many of the examples of this chapter also cause 
sharing; in the PERSON case, several people may have the same landlord. The question, 
as already noted, is modeling power, not just the requirements of implementation. 

But then if b1 and b2 are two instances of BOOK3 with the same author, we have a 
case of aliasing: b1  author and b2  author are two references attached to the same object, 
and using any of them as target of a feature call will have exactly the same effect as using 
the other. Seen in this light, dynamic aliasing appears less as a potentially dangerous 
software facility than as a fact of life, the price to pay for the convenience of being able to 
refer to things under more than one name. 

firstShared
references
(aliasing)
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Stendhal lived prior 
to the establishment 
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course — and would 
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got it anyway; he did 
not even make it to 
the Académie.
It is indeed easy to find violations of the above NO SURPRISE property without ever 
entering the software field. Consider the following property and operation, defined for any 
book b: 

• NOT_NOBEL (b) stands for: “the author of b has never received the Nobel prize”. 

• NOBELIZE (b) stands for: “Give the Nobel prize to the author of b”. 

Now assume rb denotes the book The Red and the Black and cp denotes The 
Charterhouse of Parma. Then the following is a correct development: 

[SURPRISE IN OSLO]
-- Assume that here NOT_NOBEL (rb) holds

NOBELIZE (cp)
-- Then here NOT_NOBEL (rb) does not hold any more!

An operation on cp has changed a property of a different entity, rb, not even named 
in the instruction! The consequences on rb may actually be quite significant (with a Nobel 
author an out-of-print book will be reprinted, its price may rise etc.). In this non-software 
case exactly the same thing happens as when the operation x  set_true, in the earlier 
software example, produced an important effect on y even though it did not refer to y. 

So dynamic aliasing is not just a consequence of programmers’ dirty tricks with 
references or pointers. It is a consequence of the human ability to name things (“objects” 
in the most general sense of the word), and to give many names to one thing. In classical 
rhetoric, this was known as a polyonymy, as with the use of “Cybele”, “Demeter” and 
“Ceres” for the same goddess, and antonomasia, the ability to refer to an object through 
indirect phrases, as with “The beautiful daughter of Agammemnon” for Helena of Troy. 
Polyonymy, antonomasia and the resulting dynamic aliasing are not restricted to gods and 
heroes; if in the cafeteria you overhear two conjectures from separate conversations, one 
stating that the spouse of the engineering Vice President just got a big promotion and the 
other that the company has fired its accountant, you will not realize the contradiction — 
unless you know that the accountant is the VP’s husband. 

Encapsulating reference manipulations 

By now we have accumulated enough evidence that any realistic framework for modeling 
and software development must support the notion of reference, and consequently 
dynamic aliasing. How then do we cope with the unpleasant consequences of these 
mechanisms? The inability to ensure the NO SURPRISE property illustrates how 
references and aliasing endanger our ability to reason systematically about our software, 
that is to say, to infer run-time properties of the software’s execution, in a safe and simple 
way, by examining the software text. 

To find an answer it helps to understand first how much of this issue is specific to the 
object-oriented method. If you are familiar with such programming languages as Pascal, 
C, PL/I, Ada and Lisp you will probably have noted that much of the above discussion 
applies to them as well. They all have a way of allocating objects dynamically (although 
in C the corresponding function, malloc, is in the library rather than the language proper) 
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and of letting objects contain references to other objects. The level of abstraction of the 
language mechanisms varies significantly: C and PL/I pointers are scantily dressed 
machine addresses; Pascal and Ada use typing rules to wrap pointers in more respectable 
attire, although they do not need much prompting to return to their original state. 

What then is new with object-oriented development? The answer lies not in the 
theoretical power of the method (whose run-time structures are similar to those of Pascal or 
Ada, with the important difference of garbage collection, studied in the next chapter) but in 
the practice of software construction. O-O development implies reuse. In particular, any 
project in which many application classes perform tricky manipulations (such as reference 
manipulation) is a flawed use of the object-oriented approach. Such operations should be 
encapsulated once and for all in library classes. 

Regardless of the application domain, if a system includes object structures requiring 
non-trivial reference operations, the vast majority of these structures are not application-
specific but merely instances of such frequently needed and well-known structures as lists 
of various kinds, trees under various representations, graphs, hash tables and a few others. 
In a good O-O environment a library will be readily available, offering many implementations 
of these structures; appendix A will sketch an example, the Base library. The classes of such 
a library may contain many operations on references (think for example of the reference 
manipulations needed to insert or delete an element in a linked list, or a node in a tree using 
linked representation). The library should have been patiently crafted and validated, so as to 
take care of the tricky problems once and for all. 

If, as you are building the application, you recognize the need for complex object 
structures which are not adequately covered by the available libraries, you should look at 
them as requiring new general-purpose classes. You should design and check them 
carefully, under the expectation that in due time they will become part of some library. 
Using the terminology introduced in an earlier chapter, such a case is an example of 
moving from a consumer’s to a producer’s view of reuse. 

The remaining reference manipulations in application-dependent classes should be 
restricted to simple and safe operations. (The bibliographical notes cite an article by 
Suzuki which explores this idea further.)

8.10  DISCUSSION 

This chapter has introduced a number of rules and notations for manipulating objects and 
the corresponding entities. Some of these conventions may have surprised you. So it is 
useful to conclude our exploration of objects and their properties by examining the issues 
involved and the reasons behind the choices made. Although I hope you will in the end 
agree with these choices, the more important goal of this discussion is to make sure that 
you fully understand the underlying problems, so that even if you prefer a different 
solution you choose it with your eyes open. 
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Graphical conventions 

To warm up let us begin with a little notational issue — a detail, really, but software is 
sometimes in the details. This particular detail is the set of conventions used to illustrate 
classes and objects in graphical representations. 

The previous chapter emphasized the importance of not confusing the notions of 
class and object. Accordingly, the graphical representations are different. Objects are 
represented as rectangles. Classes, as they appear in system architecture diagrams, are 
represented by ellipses (connected by arrows representing the relations between classes: 
single arrow for the inheritance relation, double arrow for the client relation). 

Class and object representations appear in different contexts: a class ellipse will be 
part of a diagram representing the structure of a software system; an object rectangle will 
be part of a diagram representing a snapshot of the state of a system during its execution. 
Because these two kinds of diagram address completely different purposes, there is 
usually no opportunity in paper presentations such as the present book for having both 
class and object representations appear in the same context. But the situation is different 
with interactive CASE tools: during the execution of a software system, you may want (for 
example for debugging purposes) to look at an object, and then display its generating class 
to examine the features, parents or other properties of that class. 

The graphical conventions used for classes and objects are compatible with the 
standard established by Nerson and Waldén’s BON method. In BON (Business Object 
Notation), which is meant for use in interactive CASE tools as well as for paper 
documentation, class yy-bubbles can be stretched vertically so as to reveal a class’s 
features, invariant, indexing words, and other properties. 

As with any choice of graphical representation, there is no absolute justification for 
the conventions used in BON and in this book. But if the graphical symbols at our disposal 
are ellipses and rectangles, and the elements to be represented are classes and objects, then 
it does appear preferable to assign rectangles to objects: an object is a set of fields, so we 
can represent each field by a small rectangle and glue together a set of fields to make up 
a bigger rectangle which represents an object. 

A further convention, illustrated by the figures of this chapter, is to make expanded 
fields appear shaded, whereas references fields are blank; subobjects appear as smaller 
embedded rectangles, containing their own fields. All these conventions follow from the 
decision to use rectangles for objects. 

On the lighter side, it is hard to resist quoting the following non-scientific argument, 
from Ian Graham’s critique of an O-O analysis book that uses a different convention: 

Nor do I like showing classes as sharp cornered triangles. I like to think that 
instances have sharp corners because if you drop them on your foot they 
hurt, whereas classes can’t hurt anyone and therefore have rounded corners.
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Simula-style 
notations for 
operations on 
reference and 
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References and simple values 
An important syntactical question is whether we should deal differently with references 
and simple values. As noted, assignment and equality test have different meanings for 
references and for values of expanded types — the latter including values of basic types: 
integers and the like. Yet the same symbols are used in both cases: :=, =, /=. Is this not 
dangerous? Would it not be preferable to use different sets of symbols to remind the reader 
that the meanings are different? 

Using two sets of symbols was indeed the solution of Simula 67. Transposing the 
notation slightly so as to make it compatible with those of the present book, the Simula 
solution is to declare an entity of a reference type C as 

x: reference C
where the keyword reference reminds the reader that instances of x will be references. 
Assuming the declarations 

m, n: INTEGER
x, y: reference C

then different notations are used for operations on simple and reference types, as follows:

The Simula conventions remove any ambiguity. Why not keep them then? The 
reason is that in practice they turn out in spite of the best intentions to cause more harm 
than help. The problems begin with a mundane matter: typing errors. The two sets of 
symbols are so close that one tends to make syntactical oversights, such as using := instead 
of :–. Such errors will be caught by the compiler. But although compiler-checkable 
restrictions in programming languages are meant to help programmers, the checks are of 
no use here: either you know the difference between reference and value semantics, in 
which case the obligation to prove again, each time you write an assignment or equality, 
that you did understand this difference, is rather annoying; or you do not understand the 
difference, but then the compiler message will not help you much! 

The remarkable aspect of the Simula convention is that you do not in fact have a 
choice: for references, no predefined construct is available that would give value 
semantics. It might have seemed reasonable to allow two sets of operations on entities a
and b of reference types: 

• a :– b for reference assignment, and a == b for reference comparison. 
• a := b for copy assignment (the equivalent, in our notation, of either a := clone (b) or 

a  copy (b)), and a = b for object comparison (the equivalent of our equal (a, b)). 

OPERATION
EXPANDED 
OPERANDS

REFERENCE 
OPERANDS

Assignment m := n x :– y

Equality test m = n x == y

Inequality test m /= n x =/= y
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But this is not the case; for operands of reference types, with one exception, Simula 
only provides the first set of operations, and any attempt to use := or = will produce a 
syntactical error. If you need operations of the second set (copy or clone, object 
comparison), you must write specific routines corresponding to our clone, copy and equal
for each target class. (The exception is the TEXT type, representing character strings, for 
which Simula does offer both sets of operations.) 

On further examination, by the way, the idea of allowing both sets of operations for 
all reference types does not appear so clever. It would mean that a trivial oversight such 
as typing := for :– would now go undetected by the compiler but produce an effect quite 
different from the programmer’s intent, for example a clone where a reference assignment 
was intended. 

As a result of this analysis, the notation of this book uses a different convention from 
Simula’s: the same symbols apply for expanded and reference types, with different 
semantics (value in one case, reference in the other). You can achieve the effect of value 
semantics for objects of reference types by using predefined routines, available on all 
types: 

• a := clone (b) or a  copy (b) for object assignment. 

• equal (a, b) for object (field-by-field) comparison. 

These notations are sufficiently different from their reference counterparts (:= and =, 
respectively) to avert any risk of confusion. 

Beyond the purely syntactical aspects, this issue is interesting because it typifies 
some of the tradeoffs that arise in language design when a balance must be found between 
conflicting criteria. One criterion, which won in the Simula case, may be stated as: 

• “Make sure different concepts are expressed by different symbols”. 

But the opposing forces, which dominated in the design of our notation, say: 

• “Avoid bothering the software developer.” 

• “Weigh carefully any new restriction against the actual benefits that it will bring in 
terms of security and other quality factors.” Here the restriction is the prohibition of
:= and similar operators for references. 

• “Make sure that the most common operations can be expressed by short and simple 
notations.” The application of this principle requires some care, as the language 
designer may be wrong in his guesses of what cases will be the most common. But 
in the present example it seems clear that on entities of expanded types (such as 
INTEGER) value assignment and comparison are the most frequent operations, 
whereas on references entities reference assignment and comparison are more 
frequent than clone, copy and object comparison. So it is appropriate to use := and =
for the fundamental operations in both cases. 
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• “To keep the language small and simple, do not introduce new notations unless they 
are absolutely necessary”. This applies in particular if, as in this example, existing 
notations will do the job and there is no danger of confusion. 

• “If you know there is a serious risk of confusion between two facilities, make the 
associated notations as different as possible.” This leads us to avoid making both :–
and := available for the same operands with different semantics.

One more reason plays a role in the present case, although it involves mechanisms 
that we have not yet studied. In later chapters we will learn to write generic classes, such 
as LIST [G], where G, known as a formal generic parameter, stands for an arbitrary type. 
Such a class may manipulate entities of type G and use them in assignments and equality 
tests. Clients that need to use the class will do so by providing a type to serve as actual 
generic parameter; for example they may use LIST [INTEGER] or LIST [POINT]. As 
these examples indicate, the actual generic parameter may be an expanded type (as in the 
first case) as well as a reference type (as in the second case). In the routines of such a 
generic class, if a and b are of type G, it is often useful to use assignments of the form 
a := b or tests of the form a = b with the intent of obtaining value semantics if the actual 
generic parameter is expanded (as with INTEGER) and reference semantics if it is a 
reference type (as with POINT). 

An example of a routine which needs such dual behavior is a procedure for inserting an 
element x into a list. The procedure creates a new list cell; if x is an integer, the cell must 
contain a copy of that integer, but if x is a reference to an object the cell will contain a 
reference to the same object. 

In such a case the rules defined above ensure the desired dual behavior, which would 
have been impossible to achieve if a different syntax had been required for the two kinds 
of semantics. If, on the other hand, you want a single identical behavior in all cases, you 
can specify it too: that behavior can only be value semantics (since reference semantics 
does not make sense for expanded types); so in the appropriate routines you should use 
not := and = but clone (or copy) and equal. 

The form of clone and equality operations 

A small point of style which may have surprised you is the form under which routines 
clone and equal are called. The notations 

clone (x)
equal (x, y)

do not look very O-O at first; a dogmatic reading of the previous chapter would suggest 
conventions that seem more in line with what was there called “the object-oriented style 
of computation”; for example: 

x  twin
x  is_equal (y)
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and then is a variant 
of  and. See “Non-
strict boolean opera-
tors”, page 454.

See also “Fixed se-
mantics for copy, 
clone and equality 
features”, page 583.
In a very early version of the notation, these were indeed the conventions. But they 
raise the problem of void references. A feature call of the form x  f (…) cannot be executed 
correctly if, at run time, the value of x is void. (In that case the call will trigger an exception 
which, unless the class contains specific provisions to recover from the exception, will 
cause the execution of the entire system to terminate abnormally.) So the second set of 
conventions would only work for non-void x. Because in many cases x may indeed be 
void, this would mean that most uses of twin would in practice be of the form 

if x = Void then
z := Void

else
z := x  twin

end

and most uses of is_equal of the form 

if
((x = Void) and (y = Void)) or
((x /= Void) and then x  is_equal (y))

then
…

Needless to say, these conventions were not kept for long. We quickly became tired 
of having to write such convoluted expressions — and even more of having to face the 
consequences (run-time errors) when we forgot. The conventions finally retained, 
described earlier in this chapter, have the pleasant property of giving the expected results 
for void x: in that case clone (x) is a void value, and equal (x, y) is true if and only if y is 
also void. 

Procedure copy, called under the form x  copy (y), raises no particular problem: it 
requires x (and also y) to be non-void, but this requirement is acceptable because it is a 
consequence of the semantics of copy, which copies an object onto another and so does 
not makes sense unless both objects exist. The condition on y, as explained in a later 
chapter, is captured by an official precondition on copy and so is present in a clear form in 
the documentation for this procedure.

It should be noted that a function is_equal as introduced above exists. The reason is 
that it is often convenient to define specific variants of equality, adapted to a class and 
overriding the default semantics of field-by-field comparison. To obtain this effect it 
suffices to redefine function is_equal in the desired classes. Function equal is defined in 
terms of is_equal (through the expression shown above to illustrate the use of is_equal), 
and so will follow its redefinitions.

In the case of clone, there is no need for twin. This is because clone is simply defined 
as a creation plus a call to copy. So to adapt the meaning of clone to the specific needs of 
a class it suffices to redefine procedure copy for that class; clone will automatically follow. 
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“THE GLOBAL 
INHERITANCE 
STRUCTURE”, 
16.2, page 580.
The status of universal operations 

The last comments have partly lifted the veil on a question that have may caught your 
attention: what is the status of the universal operations clone, copy, equal, is_equal, 
deep_clone, deep_equal? 

Although fundamental in practice, these operations are not language constructs. 
They come from a Kernel library class, ANY, which has the special property that every 
class written by a software developer automatically inherits (directly or indirectly) from 
ANY. This is why it is possible to redefine the features mentioned to support a particular 
view of equality or copying. 

We need not concern ourselves with the details here, as they will be studied together 
with inheritance. But it is useful to know that, thanks to the inheritance mechanism, we 
can rely on library classes to provide facilities that are then made available to any class — 
and can be adapted by any class to suit its own specific purposes. 

8.11  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Object-oriented computation is characterized by a highly dynamic run-time 
structure, where objects are created on demand rather than pre-allocated. 

• Some of the objects manipulated by the software are (usually quite indirect) models 
of outside objects. Others serve design and implementation purposes only. 

• An object is made of a number of values called fields. Each field corresponds to an 
attribute of the object’s generator (the class of which the object is a direct instance). 

• A value, in particular a field of an object, is either an object or a reference. 

• A reference is either void or attached to an object. The test x = Void tells which of 
the two cases holds. A call with target x, such as x  f (…), can only be executed 
correctly if x is non-void. 

• If the declaration of a class begins with class C …, an entity declared of type C will 
denote a reference, which may become attached to instances of C. If the declaration 
begins with expanded class D …, an entity declared of type D will denote an object 
(an instance of D), and will never be void.

• The basic types (BOOLEAN, CHARACTER, INTEGER, REAL, DOUBLE) are 
defined by expanded classes. 

• Expanded declarations also make it possible to define composite objects: objects 
with subobjects. 

• Object structures may contain cyclic chains of references. 

• The creation instruction create x creates an object, initializes its field to default 
values (such as void for references and zero for numbers), and attaches x to it. If the 
class has defined creation procedures, The instruction will also perform, in the form 
create x  creatproc (…), any desired specific initializations.
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• On entities of reference types, assignment (:=) and equality test (=) are reference 
operations. On entities of expanded types, they represent copy and field-by-field 
comparison. They also have the appropriate semantics for mixed operands. 

• Reference operations cause dynamic aliasing, which makes it more difficult to 
reason formally about software. In practice, most non-trivial reference 
manipulations should be encapsulated in library classes. 

8.12  BIBLIOGRAPHICAL NOTES 

The notion of object identity plays an important role in databases, especially object-
oriented databases. See chapter 31 and its bibliographical notes.

The graphical conventions of the BON method (Business Object Notation), designed 
by Jean-Marc Nerson and Kim Waldén, appear in [Waldén 1995]. James McKim and 
Richard Bielak expound the merits of multiple creation procedures in [Bielak 1994].

The risks caused by unfettered pointer or reference operations have worried software 
methodologists for a long time, prompting the inevitable suggestion that they are the data 
equivalent of what abhorred goto instructions represent on the control side. A surprisingly 
little-known article by Nori Suzuki [Suzuki 1982] explores whether a disciplined 
approach, using higher-level operations (in the same way that one avoids goto by sticking 
to the “structured programming” constructs of sequence, conditional and loop), could 
avoid the troubles of dynamic aliasing. Although the results are somewhat disappointing 
— by the author’s own admission — the article is useful reading.

I am indebted to Ross Scaife from the University of Kentucky for help with 
rhetorical terms. See his page at http://www.uky.edu/ArtsSciences/Classics/rhetoric.html.

EXERCISES

E8.1  Books and authors

Starting from the various sketches given in this chapter, write classes BOOK and WRITER
covering a useful view of books and their authors. Be sure to include the relevant routines 
(not just the attributes as in most of this chapter). 

E8.2  Persons

Write a class PERSON covering a simple notion of person, with attributes name (a 
STRING), mother, father and sibling (describing the next older sibling if any). Include 
routines which will find (respectively) the list of names of ancestors, direct cousins, 
cousins direct or indirect, uncles or aunts, siblings-in-laws, parents-in-laws etc. of a given 
person. Hint: write recursive procedures (but make sure to avoid infinite recursion where 
the relations, for example direct or indirect cousin, are cyclic.). 
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See “Operator fea-
tures”, page 187 
about infix features 
and permissible 
operators.
E8.3  Notation design
Assume you are frequently using comparisons of the form x  is_equal (y) and want to 
simplify the notation to take advantage of infix features (applicable here since is_equal is 
a function with one argument). With an infix feature using some operator §, the call will 
be written x § y. This little exercise asks you to invent a symbol for §, compatible with the 
rules on infix operators. There are of course many possible answers, and deciding between 
them is partly (but only partly) a matter of taste. 
Hint: The symbol should be easy to remember and somehow suggest equality; but perhaps 
even more importantly it should be different enough from = to avoid mistakes. Here you 
can benefit from the study of C and C++ which, departing from mathematical tradition, 
use = for assignment rather than equality comparison, but for the latter operation introduce 
a similar-looking symbol, ==. The matter is made even more delicate by the rule that 
permits treating an assignment as an expression, whose value is the value being assigned 
to the target, and by the rule accepting values such as integers as boolean expressions, 
meaning true if non-zero, so that compilers will accept a text of the form 

if (x = y) then …

although in most practical cases it is in error (mistakenly using = for ==), and will have 
the probably incorrect effect of assigning the value of y to x, returning true if and only if 
that value is non-zero. 
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Memory management 
Frankly, it would be nice to forget about memory. 

Our programs would just create objects as they please. One after the other, unused 
objects would vanish into abysses, while those most needed would slowly move closer to 
the top, like meritorious employees of a large corporation who manage once in a while to 
catch the attention of a higher officer, and by making themselves indispensable to their 
immediate superiors will with a bit of luck, at the end of a busy career, be admitted into 
the inner circle. 

But it is not so. Memory is not infinite; it does not harmoniously organize itself into 
a continuous spectrum of storage layers with decreasing access speeds, to which objects 
would naturally distribute. We do need to fire our useless employees, even if we must call 
it early retirement imposed with regret because of the overall economic situation. This 
chapter examines who should be thus downsized, how, and by whom. 

9.1  WHAT HAPPENS TO OBJECTS 

Object-oriented programs create objects. The previous chapter showed how useful it is to 
rely on dynamic creation to obtain flexible object structures, which automatically adapt to 
the needs of a system’s execution in any particular case. 

Object creation 

We have seen the basic operation for allocating space to new objects. In its simplest form 
it appears as 

create x

and its effect was defined as threefold: create a new object; attach it to the reference x; and 
initialize its fields. 

A variant of the instruction calls an initialization procedure; and you can also create 
new objects through routines clone and deep_clone. Since all these forms of allocation 
internally rely on basic creation instructions, we can restrict our attention to the form 
create x without fear of losing generality. 

We will now study the effect of such instructions on memory management.
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The static 
mode
Three modes of object management 

First it is useful to broaden the scope of the discussion. The form of object management 
used for object-oriented computation is only one of three commonly found modes: static,
stack-based and free. The choice between these modes determines how an entity can 
become attached to an object. 

Recall that an entity is a name in the software text representing a run-time value, or a 
succession of run-time values. Such values are either objects or (possibly void) references 
to objects. Entities include attributes, formal routine arguments, local entities of routines 
and Result. The term attached describes associations between entities and objects: at 
some stage during execution, an entity x is attached to an object O if the value of x is either 
O (for x of expanded type) or a reference to O (for x of reference type). If x is attached to 
O, it is sometimes convenient to say also that O is attached to x. But whereas a reference 
is attached to at most one object, an object may be attached to two or more references; 
this is the problem of dynamic aliasing, discussed in the previous chapter. 

In the static mode, an entity may become attached to at most one run-time object 
during the entire execution of the software. This is the scheme promoted by languages 
such as Fortran, designed to allow an implementation technique which will allocate space 
for all objects (and attach them to the corresponding entities) once and for all, at program 
loading time or at the beginning of execution. 

The static mode is simple and supports efficient implementation on the usual 
computer architectures. But it presents serious limitations: 

• It precludes recursion, since a recursive routine must be permitted to have several 
incarnations active at once, each with its own incarnations of the routine’s entities. 

• It also precludes dynamically created data structures, since the compiler must be able 
to deduce the exact size of every data structure from the software text. Each array, 
for example, must be statically declared with its exact size. This seriously limits the 
modeling power of the language: it is impossible to handle structures that grow and 
shrink in response to run-time events, except by allocating the maximum possible 
space for each of them — a technique that wastes memory, and is rather dangerous 
since just one data structure may cause the whole system execution to fail if its size 
has been underestimated. 

FIXED MEMORY AREA

Objects
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The stack-
based mode

Dynamic arrays can 
be created in C 
through the malloc 
function, a mecha-
nism of the “free” 
kind, the mode stud-
ied next; some Pas-
cal extensions 
support dynamic 
arrays. 

The free (heap-
based) mode
The second scheme of object allocation is the stack-based mode. Here an entity may 
at run time become attached to several objects in succession, and the run-time mechanisms 
allocate and deallocate these objects in last-in, first-out order. When an object is 
deallocated, the corresponding entity becomes attached again to the object to which it was 
previously attached, if any. 

Stack-based object management was made popular by Algol 60 and is supported 
(often in conjunction with one or both of the other two modes) in most posterior 
programming languages. Stack-based allocation supports recursion and, if the language 
permits it, arrays whose bounds only become known at run time. In Pascal and C, 
however, the mechanism only applies to variables of basic types and record types — not 
to arrays as it did in Algol. In practice the data structures that developers would most often 
want to allocate in this fashion are precisely arrays. Even when it applies to arrays, stack-
based allocation still does not support complex data structures in their full generality. 

To obtain such general data structures, we need the third and last scheme: the free 
mode, also called heap-based because of the way it is implemented. This is the fully 
dynamic mode in which objects are created dynamically through explicit requests. An 
entity may become successively attached to any number of objects; the pattern of object 
creations is usually not predictable at compile time. Objects may, furthermore, contain 
references to other objects. 

The free mode allows us to create the sophisticated dynamic data structures which 
we will need if, as discussed in the previous chapter, we are to take our software systems 
to their full modeling power. 

Objects of block i

Memory allocated
on entry to block i

Memory allocated
on entry to block i+1

Objects of block i+1

Order of allocation
(on block entry)

Order of

(on block exit)

THE STACK

deallocation

THE HEAP
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Using the free mode 

The free mode is clearly the most general, and is required for object-oriented computation. 
Many non-O-O languages use it too. In particular: 

• Pascal uses the static mode for arrays, the stack-based mode for variables of type 
other than array or pointer, and the free mode for pointer variables. In the last case 
object creation is achieved by a call to a special creation procedure, new. 

• C is similar to Pascal but in addition offers static non-array variables and free arrays. 
Dynamic allocation of pointer variables and arrays relies on a library function, malloc. 

• PL/I supports all modes. 

• Lisp systems have traditionally been highly dynamic, relying for the most part on the 
free mode. One of the most important Lisp operations, used repeatedly to construct 
lists, is CONS, which creates a two-field cell, ready to serve as a list element with the 
element’s value in the first field and a pointer to the next element in the second field. 
Here CONS, rather than explicit creation instructions, will be the principal source of 
new objects 

Space reclamation in the three modes 

The ability to create objects dynamically, as in the stack-based and free modes, raises the 
question of what to do when an object becomes unused: is it possible to reclaim its memory 
space, so as to use it again for one or more new objects in later creation instructions? 

In the static mode, the problem does not exist: for every object, there is exactly one 
attached entity; execution needs to retain the object’s space as long as the entity is active. 
So there is no possibility for reclamation in the proper sense. A related technique is, 
however, sometimes used. If you are convinced that the objects attached to two entities 
will never be needed at the same time, if these entities need not retain their values between 
successive uses, and if space efficiency is a critical problem, you can assign the same 
memory location to two or more entities — if you are really sure of what you are doing. 
This technique, known as overlay is still, appallingly enough, practiced manually. 

If used at all, overlay should clearly be handled by automatic software tools, as the 
potential for errors is too high when programmers control the process themselves. Once 
again a major problem is change: a decision to overlay two variables may be correct at a 
certain stage of the program’s evolution, but an unexpected change may suddenly make 
it invalid. We will encounter similar problems below, in a more modern context, with 
garbage collection. 

With the stack-based mode, the objects attached to an entity may be allocated on a 
stack. Block-structured language make things particularly simple: object allocation occurs 
at the same time for all entities declared in a given block, allowing the use of a single stack 
for a whole program. The scheme is elegant indeed, as it just involves two sets of 
concomitant events: 
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Allocation and 
deallocation in 
a block-
structured 
language

Detachment
The simplicity and efficiency of this implementation technique are part of the reason 
why block-structured languages have been so successful. 

With the free mode, things cease to be so simple. The problem comes from the very 
power of the mechanism: since the pattern of object creation is unknown at compile time, 
it is not possible to predict when a given object may become useless. 

Detachment 

Objects may indeed, in the free mode, become useless to the software at unpredictable 
times during execution, so that some mechanism (to be determined later in this discussion) 
may reclaim the memory they occupy.

The reason is the presence in our execution mode of operations performing what may 
be called detachment — the reverse of attachment. The previous chapter studied at length 
how entities can become attached to objects, but did not examine in any detail the 
consequences of detachments. Now is the time to correct this. 

Detachment only affects entities x of reference types. If x is of expanded type, the value 
of x is an object O, and there is no way to detach x from O. Note, however, that if x is an 
expanded attribute of some class, O represents a subobject of some bigger object BO; 
then BO, and with it O, may become unreachable for any of the reasons studied below. 
So for the rest of this chapter we may confine our attention to entities of reference types.

The principal causes of detachment are the following, assuming x and y, entities of 
reference type, were initially attached to objects O1 and O2. The figure illustrates cases 
D1 and D2. 

D1 • An assignment of the form x := Void, or x := v where v is void, detaches x from O1.

Dynamic Property 
(event at execution 
time) 

Static Property 
(location in the 
software text) 

Implementation 
Technique

Object allocation Block entry. Push objects (one for 
each of the entities local 
to the block) onto stack.

Object deallocation Block exit. Pop stack.

O1 O2

x y z

O3 Attachments:
Before



After
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Detachment is 
not always 
death
D2 • An assignment of the form y := z, where z is attached to an object other than O2, 
detaches y from O2.

D3 • Termination of a routine detaches formal arguments from any attached objects.

D4 • A creation instruction create x, attaches x to a newly created object, and hence 
detaches x if it was previously attached to an object O1.

Case D3 corresponds to the rule given earlier that the semantics of an assignment 
a :=   b is exactly the same as that of initializing a formal argument a of a routine r at the 
time of a call t  r (…, b, …), where the position of b in the call corresponds to that of a in 
the declaration of r.

Unreachable objects 

Does detachment mean that the detached object — O1 or O2 on the preceding figure — 
becomes useless and hence that the runtime mechanisms can reclaim the memory space it 
occupies, then recycle it for other objects? That would be too easy! The entity for which 
an object was initially created may have lost all interest in it, but because of dynamic 
aliasing other references may still be attached to it. For example the last figure may have 
shown only a partial view of attachments; looking at a broader context might reveal that 
O1 and O2 are still reachable from other objects: 

But this is still not the entire object structure. By getting even more context, we 
might now discover that O4 and O5 are themselves useless, so that in the absence of other 
references O1 and O2 are not needed after all. 

So the answer to the question “what objects can we reclaim?” must follow from a 
global analysis of the entire set of objects created so far. We can identify three kinds 
of object: 

C1 • Objects directly attached to entities of the software text, known (from the language 
rules) to be needed. 

O1 O2

x y z

O3

O4
O5
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C2 • Dependents of objects of category C1. (Recall that the direct dependents of an 
object are those to which it has references; here we are considering both direct and 
indirect dependents.) 

C3 • Objects which are in neither of the preceding two categories. 

The objects of category C1 may be called the origins. Together with those of 
category C2, the origins make up the set of reachable objects. Those of category C3 are 
unreachable. They correspond to what was informally called “useless objects” above. A 
more lively if somewhat macabre terminology uses the term “dead objects” for C3, the 
origins and their dependents being then called “live objects”. (Computing scientists, 
however, have not quite managed to reconcile their various metaphors, as the process of 
reclaiming dead objects, studied below, is called “garbage collection”.) 

The term “root” is also used for “origin”. But here the latter is preferable because an 
O-O system also has a “root object” and a root class. The resulting ambiguity would 
not be too damaging since the root object, as seen below, is indeed one of the origins. 

The first step towards addressing the problem of memory management under the free 
mode is to separate the reachable objects from the unreachable ones. To identify reachable 
objects, we must start from the origins and repeatedly follow all references. So the first 
question is to identify the origins; the answer depends on the run-time structure defined 
by the underlying language.

Reachable objects in classical approaches 

Because the unreachability problem is already present in the run-time structure of such 
classical approaches as Pascal, C and Ada, it is interesting to start with this case. (More 
accurately, this is interesting for the reader who is familiar with one of these approaches. 
If you are not in this category, you may prefer to skip this section and go directly to the 
next one, which moves right on to the run-time structure of O-O software.) 

The approaches quoted combine the stack-based and free modes of allocation. C and 
Ada also support the static mode, but to keep things simple we may ignore static allocation 
by viewing it as a special case of stack-based allocation: we treat static objects as if they 
were allocated once and for all, when execution starts, at the bottom of the stack. (This is 
indeed the way Pascal developers emulate static entities: they declare them in the 
outermost block.) 

Another common property of these approaches is that entities may denote pointers. 
To provide a better preparation for the object-oriented approach of this book, where 
instead of pointers we use references (a more abstract notion, as discussed in the previous 
chapter), let us pretend that the pointers in question are actually references. This means in 
particular that we disregard the weakly typed nature of pointers in C. 

With these assumptions and simplifications the origins, shown with thick borders on 
the following figure, are all the objects which are either allocated on the stack or attached 
to references allocated on the stack. The reachable objects (including the origins) appear 
in color, the unreachable objects in black.
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Live objects (in 
color) and 
dead objects (in 
black) in a 
combined 
stack-based 
and free model
Because the unreachability problem only arises for objects allocated under the free 
mode, and such objects are always attached to entities of reference types, it is convenient 
to ignore the reclamation problem for objects allocated on the stack (which can be handled 
simply by popping the stack at the time of block exit) and to start from the references 
coming from the stack. We may call these references reference origins. They are shown 
with thick arrows in the figure. A reference origin is either: 

O1 • The value of a local entity or routine argument of reference type (as with the top 
two reference origins in the figure). 

O2 • A field of reference type, in an object allocated on the stack (as with the lowest 
reference origin in the figure). 

As an example, consider the following type and procedure declarations, written in a 
syntax half-way between Pascal and the notation of the rest of this book (an entity of type 
reference G is a reference that may become attached to objects of type G): 

type
COMPOSITE =

record
m: INTEGER
r: reference COMPOSITE

end
…

THE STACK

Stack top

Reference origin

Origin
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Entity 
allocation for a 
procedure
procedure p

local

n: INTEGER

c: COMPOSITE

s: reference COMPOSITE

do

…

end

Every execution of p allocates three values on the stack:

The three new values are an integer n, which does not affect the problem of object 
management (since it will disappear when the procedure terminates, and does not refer to 
any other object); a reference s, which is an example of category O1; and an object c of 
type COMPOSITE. This object is itself stack-based and its allocated memory may be 
reclaimed on procedure termination; but it contains a reference field for r, which is an 
example of category O2. 

In summary, to determine the reachable objects in a classical approach combining 
the stack-based and free modes, you can start from the references on the stack (variables 
of reference types, and reference fields of composite objects), and repeatedly follow all 
reference fields of the attached objects if any. 

THE STACK

New stack top

Previous stack top

m

r

(COMPOSITE)

c

n

s
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Reachability in 
the object-
oriented model
Reachable objects in the object-oriented model 

The object-oriented run-time structure presented in the preceding chapter has a few 
differences from the one just discussed.            

The execution of any system starts with the creation of one object, called the root 
object of the system, or just its root (when there is no confusion with the root class, a static 
notion). Clearly, the root is one of the origins in this case. 

Another set of origins arises because of the possible presence of local entities in a 
routine. Assume a routine of the form

some_routine
local

rb1, rb2: BOOK3
eb: expanded BOOK3

do
…
create rb1
… Operations possibly involving rb1, rb2 and eb …

end
Whenever a call to some_routine is executed, and for the duration of that execution, 

the instructions in the routine’s body may refer to rb1, rb2 and eb, and hence to the 
attached objects if any. (For eb there is always an attached object, but at various points rb1
and rb2 may be void.) This means that such objects must be part of the reachable set, even 
though they are not necessarily dependents of the root. 

Local entities of reference types, such as rb1 and rb2, are similar to the local routine 
variables which, in the previous model, were allocated on the stack. Local entities of 
expanded types, such as eb, are similar to the stack-based objects. 

THE STACK
Stack top

THE ROOT
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Objects 
attached to 
local entities
When a call to some_routine terminates, the current incarnations of entities rb1, rb2
and eb disappear. As a result, any attached objects cease to be part of the origin set. This 
does not necessarily mean that they become unreachable, as they may in the meantime 
have become dependents of the root object or other origins.

Assume for example that a is an attribute of the enclosing class and that the whole 
text of the routine is: 

some_routine
local

rb1, rb2: BOOK3
eb: expanded BOOK3

do
create rb1; create rb2
a := rb1

end
The following figure shows in color the objects that a call to some_routine will create 

and the references that it will reattach.

When a call to some_routine terminates, the object O that served as target of the call 
is still reachable (otherwise there would have been no call!). The a field of O is now 
attached to the BOOK3 object B1 created by the first creation instruction (the one of target 
rb1), which, then, remains reachable. In contrast, the objects B2 and EB that were attached 
to rb2 and eb during the call now become unreachable: with the routine text as given there 
is no possibility that any of the other objects of the system, reachable or not, could 
“remember” B2 or EB. 

THE STACK

THE ROOT

(BOOK3)

Stack top before 
and after call

Stack top during 
execution of 
some_routine

rb2
rb1

(BOOK3)
(BOOK3)

a

Objects and references in black 
exist before the call; those in 
color are created by the call.

Objects with   thick borders  
are reachable after the call.

O

B1
B2

EB
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The memory management problem in the object-oriented model 

We may summarize the preceding analysis by defining the origins, and hence of the 
reachable objects, in the object-oriented framework:

The problem of memory management arises from the unpredictability of the 
operations which affect the set of reachable objects: creation and detachment. Because 
these operations are instructions, appearing as part of a system’s control structures, there 
is usually no way to determine with certainty, from a mere examination of the software 
text, the pattern of object creation and detachment at run time. 

More precisely, such a prediction is possible in some cases, for data structures 
managed in a strictly controlled way. An example is the LINKED_LIST library class 
studied in a later chapter, with the associated class LINKABLE which describes linked list 
elements. Instances of LINKABLE are only created through specific procedures of 
LINKED_LIST, and can only become unreachable as a result of executing the remove
procedure of that class. For such classes one might envision specific reclamation 
procedures. (This approach will be explored later in this chapter.) 

But such examples, although important, are only special cases. In the most general 
case we must face a difficult question: what do we do about unreachable objects? 

The three answers 

Three general attitudes are possible as to objects that become unreachable:

• Ignore the problem and hope that there will be enough memory to accommodate all 
objects, reachable or not. This may be called the casual approach. 

• Ask developers to include in every application an algorithm that looks for 
unreachable objects, and give them mechanisms to free the corresponding memory. 
This approach is called manual reclamation. 

Definition: origins, reachable and unreachable objects

At any point during the execution of a system, the set of origins is made 
of the following objects: 

• The system’s root object. 
• Any object attached to a local entity or formal argument of a 

routine currently being executed (including the local entity Result
for a function).

Any dependent, direct or indirect, of these origins is reachable. Any other 
object is unreachable; it is possible to reclaim the memory it occupies (for 
example to recycle it for other objects) without affecting the correct 
semantics of the system’s execution. 
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• Include in the development environment (as part of the so-called runtime system) 
automatic mechanisms that will detect and reclaim unreachable objects. This is 
called automatic garbage collection. 

The rest of this chapter discusses these approaches. 

9.2  THE CASUAL APPROACH 

The first approach consists in forgetting about the problem: abandon dead objects to their 
fate. Execute creation instructions as needed, and do not worry about what may later 
happen to those objects that have thus been allocated. 

Can the casual approach be justified? 

One case in which the casual approach presents no particular problem is that of systems 
that do not create many objects, such as small-scale tests or experiments. 

More interesting is the case of systems that may in fact create many objects, but in 
such a way that it is possible to guarantee that none or very few of them become 
unreachable. As with the static allocation scheme, no objects are ever retired; the 
difference is that creation occurs at execution time. 

This case provides a good justification for the casual approach, as there is no need for 
reclamation. The number of objects created may still be too big for the available memory, 
but no reclamation policy would alleviate the problem if there is nothing to reclaim.

Some real-time programs follow this scheme: for efficiency reasons, they create all 
needed objects statically or at initialization time, avoiding any non-predictable patterns of 
dynamic object creation. 

This method has its advocates, who usually are involved in the construction of “hard-
real-time” systems demanding guaranteed sub-millisecond response times to external 
events (such as a missile detection), and who as a consequence insist that the time to 
execute every operation must be fully predictable. But then memory management is only 
a small part of what we must give up: predictability requires the absence of any kind of 
object allocation (creation instruction, malloc, recursion, possibly any call of a routine 
with local entities) after initialization; and it assumes a dedicated, single-user, single-
processing machine, with no preemptive operating system call and in fact no operating 
system in the usual sense of the term. In such environments people sometimes choose to 
program in assembly language, as they fear the additional unpredictability of compiler-
generated code. All this, of course, restricts the discussion to a tiny (although strategic) 
part of the software development world.

Do we care about memory any more? 

Another argument sometimes heard to justify the casual approach is the increasing 
availability of large memory spaces, and the decreasing cost of memory. 
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The memory involved may be virtual as well as real. On a virtual memory system, 
both primary and secondary memory are divided into blocks called pages; when primary 
memory is needed, blocks of primary memory that have not been frequently used are 
moved to secondary memory (“paged out”). If such a system is used to run object-oriented 
systems, pages that contain reachable objects will tend to be paged out and leave main 
memory space to frequently used ones. 

If we indeed had almost infinite amounts of almost free memory, we could satisfy 
ourselves (as suggested at the very beginning of this chapter) with the casual approach. 
Unfortunately this is not the case. 

One reason is that in practice virtual memory is not really equivalent to real memory. 
If you store large numbers of objects in virtual memory, where a minority of reachable 
objects are interspersed with a majority of unreachable ones, the system’s execution will 
constantly cause pages to be moved in and out, a phenomenon known as thrashing which 
leads to dramatic degradation of time performance. Indeed, virtual memory systems make 
it harder to separate the space and time aspects of efficiency. 

But there is a more serious limitation to the casual approach. Even systems with a 
large memory have limits; it is always surprising to see how quickly programmers will 
reach them. And as was pointed out in the more general discussion of efficiency, hardware 
advances — in time or in space — should be put to good use. Larger memories are bought 
to be used, not wasted. 

As soon as you move beyond the case discussed above in which it is possible to 
prove that only a small number of objects will become unreachable, you will have to face 
the reclamation problem. 

A byte here, a byte there, and soon we will be talking real corpses 

It is time to lend our ears to the sad and edifying story of the London Ambulance Service. 

The London Ambulance Service, said to be the largest in the world, serves an area 
of about 1500 square kilometers, a resident population of almost seven million people and 
an even larger daytime population. Every day it handles over five thousand patients and 
receives between two and three thousand calls. 

As you may have guessed from the somber tone of this introduction, computers (and 
more to the point computer software) got involved at some stage. At more than one stage, 
in fact: several attempted systems were discarded as inadequate without being ever put 
into actual use, the latest in 1991, having burned seven and half million pounds. Then in 
1992 a new system, developed at a cost of a million pounds, was put into operation. It soon 
made headlines again; on October 28 and 29, television and press reports were announcing 
that twenty lives had been lost because of the system’s inadequacy; in one particular case 
an ambulance crew is said to have radioed base on reaching the location of their call, to 
ask why the undertaker had got there first. The Service’s chief executive resigned and an 
inquiry commission was appointed. 
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The Service did not immediately scrap the computerized system but switched to a 
hybrid mode — partly manual, partly relying on the system. According to the official report: 

This [hybrid] system operated with reasonable success from the afternoon of 27 October 1992 
up to the early hours of 4 November. However, shortly after 2AM on 4 November the system 
slowed significantly and, shortly after this, locked up altogether. Attempts were made to re-boot 
(switch off and restart workstations) in the manner that staff had previously been instructed by 
XX to do in these circumstances. This re-booting failed to overcome the problem with the result 
that calls in the system could not be printed out and mobilizations via [the system] from incident 
summaries could not take place. Management and staff […] reverted fully to a manual, paper-
based system with voice or telephone mobilization.

What caused the system to fail in such a dismal way that it could not be kept even as 
an adjunct to a manual operation? The inquiry report identifies several reasons, but here 
is the clincher: 

The Inquiry Team has concluded that the system crash was caused by a minor programming error. 
In carrying out some work on the system some three weeks previously the XX programmer had 
inadvertently left in the system a piece of program code that caused a small amount of memory 
within the file server to be used up and not released every time a vehicle mobilization was 
generated by the system. 
Over a three week period these activities had gradually used up all available memory thus causing 
the system to crash. This programming error should not have occurred and was caused by 
carelessness and lack of quality assurance of program code changes. Given the nature of the fault 
it is unlikely that it would have been detected through conventional programmer or user testing.

The reader will be the judge of how accurate it is to call the programming error 
“minor”, especially in view of the crucial last comments (that the error would have been 
hard to find through testing), which will be discussed again below. 

For anyone wondering whether the casual approach may be good enough, and more 
generally for anyone who may be tempted to dismiss memory management as “just an 
implementation issue”, the twenty victims of the London Ambulance Service will serve 
as a sobering reminder of the seriousness of the problems covered by this chapter. 

9.3  RECLAIMING MEMORY: THE ISSUES 

If we go beyond the casual approach and its simplistic assumptions, we must find how and 
when to reclaim memory. This in fact involves two issues: 

• How we will find out about dead elements (detection). 

• How the associated memory is actually reclaimed (reclamation). 

For each of these tasks, we may look for a solution at any one of two possible levels: 

• The language implementation level — compiler and runtime system, providing the 
support common to all software written in a certain language in a certain 
computing environment.

• The application level — application programs, intended to solve specific problems. 
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In the first case the selected memory management functions will be handled 
automatically by the hardware-software machine. In the second case, each application 
developer has to take care of these functions on his own.

There is in fact a third possible level, in-between these two: working at the 
component manufacturing level, that is to say handling memory management functions 
in the general-purpose reusable library classes in an object-oriented environment. As at 
the application level, you can only use the programming language’s official mechanisms 
(rather than enjoying direct access to hardware and operating system facilities); but as at 
the language implementation level, you can address the memory management problem, or 
part of it, once and for all for all applications.

Given two tasks and three possibilities for each, we are in principle faced with nine 
possibilities. Actually, only four or so make sense. We will review those which are actually 
available in existing systems. 

9.4  PROGRAMMER-CONTROLLED DEALLOCATION
One popular solution is to provide a reclamation facility at the implementation level, while 
passing on the detection problem to software developers. 

This is certainly the easiest solution for language implementers: all they have to do 
is to provide a primitive, say reclaim, such that a   reclaim tells the runtime system that the 
object attached to a is no longer needed and the corresponding memory cells may be 
recycled for new objects. 

This is the solution adopted by such non object-oriented languages as Pascal 
(dispose procedure), C (free), PL/I (FREE), Modula-2 and Ada; you will also find it in 
most of the “hybrid object-oriented languages”, in particular C++ and Objective-C. 

This solution is favored by many programmers, especially in the C world, who like 
to feel in full control of what happens. As a typical reaction here is a Usenet message, 
posted on the comp.lang.objective-c discussion group in response to a suggestion that 
Objective-C could benefit from automatic reclamation:

I say a big NO! Leaving an unreferenced object around is BAD PROGRAMMING. Object 
pointers ARE like ordinary pointers — if you [allocate an object] you should be 
responsible for it, and free it when its finished with (didn't your mother always tell you to 
put your toys away when you'd finished with them?).

For serious software development this attitude is not defensible. Grown-up 
developers must be prepared let someone else play with their “toys” for two reasons: 
reliability and ease of development. 

The reliability issue 

Assume developers are in control of deallocating objects with a reclaim mechanism. The 
possibility of an erroneous reclaim is always lurking, especially in the presence of 
complex data structures. In particular, as the software evolves, a reclaim that used to be 
justified may become incorrect. 
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Such a mistake causes what is known as the dangling reference problem: the case in 
which an object keeps, in one of its fields, a reference to another object which has been 
reclaimed. If the system then tries to use the reference after that object’s memory area has 
been recycled to hold wholly unrelated information, the result will usually be a run-time 
crash or (worse yet) erroneous and erratic behavior. 

This type of error is known to be the source of some of the most common and nasty 
bugs in the practice of C and derived languages. Programmers in these languages 
particularly fear such bugs because of the difficulty of tracing down their source, a 
difficulty that is easy to understand: if the programmer forgot to note that a certain 
reference was still attached to an object, and as a result wrongly issued a reclaim on the 
object, it is often because the missed reference came from a completely different part of 
the software. If so there will be a great conceptual and physical distance between the error 
(the wrong reclaim) and its manifestation (a crash or other abnormal behavior due to an 
attempt to follow an incorrect reference); the latter may occur long after the former, and 
in a seemingly unrelated part of the system. In addition the bug may be hard to reproduce 
if the operating system does not always allocate memory in the same way.

Dismissing the issue, as in the Usenet message reproduced above, by claiming that 
only “BAD PROGRAMMING” leads to such situations, does nothing to help. To err is 
human; to err when programming a computer is inevitable. Even in a moderately complex 
application, no developer can be trusted, or trust himself, to keep track of all run-time 
objects. This is a task for computers, not people.

Many a C or C++ programmer has spent many a night trying to figure out what in 
the world could have happened to one of his “toys”. It is not rare to see a project repeatedly 
delayed by such mysterious memory bugs.

The ease of development issue 

Even if we were able to avoid erroneous reclaim calls, the question remains of how 
realistic it would be to ask developers to handle object reclamation. The snag is that, 
assuming you have positively identified an object that is up for reclamation, just releasing 
that object is usually not sufficient, as it may itself contain references to other objects. 

Take the structure shown by the figure at the top of the next page, the same one used 
in the previous chapter to describe the dynamic nature of object structures. Assume you 
have correctly deduced that you may reclaim the top object. Then in the absence of any 
other references you may also reclaim the other two objects, which it references directly 
in one case and indirectly in the other. Not only may you reclaim them, you should do so: 
how good would it be to reclaim only part of a structure? In Pascal terminology this is 
sometimes called the recursive dispose problem: if the reclaim operations are to make any 
sense, they must recursively apply to a whole data structure, not just to an individual 
object. But of course you need to make sure that no references remain to the other objects 
from the outside. This is an arduous and error-prone task. 
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In this figure all the objects are of the same type. Consider now an entity x attached 
to an object O of type MY_TYPE, with the class declaration 

class MY_TYPE feature
attr1: TYPE_1
attr2: TYPE_2

end
Every object of type MY_TYPE, such as O, contains references which (unless void) 

are attached to objects of types TYPE_1 and TYPE_2. Reclaiming O may imply that these 
two objects should also be reclaimed, as well as any of their own direct or indirect 
dependents. Implementing the recursive dispose in this case means writing a set of 
reclamation procedures, one for each type of objects that may contain references to other 
objects. The result will be a set of mutually recursive procedures of great complication. 

All this leads to disaster. It is indeed not uncommon, in languages that do not support 
automatic garbage collection, to see a large part of the text of an “application” system, and 
a large part of the development effort, being devoted to memory management. Such a 
situation is unacceptable. As an application developer, you should be able to concentrate 
on your job — solving application problems —, not become a bookkeeper or garbage 
collector (whichever metaphor is more appropriate). 

Needless to say, the increased software complexity resulting from manual memory 
management results in decreased quality. In particular, it hampers readability and such 
other properties as ease of error detection and ease of modification. The resulting 
complexity further compounds the problem highlighted in the previous section — 
reliability. The more complex a system, the more likely it is to contain errors. The sword 
of Damocles of a possible erroneous reclaim is always hanging over your head, likely to 
fall at the worst possible time: when the system goes from testing to production and, as a 
result, starts creating bigger and more intricate object structures. 

The conclusion is clear. Except in tightly controlled situations (as discussed in the 
next section), manual memory management is not appropriate for serious software 
development — at least if there is any concern for quality. 
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9.5  THE COMPONENT-LEVEL APPROACH

(This section describes a solution useful in a specific case only; you may skip it on first 
reading.)

Before we move on to more ambitious schemes such as automatic garbage 
collection, it is interesting to look at a solution which may be described as a responsible 
alternative to the previous one, avoiding some of its drawbacks. 

This solution is only applicable within an object-oriented, bottom-up approach to 
software design, where data structures are not developed “on the spot” as programs need 
them, but built as reusable classes: general-purpose implementations of abstract data 
types, with all the associated operations — features. 

What sets the object-oriented approach apart with respect to memory management? 
Part of the novelty, rather than technical, is organizational: with the method’s emphasis on 
reuse of libraries, there now stands between the application developers and the 
implementers of the base technology (compiler and development tools), a third group of 
people responsible for writing reusable components that implement the main data 
structures. Its members — who may of course participate at times in the other two 
activities — may be called the component manufacturers. 

The component manufacturers have total control over all uses of a given class, and 
so are in a better position to find an acceptable solution to the memory management 
problem for all instances of that class. 

If the pattern of allocation and deallocation for the class is simple enough, the 
component manufacturers may be able to find an efficient solution which does not even 
require the underlying runtime system to provide a specific reclaim routine; they can 
express everything in terms of higher-level concepts. This may be called the component-
level approach. 

Managing space for a linked list 

Here is an example of the component-level approach. Consider a class LINKED_LIST, 
describing lists that consist of a header and any number of linked cells, themselves 
instances of a class LINKABLE. The allocation and deallocation pattern for linked lists is 
simple. The objects of concern are the “linkable” cells. In this example, the component 
manufacturers (the people responsible for classes LINKED_LIST and LINKABLE) know 
exactly how linkables are created — by the insertion procedures — and how linkables may 
become dead — as a result of the deletion procedures. So they can manage the 
corresponding space in a specific way.

Let us assume that LINKED_LIST has only two insertion procedures, put_right and 
put_left, which insert a new element at the left and right of the current cursor position. 
Each will need to create exactly one new LINKABLE object; they are the basic source of 
allocation due to LINKED_LIST. A typical implementation is:
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LINKABLE
object

next
put_right (v: ELEMENT_TYPE)
-- Insert an element of value v to the right of cursor position.

require
…

local
new: LINKABLE

do
create new  make (v)
 active   put_linkable_right (new)
… Instructions to update other links …

end
The creation instruction create new  make (v) directs the language implementation 

level to allocate memory for a new object. 

In the same way that we control where objects are created, we know exactly where 
they can become unreachable: through one of the deletion procedures. Let us assume three 
such procedures remove, remove_right, remove_left; there may also be others such as 
remove_all_occurrences (which removes all occurrences of a certain value) and wipe_out 
(which remove all elements), but we may assume that they internally rely on the first three, 
each of which makes exactly one LINKABLE unreachable. Procedure remove, for 
example, may have the following form: 

remove
-- Delete element at cursor position.

do
…
 previous   put_linkable_right (next)
… Instructions to update other links …
active := next

end
These deletion procedures provide the exact context for detecting unreachable 

objects and, if desired, putting them aside for later reuse. In the absence of any automatic 
scheme for releasing memory, the component manufacturer may safely conserve memory, 
by avoiding the allocation requested by an insertion when previous deletions have created 
unreachable LINKABLE objects and stored them somewhere for later reuse. 

Assume we keep these instances of LINKABLE in a data structure called available; 
we will see below how to represent it. Then we may replace the creation instructions such 
as create new  make (v) in put_right and put_left by 

new := fresh (v)

where fresh is a new secret function of LINKED_LIST, which will return a ready-for-use 
linkable. Function fresh will attempt to obtain its result from the available list, and will 
only perform a creation if the list is empty.

active

v

activeprevious



§9.5   THE COMPONENT-LEVEL APPROACH 299

Exercise E23.1, page
807 (based on later 
methodological dis-
cussions), asks you 
to discuss whether it 
is proper for function 
fresh to produce a 
side effect.
Elements will be fed into available by the deletion procedures. For example, the 
body of remove should now be of the form 

do
recycle (active)

-- The rest as before:
… Instructions to update links: previous, next, first_element, active …

where recycle, a new procedure of LINKED_LIST, plays the opposite role of fresh: adding 
its argument to the list of available objects. This procedure will be secret (not exported to 
any client) since it is for internal use only.

Dealing with recycled objects

To implement fresh and recycle, we may, among other possible choices, represent 
available as a stack: fresh will pop from and recycle will push onto the stack. Let us 
introduce a class STACK_OF_LINKABLES for the occasion and add the following secret 
features to LINKED_LIST: 

available: STACK_OF_LINKABLES 

fresh (v: ELEMENT_TYPE): LINKABLE
-- A new element with value v, for reuse in an insertion

do
if available  empty then

-- No choice but to perform an actual allocation
create Result  make (v)

else
-- Reuse previously discarded linkable

Result := available  item; Result  put (v); available  remove
end

end

recycle (dead: LINKABLE)
-- Return dead to the available list.

require
dead /= Void

do
available  put (dead)

end

We may declare class STACK_OF_LINKABLES as follows: 
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class
STACK_OF_LINKABLES 

feature {LINKED_LIST}
item: LINKABLE

-- Element at top
empty: BOOLEAN

-- Is there no item?
do

Result := (item = Void)
end

put (element: LINKABLE)
-- Add element on top.

require
 element /= Void

do
element  put_right (item); item := element

end
remove

-- Remove last item added.
require

not empty
do

item := item  right
end

end
The stack representation, as pictured, takes advantage of the right field already present 

in every LINKABLE to link all recycled elements without using any extra space. LINKABLE
must export right and put_right to STACK_OF_LINKABLES as well as LINKED_LIST. 

Feature available, as declared, is an attribute of the class. This means that each 
linked list will have its own stack of linkables. It is of course a better use of space, if a 
given system contains several lists, to share the pool of recycled linkables over the whole 
system. The technique to do this, once functions, will be introduced later; making 
available a once function means that only one instance of the class will exist throughout 
a given system execution, achieving the desired goal.

Discussion 

This example shows what the component-level approach can do to alleviate the problem 
of space reclamation by treating it at the component manufacturing level. It assumes that 
the underlying language implementation does not offer the automatic mechanisms 
described in the next sections; rather than burdening application programs with memory 
management problems, with all the risks discussed earlier, the solution presented assigns 
both detection and reclamation to the basic reusable classes. 

item right

r

(top of stack)

Stack elements
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The drawbacks and benefits are clear. Problems of manual memory management 
(reliability risks, tediousness) do not magically vanish; coming up with a foolproof 
memory management scheme for a particular data structure, as done above for linked lists, 
is hard. But instead of letting each application developer cope with the issue, we assign 
this job to component manufacturers; it should fit well in their general task of chiseling 
out high-quality reusable components. The extra effort is justified by the benefits of 
having good components available for frequent use by many different applications.

The component-level approach assumes a data structure whose patterns of creation 
and obsolescence are simple and perfectly understood. This covers only certain cases; for 
many structures the pattern is unpredictable or too complicated. When the approach is 
applicable, it provides a better solution, when the underlying language system does not 
offer automatic memory management, than letting each application developer try to 
handle the problem manually, or not handle it at all.

9.6  AUTOMATIC MEMORY MANAGEMENT
None of the approaches seen so far is fully satisfactory. A general solution to the problem 
of memory management for objects involves doing a serious job at the language 
implementation level. 

The need for automatic techniques 

A good O-O environment should offer an automatic memory management mechanism 
which will detect and reclaim unreachable objects, allowing application developers to 
concentrate on their job — application development. 

The preceding discussion should suffice to show how important it is to have such a 
facility available. In the words of Michael Schweitzer and Lambert Strether: 

An object-oriented program without automatic memory management is 
roughly the same as a pressure cooker without a safety valve: sooner or later 
the thing is sure to blow up! 

Many development environments advertized as O-O still do not support such 
mechanisms. They may have other features which make them attractive at first; and indeed 
they may work nicely on small systems. But for serious development you run the risk that 
they will let you down as soon as the application reaches real size. To summarize in the 
form of concrete advice:

Two major approaches are applicable to automatic memory management: reference 
counting and garbage collection. They are both worth examining, although the second one 
is by far the more powerful and generally applicable. 

In choosing an O-O environment — or just an O-O language compiler — 
for production development, restrict your attention to solutions that offer 
automatic memory management.
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Exercise E9.1, page 
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What exactly is reclamation? 

One technical point before we look at reference counting and garbage collection. With any 
form of automatic storage management, the question arises of what it concretely means 
for the mechanism to “reclaim” an object which it has detected as being unreachable. Two 
interpretations are possible: 

• The mechanism may add the object’s memory to a “free cell list” which it constantly 
maintains, in line with the techniques used by the earlier component-level scheme. 
A subsequent creation instruction (create x…) will then look first in this list to find 
space for the desired new object; only if the list is empty, or contains no appropriate 
cell, will the instruction require memory from the underlying operating system. This 
may be called the internal free list approach. 

• Alternatively, reclaiming an object may mean returning the associated memory to 
the operating system. In practice, this solution will usually include some aspects of 
the first: to avoid the overhead of repeated system calls, reclaimed objects will 
temporarily be kept in a list, whose contents are returned to the operating system 
whenever their combined size reaches a certain threshold. This may be called the 
actual reclamation approach. 

Although both solutions are possible, long-running systems (in particular systems 
that must run forever) require actual reclamation. The reason is easy to understand: 
assume an application which never stops creating objects, of which a large proportion will 
eventually become unreachable, so that there is an upper bound on the total number of 
objects reachable at any one time, even though the total number of created objects since 
the beginning of a session is unbounded. Then with the internal free list approach it is 
possible to have a situation where the application will forever keep asking for more 
memory even though its actual memory needs are not growing. An exercise at the end of 
this chapter asks you to construct a pattern that will exhibit this behavior.

It would be frustrating to have automatic memory management and still find 
ourselves in the London Ambulance Service situation — encroaching byte by byte on the 
available memory for no good reason, until execution runs out of space and ends in disaster. 

9.7  REFERENCE COUNTING 

The idea behind the first automatic memory management technique, reference counting, 
is simple. In every object, we keep a count of the number of references to the object; when 
this count becomes null, the object may be recycled. 

This solution is not hard to implement (at the language implementation level). We 
must update the reference count of any object in response to all operations that can create 
the object, attach a new reference to it and detach a reference from it. 

Any operation that creates an object must initialize its reference count to one. This 
is the case in particular with the creation instruction create a, which creates an object and 
attaches it to a. (The case of clone will be studied shortly.)
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Uncollectible 
cyclic structure
Any operation that attaches a new reference to an object O must increase O’s 
reference count by one. Such attachment operations are of two kinds (where the value of 
a is a reference attached to O): 

A1 • b := a (assignment). 

A2 • x  r (…, a, …), where r is some routine (argument passing).

Any operation which detaches a reference from O must decrease its reference count 
by one. Such detachment operations are of two kinds: 

D1 • Any assignment a := b. Note that this is also an attachment operation (A1) for the 
object attached to b. (So if b was also attached to O we will both increment and 
decrement O’s count, leaving it unchanged — the desired outcome.)

D2 • Termination of a routine call of the form x  r (…, a, …). (If a occurs more than once 
in the list of actual arguments we must count one detachment per occurrence.) 

After such an operation, the implementation must also check whether O’s reference 
count has reached value zero; if so, it may reclaim the object.

Finally the case of clone must be handled carefully. The operation a := clone (b), 
which duplicates the object OB attached to b, if any, and attaches the resulting new object 
OA to a, must not duplicate the reference count. Instead, it must initialize the reference 
count of OA to one; in addition, if OB had any non-void reference fields, it must increase 
by one, for every such field, the reference count of the attached object. (If two or more 
fields are attached to a single object, its reference count will be increased as many times.)

One obvious drawback of reference counting is the performance overhead in both 
time and space. For every operation on references the implementation will now execute 
an arithmetic operation — and, in the detachment case, a conditional instruction. In 
addition, every object must be extended with an extra field to hold the count.

But there is an even more serious problem which makes reference counting, 
unfortunately, of little practical use. (“Unfortunately” because this technique is not too 
hard to implement.) The problem is cyclic structures. Consider once again our staple 
example of a structure with mutually referring objects:

"Almaviva"name
landlord

loved_one

"Figaro"name
landlord

loved_one

"Susanna"
landlord
loved_one

O
a

O1

O3O2
4

1 2

name
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See the bibliographi-
cal notes on page 
315 for references on 
garbage collection. 
The objects in the right part of the figure, O1, O2 and O3, contain cyclic references 
to each other; assume that no outside object other than O contains a reference to any of 
these objects. The corresponding reference counts have been displayed below each object.

Now assume that (as suggested by the “ ” symbol) the reference from O to O1 is 
detached, for example because a routine call with target O executes the instruction 

a := Void

Then the three objects on the right have become unreachable. But the reference 
counting mechanism will never detect this situation: the above instruction decreases O1’s 
count to three; after that the reference counts of the three colored objects will stay positive 
forever, preventing them from being reclaimed. 

Because of this problem, reference counting is only applicable to structures which 
are guaranteed never to include any cycle. This makes it unsuitable as a general-purpose 
mechanism at the language implementation level, since it is impossible to guarantee that 
arbitrary systems will not create cyclic structures. So the only application that would seem 
to remain is as a technique to be used by library developers at the component 
manufacturing level. Unfortunately if the component-level techniques of the previous 
section are not applicable it is usually because the structures at hand are too complex, and 
in particular because they contain cycles. 

9.8  GARBAGE COLLECTION 

The most general technique, and in fact the only fully satisfactory one, is automatic 
garbage collection, or just garbage collection for short. 

The garbage collection mechanism 

A garbage collector is a facility included in the runtime system for a programming 
language. (The runtime system, or just runtime for short, is a component of the 
programming language’s implementation; it complements the compiler by providing the 
mechanisms needed at execution time to support the execution of software systems written 
in the language.) The garbage collector will take care of both detecting and reclaiming 
unreachable objects, without the need for explicit handling by application software — 
although application software may have various facilities at its disposal to control the 
collector’s operation. 

A detailed exploration of garbage collection techniques would justify a book of its 
own (which remains to be written). Let us take a look at the general principles of garbage 
collectors and the problems that they raise, focusing on the properties that are directly 
relevant to application developers.
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Garbage collector requirements

A garbage collector should, of course, be correct. This is actually two requirements:

It is just as easy to write a sound collector (never collect any object) as a complete one 
(collect all objects); the difficulty is of course to achieve both properties in a single product.

Soundness is an absolute requirement: better no garbage collector than one which, 
once in a while, steals an active object from your application! You must be able to trust 
memory management blindly; in fact, you should be able to forget about it most of the time, 
being content enough to know that someone, somehow, collects the mess in your software 
the same way someone, somehow, collects the garbage in your office while you are gone 
— but does not take away your books, your computer, or the family pictures on your desk.

Completeness is desirable too, since without it you may still face the problem that the 
garbage collector was supposed to solve: memory wasted on useless objects. But here we 
may be able to accept less than perfection: a quasi-complete collector could still be useful 
if it collects the bulk of the garbage while occasionally missing an object or two.

Let us refine and improve this observation. In reality you will want any industrial-
grade collector to be complete, lest you get back to the uncertainties of environments with 
no memory management. Completeness is in practice just as necessary as soundness, but 
less pressing if we rephrase the definition as: “every unreachable object will ultimately be 
collected”. Suppose that we can make the collection process more efficient overall 
through an algorithm that eventually collects every unreachable object but may lag in 
getting to some of them: such a scheme would be acceptable for most applications. This 
is the idea of “generation scavenging” algorithms discussed below, which for efficiency’s 
sake spend most of their efforts scanning the memory areas most likely to contain 
unreachable objects, and take care of the remaining areas at less frequent intervals.

If we start considering such tradeoffs it will be necessary to characterize a garbage collector, 
beyond the yes-no criteria of soundness and completeness, by a more quantitative property 
which we may call timeliness: the time it takes — both the average value and the upper 
bound will be interesting — between the moment an object becomes unreachable and the 
moment the collector, assumed to be both sound and complete, reclaims it.

The definition of soundness illuminates the difficulties associated with garbage 
collection for some languages, and the respective roles of a language and its 
implementation. Why, for example, is garbage collection usually not available for C++? 
The reasons most commonly cited are cultural: in the C world each developer is supposed 
to take care of his toys (in Stephenson’s words); he simply does not trust any automatic 
mechanism to manage his own business. But if this were the true reason, rather than a 
posteriori justification, C++ environments could at least offer garbage collection as an 
option, and most do not.

Garbage collector properties
Soundness: every collected object is unreachable.
Completeness: every unreachable object will be collected.
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The real issue is language design, not compiling technology or even cultural 
attitudes. C++, in the C tradition, is rather weakly typed, providing casts — type 
conversions — through which you can refer to an object of a certain type through an entity 
of another type, with few restrictions on possible type combinations. The syntax

(OTHER_TYPE) x
denotes x viewed as an entity of type OTHER_TYPE, related or not to the true type of x. 
Good C++ books censure the wilder applications of this common practice, but 
methodological aspersions are of no use to the compiler writer, who must deal with the 
language as defined. Now imagine the following scenario: a reference to an object of some 
useful type, say NUCLEAR_SUBMARINE, is temporarily cast into an integer; the garbage 
collector jumps in and examines the value, seeing nothing but the most innocent-looking 
of integers; finding no other reference to the object, it reclaims it; but now the program 
casts the integer back to its true vocation of nuclear submarine reference; and it tries to 
access the now inexistent object, with consequences of great sorrow to all affected.

Various techniques have been proposed around this problem. Because they usually 
involve some restrictions on the use of the language, they have not found their ways into 
common commercial offerings. The Java language may be viewed as a form of C++ which 
has dramatically restricted the type system — going so far as to remove genericity and 
multiple inheritance — to make garbage collection possible at last in a C-based world.

With a carefully designed type system, it is of course possible to provide the whole 
power of multiple inheritance and genericity while ensuring type safety and language 
support for efficient garbage collection.

Garbage collection basis 
Let us come now to how a garbage collector works.

The basic algorithm usually includes two phases, at least conceptually: mark and 
sweep. The mark phase, starting from the origins, follows references recursively to 
traverse the active part of the structure, marking as reachable all the objects it encounters. 
The sweep phase traverses the whole memory structure, reclaiming unmarked elements 
and unmarking everything. 

As with reference counting, objects must include an extra field, used here for the 
marking; but the space overhead is negligible, since one bit suffices per object. As will be 
seen when we study dynamic binding, implementation of O-O facilities requires that every 
object carry some extra internal information (such as its type) in addition to its official 
fields corresponding to the attributes of the generating class. This information typically 
occupies one or two words per object; the marking bit can usually be squeezed into one of 
these extra words, so that in practice there is no observable overhead. 

All-or-nothing collection 
When should the garbage collector be triggered? 

Classical garbage collectors are activated on demand and run to completion. In other 
words the garbage collector is inactive as long as there is some memory left to the 
application; when the application runs out of memory, it triggers an entire garbage 
collection cycle — mark phase followed by sweep phase. 
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This technique may be called the all-or-nothing approach. Its advantage is that it 
causes no overhead as long as there is enough memory; the program is only penalized by 
memory management when it has exceeded available resources. 

But all-or-nothing garbage collection has a serious potential drawback: a complete 
mark-sweep cycle may take a long time — especially in a virtual memory environment in 
which filling the memory means filling a very large virtual address space, which the 
garbage collector will then have to traverse entirely, all that time preventing the 
application from proceeding.

This scheme may be acceptable for batch applications, although with a high ratio of 
virtual to real memory thrashing may cause serious performance degradation if a system 
creates many objects and a large proportion of them become unreachable. All-or-nothing 
garbage collection will not work, however, for interactive or real-time systems. Imagine a 
missile interception system which has a 50-millisecond window to react when an enemy 
missile is fired. Assume everything works fine until the software runs out of memory, at 
which stage it defers to the garbage collector; but — bad luck — this is precisely when the 
missile comes in! Even in less life-threatening applications, such as a interactive systems, 
it is not pleasant to use a tool (for example a text editor) which, once in a while, gets 
unpredictably hung for ten minutes or so because the underlying implementation has 
entered a garbage collection cycle. 

In such cases the problem is not necessarily the global effect of garbage collection 
on efficiency: a certain overall performance penalty may be perfectly tolerable to users 
and developers as the price to pay for the gain in reliability and convenience afforded by 
automatic garbage collection. But such a penalty should be evenly spread; what will 
usually not be acceptable is the unpredictable bursts of memory management activity 
caused by the all-or-nothing approach. Better a tortoise than a hare which, once in a while 
and without warning, takes a half-hour nap. Reference counting, were it not for its fatal 
flaw, would satisfy this observation that uniformly slow is often preferable to usually fast 
but occasionally unpredictable. 

Of course the penalty, besides being uniform, must also be small. If the application 
without a garbage collector is a indeed a hare, no one will really settle for a tortoise; what 
we can accept is a somewhat less agile hare. A good garbage collector will have an 
overhead of 5% to 15%. Although some managers, developers and users will scream that 
this is unacceptable, I know very few applications that cannot tolerate this kind of cost, 
especially in light of the obvious observation that in the absence of garbage collection the 
software will have to perform manual reclamation, which does not come for free either 
(even if we concentrate on execution overhead only and disregard the overhead on 
development time and the reliability problems). Unfortunately most of the few 
benchmarks that exist in this area end up, in their effort to measure the measurable, 
comparing the incomparable: a system executed with no garbage collection and no manual 
reclamation, versus one running with garbage collection. Even under this unfavorable 
light, however, a performance cost in the quoted range makes garbage collection shine. 

This discussion has identified the two complementary efficiency issues for garbage 
collectors: overall performance and incrementality. 
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Advanced approaches to garbage collection 
A good collector should provide good performance both overall and incrementally, 
making itself suitable for interactive or even real-time applications. 

A first requirement is to give developers some control over the activation and de-
activation of collector cycles. In particular, the environment’s libraries should offer procedures 

collection_off
collection_on
collect_now

such that a call to the first specifies that no collector cycle should start until further notice; 
a call to the second resumes normal operation; and a call to the third immediately triggers 
a complete cycle. Then if a system contains a time-critical section, which must not be 
subject to any unpredictable delay, the developer will put a call to collection_off at the 
beginning of the section and a call to collection_on at the end; and at any point where the 
application is known to be idle (for example during certain input or output operations) the 
developer may, if useful, include a call to collect_now. 

A more advanced technique, used in some form by most modern garbage collectors, 
is known as generation scavenging. It follows from the experimental observation that 
“old objects will stay around”: the more garbage collection cycles an object has survived, 
the better chance it has of surviving many more cycles or even remaining forever 
reachable. This property is precious since the sweep part of garbage collection tends to 
consume a considerable amount of time, so that the collector will greatly benefit from any 
information allowing it to examine certain categories less frequently than others. 

Generation scavenging will detect objects that have existed for more than a certain 
number of cycles. This is called tenuring (by analogy with the mechanisms that protect 
instances of the real-life class PROFESSOR once they have survived a few cycles of 
university politics). Tenured objects will be set aside and handled by a separate collection 
process, which will run less frequently than the collector of “young” objects. 

Generation scavenging helps incrementality, but does not fully achieve it, since there 
remains a need to perform full collections occasionally. 

Practical implementations of generation scavenging use many variations on this 
basic idea. In particular, it is common to divide objects not just into young and old, but 
into several generations, with different policies for collecting the various generations. 
These ideas have a considerable effect on the overall performance of garbage collection.

Parallel garbage collection algorithms 
To obtain a full solution to the incrementality problem, an attractive idea (if the underlying 
operating system supports multiprocessing) is to assign garbage collection to a separate 
thread of control. This is known as on-the-fly, or parallel, garbage collection. 

With on-the-fly garbage collection, execution of an O-O system involves two 
separate threads (often corresponding to two separate processes of the operating system): 
the application and the collector. Only the application can allocate memory, through 
creation instructions; only the collector can free memory, through reclaim operations. 
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The collector will run continuously, repeatedly executing a mark phase followed by 
a sweep phase to detect and pick up the application’s unreachable objects. Think of an 
endless New York ticker-tape parade, forever marching through the streets of the city. The 
application is the parade, generously scattering, wherever it passes, objects of all kinds; 
the garbage collector is the cleaning squad which follows at a short distance, gathering all 
that has been left.

The separate threads of control need not be physically distinct processes. With 
modern operating systems they can be threads; or, to avoid the overhead of switching 
between processes or even threads, they may be plain coroutines. Even so, however, on-
the-fly garbage collection tends in practice to have unsatisfactory overall performance. 
This is regrettable since the method’s incrementality is indeed (with Dijkstra’s algorithm, 
see the reference in the bibliographic notes) quite good. 

In my opinion (the proper word here, since this comment reflects hope, not a 
scientifically established result) parallel garbage collection remains the solution of the 
future, but will require cooperation from the hardware. Rather than stealing time from the 
processor which handles the application, garbage collection should be handled by a 
separate processor, entirely devoted to that task and designed so as to interfere as little as 
possible with the processor or processors devoted to the application. 

This idea requires changes to the dominant hardware architectures and so is not 
likely to be widely implemented soon. But in an answer to the sometimes asked question

“What kind of hardware support would be most useful for object technology?”

the presence of a separate garbage collection processor should, I believe, be the first item 
on the wish list. 

9.9  PRACTICAL ISSUES OF GARBAGE COLLECTION 
An environment providing automatic memory management through garbage collection 
must not only use excellent garbage collection algorithms but also provide a few facilities 
which, although not central to a theory of memory management, are essential for the 
practical use of the environment. 

Class MEMORY 

Several of the required facilities can be provided in the form of features callable by 
application software. As always in such cases (facilities to be used by developers who 
need to tune or adapt a basic mechanism of the method and language) the most convenient 
approach is to group these features in a class, which we will call MEMORY. Then any class 
that needs these facilities will inherit from MEMORY. 

A similar approach will be used for adapting the exception handling mechanism (class 
EXCEPTIONS) and the concurrency mechanism (class CONCURRENCY). 

Among the features of class MEMORY will be the procedures discussed earlier for 
stopping the collection mechanism, resuming it, and triggering a full collection: 
collection_off, collection_on, collect_now.
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A disposal mechanism 
Another important procedure of MEMORY is dispose (not to be confused with its Pascal 
namesake, which frees memory). It addresses an important practical problem sometimes 
called finalization. If the garbage collector reclaims an object that is associated with some 
external resources, you may wish to specify a certain action — such as freeing the 
resources — to be executed at reclamation time. A typical example is a class FILE, whose 
instances will represent files of the operating system. It is desirable to have a way of 
specifying that whenever the garbage collector reclaims an instance of FILE that has 
become unreachable it will call a certain procedure to close the associated physical file.

More generally let us assume a procedure dispose which executes the operations 
needed at the time an instance of the class is reclaimed. With a manual approach to 
memory management no particular problem would arise: it would suffice to include a call 
to dispose just before every call to reclaim. The “destructors” of C++ take care of both 
operations: dispose and reclaim. With a garbage collector, however, the software does not 
directly control (for all the good reasons that we have explored) the moment at which an 
object is reclaimed; so it is impossible to include explicit calls to dispose at the right places. 

The answer relies on the power of object technology and in particular on inheritance 
and redefinition. (These techniques are studied in later chapters but their application here 
is simple enough to be understandable without a detailed grasp of their principles.) Class 
MEMORY has a procedure dispose, whose body performs no action at all: 

dispose
-- Action to be taken in case of reclamation by garbage collector;
-- nothing by default.
-- Called automatically by garbage collector.

do
end

Then any class which requires special dispose actions whenever the collector 
reclaims one of its instances will redefine procedure dispose to perform these actions. For 
example, assuming that class FILE has a boolean attribute opened and a procedure close, 
both with the obvious semantics, it will redefine dispose appropriately: 

dispose
-- Action to be taken in case of reclamation by garbage collector:
-- close the associated file if open.
-- Called automatically by garbage collector.

do
if opened then

close
end

end
As the comments indicate, the rule is that any object reclamation will cause a call to 

dispose — either the original empty procedure for the (by far commonest) case in which 
no redefinition has occurred in the generating class, or the redefined version. 
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Garbage collection and external calls 

A well-engineered object-oriented environment with garbage collection must address 
another practical problem. O-O software will in many cases have to interact with software 
written in other languages. In a later chapter we will see how best to ensure this interaction 
with the non-O-O world. 

If your software indeed uses calls to routines written in other languages (called 
external routines in the rest of this discussion), you may have to pass to these routines 
references to objects. This causes a potential danger with respect to memory management. 
Assume that an external routine is of the following form (transposed to the appropriate 
foreign language): 

r (x: SOME_TYPE)
do

…
a := x
…

end

where a is an entity which may retain its value between successive activations of r; for 
example a could be a global or “static” variable in traditional languages, or a class attribute 
in our O-O notation. Consider a call r (y), where y is attached to some object O1. Then it 
is possible that some time after the call O1 becomes unreachable from the object-oriented 
side while there is still a reference to it (from a) in the external software. The garbage 
collector could — and eventually should — reclaim O1, but this is wrong.

For such cases we must provide procedures, callable from the external software, 
which will protect a retained object from the collector, and terminate such protection. 
These procedures may be called under the form 

adopt (a)
wean (a)

and should be part of any interface library supporting the communication between object-
oriented and external software. The C interface library of the mechanism described in the 
next section supports such a facility. “Adopting” an object takes it off the reach of the 
reclamation mechanism; “weaning” it makes it reclaimable again. 

Passing objects to non-object-oriented languages and retaining references to them 
from the foreign side of the border is of course risky business. But it is not always possible 
to avoid it. For example an object-oriented project may need a special interface between 
the O-O language and an existing database management system; in such cases you may 
need to let the other side retain information about your objects. Such low-level 
manipulations should never appear in normal application software, but should be 
encapsulated in utility classes, written with particular care so as to hide the details from 
the rest of the software and protect it against possible trouble.
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9.10  AN ENVIRONMENT WITH MEMORY MANAGEMENT 
As a conclusion let us take a peek at how one particular environment — the one presented 
more broadly in the last chapter of this book — handles memory management. This will 
give an example of practical, state-of-the-art approaches to the problem.

Basics

Memory management is automatic. The environment includes a garbage collector, which 
is always on by default. It is sufficiently unobtrusive to have caused users to call and ask 
“what should I do to turn on the garbage collector?”, only to be told that it is already on! 
In normal usage, including interactive applications, you will not notice it. You can turn it 
off through collection_off as discussed earlier.

Unlike the collectors found in many other environments, the garbage collector does 
not just free memory for reuse by further object allocations in the same system execution, 
but actually returns it to the operating system for use by other applications (at least on 
operating systems that do provide a mechanism to free memory for good). We have seen 
how essential that property was, especially for systems that must run permanently or for a 
long time.

Additional engineering goals presided over the garbage collector design: efficient 
memory collection; small memory overhead; incremental behavior (avoiding blocking the 
application for any significant period of time).

Challenges

The garbage collector must face the following issues, following from the practical 
constraints on object allocation in a modern, O-O environment:

• O-O routines can call external functions, in particular C functions, which have their 
own needs for memory allocation. We must therefore consider that there are two 
distinct kinds of memory: object memory and external memory.

• All objects are not created equal. Arrays and strings have a variable size; instances of 
other classes have a fixed size.

• Finally, as noted, it is not enough to free memory for reuse by the O-O application: 
we must also be able to give it back for good to the operating system.

For these reasons, memory allocation cannot rely on the standard malloc system call 
which, among other limitations, does not return memory to the operating system. Instead, 
the environment asks the operating system’s kernel for memory chunks and allocates 
objects in these chunks using its own mechanisms.

Object movement

The need to return memory to the operating system is the source of one of the most delicate 
parts of the mechanism: garbage collection can move objects around.
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This property has by far caused the most headaches in the implementation of the 
collector. But it has also made the mechanism robust and practical; without it there would 
be no way to use garbage collection for long-running, mission-critical systems.

If you stay within the O-O world you need not think about object movement, except 
as a guarantee that your system will not expand forever, even if it keeps creating new 
objects (provided the total size of reachable objects is bounded). But you will need to 
consider this property if you also use external routines, written for example in C, and pass 
objects to them. If the C side stores somewhere, in the form of a plain address (a C 
pointer), a reference to an object from the O-O world, you may be in trouble if it tries to 
use it without protection ten minutes later: by then the object may have moved elsewhere, 
and the address may contain something completely different, or nothing at all. A simple 
library mechanism solves the issue: the C function should “access” the object and access 
it through the appropriate macro, which will find the object wherever it is.

Garbage collection mechanism

Here is an outline of the algorithm used by the garbage collector.

Rather than a single algorithm the solution actually relies on a combination of basic 
algorithms, used together (for some of them) or independently. Each activation of the 
collector selects an algorithm or algorithm combination based on such criteria as the 
urgency of the memory need. The basic algorithms include generation scavenging, mark-
and-sweep and memory compaction, plus a few others less relevant to this discussion.

The idea behind generation scavenging was described earlier in this chapter: 
concentrate on young objects, since they have the greatest likelihood of yielding 
collectable garbage. A main advantage of this algorithm is that it need not explore all the 
objects, but only those which can be reached from local entities, and from old objects 
containing references to young objects. Each time the algorithm processes a generation, 
all the surviving objects become older; when they reach a given age, they are tenured to 
the next generation. The algorithm looks for the right tradeoff between low tenure age (too 
many old objects) and high tenure age (too frequent scavengings).

The algorithm still needs, once in a while, to perform a full mark-and-sweep to find 
any unreachable objects that generation scavenging may have missed. There are two steps: 
mark recursively explores and marks the reachable objects; sweep traverses applicable 
memory and collects the marked objects.

Memory compaction compacts memory, returning unused parts to the operating 
system, at the lowest possible cost. The algorithm divides the memory into n blocks and 
takes n–1 cycles to compact them all.



MEMORY MANAGEMENT  §9.10 314
Bulimia and anorexia

Since operating system calls (allocate memory, return memory) are expensive, the 
memory compaction algorithm is conservative: rather than returning all the blocks that 
have been freed, it will keep a few of them around to build a small reserve of available 
memory. This way if the application starts shortly afterwards to allocate objects again the 
memory will be readily available, without any need to call the operating system.

Without this technique, the fairly frequent case of a bulimic-anorexic application — 
an application that regularly goes into a mad allocation binge, followed by a purge period 
during which it gets rid of many objects — would cause the memory management 
mechanism constantly to get memory from the operating system, return it, then ask again.

Garbage collector operation

The garbage collector gets into action when one of the two operations that request 
memory, a creation instruction (create x…) or a clone, triggers it. The trigger criterion is 
not just that the application has run out of memory: preferring prevention to cure, the 
mechanism may activate itself when it detects various conditions in advance of actual 
memory exhaustion.

If the primary allocation area is full, the collector will execute a scavenging cycle. In 
most cases this will free enough memory for the current needs. If not, the next step is to 
go through a full mark-and-sweep collection cycle, generally followed by memory 
compaction. Only if all this fails to provide the required space will the application, as a 
last resort, ask the operating system for more memory, if it is still not possible to allocate 
a new object.

The main algorithms are incremental, and their time consumption is a few percent of 
the application’s execution time. Internal statistics keep track of the memory allocated and 
help determine the proper algorithm to call.

You can tune the collector’s behavior by setting various parameters; in particular, 
selecting the speed option will cause the algorithms not to try to collect all available 
memory (through the compaction mechanism described above) but instead to call the 
operating system’s allocation facilities earlier. This optimizes speed over compactness. 
The various parameter-setting mechanisms are obtained, like collection_off, collect_now 
and dispose, from class MEMORY.

The memory management mechanism resulting from the combination of all these 
techniques has made it possible to develop and run successfully the kind of large, 
ambitious applications which need to create many objects, create them fast, and (while 
remaining careful about overall usage of space) let someone else worry about the 
mundane consequences.
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9.11  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• There are three basic modes of object creation: static, stack-based and free. The last 

is characteristic of object-oriented languages but also occurs elsewhere, for example 
in Lisp, Pascal (pointers and new), C (malloc), Ada (access types).

• In programs that create many objects, objects may become unreachable; their 
memory space is lost, leading to memory waste and, in extreme cases, failure from 
lack of space even though some space is not used. 

• The issue may be safely ignored in the case of programs that create few unreachable 
objects, or few objects altogether as compared to the available memory size. 

• In all other cases (highly dynamic data structures, limited memory resources), any 
solution will involve two components: detection of dead objects, and reclamation of 
the associated space. 

• Either task may be handled by the language implementation, the component 
manufacturing level or application programs. 

• Leaving application programs in charge of detection is cumbersome and dangerous. 
So is a memory reclamation operation in a high-level language. 

• In some contexts, it is possible to provide simple memory management at the 
component level. Detection is handled by the components; reclamation, by either the 
components or the language implementation. 

• Reference counting is inefficient, and does not work for cyclic structures. 
• Garbage collection is the most general technique. It is possible to keep its potential 

overhead on normal system execution acceptably low and, through sufficiently 
incremental algorithms, not visible in normal interactive applications. 

• Generation scavenging improves the efficiency of garbage collection algorithms by 
using the observation that many objects die (become unreachable) young.

• A good memory management mechanism should return unused space not just to the 
current application but to the operating system.

• A practical memory management scheme was described, offering a combination of 
algorithms and ways for application developers to tune the mechanism, including 
turning garbage collection off and on in sensitive sections.

9.12  BIBLIOGRAPHICAL NOTES 
A broader perspective on the different models of object creation, discussed at the 
beginning of this chapter, is provided by the “contour model” of programming language 
execution, which may be found in [Johnston 1971]. 

The information about the London Ambulance Service fiasco comes from an 
extensive set of messages posted on the Risks forum (comp.risks Usenet newsgroup) 
moderated by Peter G. Neumann, in April and October of 1992. I relied particularly on 
several messages by Brian Randell — quoting journal articles (The Independent, 29 and 
30 October 1992) and BBC bulletins — as well as Trevor Jenkins, Jean Ramaekers, John 
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Jones, Tony Lezard, and Paul Johnson (to whom I am grateful for bringing this example 
to my attention). The primary comp.risks issue on this topic is 14.48; see also 13.38, 13.42, 
13.43, 14.02. The newsgroup archives are accessible through the World-Wide Web at 
http://catless.ncl.ac.uk/Risks.

A parallel garbage collection algorithm was introduced in [Dijkstra 1978]. 
[Cohen 1984] discusses the performance issues of such algorithms. Generation 
scavenging was introduced in [Ungar 1984]. 

The garbage collection mechanism of ISE’s environment sketched at the end of this 
chapter was built by Raphaël Manfredi and refined by Fabrice Franceschi (whose 
technical report served as the basis for the presentation here) and Xavier Le Vourch.

EXERCISES

E9.1  Patterns of object creation

In the discussion of automatic memory management it was pointed out that the “internal 
free list” approach (in which the space of reclaimed objects is not physically returned to 
the operating system, but kept in a list for use by future creation instructions) may cause 
the memory allocated to an application to grow forever even though the actual memory 
requirement is bounded, whereas the “actual reclamation” approach (in which a reclaim 
operation actually returns memory) would result in bounded memory usage. Devise a 
pattern of object creation and reclamation which exhibits this problem. 

You may describe such a pattern as a sequence o1 o2 o3 … where each oi is either 1, 
indicating the allocation of one memory unit, or –n (for some integer n), indicating the 
reclamation of n memory units. 

E9.2  What level of reclamation?

The component level policy, if implemented in a language like Pascal or C where an 
operating system dispose or free facility is available, could use this facility directly rather 
than managing its own free list for every type of data structure. Discuss the pros and cons 
of both approaches. 

E9.3  Sharing the stack of available elements

(This exercise assumes familiarity with the results of chapter 18.) Rewrite the feature 
available, giving the stack of available elements in the component-level approach, so that 
the stack will be shared by all linked lists of a certain type. (Hint: use a once function.)

E9.4  Sharing more

(This exercise assumes that you have solved the previous one, and that you have read up 
to chapter 18.) Is it possible to make the available stack shared by linked lists of all types?
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Genericity 
imensions of 
eneralization
From the merging of module and types concepts, we have been able to develop a 
powerful notion of class, which serves as the basis of the object-oriented method and can 
already, as it stands, enable us to do much. But to achieve our goals of extendibility, 
reusability and reliability we must make the class construct more flexible, an effort that 
will proceed in two directions. One, vertical in the figure below, represents abstraction and 
specialization; it will give rise to the study of inheritance in subsequent chapters. The 
present chapter studies the other dimension, horizontal in the figure: type parameterization, 
also known as genericity.

10.1  HORIZONTAL AND VERTICAL TYPE GENERALIZATION
With the mechanisms studied so far we have all that we need to write the class at the center 
of the figure, LIST_OF_BOOKS, of which an instance represents a list of book objects. 
We know what kinds of feature it would have: put to add an element, remove to delete an 
element, count to find out how many elements are present and so on. But it is easy to see 
two ways of generalizing the notion of LIST_OF_BOOKS:

LIST_OF_
PEOPLE

LIST_OF_
BOOKS

LIST_OF_
JOURNALS

SET_OF_
BOOKS

LINKED_LIST_
OF_BOOKS

Abstraction

Specialization

Type parameterizationType parameterization
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• Lists are a special case of “container” structure, of which other examples (among 
many) include trees, stacks and arrays. A more abstract variant might be described 
by a class SET_OF_BOOKS. A more specialized variant, covering a particular 
choice of list representation, might be described by a class LINKED_LIST_OF_
BOOKS. This is the vertical dimension of our figure — the dimension of inheritance.

• Lists of books are a special case of lists of objects of any particular kind, of which 
other examples (among many) include lists of journals, lists of people, lists of 
integers. This is the horizontal dimension of our figure — the dimension of 
genericity, our topic for the rest of this chapter. By giving classes parameters 
representing arbitrary types, we will avoid the need to write many quasi-identical 
classes — such as LIST_OF_BOOKS and LIST_OF_PEOPLE — without sacrificing 
the safety afforded by static typing.

The relation between these two mechanisms is an elusive question for students of 
object-oriented concepts. Should inheritance and genericity be viewed as comrades or 
competitors in the rush towards more flexible software? That question is the subject of an 
appendix. In the present chapter we concentrate on genericity; this will also enable us to 
take a closer look at one of the most common examples of generic structure: arrays.

10.2  THE NEED FOR TYPE PARAMETERIZATION
Genericity is not really a new concept in this discussion, although we have not yet seen it 
applied to classes. We encountered the idea a first time when reviewing traditional 
approaches to reusability; and when we studied the mathematical model — abstract data 
types — we saw the need to define an ADT as parameterized by types.

Generic abstract data types

Our working ADT example, STACK, was declared as STACK [G], meaning that any actual 
use requires you to specify an “actual generic parameter” representing the type of the 
objects stored in a particular stack. The name G as used in the ADT’s specification stands 
for any possible type that these stack elements may have; it is called the formal generic 
parameter of the class. With this approach you can use a single specification for all 
possible stacks; the alternative, hard to accept, would be to have a class INTEGER_STACK, 
a class REAL_STACK and so on.

Any ADT describing “container” structures — data structures such as sets, lists, 
trees, matrices, arrays and many others that serve to keep objects of various possible types 
— will be similarly generic.

The same concerns, applied to the container classes of our software systems rather 
than to the container ADTs of our mathematical models, will yield a similar solution.

The issue

Let us keep the stack example, no longer as a mathematical ADT but as a software class. 
We know how to write a class INTEGER_STACK describing the notion of stack of 
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Chapter 17.
integers. Features will include count (number of elements), put (push a new element), item
(top element), remove (pop the top element), empty (is this stack empty?). 

Type INTEGER will be used frequently in this class. For example it is the type of the 
argument of put and of the result of item: 

put (element: INTEGER)
-- Push element on top.

do … end
item: INTEGER

-- Item at top
do … end

These appearances of type INTEGER follow from the rule of explicit declaration that 
we have used in developing the notation: any time you introduce an entity, denoting 
possible run-time objects, you must write an explicit type declaration for it, such as element:
INTEGER. Here this means that you must specify a type for the query item, for the argument 
element of procedure put, and for other entities denoting possible stack elements.

But as a consequence you must write a different class for every sort of stack: 
INTEGER_STACK, REAL_STACK, POINT_STACK, BOOK_STACK… All such stack 
classes will be identical except for the type declarations of item, element and a few other 
entities: since the basic operations on a stack are the same regardless of the type of stack 
elements, nothing in the bodies of the various routines depends on the choice of 
INTEGER, REAL, POINT or BOOK as the type of stack element. For anyone concerned 
with reusability, this is not attractive.

The issue, then, is the contradiction that container classes seem to cause between two 
of the fundamental quality goals introduced at the beginning of this book:

• Reliability: retaining the benefits of type safety through explicit type declarations.

• Reusability: being able to write a single software element covering variants of a 
given notion.

The role of typing
Why insist on explicit type declarations (the first of the two requirements)? This is part of 
the general question of typing, to which an entire chapter is devoted later in this book. It is 
not too early to note the two basic reasons why an O-O notation should be statically typed:

• The readability reason: explicit declarations tell the reader, loud and clear, about the 
intended use of every element. This is precious to whoever — the original author, or 
someone else — needs to understand the element, for example to debug or extend it.

• The reliability reason: thanks to explicit type declarations, a compiler will be able to 
detect erroneous operations before they have had a chance to strike. In the 
fundamental operations of object-oriented computation, feature calls of the general 
form x  f (a, …), where x is of some type TX, the potential for mischief is manyfold: 
the class corresponding to TX might not have a feature called f; the feature might 
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exist but be secret; the number of arguments might not coincide with what has been 
declared for f  in the class; the type for a or another argument might not be compatible 
with what f expects. In all such cases, letting the software text go through unopposed 
— as in a language without static typechecking — would usually mean nasty 
consequences at run time, such as the program crashing with a diagnostic of the form 
“Message not understood ” (the typical outcome in Smalltalk, a non-statically-typed 
O-O language). With explicit typing, the compiler will not let the erroneous 
construct through. 

The key to software reliability, as was pointed out in the discussion of that notion, is 
prevention more than cure. Many studies have found that the cost of correcting an error 
grows astronomically when the time of detection is delayed. Static typing, which enables 
the early detection of type errors, is a fundamental tool in the quest for reliability.

Without these considerations we would not need explicit declarations, and so we 
would not need genericity. As a consequence the rest of this chapter only applies to 
statically typed languages, that is to say languages which require all entities to be declared 
and enforce rules enabling compilers to detect type inconsistencies prior to execution. In 
a non-statically-typed language such as Smalltalk, there is no role for genericity; this 
removes a language construct, but also removes any protection against schemes such as

my_stack  put (my_circle)
my_account := my_stack  item
my_account  withdraw (5000)

where an element is retrieved from the top of the stack and treated as if it were a bank 
account even though it is in reality (because of the first instruction) a circle, so that the 
software ends up trying to withdraw five thousand dollars from a circle on the screen.

Static typing protects us against such mishaps; combining it with the reusability 
requirement implies that we develop a mechanism for genericity.

10.3  GENERIC CLASSES
Reconciling static typing with the requirement of reusability for classes describing 
container structures means, as illustrated by the stack example, that we want both to:

• Declare a type for every entity appearing in the text of a stack class, including entities 
representing stack elements.

• Write the class so that it does not give out any clue about the elements’ type, and 
hence that it can be used to build stacks of arbitrary elements.

At first sight these requirements seem irreconcilable but they are not. The first one 
commands us to declare a type; it does not assume that the declaration is exact! As soon as 
we have provided a type name, we will have pacified the type checking mechanism. 
(“Name your fear, and it will go away”.) Hence the idea of genericity: to obtain a type-
parameterized class, equip it with the name of a fictitious type, called the formal generic 
parameter. 
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Declaring a generic class

By convention the generic parameter will use the name G for Generic; this is a style 
recommendation, not a formal rule. If we need more generic parameters they will be called 
H, I and so on.

The syntax will include the formal generic parameters in square brackets after the 
class name, as with generic ADTs in a previous chapter. Here is an example:

note
description: "Stacks of elements of an arbitrary type G "

class STACK [G] feature
count: INTEGER

-- Number of elements in stack
empty: BOOLEAN

--Are there no items?
do … end

full: BOOLEAN
-- Is representation full?

do … end
item: G

-- Top element
do … end

put (x: G)
-- Add x on top.

do … end
remove

-- Remove top element.
do … end

end
In the class, you may use a formal generic parameter such as G in declarations: not 

only for function results (as in item) and formal arguments of routines (as in put), but also 
for attributes and local entities. 

Using a generic class

A client may use a generic class to declare entities of its own, such as an entity 
representing a stack. In such a case, the declaration must provide types, called actual 
generic parameters — as many as the class has formal generic parameters, here just one:

sp: STACK [POINT ]

Providing an actual generic parameter to a generic class so as to produce a type, as 
here, is called a generic derivation, and the resulting type, such as STACK [POINT ], is 
said to be generically derived.
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A generic derivation both produces and requires a type:

• The result of the derivation, STACK [POINT ] in this example, is a type.

• To produce this result, you need an existing type to serve as actual generic parameter, 
POINT in the example.

The actual generic parameter is an arbitrary type. Nothing prevents us, in particular, 
from choosing a type that is itself generically derived; assuming another generic class 
LIST [G], we can define a stack of lists of points:

slp: STACK [LIST [POINT ]]

or even, using STACK [POINT ] itself as the actual generic parameter, a stack of stacks 
of points:

ssp: STACK [STACK [POINT ]]

There is no limit — other than suggested by the usual guideline that software texts 
should remain simple — to the depth of such nesting.

Terminology

To discuss genericity, we need to be precise about the terms that we use:

• To produce a type such as STACK [POINT ] by providing a type, here POINT, as 
actual generic parameter for a generic class, here STACK, is to perform a generic 
derivation. You may encounter the term “generic instantiation” for that process, but 
it is confusing because “instantiation” normally denotes a run-time event, the 
production of an object — an instance — from its mold (a class). Generic derivation 
is a static mechanism, affecting the text of the software, not its execution. So it is 
better to use completely different terms.

• This book uses the term “parameter” exclusively to denote the types that 
parameterize generic classes, never to denote the values that a routine call may pass 
to that routine, called arguments. In traditional software parlance “parameter” and 
“argument” are synonymous. Although the decision of which term to use for routines 
and which for generic classes is a matter of convention, it is desirable to stick to a 
consistent rule to avoid any confusion.

Type checking 

Using genericity, you can guarantee that a data structure will only contain elements of a 
single type. Assuming a class contains the declarations 

sc: STACK [CIRCLE]; sa: STACK [ACCOUNT ]; c: CIRCLE; a: ACCOUNT

then the following are valid instructions in routines of that class: 

sc  put (c) -- Push a circle onto a stack of circles
sa  put (a) -- Push an account onto a stack of accounts
c := sc  item -- Assign to a circle entity the top of a stack of circles
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but each of the following is invalid and will be rejected:
sc  put (a); -- Attempt to push an account onto a stack of circles
sa  put (c); -- Attempt to push a circle onto a stack of accounts
c := sa  item -- Attempt to access as a circle the top of a stack of accounts
This will rule out erroneous operations of the kind described earlier, such as 

attempting to withdraw money from a circle.

The type rule
The type rule that makes the first set of examples valid and the second invalid is intuitively 
clear but let us make it precise.

First the basic non-generic rule. Consider a feature declared as follows, with no use 
of any formal generic parameter, in a non-generic class C

f (a: T ): U …

Then a call of the form x  f (d ), appearing in an arbitrary class B where x is of type 
C, will be typewise correct if and only if: f  is available to B — that is to say, generally 
exported, or exported selectively to a set of classes including B; and d is of type T. (When 
we bring inheritance into the picture we will also accept d if its type is based on a 
descendant of T.) The result of the call — there is a result since the example assumes that 
f  is a function — is of type U.

Now assume that C is generic, with G as formal generic parameter, and has a feature
h (a: G): G …

A call to h will be of the form y  h (e) for some entity y that has been declared, for 
some type V, as

y: C [V]
The counterpart of the non-generic rule is that e must now be of type V (or a 

compatible type in the sense of inheritance), since the corresponding formal argument a is 
declared as being of type G, the formal generic parameter, and in the case of y we may 
consider G, wherever it appears in class C, as a placeholder for V. Similarly, the result of 
the call will be of type V. The earlier examples all follow this model: a call of the form 
s  put (z) requires an argument z of type POINT if s is of type STACK [POINT ], INTEGER 
if s is of type STACK [INTEGER]; and s  item returns a result of type POINT in the first 
case and INTEGER in the second.

These examples involve features with zero or one argument, but the rule 
immediately extends to an arbitrary number of arguments.

Operations on entities of generic types 
In a generic class C [G, H, …] consider an entity whose type is one of the formal generic 
parameters, for example x of type G. When the class is used by a client to declare entities, 
G may ultimately represent any type. So any operation that the routines of C perform on 
x must be applicable to all types. This leaves only five kinds of operation:
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In particular, a creation instruction of the form create x is illegal, since we know 
nothing about the creation procedures, if any, defined for possible actual generic 
parameters corresponding to G. 

Cases G4 and G5 refer to class ANY. Mentioned a few times already, this class 
contains features that all classes will inherit. So you can be assured that whatever actual 
type G represents in a particular generic derivation will have access to them. Among the 
features of ANY are all the basic operations for copying and comparing objects: clone, 
copy, equal, copy, deep_clone, deep_equal and others. This means it is all right, for x and 
y of a formal generic type G, to use instructions such as

x  copy (y)
x := clone (y)
if equal (x, y) then …

Ignoring ANY, case G4 permits a call a  f (x) in a generic class C [G] if f  takes a formal 
argument of type G. In particular a could be of type D [G], where D is another generic 
class, declared as D [G] with a feature f that takes an argument of type G, here denoting 
D’s own formal generic parameter. (If the preceding sentence does not immediately make 
sense, please read it once more and it will, I hope, soon seem as clear as a mountain creek!)

Types and classes

We have learned to view the class, the central notion in object technology, as the product 
of the corporate merger between the module and type concepts. Until we had genericity, 
we could say that every class is a module and is also a type.

With genericity, the second of these statements is not literally true any more, 
although the nuance will be small. A generic class declared as C [G] is, rather than a type, 
a type pattern covering an infinite set of possible types; you can obtain any one of these 
by providing an actual generic parameter — itself a type — corresponding to G.

Uses of entities of a formal generic type

The valid uses for an entity x whose type G is a formal generic parameter are 
the following: 
G1 • Use of x as left-hand side in an assignment, x := y, where the right-

hand side expression y is also of type G. 
G2 • Use of x as right-hand side of an assignment y := x, where the left-

hand side entity y is also of type G. 
G3 • Use of x in a boolean expression of the form x = y or x /= y, where y

is also of type G.
G4 • Use of x as actual argument in a routine call corresponding to a formal 

argument declared of type G, or of type ANY.
G5 • Use as target of a call to a feature of ANY.
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This yields a more general and flexible notion. But for what we gain in power we 
have to pay a small price in simplicity: only through a small abuse of language can we 
continue talking, if x is declared of type T, about “the features of T  ” or “the clients of T ”; 
other than a class, T may now be a generically derived type C [U ] for some generic class 
C and some type U. Of course there is still a class involved — class C —, which is why 
the abuse of language is acceptable.

When we need to be rigorous the terminology is the following. Any type T is 
associated with a class, the base class of T, so that it is always correct to talk about the 
features or clients of T ’s base class. If T is a non-generic class, then it is its own base class. 
If T is a generic derivation of the form C [U, …], then the base class of T is C.

The notion of base class will again be useful when we introduce yet another kind of type, 
also (like all others in the O-O approach) based on classes, but indirectly: anchored types.

10.4  ARRAYS 
As a conclusion to this discussion it is useful to take a look at a very useful example of 
container class: ARRAY, which represents one-dimensional arrays.

Arrays as objects
The notion of array is usually part of a programming language’s definition. But with object 
technology we do not need to burden the notation with special predefined constructs: an 
array is just a container object, an instance of a class which we may call ARRAY.

ARRAY is a good example of generic class. Here is a first outline:
note

description: "Sequences of values, all of the same type or of a conforming one, %
%accessible through integer indices in a contiguous interval"

class ARRAY [G] creation
make

feature
make (minindex, maxindex: INTEGER)

-- Allocate array with bounds minindex and maxindex
-- (empty if minindex > maxindex)

do … end
lower, upper, count: INTEGER

-- Minimum and maximum legal index; array size.
put (v: G; i: INTEGER)

-- Assign v to the entry of index i
do … end

infix "@", item (i: INTEGER): G
-- Entry of index i 

do … end
end
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To create an array of bounds m and n, with a declared of type ARRAY [T ] for some 
type T, you will execute the creation instruction

create a  make (m, n)
To set the value of an array element you will use procedure put: the call a  put (x, i)

sets the value of the i-th element to x. To access the value of an element you will use 
function item (the synonym infix "@" will be explained shortly), as in

x := a  item (i)
Here is a sketch of how you might use the class from a client:

pa: ARRAY [POINT ]; p1: POINT; i, j: INTEGER
…
create pa  make (–32, 101) -- Allocate array with the bounds shown.
pa  put (p1, i) -- Assign p1 to entry of index i.
…
p1 := pa  item ( j) -- Assign to p1 the value of entry of index j.

In conventional (say Pascal) notation, you would write 
pa [i] := p1 for pa  put (i, p1)
p1 := pa [i] for p1 := pa  item (i)

Array properties
A few observations on the preceding class:

• Similar classes exist for arrays with more dimensions: ARRAY2 etc. 
• Feature count may be implemented as either an attribute or a function, since it 

satisfies count = upper – lower+1. This is expressed in the actual class by an 
invariant, as explained in the next chapter. 

• More generally, assertion techniques will allow us to associate precise consistency 
conditions with put and item, expressing that calls are only valid if the index i is 
between lower and upper. 
The idea of describing arrays as objects and ARRAY as a class is a good example of 

the unifying and simplifying power of object technology, which helps us narrow down the 
notation (the design or programming language) to the bare essentials and reduce the 
number of special-purpose constructs. Here an array is simply viewed as an example of a 
container structure, with its own access method represented by features put and item.

Since ARRAY is a normal class, it can fully participate in what an earlier chapter called 
the object-oriented games; in particular other classes can inherit from it. A class 
ARRAYED_LIST describing the implementation of the abstract notion of list by arrays can 
be a descendant of both LIST and ARRAY. We will study many such constructions.

As soon as we learn about assertions we will take this unifying approach even 
further; thanks to preconditions, we will be able to handle through the normal concepts of 
the object-oriented method one more problem traditionally thought to require special-
purpose mechanisms: run-time bounds checking (monitoring array accesses to enforce the 
rule that all indices must lie between the bounds).
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Efficiency considerations

The fear may arise that all this elegance and simplicity could cause performance to take a 
hit. One of the primary reasons developers use arrays in traditional approaches is that the 
basic operations — accessing or modifying an array element known through its index — 
are fast. Are we now going to pay the price of a routine call every time we use item or put?

We do not need to. That ARRAY looks to the unsuspecting developer as a normal 
class does not prevent the compiler from cheating — from relying on some insider 
information. This information enables the compiler to detect calls to item and put and 
hijack them so as to generate exactly the same code that a Fortran, Pascal or C compiler 
would produce for equivalent instructions as shown above (p1 := pa [i] and pa [i] := p1 in 
Pascal syntax). So the developer will gain the best of both worlds: the uniformity, 
generality, simplicity, and ease of use of the O-O solution; and the performance of the 
traditional solution.

The compiler’s job is not trivial. As will be clear in the study of inheritance, it is possible 
for a descendant of class ARRAY to redefine any feature of the class, and such 
redefinitions may be called indirectly through dynamic binding. So compilers must 
perform a thorough analysis to check that the replacement is indeed correct. Today’s 
compilers from ISE and other companies can indeed, for a typical array-intensive 
computation typical of large scientific software, generate code whose efficiency matches 
that of hand-written C or Fortran code.

An infix synonym

Class ARRAY provides the opportunity to introduce a small facility that, although not 
directly related to the other topics of this chapter, will be useful in practice. The 
declaration of feature item actually reads

infix "@", item (i: INTEGER): G …

This introduces two feature names infix "@" and item as synonyms, that is to say as 
denoting the same feature, given by the declaration that follows. In general, a feature 
declaration of the form

a, b, c, … “Feature description”

is considered as an abbreviation for a sequence of declarations of the form

a “Feature description”
b “Feature description”
c “Feature description”
…

all for the same “Feature description”. This is applicable to attributes (where the “Feature 
description” is of the form  : some_type) as well as routines (where it reads is routine_body).

The benefit in this example is that you have a simpler notation for array access. 
Although consistent with the access mechanisms for other data structures, the notation 
a  item (i) is more wordy than the traditional a [i] found, with some variants, in Pascal, C, 
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Fortran and so on. By defining infix "@"as a synonym, you can actually beat traditional 
languages at their own terseness game by writing an array element as a @ i (the supreme 
dream: undercutting — by one keystroke — even C!). Note again that this is not a special 
language mechanism but the straightforward application of a general O-O concept, 
operator features, combined here with the notion of synonym.

10.5  THE COST OF GENERICITY

As always, we need to make sure that the object-oriented techniques that we introduce for 
reusability, extendibility and reliability do not imply a performance overhead. The 
question has just been raised and answered for arrays; but we need to examine it for the 
genericity mechanism at large. How much will genericity cost?

The concern arises in particular because of the experience of C++, where genericity 
(known as the template mechanism) was a late addition to the language, causing 
performance difficulties. It appears that some compiler implementations take the idea of 
parameterization literally, generating a different copy of the class features for each actual 
generic parameter! As a consequence the literature warns C++ programmers of the 
dangers of using templates too generously:

Template instantiation time is already an issue for some C++ users… If a user 
creates a List<int>, a List<String>, a List<Widget>, and a List<Blidget>
(where Widget and Blidget are user-defined classes), and calls head, tail, and 
insert on all four objects, then each of these functions will be instantiated [in 
the sense of generically derived] four times. A widely useful class such as List
might be instantiated in user programs with many different types, causing many 
functions to be instantiated. Thus, a significant amount of code might be 
generated for the [features of] the List template [class].

The authors of this advice (both with respected C++ expertise from the original 
AT&T group, one of them co-author of the official C++ reference [Ellis 1990]) go on 
proposing various techniques for avoiding template derivation. But developers should of 
course be protected from such concerns. Genericity should not imply code duplication; it 
is possible, with appropriate language design and a good compiler, to generate a single 
target code for any generic class, so that all of the following will be small or zero:

• Effect on compilation time.

• Effect on the size of the generated code.

• Effect on execution time.

• Effect on execution space.

When working in such an environment, you can use the full power of genericity 
without any fear of unpleasant effects on either compile-time or at run-time performance.
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10.6  DISCUSSION: NOT DONE YET
The presentation of genericity has introduced the basic ideas. But, as you may have 
noticed, it leaves two important questions unanswered.

First, in our effort to guarantee type safety, we may have erred on the conservative 
side. We will be prevented from pushing a bank account onto a STACK [CIRCLE], or a 
point onto a STACK [ACCOUNT ]. This is what we want: it is hard to imagine what kind 
of application — other than general-purpose utilities such as a database management 
system — would need to handle a stack containing both points and bank accounts. But what 
about a graphics application asking for a stack that contains a few circles, a few rectangles, 
a few points? This request seems quite reasonable, and we cannot accommodate it; the type 
system defined so far will reject the call figure_stack  put (that_point) if figure_stack has 
been declared of type STACK [FIGURE ] and that_point of any type other than FIGURE. 
We can give a name to such structures: polymorphic data structures. The challenge will 
be to support them without renouncing the benefits of type safety.

Second, our generic parameters represent arbitrary types. This is fine for stacks and 
arrays, since any object is by essence “stackable” and storable into an array. But when we 
come to structures such as vectors, we will want to be able to add two vectors, requiring 
that we can also add two vector elements; and if we want to define a hash table class, we 
will need the certainty that a hash function is applicable to every table element. Such a 
form of genericity, whereby the formal generic parameter does not any more stand for an 
arbitrary type, but represents a type guaranteed to offer certain operations, will be called 
constrained genericity.

For both of these problems, the object-oriented method will provide simple and 
elegant solutions, both based on combining genericity with inheritance.

10.7  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• Classes may have formal generic parameters representing types. 
• Generic classes serve to describe general container data structures, implemented in 

the same way regardless of the elements they contain. 
• Genericity is only needed in a typed language, to ensure statically checkable type safety.
• A client of a generic class must provide actual types for the formal parameters. 
• The only permitted operations on an entity whose type is a formal generic parameter 

are operations applicable to every type. The entity may serve as left- or right-hand 
side of an assignment, actual routine argument, or operand of an equality or 
inequality test. It may also participate in universally applicable features such as 
cloning and object equality testing.

• The notion of array can be covered by a generic library class, without any specific 
language mechanism but also without any loss in run-time performance.

• More flexible advanced uses of genericity — polymorphic data structures, 
constrained genericity — require the introduction of inheritance.
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10.8  BIBLIOGRAPHICAL NOTES 
An early language supporting genericity was LPG [Bert 1983]. Ada made the concept 
widely known through its generic package mechanism. 

Genericity has also been introduced in formal specification languages such as Z, 
CLEAR and OBJ-2, to which references appear in the chapter on abstract data types. The 
generic mechanism described here was derived from the mechanism introduced in an early 
version of Z [Abrial 1980] [Abrial 1980a] and extended in M [M 1985b]. 

Aside from the notation of this book, one of the first object-oriented languages to 
offer genericity was DEC’s Trellis language [Schaffert 1986].

EXERCISES

E10.1  Constrained genericity

This exercise is a little peculiar since it asks you a question to which a detailed answer 
appears later in the book. Its aim is to get you thinking about the proper language 
structures, and compare your answer to what will be introduced later. It will only be 
worthwhile if you are new to this problem and have not yet seen the object-oriented 
solution. Familiarity with how the problem is handled in other approaches, notably Ada, 
may be helpful but is not required.

The question is about constrained genericity, a need that was presented in the 
discussion section. Devise a language mechanism, compatible with the spirit of the object-
oriented approach and with the notations seen so far, that will address constrained 
genericity by enabling the author of a generic class to specify that valid actual generic 
parameters must possess certain operations.

E10.2  Two-dimensional arrays

Using class ARRAY both as inspiration and as basis for the implementation, write a generic 
class ARRAY2 describing two-dimensional arrays. 

E10.3  Using your own formal generic parameter as someone else’s actual

Construct an example in which a routine of a generic class C [G] calls a routine declared 
in another generic class D [G] as taking a formal argument of type G.
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Design by Contract: 
building reliable software
E quipped with the basic concepts of class, object and genericity, you can by now write 
software modules that implement possibly parameterized types of data structures. 
Congratulations. This is a significant step in the quest for better software architectures. 

But the techniques seen so far are not sufficient to implement the comprehensive 
view of quality introduced at the beginning of this book. The quality factors on which we 
have concentrated — reusability, extendibility, compatibility — must not be attained at the 
expense of reliability (correctness and robustness). Although, as recalled next, the 
reliability concern was visible in many aspects of the discussion, we need more.

The need to pay more attention to the semantic properties of our classes will be 
particularly clear if you remember how classes were defined: as implementations of 
abstract data types. The classes seen so far consist of attributes and routines, which indeed 
represent the functions of an ADT specification. But an ADT is more than just a list of 
available operations: remember the role played by the semantic properties, as expressed 
by the axioms and preconditions. They are essential to capture the true nature of the type’s 
instances. In studying classes, we have — temporarily — lost sight of this semantic 
aspect of the ADT concept. We will need to bring it back into the method if we want our 
software to be not just flexible and reusable, but also correct and robust.

Assertions and the associated concepts, explained in this chapter, provide some of the 
answer. Although not foolproof, the mechanisms presented below provide the programmer 
with essential tools for expressing and validating correctness arguments. The key concept 
will be Design by Contract: viewing the relationship between a class and its clients as a 
formal agreement, expressing each party’s rights and obligations. Only through such a 
precise definition of every module’s claims and responsibilities can we hope to attain a 
significant degree of trust in large software systems. 

In reviewing these concepts, we shall also encounter a key problem of software 
engineering: how to deal with run-time errors — with contract violations. This leads to the 
subject of exception handling, covered in the next chapter. The distribution of roles 
between the two chapters roughly reflects the distinction between the two components of 
reliability; as you will recall, correctness was defined as the software’s ability to perform 
according to its specification, and robustness as its ability to react to cases not included in 
the specification. Assertions (this chapter) generally cover correctness, and exceptions 
(next chapter) generally cover robustness.
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Some important extensions to the basic ideas of Design by Contract will have to wait 
until the presentation of inheritance, polymorphism and dynamic binding, enabling us to 
go from contracts to subcontracting. 

11.1  BASIC RELIABILITY MECHANISMS

The preceding chapters already introduced a set of techniques that directly address the goal 
of producing reliable software. Let us review them briefly; it would be useless to consider 
more advanced concepts until we have put in place all the basic reliability mechanisms.

First, the defining property of object technology is an almost obsessive concern with 
the structure of software systems. By defining simple, modular, extendible architectures, 
we make it easier to ensure reliability than with contorted structures as often result from 
earlier methods. In particular the effort to limit inter-module communication to the strict 
minimum was central to the discussion of modularity that got us started; it resulted in the 
prohibition of such common reliability risks as global variables, and in the definition of 
restricted communication mechanisms, the client and inheritance relations. The general 
observation is that the single biggest enemy of reliability (and perhaps of software quality 
in general) is complexity. Keeping our structures as simple as possible is not enough to 
ensure reliability, but it is a necessary condition. So the discussion of the previous chapters 
provides the right starting point for the systematic effort of the present one.

Also necessary if not sufficient is the constant emphasis on making our software 
elegant and readable. Software texts are not just written, they are read and rewritten 
many times; clarity and simplicity of notation, such as have been attempted in the 
language constructs introduced so far, are a required basis for any more sophisticated 
approach to reliability.

Another indispensable weapon is automatic memory management, specifically 
garbage collection. The chapter on memory management explained in detail why, for any 
system that creates and manipulates dynamic data structures, it would be dangerous to rely 
on manual reclamation (or no reclamation). Garbage collection is not a luxury; it is a 
crucial reliability-enhancing component of any O-O environment.

The same can be said of another technique presented (in connection with genericity) 
in the last chapter: static typing. Without statically enforced type rules, we would be at the 
mercy of run-time typing errors.

All these techniques provide the necessary basis, from which we can now take a 
closer look at what it will take for a software system to be correct and robust.
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11.2  ABOUT SOFTWARE CORRECTNESS

We should first ask ourselves what it means for a software element to be correct. The 
observations and deductions that will help answer this question will seem rather trivial at 
first; but let us not forget the comment (made once by a very famous scientist) that 
scientific reasoning is nothing but the result of starting from ordinary observations and 
continuing with simple deductions — only very patiently and stubbornly.

Assume someone comes to you with a 300,000-line C program and asks you “Is this 
program correct?”. There is not much you can answer. (If you are a consultant, though, try 
answering “no” and charging a high fee. You might just be right.)

To consider the question meaningful, you would need to get not only the program 
but also a precise description of what it is supposed to do — a specification.

The same comment is applicable, of course, regardless of the size of a program. The 
instruction x := y + 1 is neither correct nor incorrect; these notions only make sense with 
respect to a statement of what one expects from the instruction — what effect it is intended 
to have on the state of the program variables. The instruction is correct for the specification

“Make sure that x and y have different values”

but it is incorrect vis-à-vis the specification

“Make sure that x has a negative value”

(since, assuming that the entities involved are integers, x may end up being non-negative 
after the assignment, depending on the value of y).

These examples illustrate the property that must serve as the starting point of any 
discussion of correctness:

A software system or software element is neither correct nor incorrect per se; it is 
correct or incorrect with respect to a certain specification. Strictly speaking, we should not 
discuss whether software elements are correct, but whether they are consistent with their 
specifications. This discussion will continue to use the well-accepted term “correctness”, 
but we should always remember that the question of correctness does not apply to software 
elements; it applies to pairs made of a software element and a specification.

Software Correctness property

Correctness is a relative notion.
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[Mills 1975]. 
In this chapter we will learn how to express such specifications through assertions, 
to help us assess the correctness of our software. But we will go further. It turns out (and 
only someone who has not practiced the approach will think of this as a paradox) that just 
writing the specification is a precious first step towards ensuring that the software actually 
meets it. So we will derive tremendous benefits from writing the assertions at the same 
time as we write the software — or indeed before we write the software. Among the 
consequences we will find the following:

• Producing software that is correct from the start because it is designed to be correct. 
The title of an article written by Harlan D. Mills (one of the originators of 
“Structured Programming”) in the nineteen-seventies provides the right mood: How 
to write correct programs and know it. To “know it” means to equip the software, at 
the time you write it, with the arguments showing its correctness.

• Getting a much better understanding of the problem and its eventual solutions.

• Facilitating the task of software documentation. As we will see later in this chapter, 
assertions will play a central part in the object-oriented approach to documentation.

• Providing a basis for systematic testing and debugging.

The rest of this chapter explores these applications.

A word of warning: C, C++ and some other languages (following the lead of Algol 
W) have an “assert” instruction that tests whether a certain condition holds at a certain 
stage of the software’s execution, and stops execution if it does not. Although relevant to 
the present discussion, this concept represents only a small part of the use of assertions in 
the object-oriented method. So if like many other software developers you are familiar 
with such instructions but have not been exposed to the more general picture, almost all 
the concepts of this chapter will be new.

11.3  EXPRESSING A SPECIFICATION

We can turn the preceding informal observations into a simple mathematical notation, 
borrowed from the theory of formal program validation, and precious for reasoning about 
the correctness of software elements.

Correctness formulae

Let A be some operation (for example an instruction or a routine body). A correctness 
formula is an expression of the form

denoting the following property, which may or may not hold:

{P} A {Q}
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Correctness formulae (also called Hoare triples) are a mathematical notation, not a 
programming construct; they are not part of our software language, but only designed to 
guide us through this discussion by helping to express properties of software elements. 

In {P} A {Q} we have seen that A denotes an operation; P and Q are properties of 
the various entities involved, also called assertions (the word will be defined more 
precisely later). Of the two assertions, P is called the precondition and Q the postcondition. 
Here is a trivial correctness formula (which, assuming that x is an integer entity, holds):

The use of correctness formulae is a direct application of the Software Correctness 
Property. What the Property stated informally — that correctness is only meaningful 
relative to a particular specification — correctness formulae turn into a form that is 
directly usable for working on the software: from now on the discourse about software 
correctness will not be about individual software elements A, but about triples containing 
a software element A, a precondition P and a postcondition Q. The sole aim of the game 
is to establish that the resulting {P} A {Q} correctness formulae hold.

The number 13 appearing in the postcondition is not a typo! Assuming a correct 
implementation of integer arithmetic, the above formula holds: if x >= 9 is true before the 
instruction, x >= 13 will be true after the instruction. Of course we can assert more 
interesting things: with the given precondition, the most interesting postcondition is the 
strongest possible one, here x >= 14; with the given postcondition, the most interesting 
precondition is the weakest possible one, here x >= 8. From a formula that holds, you can 
always get another one by strengthening the precondition or weakening the postcondition. 
We will now examine more carefully these notions of “stronger” and “weaker”.

Weak and strong conditions
One way to look at a specification of the form {P} A {Q} is to view it as a job description 
for A — an ad in the paper, which states “We are looking for someone whose work will be 
to start from initial situations as characterized by P, and deliver results as defined by Q”.

Here is a small quiz to help you sharpen your understanding of the concepts.
Assume one of your friends is looking for a job and comes across several such ads, 

all with similar salary and benefits, but differing by their Ps and Qs. (Tough times have 
encouraged the companies that publish the ads to resort to this notation, which they like 
for its mathematical compactness since the newspaper charges by the word.) Like 
everyone else, your friend is lazy, that is to say, wants to have the easiest possible job. He 
is asking for your advice, always a dangerous situation. What should you recommend for 
P: choose a job with a weak precondition, or a strong one? Same question for the 
postcondition Q. (The answers appear right after this, but do take the time to decide the 
issue for yourself before turning the page.) 

Meaning of a correctness formula {P} A {Q} 
“Any execution of A, starting in a state where P holds, will terminate in a 
state where Q holds.”

{x >= 9}  x := x + 5  {x >= 13}
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The precondition first. From the viewpoint of the prospective employee — the 
person who has to perform what has been called A — the precondition P defines the 
conditions under which the required job will start or, to put it differently, the set of cases 
that have to be handled. So a strong P is good news: it means that you only have to deal 
with a limited set of situations. The stronger the P, the easier for the employee. In fact, the 
perfect sinecure is the job defined by

The postcondition has been left unspecified because it does not matter what it is. 
Indeed if you ever see such an ad, do not even bother reading the postcondition; take the 
job right away. The precondition False is the strongest possible assertion, since it is never 
satisfied in any state. Any request to execute A will be incorrect, and the fault lies not with 
the agent responsible for A but with the requester — the client — since it did not observe 
the required precondition, for the good reason that it is impossible to observe it. Whatever 
A does or does not do may be useless, but is always correct — in the sense, defined earlier, 
of being consistent with the specification.

The above job specification is probably what a famous police chief of a Southern US city 
had in mind, a long time ago, when, asked by an interviewer why he had chosen his 
career, he replied: “Obvious — it is the only job where the customer is always wrong”.

For the postcondition Q, the situation is reversed. A strong postcondition is bad 
news: it indicates that you have to deliver more results. The weaker the Q, the better for 
the employee. In fact, the second best sinecure in the world is the job defined, regardless 
of the precondition, by

The postcondition True is the weakest possible assertion, satisfied by all states.

The notions of “stronger” and “weaker” are formally defined from logic: P1 is said to be 
stronger than P2, and P2 weaker than P1, if P1 implies P2 and they are not equal. As every 
proposition implies True, and False implies every proposition, it is indeed legitimate to 
speak of True as the weakest and False as the strongest of all possible assertions.

Why, by the way, is Sinecure 2 only the “second best” job in the world? The reason 
has to do with a fine point that you may have noticed in the definition of the meaning of 
{P} A {Q} on the preceding page: termination. The definition stated that the execution 
must terminate in a state satisfying Q whenever it is started in a state satisfying P. With 
Sinecure 1 there are no states satisfying P, so it does not matter what A does, even if it is 
a program text whose execution would go into an infinite loop or crash the computer. Any 
A will be “correct” with respect to the given specification. With Sinecure 2, however, there 

Sinecure 1

{False}  A  {…}

Sinecure 2

{…}  A  {True}
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must be a final state; that state does not need to satisfy any specific properties, but it must 
exist. From the viewpoint of whoever has to perform A: you need to do nothing, but you 
must do it in finite time.

Readers familiar with theoretical computing science or program proving techniques will 
have noted that the {P} A {Q} notation as used here denotes total correctness, which 
includes termination as well as conformance to specification. (The property that a 
program will satisfy its specification if it terminates is known as partial correctness.) See 
[M 1990] for a detailed presentation of these concepts.

The discussion of whether a stronger or weaker assertion is “bad news” or “good news” 
has taken the viewpoint of the prospective employee. If, changing sides, we start looking at 
the situation as if we were the employer, everything is reversed: a weaker precondition will 
be good news, as it means a job that handles a broader set of input cases; so will be a stronger 
postcondition, as it means more significant results. This reversal of criteria is typical of 
discussions of software correctness, and will reappear as the central notion of this chapter: 
contracts between client and supplier modules, in which a benefit for one is an obligation 
for the other. To produce effective and reliable software is to draw up the contract 
representing the best possible compromise in all applicable client-supplier communications.

11.4  INTRODUCING ASSERTIONS INTO SOFTWARE TEXTS
Once we have defined the correctness of a software element as the consistency of its 
implementation with its specification, we should take steps to include the specification, 
together with the implementation, in the software itself. For most of the software 
community this is still a novel idea: we are accustomed to programs as defining the 
operations that we command our hardware-software machines to execute for us (the how); 
it is less common to treat the description of the software’s purposes (the what) as being 
part of the software itself.

To express the specification, we will rely on assertions. An assertion is an expression 
involving some entities of the software, and stating a property that these entities may 
satisfy at certain stages of software execution. A typical assertion might express that a 
certain integer has a positive value or that a certain reference is not void. 

Mathematically, the closest notion is that of predicate, although the assertion 
language that we shall use has only part of the power of full predicate calculus. 

Syntactically, the assertions of our notation will simply be boolean expressions, with 
a few extensions. One of these extensions, the old notation, is introduced later in this 
chapter. Another is the use of the semicolon, as in 

n > 0 ; x /=  Void

The meaning of the semicolon is equivalent to that of an and. As between 
declarations and instructions, the semicolon is actually optional, and we will omit it when 
assertion clauses appear on separate lines; just consider that there is an implicit and
between successive assertion lines. These conventions facilitate identification of the 
individual components of an assertion. It is indeed possible, and usually desirable, to label 
these components individually, as in 
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Positive: n > 0
Not_void: x /= Void

If present, the labels (such as Positive and Not_void in this example) will play a role 
in the run-time effect of assertions — to be discussed later in this chapter — but for the 
moment they are mainly there for clarity and documentation.

The next few sections will review this principal application of assertions: as a 
conceptual tool enabling software developers to construct correct systems and to 
document why they are correct. 

11.5  PRECONDITIONS AND POSTCONDITIONS 
The first use of assertions is the semantic specification of routines. A routine is not just a 
piece of code; as the implementation of some function from an abstract data type 
specification, it should perform a useful task. It is necessary to express this task precisely, 
both as an aid in designing it (you cannot hope to ensure that a routine is correct unless 
you have specified what it is supposed to do) and, later, as an aid to understanding its text. 

You may specify the task performed by a routine by two assertions associated with 
the routine: a precondition and a postcondition. The precondition states the properties that 
must hold whenever the routine is called; the postcondition states the properties that the 
routine guarantees when it returns.

A stack class 
An example will enable us to become familiar with the practical use of assertions. In the 
previous chapter, we saw the outline of a generic stack class, under the form

class STACK [G] feature
… Declaration of the features:
 count, empty, full, put, remove, item

end
An implementation will appear below. Before considering implementation issues, 

however, it is important to note that the routines are characterized by strong semantic 
properties, independent of any specific representation. For example: 

• Routines remove and item are only applicable if the number of elements is not zero. 

• put increases the number of elements by one; remove decreases it by one. 

Such properties are part of the abstract data type specification, and even people who 
do not use any approach remotely as formal as ADTs understand them implicitly. But in 
common approaches to software construction software texts reveal no trace of them. 
Through routine preconditions and postconditions you can turn them into explicit 
elements of the software.

We will express preconditions and postconditions as clauses of routine declarations 
introduced by the keywords require and ensure respectively. For the stack class, leaving 
the routine implementations blank for the time being, this gives: 
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note
description: "Stacks: Dispenser structures with a Last-In, First-Out % 

%access policy"
class STACK1 [G] feature -- Access

count: INTEGER
-- Number of stack elements

item: G
-- Top element

require
not empty

do
…

end
feature -- Status report

empty: BOOLEAN
-- Is stack empty?

do … end
full: BOOLEAN

-- Is stack representation full?
do

…
end

feature -- Element change
put (x: G)

-- Add x on top.
require

not full
do

…
ensure

not empty
item = x
count = old count + 1

end
remove

-- Remove top element.
require

not empty
do

…
ensure

not full
count = old count – 1

end
end
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More on feature cat-
egories in “A stack 
class”, page 348.
Both the require and the ensure clauses are optional; when present, they appear at 
the places shown. The require appears before the local clause, if present. The next 
sections explain in more detail the meaning of preconditions and postconditions. 

Note the division into several feature clauses, useful to group the features into categories 
indicated by the clauses’ header comments. Access, Status report and Element change are 
some of a dozen or so standard categories used throughout the libraries and, whenever 
applicable, subsequent examples in this book.

Preconditions 

A precondition expresses the constraints under which a routine will function properly. Here:
• put may not be called if the stack representation is full. 
• remove and item may not be applied to an empty stack. 

A precondition applies to all calls of the routine, both from within the class and from 
clients. A correct system will never execute a call in a state that does not satisfy the 
precondition of the called routine. 

Postconditions 

A postcondition expresses properties of the state resulting from a routine’s execution. Here: 
• After a put, the stack may not be empty, its top is the element just pushed, and its 

number of elements has been increased by one. 
• After a remove, the stack may not be full, and its number of elements has been 

decreased by one. 
The presence of a postcondition clause in a routine expresses a guarantee on the part 

of the routine’s implementor that the routine will yield a state satisfying certain properties, 
assuming it has been called with the precondition satisfied. 

A special notation, old, is available in postconditions; put and remove use it to 
express the changes to count. The notation old e, where e is an expression (in most 
practical cases an attribute), denotes the value that e had on routine entry. Any occurrence 
of e not preceded by old in the postcondition denotes the value of the expression on exit. 
The postcondition of put includes the clause

count = old count + 1
to state that put, when applied to any object, must increase by one the value of the count
field of that object. 

A pedagogical note

If you are like most software professionals who get exposed to these ideas for the first 
time, you may be itching to know what effect, if any, the assertions have on the execution 
of the software, and in particular what happens if one of them gets violated at run time — 
if full is true when someone calls put, or empty is true when put terminates one of its 
executions. It is too early to give the full answer but as a preview we can use the lawyer’s 
favorite: it depends.
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See “Monitoring 
assertions at run 
time”, page 392.
More precisely, it depends on what you want. You may decide to treat assertions 
purely as comments, with no effect on the software’s execution; then a run-time assertion 
violation will remain undetected. But it is also possible to use assertions to check that 
everything goes according to plan; then during execution the environment will 
automatically monitor that all assertions hold when they should, and if one does not it will 
trigger an exception, usually terminating execution and printing a message indicating 
clearly what happened. (It is also possible to include an exception handling clause that will 
try to recover from the exception and continue execution; exception handling is discussed 
in detail in the next chapter.) To specify the policy that you want — no assertion checking, 
or assertion monitoring at one of various possible levels — you will use a compilation 
option, which you can set separately for each class.

The full details of run-time assertion monitoring do appear later in this chapter. But 
it would be a mistake to attach too much importance to this aspect at this stage (one of the 
reasons why you were warned earlier not to think too much about the C notion of assertion 
if that has been your only exposure to the concept). Other aspects of assertions demand 
our attention first. We have only started to see assertions as a technique to help us get our 
software right in the first place; we still have much to discover of their methodological role 
as built-in guardians of reliability. The question of what happens if we do fail (in particular 
if an assertion, in spite of all our efforts, is not satisfied at some execution instant) is 
important too, but only after we have done all we could to prevent it from arising.

So (although it is never bad to think ahead) you do not need at this point to be too 
preoccupied by such questions as the possible performance penalty implied by the old
construct. Must the run-time system preserve values before we start a routine, just to be 
able to evaluate an old expression appearing in the postcondition? It depends: in some 
circumstances (for example testing and debugging) it will indeed be useful to evaluate 
assertions; in others (for example production runs of fully validated systems) you can treat 
them as mere annotations to the software text.

All that counts for the next few sections is the methodological contribution of 
assertions, and of the associated method of Design by Contract: as a conceptual tool for 
analysis, design, implementation and documentation, helping us to build software in 
which reliability is built-in, rather than achieved or attempted after the fact through 
debugging; in Mills’s terms, enabling us to build correct programs and know it.

11.6  CONTRACTING FOR SOFTWARE RELIABILITY 

Defining a precondition and a postcondition for a routine is a way to define a contract that 
binds the routine and its callers. 

Rights and obligations 

By associating clauses require pre and ensure post with a routine r, the class tells its clients:

“If you promise to call r with pre satisfied then I, in return, promise to deliver 
a final state in which post is satisfied.”
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A routine 
contract: 
routine put for 
a stack class
In relations between people or companies, a contract is a written document that 
serves to clarify the terms of a relationship. It is really surprising that in software, where 
precision is so important and ambiguity so risky, this idea has taken so long to impose 
itself. A precondition-postcondition pair for a routine will describe the contract that the 
routine (the supplier of a certain service) defines for its callers (the clients of that service).

Perhaps the most distinctive feature of contracts as they occur in human affairs is that 
any good contract entails obligations as well as benefits for both parties — with an 
obligation for one usually turning into a benefit for the other. This is true of contracts 
between classes, too: 

• The precondition binds the client: it defines the conditions under which a call to the 
routine is legitimate. It is an obligation for the client and a benefit for the supplier.

• The postcondition binds the class: it defines the conditions that must be ensured by 
the routine on return. It is a benefit for the client and an obligation for the supplier.

The benefits are, for the client, the guarantee that certain properties will hold after 
the call; for the supplier, the guarantee that certain assumptions will be satisfied whenever 
the routine is called. The obligations are, for the client, to satisfy the requirements as stated 
by the precondition; for the supplier, to do the job as stated by the postcondition.

Here is the contract for one of the routines in our example:

Zen and the art of software reliability: guaranteeing more by checking less

Although you may not have noticed it yet, one of the contract rules given goes against the 
generally accepted wisdom in software engineering; shocking at first to many, it is among 
the method’s main contributions to software reliability and deserves emphasis.

The rule reflects the above observation that the precondition is a benefit for the 
supplier and is expressed in the bottom-right box of the table: if the client’s part of the 

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Only call put (x) on a non-
full stack.

(From postcondition:)
Get stack updated: not 
empty, x on top (item yields 
x, count increased by 1).

Supplier (Satisfy postcondition:)
Update stack representation 
to have x on top (item yields 
x), count increased by 1, 
not empty.

(From precondition:)
Simpler processing thanks 
to the assumption that stack 
is not full.
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contract is not fulfilled, that is to say if the call does not satisfy the precondition, then the 
class is not bound by the postcondition. In this case the routine may do what it pleases: 
return any value; loop indefinitely without returning a value; or even crash the execution 
in some wild way. This is the case in which (in reference to the discussion at the beginning 
of this chapter) “the customer is wrong”.

The first advantage of this convention is that it considerably simplifies the 
programming style. Having specified as a precondition the constraints which calls to a 
routine must observe, you, the class developer, may assume when writing the routine body 
that the constraints are satisfied; you do not need to test for them in the body. So if a square 
root function, meant to produce a real number as a result, is of the form

sqrt (x: REAL): REAL
-- Square root of x

require
x >= 0

do … end
you may write the algorithm for computing the square root without any concern for the 
case in which x is negative; this is taken care of by the precondition and becomes the 
responsibility of your clients. (At first sight this may appear dangerous; but read on.) 

Actually the method of Design by Contract goes further. Writing the do clause of the 
routine under the form

if x < 0 then
“Handle the error, somehow”

else
“Proceed with normal square root computation”

end
is not just unnecessary but unacceptable. This may be expressed as a methodological rule:

This rule is the reverse of what many software engineering or programming 
methodology textbooks advocate, often under the name defensive programming — the 
idea that to obtain reliable software you should design every component of a system so 
that it protects itself as much as possible. Better check too much, this approach holds, than 
not enough; one is never too careful when dealing with strangers. A redundant check 
might not help, but at least it will not hurt.

Design by Contract follows from the opposite observation: redundant checks can and 
indeed will hurt. Of course this will at first seem strange; the natural reaction is to think 
that an extra check — for example routine sqrt containing the above conditional 
instruction testing for x < 0 even though callers have been instructed to ensure x >= 0 — 

Non-Redundancy principle
Under no circumstances shall the body of a routine ever test for the routine’s 
precondition.
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may at worst be useless, but cannot possibly cause any damage. Such a comment, 
however, comes from a microscopic understanding of reliability, focused on individual 
software elements such as the sqrt routine. If we restrict our view to the narrow world of 
sqrt, then the routine seems more robust with the extra test than without it. But the world 
of a system is not restricted to a routine; it contains a multitude of routines in a multitude 
of classes. To obtain reliable systems we must go from the microscopic view to a 
macroscopic view encompassing the entire architecture.

If we take this global view, simplicity becomes a crucial criterion. As was noted at 
the beginning of this chapter, complexity is the major enemy of quality. When we bring in 
this concern, possibly redundant checks do not appear so harmless any more! Extrapolated 
to the thousands of routines of a medium-size system (or the tens or hundreds of thousands 
of routines of a larger one), the if x < 0 then … of sqrt, innocuous at first sight, begins to 
look like a monster of useless complexity. By adding possibly redundant checks, you add 
more software; more software means more complexity, and in particular more sources of 
conditions that could go wrong; hence the need for more checks, meaning more software; 
and so on ad infinitum. If we start on this road only one thing is certain: we will never 
obtain reliability. The more we write, the more we will have to write.

To avoid this infinite chase we should never start it. With Design by Contract you are 
invited to identify the consistency conditions that are necessary to the proper functioning 
of each client-supplier cooperation (each contract); and to specify, for each one of these 
conditions, whose responsibility it is to enforce it: the client’s, or the supplier’s. The 
answer may vary, and is partly a matter of design style; advice will be given below on how 
best to choose it. But once you have made the decision, you should stick to it: if a 
correctness requirement appears in the precondition, indicating that the requirement is part 
of the client’s responsibility, there must not be a corresponding test in the routine; and if 
it is not in the precondition, then the routine must check for the requirement.

Defensive programming appears in contrast to cover up for the lack of a systematic 
approach by blindly putting in as many checks as possible, furthering the problem of 
reliability rather than addressing it seriously.

Redundant checking, it should be noted, is a standard technique in hardware. The 
difference is that in a hardware system some object that was found to be in a correct state 
at some point may later have its integrity destroyed because of reasons beyond the control 
of the system itself, such as interference from another system, harmful external event, or 
simply wear and tear. For that reason it is normal practice, for example, to have both the 
sender and the receiver of an electronic signal check its integrity. 

But no such phenomenon occurs in software: if I can prove or check in some way that a
is non-negative whenever sqrt (a) is called, I do not need to insert a check for x Š≥ 0, 
where x is the corresponding formal argument, in the body of sqrt. Nothing will happen 
to a between the time it is “sent” by the caller and the time it is “received” (under the name 
x) by the routine. Software does not wear out when used for too long; it is not subject to 
line loss, to interference or to noise.

Also note that in most cases what is called redundant checking in hardware is not really 
redundant: one actually applies different and complementary verifications, such as a 
parity check and some other test. Even when the checks are the same they are often 



§11.6   CONTRACTING FOR SOFTWARE RELIABILITY 345

“Modular protec-
tion”, page 45.
applied by different devices, as in the just mentioned case of a sender and receiver that 
both check a signal, or in a redundant computer system where several computers perform 
the same computation, with a voting mechanism to resolve discrepancies.

Another drawback of defensive programming is its costs. Redundant checks imply a 
performance penalty — often enough in practice to make developers wary of defensive 
programming regardless of what the textbooks say. If they do make the effort to include 
these checks, removing some of them later to improve performance will be tedious. The 
techniques of this chapter will also leave room for extra checks, but if you choose to enable 
them you will rely on the development environment to carry them out for you. To remove 
them, once the software has been debugged, it suffices to change a compilation option 
(details soon). The software itself does not contain any redundant elements.

Aside from performance considerations, however, the principal reason to distrust 
defensive programming is simply our goal of getting the best possible reliability. For a 
system of any significant size the individual quality of the various elements involved is 
not enough; what will count most is the guarantee that for every interaction between two 
elements there is an explicit roster of mutual obligations and benefits — the contract. 
Hence the Zen-style paradox of our conclusion: that to get more reliability the best policy 
is often to check less.

Assertions are not an input checking mechanism

It is useful here to emphasize a few properties of the approach which, although implicit in 
the preceding discussion, have been shown by experience to require further explanations. 
The following comments should help address some of the questions that may have been 
forming in your mind as you were reading about the basic ideas of Design by Contract.

To avoid a common misunderstanding, make sure to note that each of the contracts 
discussed holds between a routine (the supplier) and another routine (its caller): we are 
concerned about software-to-software communication, not software-to-human or 
software-to-outside-world. A precondition will not take care of correcting user input, for 
example in a read_ positive_integer routine that expects the interactive user to enter a 
positive number. Including in the routine a precondition of the form

require
input > 0

would be wishful thinking, not a reliability technique. Here there is no substitute for the 
usual condition-checking constructs, including the venerable if … then …; the exception 
handling mechanism studied in the next chapter may also be helpful.

Assertions do have a role to play in a solution to this problem of input validation. In 
line with the criterion of Modular Protection, the method encourages validating any objects 
obtained from the outside world — from sensors, from user input, from a network… — as 
close to the source of the objects as possible, using “filter” modules if necessary:
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Using filter 
modules
In obtaining information from the outside (communication paths shown in color) you 
cannot rely on preconditions. But part of the task of the input modules shown in grey in 
the middle of the figure is to guarantee that no information is passed further to the right — 
to the modules responsible for the system’s actual computations — unless it satisfies the 
conditions required for correct processing. In this approach there will be ample use of 
assertions in the software-to-software communication paths represented by the black 
dotted lines on the right. The postconditions achieved by the routines of the input modules 
will have to match (or exceed, in the sense of “stronger” defined earlier) the preconditions 
imposed by the processing routines.

The routines of the filter classes may be compared to security officers in, say, a large 
government laboratory. To meet experts from the laboratory and ask them technical 
questions, you must submit to screening procedures. But it is not the same person who 
checks your authorization level and answers the questions. The physicists, once you have 
been officially brought into their offices, assume you satisfy the preconditions; and you 
will not get much help from the guards on theoretical physics.

Assertions are not control structures

Another common misunderstanding, related to the one just discussed, is to think of 
assertions as control structures — as techniques to handle special cases. It should be clear 
by now that this is not their role. If you want to write a routine sqrt that will handle 
negative arguments a certain way, and non-negative arguments another way, a require
clause is not what you need. Conditional instructions (if … then … else …) and related 
constructs to deal with various cases (such as Pascal’s case … of … or the inspect
instruction of this book’s notation) are perfectly appropriate for such purposes.

Assertions are something else. They express correctness conditions. If sqrt has its 
precondition, a call for which x < 0 is not a special case: it is a bug, plain and simple.

“Bug” is not a very scientific word but is clear enough to anyone in software; we will 
look for more precise terminology in the next section. For the moment we can pursue the 
assertion violation rule further by noting a consequence of the contract view:

Assertion Violation rule (1)
A run-time assertion violation is the manifestation of a bug in the software.

External objects Input and validation modules Processing modules
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A precondition violation means that the routine’s caller, although obligated by the 
contract to satisfy a certain requirement, did not. This is a bug in the client itself; the 
routine is not involved. (“The customer is wrong”.) An outside observer might of course 
criticize the contract as too demanding, as with the unsatisfiable require False
precondition or our fictitious Sinecure 1 example (“the customer is always wrong”), but 
this is too late to argue over the contract: it is the contract, and the client did not observe 
its part of the deal. So if there is a mechanism for monitoring assertions during execution 
— as will be introduced shortly — and it detects such a precondition violation, the routine 
should not be executed at all. It has stated the conditions under which it can operate, and 
these conditions do not hold; trying to execute it would make no sense.

A postcondition violation means that the routine, presumably called under correct 
conditions, was not able to fulfill its contract. Here too the distribution of guilt and 
innocence is clear, although it is the reverse of the previous one: the bug is in the routine; 
the caller is innocent.

Errors, defects and other creeping creatures

The appearance of the word “bug” in the preceding analysis of assertion violation causes 
is a good opportunity to clarify the terminology. In Edsger W. Dijkstra’s view, using the 
word “bug” is a lame attempt by software people to blame someone else by implying that 
mistakes somehow creep into the software from the outside while the developers are 
looking elsewhere — as if were not the developers who made the mistakes in the first place.

Yet the term enjoys enduring success, if only because it is colorful and readily 
understood. Like the rest of the software literature, this book uses it freely. But it is 
appropriate to complement it by more specific (if more stodgy) terms for cases in which 
we need precise distinctions.

The causal relation is clear: faults are due to defects, which result from errors.

Assertion violation rule (2)

A precondition violation is the manifestation of a bug in the client.
A postcondition violation is the manifestation of a bug in the supplier.

Terms to denote software woes

An error is a wrong decision made during the development of a software 
system.
A defect is a property of a software system that may cause the system to 
depart from its intended behavior.
A fault is the event of a software system departing from its intended behavior 
during one of its executions.
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Stack 
implemented 
with an array 
(see page 123 
for other 
representations)

For an array-based 
stack implementation 
using inheritance, see 
“IMPLEMENTA-
TION INHERI-
TANCE”, 24.8, page 
844.
“Bug” usually has the meaning of defect (“are you sure there remains no other bug 
in this routine?”). This is the interpretation in this book. But in informal discussions it is 
also used in the sense of fault (“We have had bug-free operation for the last three weeks”) 
or error (“the bug was that I used an unsorted list”).

11.7  WORKING WITH ASSERTIONS

Let us now probe further the use of preconditions and postconditions, continuing with 
fairly elementary examples. Assertions, some simple, some elaborate, will be pervasive in 
the examples of the following chapters.

A stack class

The assertion-equipped STACK class was left in a sketchy form (STACK1). We can now 
come up with a full version including a spelled out implementation.

For an effective (directly usable) class we must choose an implementation. Let us use 
the array implementation illustrated at the beginning of the discussion of abstract data types:

The array will be called representation and will have bounds 1 and capacity; the 
implementation also uses an integer, the attribute count, to mark the top of the stack.

Note that as we discover inheritance we will see how to write deferred classes that 
cover several possible implementations rather than just one. Even for a class that uses a 
particular implementation, for example by arrays as here, we will be able to inherit from 
the implementation class ARRAY rather than use it as a client (although some object-
oriented developers will still prefer the client approach). For the moment, however, we can 
do without any inheritance-related technique.

Here is the class. Recall that if a is an array then the operation to assign value x to its 
i-th element is a  put (x, i), and the value of its i-th element is given by a  item (i) or, 
equivalently, a @ i. If, as here, the bounds of the array are 1 and capacity, then i must in 
all cases lie between these bounds.

representation

(ARRAY_UP)

“Push” operation:
count := count + 1
representation [count] := x

count

capacity

1
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On the export status 
of capacity see exer-
cise E11.4, page 409.
note
description: "Stacks: Dispenser structures with a Last-In, First-Out %

%access policy, and a fixed maximum capacity"
class STACK2 [G] creation 

make
feature -- Initialization

make (n: INTEGER)
-- Allocate stack for a maximum of n elements

require
positive_capacity: n >= 0

do
capacity := n
create representation  make (1, capacity)

ensure
capacity_set: capacity = n
array_allocated: representation /= Void
stack_empty: empty

end
feature -- Access

capacity: INTEGER 
-- Maximum number of stack elements

count: INTEGER 
-- Number of stack elements

item: G
-- Top element

require
not_empty: not empty -- i.e. count > 0

do
Result := representation @ count

end
feature -- Status report

empty: BOOLEAN
-- Is stack empty?

do
Result := (count = 0)

ensure
empty_definition: Result = (count = 0)

end
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Invariants are intro-
duced in “CLASS 
INVARIANTS”, 
11.8, page 363.
full: BOOLEAN
-- Is stack full?

do
Result := (count = capacity)

ensure
full_definition: Result = (count = capacity)

end
feature -- Element change

put (x: G)
-- Add x on top

require
not_full: not full -- i.e. count < capacity in this representation

do
count := count + 1
representation  put (count, x)

ensure
not_empty: not empty
added_to_top: item = x
one_more_item: count = old count + 1
in_top_array_entry: representation @ count = x

end
remove

-- Remove top element
require

not_empty: not empty -- i.e. count > 0 
do

count := count – 1
ensure

not_full: not full
one_fewer: count = old count – 1

end
feature {NONE} -- Implementation

representation: ARRAY [G]
-- The array used to hold the stack elements

invariant
… To be filled in later (see page 364) …

end
This class text illustrates the simplicity of working with assertions. It is complete 

except for the invariant clause, which will be added later in this chapter. Let us explore 
its various properties.
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On multiple feature 
clauses and export-
ing to NONE see 
“SELECTIVE 
EXPORTS AND 
INFORMATION 
HIDING”, 7.8, 
page 191.

“Feature clause 
header comments”, 
page 889.

“Introducing a more
imperative view”, 
page 145.
This is the first full-fledged class of this chapter, not too far from what you will find 
in professional libraries of reusable object-oriented components such as the Base libraries. 
(Apart from the use of inheritance and a few extra features, what still distinguishes this 
class from its real-life counterparts is the absence of the invariant clause.)

Before studying the assertions, a general note about the structure of the class. As 
soon as a class has more than two or three features, it becomes essential to organize its 
features in a coherent way. The notation helps by providing the possibility of including 
multiple feature clauses. An earlier chapter introduced this facility as a way to specify a 
different export status for certain features, as done here for the last part of the class, labeled 
-- Implementation to specify that feature representation is secret. But as already 
previewed in STACK1 you can take advantage of multiple feature clauses even when the 
export status is the same. The purpose is to make the class easier to read, and easier to 
manage, by grouping features into general categories. After each feature keyword appears 
a comment (known as the Feature Clause Comment) defining the general role of the 
features that follow. The categories used in the example are those of STACK1, plus 
Initialization for the creation procedure.

The standard feature categories and associated Feature Clause Comments are part of 
the general rules for consistency and organization of reusable library classes. A more 
complete list appears in the chapter on style rules.

The imperative and the applicative

The assertions of STACK2 illustrate a fundamental concept of which we got a first glimpse 
when we studied the transition from abstract data types to classes: the difference between 
imperative and applicative views.

The assertions in empty and full may have caused you to raise an eyebrow. Here 
again is the text of full:

full: BOOLEAN
-- Is stack full?

do
Result := (count = capacity)

ensure
full_definition: Result = (count = capacity)

end

The postcondition expresses that Result has the same value as count = capacity. 
(Since both sides of the equality, the entity Result and the expression count = capacity, are 
boolean, this means that the function returns true if and only if count is equal to capacity.) 
But what is the point of writing this postcondition, one may ask, since the body of the 
routine (the do clause) says exactly the same thing through the instruction 
Result := (count = capacity), whose only difference with the postcondition clause is its use 
of := rather than =? Is the postcondition not redundant?
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Actually, there is a big difference between the two constructs, and no redundancy at 
all. The instruction Result := (count = capacity) is a command that we give to our virtual 
computer (the hardware-software machine) to change its state in a certain way; it performs 
an action. The assertion Result = (count = capacity) does not do anything: it specifies a 
property of the expected end state, as visible to the routine’s caller.

The instruction is prescriptive; the assertion is descriptive. The instruction describes 
the “how”; the assertion describes the “what”. The instruction is part of the 
implementation; the assertion is an element of specification.

The instruction is imperative; the assertion is applicative. These two terms 
emphasize the fundamental difference between the worlds of computing and mathematics:

• Computer operations may change the state of the hardware-software machine. 
Instructions of common programming languages are commands (imperative 
constructs) directing the machine to execute such operations.

• Mathematical reasoning never changes anything; as noted in the presentation of 
abstract data types, taking the square root of the number 2 does not change that 
number. Mathematics instead describes how to use properties of known objects, such 
as the number 2, to infer properties of others, such as , obtained from the former 
by applying (hence the name) certain mathematical derivations such as square root.

That the two notations are so close in our example — assignment := and equality =
— should not obscure this fundamental difference. The assertion describes an intended 
result, and the instruction (the loop body) prescribes a particular way to achieve that result. 
Someone using the class to write a client module will typically be interested in the 
assertion but not in the implementation.

The reason for the closeness of notations for assignment and equality is that 
assignment is indeed in many cases the straightforward way to achieve equality; in our 
example the chosen implementation, Result := (count = capacity), is indeed the obvious one. 
But as soon as we move on to more advanced examples the conceptual difference between 
the specification and the implementation will be much larger; even in the simple case of a 
function to compute the square root of a real number x, where the postcondition is just 
something like abs (Result ^ 2 – x) <= tolerance with abs denoting absolute value and 
tolerance a tolerance value, the instructions in the function’s body will be far less trivial 
since they have to implement a general algorithm for the computation of square roots.

Even for put in class STACK2, the same specification could have led to different 
implementations, although the differences are minor; for example the body could be

if count = capacity then Result := True else Result := False end
perhaps simplified (thanks to the rules of default initialization) into

if count = capacity then Result := True end

So the presence of related elements in the body and the postcondition is not evidence 
of redundancy; it is evidence of consistency between the implementation and the 
specification — that is to say, of correctness as defined at the beginning of this chapter.

2
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The 
imperative-
applicative 
opposition
In passing, we have encountered a property of assertions that will merit further 
development: their relevance for authors of client classes, whom we should not ask to read 
routine implementations, but who need a more abstract description of the routine’s role. 
This idea will lead to the notion of short form discussed later in this chapter as the basic 
class documentation mechanism.

A caveat: for practical reasons we will allow assertions to include some seemingly 
imperative elements (functions). This issue will be explored at the end of this chapter.

As a summary of this discussion it is useful to list the words that have been used to 
contrast the two categories of software elements:

A note on empty structures

The precondition of the creation procedure make in class STACK1 requires a comment. It 
states n >= 0, hence allowing empty stacks. If n is zero, make will call the creation 
procedure for arrays, also named make, with arguments 1 and 0 for the lower and upper 
bounds respectively. This is not an error, but follows from a convention regarding 
ARRAY’s creation procedure: using a first argument greater than the second by one creates 
an empty array.

A zero n for a stack, or a first creation argument greater than the second for an array, 
is not wrong but simply means that this particular stack or array should be empty. An error 
would only occur out of a call attempting to access an element from the structure, for 
example a put for the stack or an item for the array, both of whose preconditions will 
always be false for an empty structure (“my customer is always wrong”). 

When you define a general data structure such as a stack or array, you should 
determine whether the case of an empty structure is conceptually meaningful. In some 
cases it is not: for example most definitions of the notion of tree start from the assumption 
that there is at least one node, the root. But if the empty case raises no logical impossibility, 
as with arrays and stacks, you should plan for it in the design of your data structure, 
acknowledging that clients will, every once in a while, create empty instances, and should 
not suffer for it. An application system may for example need a stack for n elements, 
where n is an upper bound on the number of elements to be stacked, computed by the 
application just before it creates the stack; in some runs that number may be zero. This is 
not an error, simply an extreme case.

The array mechanism of Algol W provides a counter-example. When a dynamically 
allocated array has an empty range, the program terminates in error — even if it was a 
perfectly valid array which simply happened to be empty on that particular run. This is too 
restrictive: an array with zero size is valid, it simply does not allow access to any element.

Implementation Specification
Instruction Expression
How What
Imperative Applicative
Prescription Description
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Precondition design: tolerant or demanding?

Central to Design by Contract is the idea, expressed as the Non-Redundancy principle, 
that for any consistency condition that could jeopardize a routine’s proper functioning you 
should assign enforcement of this condition to only one of the two partners in the contract.

Which one? In each case you have two possibilities:

• Either you assign the responsibility to clients, in which case the condition will appear 
as part of the routine’s precondition.

• Or you appoint the supplier, in which case the condition will appear in a conditional 
instruction of the form if condition then …, or an equivalent control structure, in the 
routine’s body.

We can call the first attitude demanding and the second one tolerant. The STACK2 
class illustrates the demanding style; a tolerant version of the class would have routines 
with no preconditions, such as

remove

-- Remove top element

do

if empty then

print ("Error: attempt to pop an empty stack")

else

count := count – 1

end

end

In the analogy with human contracts we can think of the demanding style as 
characterizing an experienced contractor who expects his clients to “do their homework” 
before calling on him; he has no trouble finding business, and will reject requests that 
appear too broad or unreasonable. The tolerant style evokes the image of a freshly 
established consulting practice, whose owner is so desperate for business that he will take 
anything, having put in his driveway a big sign:
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Which is the better style? To a certain extent this is a matter of personal choice (as 
opposed to the Non-Redundancy principle, which was absolute in stating that it is never 
acceptable to deal with a correctness condition on both the client and supplier sides). A 
strong case can be made, however, for the demanding style illustrated by STACK2, 
especially in the case of software meant to be reusable — and in O-O development we 
should always write our software with the goal of ultimately making it reusable.

At first the tolerant style might appear better for both reusability and reliability; after 
all the demanding approach appears to put more responsibility on the clients, and there are 
typically many clients for a single supplier — even more so for a reusable class. Is it not 
preferable, then, to let the supplier take care of the correctness conditions once and for all, 
rather than require every client to do it for itself?

If we look more closely at the issue this reasoning does not hold. The correctness 
conditions describe what the routine requires to be able to do its job properly. The tolerant 
remove on the facing page is a good counter-example: what can a poor stack-popping 
routine do for an empty stack? It makes a brave attempt by outputting an error message, 
but this is clearly inadequate: a specialized utility module such as a stack handler has no 
business messing up the system’s user output. We could try something more sophisticated, 
but remove simply does not have the proper context; the focus of class STACK2 is too 
narrow to determine what to do in the case of an empty stack. Only the client — a module 
using stacks in some application, for example the parsing module in a compiler — has 
enough information to decide what an attempt to pop an empty stack really means: is it a 
normal although useless request that we should simply ignore, executing a null operation? 
Or is it an error, and if so, how should we handle it: raise an exception, correct the situation 
before trying again, or (the least likely answer) output a user-visible error message?

In the square root example, you may remember the fictitious routine text quoted in 
the discussion preceding the Non-Redundancy principle:

if x < 0 then
“Handle the error, somehow”

else
“Proceed with normal square root computation”

end

NO PRECONDITION
TOO BIG

OR TOO SMALL!
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The operative word is “somehow”. The then clause is incantation more than 
software: there is really no good general-purpose technique for handling the x < 0 case. 
Here again a general-purpose routine has no clue. Only the client author can know what 
the call means in this case — an error in the software, a case in which the expected result 
is 0, a reason to trigger an exception…

In this case as in the attempt at a tolerant remove, the position of the routine is not 
unlike that of a postman asked to deliver a postcard with no delivery address and no return 
address: the case falls outside of the contract, and there is no good way to decide what to do.

In the spirit of Design by Contract, the demanding approach to precondition design 
does not attempt to produce routines that are all things to all clients. Instead, it insists that 
each routine do a well-defined job and do it well (correctly, efficiently, generally enough 
to be reusable by many clients…), and specify clearly what cases it cannot handle. In fact 
you cannot hope that the routine will do its job well unless you have carefully 
circumscribed that job. A factotum routine, which wants to do a computation and check 
for abnormal cases and take corrective actions and notify the client and produce a result 
anyway, will most likely fail to fulfill any of these goals properly.

The routine author does not try to outsmart his clients; if he is not sure of what the 
routine is supposed to do in a certain abnormal situation, he excludes it explicitly through 
the precondition. This attitude is more generally a consequence of the overall theme in this 
book: building software systems as sets of modules that mind their own business.

If you read the supplementary mathematical section in the chapter on abstract data types, 
you may have noted the similarity between the present discussion and the arguments for 
using partial functions in the mathematical model, rather than special error values such 
as ωINTEGER. The two ideas are indeed very close, and Design by Contract is in part the 
application to software construction of the concept of partial function, so remarkably 
flexible and powerful in formal specification.

A word of caution: the demanding approach is only applicable if the preconditions 
remain reasonable. Otherwise the job of writing a module would become easy: start every 
routine with require False so that, as we have seen, any routine body will be correct. What 
does “reasonable” concretely mean for the precondition of a routine? Here is a more 
precise characterization:

Reasonable Precondition principle

Every routine precondition (in a “demanding” design approach) must satisfy 
the following requirements:

• The precondition appears in the official documentation distributed to 
authors of client modules.

• It is possible to justify the need for the precondition in terms of the 
specification only.
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The first requirement will be supported by the notion of short form studied later in 
this chapter. The second requirement excludes restrictions meant only for the supplier’s 
convenience in implementing the routine. For example when you want to pop a stack the 
precondition not empty is a logical requirement that can be justified “in terms of the 
specification only”, through the simple observation that in an empty stack there is nothing 
to pop; and when you want to compute the real square root of a number, the precondition 
x >= 0 is a direct result of the mathematical property that negative real numbers do not 
have real square roots.

Some restrictions may arise from the general kind of implementation selected. For 
example the presence of require not full as precondition to the push operation put in 
STACK2 is due to the decision of using an array for the implementation of stacks. But such 
a case does not violate the principle, as the bounded nature of STACK2 stacks has been 
made part of the specification: the class does not claim to represent arbitrary stacks, but 
only stacks of finite maximum capacity (as expressed for example in the note clause of 
the class). The abstract data type serving as specification of this class is not the most 
general notion of stack, but the notion of bounded stack.

In general, it is desirable to avoid bounded structures; even a stack implemented by arrays 
can use array resizing. This is the case with the most commonly used stack class in the 
Base libraries, which follows the STACK2 style but without a notion of capacity; a stack 
that overflows its current capacity resizes itself silently to accommodate the new 
elements.

Preconditions and export status

You may have noted the need for a supplementary requirement on preconditions, which does not 
figure in the Reasonable Precondition principle: to be satisfiable by the clients, the precondition 
must not use features that are hidden from the clients as a result of export restrictions.

Assume for example the following situation:
-- Warning: this is an invalid class, for purposes of illustration only.

class SNEAKY feature
tricky

require
accredited

do
…

end

feature {NONE}

accredited: BOOLEAN do … end
end
The specification for tricky states that any call to that procedure must satisfy the 

condition expressed by the boolean function accredited. But whereas the class exports 
tricky to all clients, it keeps accredited secret, so that clients have no way of finding out, 
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before a call, whether the call is indeed correct. This clearly unacceptable situation is akin, 
in human contracts, to a deal in which the supplier would impose some conditions not 
stated explicitly in the contract, and hence could reject a client’s request as incorrect 
without giving the client any way to determine in advance whether it is correct.

The reason why the Reasonable Precondition principle does not cover such cases is 
that here a methodological principle does not suffice: we need a language rule to be 
enforced by compilers, not left to the decision of developers.

The rule must take into account all possible export situations, not just those 
illustrated above in which a feature is available to all clients (tricky) or to no client 
(accredited). As you will recall from the discussion of information hiding, it is also 
possible to make a feature available to some clients only, by declaring it in a feature clause 
appearing as feature {A, B, …}, which makes it available only to A, B, … and their 
descendants. Hence the language rule:

With this rule every client that is in a position to call the feature will also be in a 
position to check for its precondition. The rule makes class SNEAKY invalid, since tricky
is generally exported (available to all clients); you can turn it into a valid class by making 
accredited also generally exported. If tricky had appeared in a feature clause starting with 
feature {A, B, C}, then accredited would have to be exported at least to A, B and C (by 
appearing in the same feature clause as tricky, or by appearing in a clause of the form
feature {A, B, C}, or feature {A, B, C, D, …}, or just feature). Any violation of this rule 
is a compile-time error. Class SNEAKY, for example, will be rejected by the compiler.

There is no such rule for postconditions. It is not an error for some clauses of a 
postcondition clause to refer to secret features, or features that are not as broadly exported 
as the enclosing routine; this simply means that you are expressing properties of the 
routine’s effect that are not directly usable by clients. This was the case with the put
procedure in STACK2, which had the form

put (x: G)
-- Add x on top

require
 not full

do
…

ensure
… Other clauses …
in_top_array_entry: representation @ count = x

end

Precondition Availability rule

Every feature appearing in the precondition of a routine must be available to 
every client to which the routine is available.
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The last postcondition clause indicates that the array entry at index count contains 
the element just pushed. This is an implementation property; even though put is generally 
available (exported to all clients), array representation is secret. But there is nothing 
wrong with the postcondition; it simply includes, along with properties that are directly 
useful to clients (the “Other clauses”), one that is only meaningful for someone who reads 
the entire class text. Such secret clauses will not appear in the “short” form of the class — 
the documentation for client authors.

A tolerant module

(On first reading you may skip this section or just look through it quickly.)

The simple but unprotected basic modules may not be robust enough for use by 
arbitrary clients. In some cases there will be a need for new classes to serve as filters, 
interposed not between the software and the external world (as with filters of the kind 
discussed earlier in this chapter) but between software and other software: possibly 
careless clients on one side, unprotected classes on the other.

Although we have seen that this is generally not the right approach, it is useful to 
examine how classes will look if we do decide to use the tolerant style in a specific case. 
Class STACK3, appearing next, illustrates the idea. Because the class needs to set integer 
error codes, it is convenient to rely on a property of the notation that has not been 
introduced yet: “unique” integer constants. If you declare a set of attributes as

a, b, c, …: INTEGER unique

the effect is to define a, b, c … as integer constants with consecutive positive values. These 
values will be assigned by the compiler, and are guaranteed to be different for all constants 
thus declared, relieving you of having to invent separate codes. By convention, constant 
attributes such as these have names beginning with an upper-case letter, with the rest in 
lower case, as in Underflow.

Here, using this technique, is a tolerant version of our earlier stack class. Make sure 
to note that this class text (which you may just skim through on first reading) is included 
here only to make sure you understand the tolerant style; it is not an example of the 
generally recommended design — for reasons that will be discussed below, but will 
probably be clear enough as you browse through the text.

note
description: "Stacks: Dispenser structures with a Last-In, First-Out %

%access policy, and a fixed maximum capacity; %
%tolerant version, setting an error code in case %
%of impossible operations."

class STACK3 [G] creation 

make
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feature -- Initialization
make (n: INTEGER)

-- Allocate stack for a maximum of n elements if n > 0;
-- otherwise set error to Negative_size.
-- No precondition!

do
if capacity >= 0 then

capacity := n
create representation   make (capacity)

else
error := Negative_size

end
ensure

error_code_if_impossible: (n < 0) = (error = Negative_size)
no_error_if_ possible: (n >= 0) = (error = 0)
capacity_set_if_no_error: (error = 0) implies (capacity = n)
allocated_if_no_error: (error = 0) implies (representation /= Void)

end
feature -- Access

item: G
-- Top element if present; otherwise the type’s default value.
-- with error set to Underflow.
-- No precondition!

do
if not empty then

check representation /= Void end
Result := representation  item
error := 0

else
error := Underflow

-- In this case the result is the default value
end

ensure
error_code_if_impossible: (old empty) = (error = Underflow)
no_error_if_ possible: (not (old empty)) = (error = 0)

end
feature -- Status report

empty: BOOLEAN
-- Number of stack elements

do
Result := (capacity = 0) or else representation  empty

end
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error: INTEGER
-- Error indicator, set by various features to a non-zero value 
-- if they cannot do their job

full: BOOLEAN
-- Number of stack elements

do
Result := (capacity = 0) or else representation  full

end
Overflow, Underflow, Negative_size: INTEGER unique

-- Possible error codes
feature -- Element change

put (x: G)
-- Add x on top if possible; otherwise set error code.
-- No precondition!

do
if full then

error := Overflow
else

check representation /= Void end
representation  put (x); error := 0

end
ensure

error_code_if_impossible: (old full) = (error = Overflow)
no_error_if_ possible: (not old full) = (error = 0)
not_empty_if_no_error: (error = 0) implies not empty
added_to_top_if_no_error: (error = 0) implies item = x
one_more_item_if_no_error: (error = 0) implies count = old count + 1

end
remove

-- Remove top element if possible; otherwise set error.
-- No precondition!

do
if empty then

error := Underflow
else

check representation /= Void end
representation  remove
error := 0

end
ensure

error_code_if_impossible: (old empty) = (error = Underflow)
no_error_if_ possible: (not old empty) = (error = 0)
not_full_if_no_error: (error = 0) implies not full
one_fewer_item_if_no_error: (error = 0) implies count = old count – 1

end
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feature {NONE} -- Implementation
representation: STACK2 [G]

-- The unprotected stack used as implementation
capacity: INTEGER

-- The maximum number of stack elements
end
The operations of this class have no preconditions (or, more accurately, have True as 

their preconditions). For those that may result in abnormal situations, the postcondition 
has been refined to distinguish between correct and erroneous processing. An operation 
such as s  remove, where s is a STACK3, will set s  error to 0 or to Underflow (which, from 
the rules on unique values, is known to be strictly positive) and, in the latter case, do 
nothing else. It is still the caller’s responsibility to check for s  error after the call. As 
noted, a general-purpose module such as STACK3 has no way to decide what to do in the 
case of an erroneous popping attempt: produce an error message, take corrective action… 

Such filter modules serve to separate algorithmic techniques to deal with normal 
cases and techniques for handling errors. This is the distinction between correctness and 
robustness explained at the beginning of this book: writing a module that performs 
correctly in legal cases is one task; making sure that other cases are also processed 
decently is another. Both are necessary, but they should be handled separately. Failure to 
do so is one of the principal reasons why so many software systems are hopelessly 
complex: any algorithm that does anything useful also takes care of checking that it is 
applicable, and for good measure tries to handle the cases in which it is not. Such software 
soon mushrooms into a total mess.

A few technical comments apply to this example: 

• An instance of STACK3 is not an array but a structure containing a reference 
(representation) to an instance of STACK2, itself containing a reference to an array. 
These two indirections, detrimental to efficiency, can be avoided through inheritance 
as studied in later chapters.

• The boolean operator or else is similar to or but ignores the second operand if it does 
not affect the result and trying to evaluate it could cause trouble.

• The check instruction used in put and remove serves to state that a certain assertion 
is satisfied. It will be studied later in this chapter.

Finally, you will have noted the heaviness of STACK3, especially if you compare it 
to the simplicity that STACK2 achieves with its precondition. STACK3 is good evidence 
that a tolerant style may lead to uselessly complex software. The demanding style, in 
contrast, follows from the general spirit of Design by Contract. Trying to handle all 
possible (and impossible) cases is not necessarily the best way to help your clients. If 
instead you build classes that impose possibly strict but reasonable usage conditions, and 
describe these conditions precisely as part of the official documentation for the class, you 
actually make life easier for the clients. This has been called the tough love approach: you 
can often serve your clients better by being more restrictive.
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Better an efficient supplier that states its functionally justified limitations than a 
overzealous one that tries to second-guess its clients, making possibly inappropriate 
decisions for abnormal cases, and sacrificing simplicity and efficiency.

For modules whose clients are other software modules, the demanding approach is 
usually the right one. A possible exception is the case of modules intended for clients 
whose authors use a non-O-O language and may not have understood the basic concepts 
of Design by Contract.

The tolerant approach remains useful for software elements that deal not with other 
software elements but with data coming from the outside world, such as user input, or 
sensor data. Then, as noted earlier, filter modules are often necessary to separate the 
actual processing modules (the physicists in our metaphor) from those which simply 
qualify data and reject anything that is not appropriate (the guards). This separation of 
concerns is essential for maintaining the simplicity of software elements on both sides. 
STACK3 provides an idea of what such modules may look like.

11.8  CLASS INVARIANTS
Preconditions and postconditions describe the properties of individual routines. There is 
also a need for expressing global properties of the instances of a class, which must be 
preserved by all routines. Such properties will make up the class invariant, capturing the 
deeper semantic properties and integrity constraints characterizing a class.

Definition and example 

Consider again the earlier implementation of stacks by arrays, the one without the 
protections (STACK2): 

class STACK2 [G] creation
make 

feature
… make, empty, full, item, put, remove …
capacity: INTEGER
count: INTEGER

feature {NONE} -- Implementation
representation: ARRAY [G]

end
The attributes of the class — array representation and integers capacity and count — 

constitute the stack representation. Although routine preconditions and postconditions, 
given earlier, express some of the semantic properties of stacks, they fail to express other 
important consistency properties linking the attributes. For example, count should always 
remain between 0 and capacity:

0 <= count; count <= capacity

(implying also that capacity >= 0), and capacity should be the array size:
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capacity = representation  capacity

A class invariant is such an assertion, expressing general consistency constraints that 
apply to every class instance as a whole; this is different from preconditions and 
postconditions, which characterize individual routines. 

The above assertions involve only attributes. Invariants may also express the 
semantic relations between functions, or between functions and attributes. For example 
the invariant for STACK2 may include the following property describing the connection 
between empty and count: 

empty = (count = 0)

In this example, the invariant assertion links an attribute and a function; it is not 
particularly interesting as it merely repeats an assertion that appears in the postcondition 
of the function (here empty). More useful assertions are those which involve either only 
attributes, as above, or more than one function.

Here is another typical example. Assume — in line with previous examples dealing 
with the notion of bank account — that we have a class BANK_ACCOUNT with features 
deposits_list, withdrawals_list and balance. Then the invariant for such a class could 
include a clause of the form:

consistent_balance: deposits_list  total – withdrawals_list  total = balance

where the function total gives the cumulated value of a list of operations (deposits or 
withdrawals). This states the basic consistency condition between the values accessible 
through features deposits_list, withdrawals_list and balance.

Form and properties of class invariants 

Syntactically, a class invariant is an assertion, appearing in the invariant clause of the 
class, after the features and just before the end, as in 

class STACK4 [G] creation
… As in STACK2 …

feature
… As in STACK2 …

invariant
count_non_negative: 0 <= count
count_bounded: count <= capacity
consistent_with_array_size: capacity = representation  capacity
empty_if_no_elements: empty = (count = 0)
item_at_top: (count > 0) implies (representation  item (count) = item)

end

An invariant for a class C is a set of assertions that every instance of C will satisfy at 
all “stable” times. Stable times are those in which the instance is in an observable state: 
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• On instance creation, that is to say after execution of create a or create a  make (…), 
where a is of type C. 

• Before and after every remote call a  r (…) to a routine r of the class. 

The following figure, showing the life of an object, helps put the notions of invariant 
and stable time in place.

Life as an object, to tell the truth, is not that thrilling (in case you ever wondered). 
At the beginning — left of the figure — you do not exist. You are begot by a creation 
instruction create a or create a  make (…), or a clone, and reach your first station in life. 
Then things get quite boring: through some reference a, clients use you, one after the other, 
by applying operations of the form a  f (…) where f  is a feature of your generating class. 
And so on forever, or at least until execution terminates.

The invariant is the characteristic property of the states represented by gray squares 
in the figure — S1 etc. These are the “stable times” mentioned above: those at which the 
object is observable from the outside, in the sense that a client can apply a feature to it. 
They include:

• The state that results from the creation of an object (S1 in the figure).

• The states immediately before and after a call of the form a  some_routine (…)
executed by a client.

Here the context is sequential computation, but the ideas will transpose to concurrent 
systems in a later chapter.

 create a make (…)
S1

S2

S3

S4

a  f (…)

a  g (…)

a  f (…)
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An invariant that varies

In spite of its name, the invariant does not need to be satisfied at all times, although in the 
STACK4 example it does remain true after the initial creation. In the more general case, it 
is perfectly acceptable for a procedure g to begin by trying to work towards its goal — its 
postcondition — and in the process to destroy the invariant (as in human affairs, trying to 
do something useful may disrupt the established order of things); then it spends the second 
part of its execution scurrying to restore the invariant without losing too much of whatever 
ground has been gained. At some intermediate stages, such as the instant marked  in the 
figure, the invariant will not hold; this is fine as long as the procedure reestablishes the 
invariant before terminating its execution.

Who must preserve the invariant?

Qualified calls, of the form a  f (…), executed on behalf of a client, are the only ones that 
must always start from a state satisfying the invariant and leave a state satisfying the 
invariant; there is no such rule for unqualified calls of the form f (…), which are not 
directly executed by clients but only serve as auxiliary tools for carrying out the needs of 
qualified calls. As a consequence, the obligation to maintain the invariant applies only to 
the body of features that are exported either generally or selectively; a secret feature — 
one that is available to no client — is not affected by the invariant.

From this discussion follows the rule that precisely defines when an assertion is a 
correct invariant for a class:

Note that in this rule: 

• Every class is considered to have a creation procedure, defined as a null operation if 
not explicitly specified. 

• The state of an object is defined by all its fields (the values of the class attributes for 
this particular instance). 

• The precondition of a routine may involve the initial state and the arguments. 

Invariant rule
An assertion I is a correct class invariant for a class C if and only if it meets 
the following two conditions: 
E1 • Every creation procedure of C, when applied to arguments satisfying 

its precondition in a state where the attributes have their default 
values, yields a state satisfying I. 

E2 • Every exported routine of the class, when applied to arguments and a 
state satisfying both I and the routine’s precondition, yields a state 
satisfying I. 
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• The postcondition may only involve the final state, the initial state (through the old
notation) and, in the case of a function, the returned value, given by the predefined 
entity Result. 

• The invariant may only involve the state. 

Assertions may use functions, but such functions are an indirect way of referring to the 
attributes — to the state.

A mathematical statement of the Invariant rule appears later in this chapter.

You can use the Invariant rule as a basis for answering a question that comes up in 
light of earlier discussions: what would it mean if an invariant clause turned out to be 
violated during system execution? We saw before that a precondition violation signals an 
error (a “bug”) in the client, a postcondition violation an error in the supplier. The answer 
will be for invariants as for postconditions; you have all the elements for deriving this 
property by yourself.

The role of class invariants in software engineering

Property E2 indicates that we may consider the invariant as being implicitly added 
(anded) to both the precondition and postcondition of every exported routine. So in 
principle the notion of invariant is superfluous: we could do without it by enriching the 
preconditions and postconditions of all routines in the class.

Such a transformation is of course not desirable. It would complicate the routine 
texts; but more importantly, we would lose the deeper meaning of the invariant, which 
transcends individual routines and applies to the class as a whole. One should in fact 
consider that the invariant applies not only to the routines actually written in the class, but 
also to any ones that might be added later, thus serving as control over future evolution of 
the class. This will be reflected in the inheritance rules.

In the view of software development introduced at the beginning of this book, we 
accept that change is inevitable, and we try to control it. Some aspects of a software 
system, and of its individual components — classes — may be expected to change faster 
than others. Adding, removing or changing features, in particular, is a frequent and normal 
event. In this volatile process one will want to cling to properties that, although they may 
change too — for we can hardly guarantee that any aspect of a system will remain set for 
eternity — will change far less often. Invariants, because they capture the fundamental 
semantic constraints applying to a class, play this role.

The STACK2 example illustrates the basic ideas, but to appreciate the full power of 
the concept of invariant you should be on the lookout for further examples of invariants in 
the rest of this book. To me the notion of the invariant is one of the most illuminating 
concepts that can be learned from the object-oriented method. Only when I have derived 
the invariant (for a class that I write) or read and understood it (for someone else’s class) 
do I feel that I know what the class is about.
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Invariants and contracting

Invariants have a clear interpretation in the contract metaphor. Human contracts often 
contain references to general clauses or regulations that apply to all contracts within a 
certain category; think of a city’s zoning regulations, which apply to all house-building 
contracts. Invariants play a similar role for software contracts: the invariant of a class 
affects all the contracts between a routine of the class and a client. 

Let us probe further. It was noted above that we may consider the invariant as being 
added to both the precondition and postcondition of every exported routine. Let body be 
the body of a routine (the set of instructions in its do clause), pre its precondition, post its 
postcondition and INV the class invariant. The correctness requirement on the routine may 
be expressed, using the notation introduced earlier in this chapter, as:

{INV and pre} body {INV and post}

(As you will remember this means: any execution of body, started in any state in which 
INV and pre both hold, will terminate in a state in which both INV and post hold.)

For the supplier author — the person who writes body — is the invariant good news 
or bad news, that is to say, does it make the job easier or harder?

The answer, as you will have figured out from the earlier discussion, is: both. 
Remember our lazy job applicant, who wanted a strong precondition and a weak 
postcondition. Here adding INV makes stronger or equal both the precondition and the 
postcondition. (From the rules of logic, a and b always implies a, that is to say, is stronger 
than or equal to a.) So, if you are in charge of implementing the body, the invariant:

• Makes your job easier: in addition to the official precondition pre, you may 
assume that the initial state satisfies INV, further restricting the set of cases that 
you must handle.

• Makes your job harder: in addition to your official postcondition post, you must 
ensure that the final state satisfies INV.

These observations are consistent with the view of the invariant as a general 
consistency condition that applies to the class as a whole, and hence to all of its routines. 
As the author of such a routine, you have the benefit of being permitted to take this 
condition for granted at the start of the routine; but you have the obligation to ensure that 
the routine will satisfy it again on termination — so that the next routine to be executed 
on the same object can in turn take it for granted.

The class BANK_ACCOUNT mentioned above, with the invariant clause

deposits_list  total – withdrawals_list  total = balance

provides a good example. If you have to add a routine to the class, this clause gives you 
the guarantee that the features deposits_list, withdrawals_list and balance have consistent 
values, so you do not need to check this property (and then, as we have seen, you must not
check it). But it also means that you must write the routine so that, whatever else it does, 
it will leave the object in a state that again satisfies the property. So a procedure withdraw, 
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used to record a withdrawal operation, should not just update withdrawals_list: it must 
also, if balance is an attribute, update the value of balance to take the withdrawal into 
account and restore the invariant, enabling any other routine called later on the same object 
to benefit from the same original assumption that facilitated the work of withdraw.

Rather than an attribute, balance could be a function, whose body computes and returns 
the value of deposits_list l total – withdrawals_list l total; in this case procedure withdraw 
does not need to do anything special to maintain the invariant. The ability to switch at will 
between the two representations without affecting the client is an illustration of the 
principle of Uniform Access.

This example shows the idea of class invariant as a transposition to software of one 
of the rules of polite behavior: that if you use a shared facility — say an office kitchen — 
you should leave it for others, after each use, in the state in which you would like to find 
it when you start.

11.9  WHEN IS A CLASS CORRECT?

Although we still have to see a few more constructs involving assertions, it is useful to 
take a brief pause and examine some of the implications of what we have learned about 
preconditions, postconditions and invariants. This section does not introduce any new 
constructs, but describes some of the theoretical background. Even on your first reading I 
think you should get familiar with these ideas as they are central to a proper understanding 
of the method, and will be precious when we try to figure out how to use inheritance well.

The correctness of a class 

With preconditions, postconditions and invariants, we can now define precisely what it 
means for a class to be correct. 

The basis for the answer appeared at the beginning of this chapter: a class, like any 
other software element, is correct or incorrect not by itself but with respect to a 
specification. By introducing preconditions, postconditions and invariants we have given 
ourselves a way to include some of the specification in the class text itself. This provides 
a basis against which to assess correctness: the class is correct if and only if its 
implementation, as given by the routine bodies, is consistent with the preconditions, 
postconditions and invariant. 

The notation {P} A {Q} introduced at the beginning of this chapter helps express this 
precisely. Remember that the meaning of such a correctness formula is: whenever A is 
executed in a state satisfying P, the execution will terminate in a state satisfying Q.

Let C be a class, INV its class invariant. For any routine r of the class, call prer (xr)
and postr (xr) its precondition and postcondition; xr denotes the possible arguments of r, 
to which both the precondition and the postcondition may refer. (If the precondition or 
postcondition is missing from the routine text, then prer or postr is just True.) Call Bodyr
the body of routine r. 
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Finally, let DefaultC be the assertion expressing that the attributes of C have the 
default values of their types. For example DefaultSTACK2, referring to the earlier stack 
class, is the assertion 

representation = Void
capacity = 0
count = 0

These notations permit a general definition of class correctness:

This rule — previewed informally in the BANK_ACCOUNT example — is a 
mathematical statement of the earlier informal diagram showing the lifecycle of a typical 
object, which is worth looking at again:

Condition C1 means that any creation procedure (such as make in the figure), when 
called with its precondition satisfied, must yield an initial state (S1 in the figure) that 
satisfies the invariant and the procedure’s postcondition. Condition C2 expresses that any 
exported routine r (such as f or g in the figure), if called in a state (S1, S2 or S3) satisfying 
both its precondition and the invariant, must terminate in a state that satisfies both its 
postcondition and the invariant.

Definition: class correctness

A class is correct with respect to its assertions if and only if: 

C1 • For any valid set of arguments xp to a creation procedure p: 
{DefaultC and prep (xp )}  Bodyp  {postp (xp) and INV} 

C2 • For every exported routine r and any set of valid arguments xr:
{prer (xr ) and INV}  Bodyr  {postr (xr) and INV}

 create a  make (…)
S1

S2

S3

S4

a  f (…)

a  g (…)

a  f (…)
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If we focus on invariants, we may look at the preceding definition of class correctness 
as working by induction on the set of instances of a class. Rule C1 is the base step of the 
induction, stating that the invariant holds for all newborn objects — those which directly 
result from a creation instruction. Rule C2 is the induction step, through which we 
determine that if a certain generation of instances satisfies the invariant, then the next 
generation — the set of instances obtained by applying exported features to the members 
of the current generation — will also satisfy it. Since by starting from newborn objects 
and going from generation to generation through exported features we obtain all possible 
instances of the class, the mechanism enables us to determine that all instances satisfy 
the invariant.

Two practical observations: 

• If the class has no creation clause, we may consider that it has a single implicit 
creation procedure nothing with an empty body. Applying rule C1 to Bnothing then 
means that DefaultC must imply INV: the default values must satisfy the invariant. 

• A requirement of the form {P} A {Q} does not commit A in any way for cases in 
which P is not initially satisfied. So the notation is in line with the property discussed 
in detail earlier in this chapter: the contract is not binding on the routine if the client 
fails to observe its part of the deal. Accordingly, the definition of class correctness 
leaves the routines of the class free to do as they please for any call that violates the 
precondition or the invariant. 

What has just been described is how to define the correctness of a class. In practice, 
we may also want to check whether a given class is indeed correct. This issue will be 
discussed later in this chapter.

The role of creation procedures

The discussion of invariants yields a better understanding of the notion of creation procedure.

A class invariant expresses the set of properties that objects (instances of the class) 
must satisfy in what has been called the stable moments of their lifetime. In particular, 
these properties must hold upon instance creation. 

The standard object allocation mechanism initializes fields to the default values of the 
corresponding attribute types; these values may or may not satisfy the invariant. If not, a 
specific creation procedure is required; it should set the values of the attributes so as to 
satisfy the invariant. So creation may be seen as the operation that ensures that all instances 
of a class start their lives in a correct mode — one in which the invariant is satisfied. 

The first presentation of creation procedures introduced them as a way to answer a 
more mundane (and obvious) question: how do I override the default initialization rules if 
they do not suit me for a particular class, or if I want to provide my clients with more than 
one initialization mechanism? But with the introduction of invariants and the theoretical 
discussion summarized by rule C1, we also see the more profound role of creation 
procedures: they are here to make sure that any instance of the class, when it starts its life, 
already satisfies the fundamental rules of its caste — the class invariant.
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Arrays revisited 

The library class ARRAY was sketched in the previous chapter. Only now, however, are we 
in a position to give its definition properly. The notion of array fundamentally requires 
preconditions, postconditions and an invariant.

Here is a better sketch with assertions. Preconditions express the basic requirement 
on array access and modification: indices should be in the permitted range. The invariant 
shows the relation between count, lower and upper; it would allow count to be 
implemented as a function rather than an attribute.

note
description: "Sequences of values, all of the same type or of a conforming one, %

%accessible through integer indices in a contiguous interval"
class ARRAY [G] creation

make
feature -- Initialization

make (minindex, maxindex: INTEGER)
-- Allocate array with bounds minindex and maxindex
-- (empty if minindex > maxindex).

require
meaningful_bounds: maxindex >= minindex – 1

do
…

ensure
exact_bounds_if_non_empty: (maxindex >= minindex) implies

((lower = minindex) and (upper = maxindex))
conventions_if_empty: (maxindex < minindex) implies

((lower = 1) and (upper = 0))
end

feature -- Access

lower, upper, count: INTEGER
-- Minimum and maximum legal indices; array size.

infix "@", item (i: INTEGER): G
-- Entry of index i 

require
index_not_too_small: lower <= i
index_not_too_large: i <= upper

do … end
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feature -- Element change
put (v: G; i: INTEGER)

-- Assign v to the entry of index i
require

index_not_too_small: lower <= i
index_not_too_large: i <= upper

do
…

ensure
element_replaced: item (i) = v

end
invariant 

consistent_count: count = upper – lower + 1
non_negative_count: count >= 0 

end

The only part left blank is the implementation of routines item and put. Because 
efficient array manipulation will require low-level system access, the routines will 
actually be implemented using external clauses, introduced in a later chapter.

11.10  THE ADT CONNECTION
A class — you have heard this quite a few times by now — is an implementation of an 
abstract data type, whether formally specified or (as in many cases) just implicitly 
understood. As noted at the beginning of this chapter, we may view assertions as a way to 
re-introduce into the class the semantic properties of the underlying ADT. Let us perfect 
our understanding of assertion concepts by clarifying the connection of assertions to the 
components of an abstract data type specification.

Not just a collection of functions 

As studied in the ADT chapter, an abstract data type is made of four elements:

• The name of the type, possibly with generic parameters (TYPES paragraph).
• The list of functions with their signatures (FUNCTIONS paragraph).
• The axioms (AXIOMS paragraph) expressing properties of the functions’ results.
• The restrictions on the functions’ applicability (PRECONDITIONS paragraph)

Simple-minded applications of abstract data types often overlook the last two parts. 
This removes much of the appeal of the approach, since preconditions and axioms express 
the semantic properties of the functions. If you omit them and simply view “stack” as 
encapsulating the (not specified further) operations put, remove etc., you retain the 
benefits of information hiding, but that is all. The notion of stack becomes an empty shell, 
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with no semantics other than suggested by the operation names. (And in the approach of 
this book that is of little comfort, since for reasons of structure, consistency and reusability 
we deliberately choose general names — put, remove, item … — rather than concrete, 
type-specific names such as push, pop and top.)

This risk transposes to programming in an O-O language: the routines which are 
supposed to implement the operations of the corresponding abstract data types could in 
principle perform just about any operations. Assertions avert that risk by bringing the 
semantics back in. 

Class features vs. ADT functions

To understand the relation between assertions and ADTs we need first to establish the 
relation between class features and their ADT counterparts — the ADT’s functions. An 
earlier discussion introduced three categories of function: creators, queries and 
commands. As you will recall, the category of a function

f : A × B × … → X

depended on where the ADT, say T, appeared among the types A, B, … X involved in this 
signature:

• If T appears on the right only, f  is a creator; in the class it yields a creation procedure.
• If T appears only on the left of the arrow, f  is a query, providing access to properties 

of instances of the class. The corresponding features are either attributes or functions 
(collectively called queries, for classes as well as ADTs).

• If T appears on both the left and the right, f is a command function, which yields a 
new object from one or more existing objects. Often f will be expressed, at the 
implementation stage, by a procedure (also called a command) which modifies an 
object, rather than creating a new object as a function would do.

Expressing the axioms 
From the correspondence between ADT functions and class features we can deduce the 
correspondence between semantic ADT properties and class assertions: 

• A precondition for one of the specification’s functions reappears as precondition 
clauses for the corresponding routine. 

• An axiom involving a command function, possibly with one or more query 
functions, reappears as postcondition clauses of the corresponding procedure. 

• Axioms involving only query functions reappear as postconditions of the 
corresponding functions or (especially if more than one function is involved, or if at 
least one of the queries is implemented as an attribute) as clauses of the invariant. 

• Axioms involving constructor functions reappear in the postcondition of the 
corresponding creation procedure. 

At this point you should go back to the preconditions and axioms of the ADT STACK
and compare them with the assertions of class STACK4 (including those of STACK2).
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The abstraction function
It is instructive to think of the preceding observations in terms of the following figure, 
inspired by the discussion in [Hoare 1972a], which pictures the notion “C is a correct 
implementation of A”.          

A is an abstract data type, and C as a class implementing it. For an abstract function 
af of the ADT specification — of which we assume for simplicity that it yields a result 
also of type A — there will be a concrete feature cf  in the class.

The arrows labeled a represent the abstraction function which, for any instance of 
the class, or “concrete object”, yields the abstract object (instance of the ADT) that it 
represents. As will be seen, this function is usually partial, and the inverse relation is 
usually not a function.

The implementation is correct if (for all functions af applicable to abstract data types, 
and their implementations cf ) the diagram is commutative, that is to say: 

where ; is the composition operator between functions; in other words, for any two 
functions f and g, f ; g is the function h such that h (x) = g (  f (x)) for every applicable x. 
(The composition f ; g is also written g ° f  with the order of the operands reversed.)

The property states that for every concrete object CONC_1, it does not matter in 
which order you apply the transformation (abstract af or concrete cf  ) and the abstraction; 
the two paths, represented by dotted lines, lead to the same abstract object ABST_2. The 
result is the same whether you:

• Apply the concrete transformation cf, then abstract the result, yielding a (cf (CONC_1)).

• Abstract first, then apply the abstract transformation af, yielding af (a (CONC_1)).

Class-ADT Consistency property
(cf ; a) = (a ; af  )

a a

af

cfCONC_1

ABST_1

CONC_2

ABST_2

Concrete objects (instances of the class C)

Abstract objects (instances of the ADT A)
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Implementation invariants 

Certain assertions appear in invariants although they have no direct counterparts in the 
abstract data type specifications. These assertions involve attributes, including some 
secret attributes which, by definition, would be meaningless in the abstract data type. A 
simple example is the following properties appearing in the invariant of STACK4: 

count_non_negative: 0 <= count
count_bounded: count <= capacity

Such assertions constitute the part of the class invariant known as the 
implementation invariant. They serve to express the consistency of the representation 
chosen in the class (here by attributes count, capacity and representation) vis-à-vis the 
corresponding abstract data type. 

The figure on the previous page helps understand the concept of implementation 
invariant. It illustrates the characteristic properties of the abstraction function a 
(represented by the vertical arrows), which we should explore a little further.

First, is it correct to talk about a as being the abstraction function, as suggested by 
the upwards arrows representing a in the preceding figure? Recall that a function (partial 
or total) maps every source element to at most one target element, as opposed to the more 
general case of a relation which has no such restriction. If we go downwards rather than 
upwards in the figure and examine the inverse of a, which we may call the representation 
relation, we will usually find it not to be a function, since there are in general many 
possible representations of a given abstract object. In the array implementation that 
represents every stack as a pair <representation, count>, an abstract stack has many 
different representations, as illustrated by the figure on the facing page; they all have the 
same value for count and for the entries of array representation between indices 1 and 
count, but the size capacity of the array can be any value greater than or equal to count, 
and the array positions beyond index count may contain arbitrary values.

Since the class interface is restricted to the features directly deduced from the ADT’s 
functions, clients have no way of distinguishing between the behaviors of several concrete 
objects that all represent the same abstract object (that is to say, all have the same a value). 
Note in particular that procedure remove in STACK4 does its job simply by executing

count := count – 1

without bothering to clear the previous top entry, now at index count + 1; changing an 
entry of index higher than count modifies a concrete stack object CS, but has no effect on 
the associated abstract stack a (CS).

So the implementation relation is usually not a function. But its inverse the 
abstraction function a (the upwards arrows in both figures) is indeed a function since every 
concrete object represents at most one abstract object. In the stack example, every valid 
<representation, count> pair represents just one abstract stack (the stack with count 
elements, given, from the bottom up, by the entries of representation at indices 1 to count). 
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Both of the concrete stacks in this figure are implementations of the abstract stack 
consisting of three elements of values 342, –133 and 5 from the bottom up. That a is a 
function is a universal requirement: if the same concrete object could be interpreted as 
implementing more than one abstract object, the chosen representation would be 
ambiguous and hence inadequate. So it is proper that the arrow associated with a points 
up in all the figures depicting connections between abstract and concrete types. (The 
discussion for inheritance will suggest a similar convention.)

The abstraction function a is usually a partial function: not every possible concrete 
object is a valid representation of an abstract object. In the example, not every 
<representation, count> pair is a valid representation of an abstract stack; if representation
is an array of capacity three and count has value 4, they do not together represent a stack. 
Valid representations (members of the domain of the abstraction function) are those pairs 
for which count has a value between zero and the size of the array. This property is the 
implementation invariant.

In mathematical terms, the implementation invariant is the characteristic function of 
the domain of the abstraction function, that is to say, the property that defines when that 
function is applicable. (The characteristic function of a subset A is the boolean property 
that is true on A and false elsewhere.)

The implementation invariant is the one part of the class’s assertions that has no 
counterpart in the abstract data type specification. It relates not to the abstract data type, 
but to its representation. It defines when a candidate concrete object is indeed the 
implementation of one (and then only one) abstract object.

342

–133

5

representation

count = 3

capacity = 6

1342
–133

8870
451
0
5

representation

count = capacity = 3

1342
–133

5

count = 3
Abstract 
stack object

CS1

CS2a a

Concrete
stack objects
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11.11  AN ASSERTION INSTRUCTION
The uses of assertions seen so far — preconditions, postconditions and class invariants — 
are central components of the method. They establish the connection between object-
oriented software construction and the underlying theory (abstract data types). Class 
invariants, in particular, cannot be understood, or even discussed, in a non-O-O approach.

Some other uses of assertions, although less specific to the method, are also precious 
in a systematic software development process and should be part of our notation. They 
include the check instruction, as well as loop correctness constructs (loop invariant and 
variant) which will be reviewed in the next section.

The check instruction serves to express the software writer’s conviction that a 
certain property will be satisfied at certain stages of the computation. Syntactically, the 
construct is an instruction, written under the form

check
assertion_clause1
assertion_clause2
…
assertion_clausen

end
Including this instruction in the text of a routine is a way to state that:
“Whenever control reaches this instruction at execution time, the assertion 
shown (as given by its assertion clauses) will hold.”
This is a way to reassure yourself that certain properties are satisfied, and (even more 

importantly) to make explicit for future readers of your software the hypotheses on which 
you have been relying. Writing software requires making frequent assumptions about 
properties of the objects of your system; as a trivial but typical example, any function call 
of the form sqrt (x), where sqrt is a routine requiring a non-negative argument, relies on 
the assumption that x is positive or zero. This assumption may be immediately obvious 
from the context, for example if the call is part of a conditional instruction of the form

if x >= 0 then y := sqrt (x) end
but the justification may also be more indirect, based for example on an earlier instruction 
that computed x as the sum of two squares:

x := a ^2 + b^2

The check instruction makes it possible to express such an assumption if it is not 
immediately obvious from the context, as in

x := a ^2 + b^2
… Other instructions …

check 
x >= 0

-- Because x was computed above as a sum of squares.
end

y := sqrt (x)
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No if … then … protects the call to sqrt in this example; the check indicates that the 
call is correct. It is good practice to include, as here, a comment stating the reason invoked 
to support the assumption (“-- Because x…”). The extra two steps of indentation for the 
instruction are also part of the recommended style; they suggest that the instruction is not 
meant, in normal circumstances, to affect the algorithmic progression of the routine.

This example is typical of what is probably the most useful application of the check 
instruction: adding such an instruction just before a call to a routine that has a certain 
precondition (here we may assume that sqrt has a precondition requiring its argument to 
be non-negative), when you are convinced that the call satisfies the precondition but this 
is not immediately obvious from the context. As another example assume s is a stack and 
you include in your code a call

s  remove
at a position where you are certain that s is not empty, for example because the call has 
been preceded by n “put” and m “remove” instructions with n > m. Then there is no need 
to protect the call by an if not s  empty then…; but if the reason for the correctness of the 
call is not immediately obvious from the context, you may want to remind the reader that 
the omission of any protection was a conscious decision, not an oversight. You can achieve 
this by adding before the call the instruction

check not s  empty end

A variant of this case occurs when you write a call of the form x  f  with the certainty 
that x is not void, so that you do not need to enclose this call in a conditional instruction if 
x /= Void then …, but the non-vacuity argument is not obvious from the context. We 
encountered this in the procedures put and remove of our “protected stack” class STACK3. 
The body of put used a call to the corresponding procedure in STACK2, as follows:

if full then
error := Overflow

else
check representation /= Void end

representation  put (x); error := 0
end

Here a reader might think the call representation  put (x) in the else potentially unsafe 
since it is not preceded by a test for representation /= Void. But if you examine the class 
text you will realize that if full is false then capacity must be positive and hence 
representation cannot be void. This is an important and not quite trivial property, which 
should be part of the implementation invariant of the class. In fact, with a fully stated 
implementation invariant, we should rewrite the check instruction as:

check 
representation_exists: representation /= Void

-- Because of clause representation_exists_if_not_full of the
-- implementation invariant.

end
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In ordinary approaches to software construction, although calls and other operations 
often (as in the various preceding examples) rely for their correctness on various 
assumptions, these assumptions remain largely implicit. The developer will convince 
himself that a certain property always holds at a certain point, and will put this analysis to 
good use in writing the software text; but after a while all that survives is the text; the 
rationale is gone. Someone — even the original author, a few months later — who needs 
to understand the software, perhaps to modify it, will not have access to the assumption 
and will have to figure out from scratch what in the world the author may have had in 
mind. The check instruction helps avoid this problem by encouraging you to document 
your non-trivial assumptions.

As with the other assertion mechanisms of this chapter, the benefit goes beyond helping 
you get things right in the first place, to helping you find that you got them wrong. You 
can, using a compilation option, turn the check into a true executable instruction, which 
will do nothing if all its assertion clauses are true, but will produce an exception and stop 
execution if any of them is false. So if one of your assumptions was actually not justified 
you should find out quickly. The mechanisms for enabling check-checking will be 
reviewed shortly.

11.12  LOOP INVARIANTS AND VARIANTS

Our last assertion constructs help us get loops right. They nicely complement the 
mechanisms seen so far, but are not really specific to the object-oriented method, so it is 
all right to skip this section on first reading.

Loop trouble

The ability to repeat a certain computation an arbitrary number of times without 
succumbing to exhaustion, indeed without experiencing any degradation whatsoever, is 
the principal difference between the computational abilities of computers and those of 
humans. This is why loops are so important; just imagine what you could do in a language 
that only has the other two principal control structures, sequencing and conditional 
instructions, but no loops (and no support for recursive routine calls, the other basic 
mechanism permitting iterative computations).

But with power comes risk. Loops are notoriously hard to get right. Typical trouble 
includes:

• “Off-by-one” errors (performing one iteration too many or too few).

• Improper handling of borderline cases such as empty structures: for example a loop 
may work properly on a large array, but fail when the array has zero or one element.

• Failure to terminate (“infinite looping”) in some cases.

Binary search — a staple of Computing Science 101 courses — is a good illustration 
of how tricky loops can be even when they appear trivial. Consider an array t of integers 
assumed to be in increasing order and indexed from 1 to n; binary search is a way to decide 
whether a certain integer value x appears in the array: if the array has no elements, the 
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answer is no; if the array has one element, the answer is yes if and only if that element has 
value x; otherwise compare x to the element at the array’s middle position, and repeat on 
the lower or higher half depending on whether that element is greater or lesser than x. The 
four loop algorithms below all attempt to implement this simple idea; unfortunately all are 
wrong, as you are invited to check by yourself by finding, for each of them, a case in which 
it will not work properly.

Recall that t @ m denotes the element at index i in array t. The // operator denotes integer 
division, for example 7 // 2 and 6 //2 have value 3. The loop syntax is explained next but 
should be self-explanatory; the from clause introduces the loop initialization.

BS1
from

i := 1; j := n
until i = j loop

m := (i + j) // 2 
if t @ m <= x then

i := m 
else 

j := m
end

end
Result := (x = t @ i)

BS2
from

i := 1; j := n; found := false
until i = j and not found loop

m := (i + j) // 2 
if t @ m < x then

i := m + 1
elseif t @ m = x then

found := true 
else

 j := m – 1
end

end
Result := found

BS3
from
i := 0; j := n
until i = j loop

m := (i + j + 1) // 2 
if t @ m <= x then

i := m + 1
else

j := m
end

end
if i >= 1 and i <= n then

Result := (x = t @ i)
else

Result := false
end

BS4
from

i := 0; j := n + 1
until i = j loop

m := (i + j) // 2 
if t @ m <= x then

i := m + 1
else 

j := m
end

end
if i >= 1 and i <= n then

Result := (x = t @ i)
else 

Result := false
end
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Getting loops right

The judicious use of assertions can help avoid such problems. A loop may have an 
associated assertion, the loop invariant (not to be confused with the class invariant for the 
enclosing class); it may also have a loop variant, not an assertion but an integer 
expression. The invariant and variant will help us guarantee that a loop is correct.

To understand these notions it is necessary to realize that a loop is always a way to 
compute a certain result by successive approximations.

Take the trivial example of computing the maximum value of an array of integers 
using the obvious algorithm:

maxarray (t: ARRAY [INTEGER]): INTEGER

-- The highest of the values in the entries of t

require

t  capacity >= 1

local

i: INTEGER

do

from

i := t  lower

Result := t @ lower

until i = t  upper loop

i := i + 1

Result := Result  max (t @ i)

end

end

We initialize i to the array’s lower bound i := t  lower and the entity Result 
representing the future result to the value of the associated entry t @ lower. (We know that 
this entry exists thanks to the routine’s precondition, which states that the array has at least 
one element.) Then we iterate until i has reached the upper bound, at each stage increasing 
i by one and replacing Result by the value of t @ i, the element at index i, if higher than 
the previous value of Result. (We rely on a max function for integers: a  max (b), for two 
integers a and b, is the maximum of their values.)
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This computation works by successive approximations. We approach the array by its 
successive slices: [lower, lower], [lower, lower+1], [lower, lower +2] and so on up to the 
full approximation [lower, upper].

The invariant property is that at each stage through the loop Result is the maximum 
of the current approximation of the array. This is true after the initialization, since the 
instructions in the from clause ensure that Result is the maximum of the first 
approximation, the trivial slice [lower, lower] consisting of just one element. Then on each 
iteration we extend the slice by one element — improving our approximation of the array 
— and make sure to maintain the invariant by updating Result if the new value is higher 
than the previous maximum. At the end, the approximation covers the entire array, and 
since we have maintained invariant the property that Result is the maximum of the current 
approximation we know that it now is the maximum of the array as a whole.

Ingredients for a provably correct loop

The simple example of computing an array’s maximum illustrates the general scheme of 
loop computation, which applies to the following standard situation. You have determined 
that the solution to a certain problem is an element belonging to an n-dimensional surface 
POST: to solve the problem is to find an element of POST. In some cases POST  has just 
one element — the solution — but in general there may be more than one acceptable 
solution. Loops are useful when you have no way of shooting straight at POST but you see 
an indirect strategy: aiming first into an m-dimensional surface INV that includes POST (for 
m > n); then approaching POST, iteration by iteration, without ever leaving INV. The 
following figure illustrates this process.

lower upper

Array sliceArray element
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A loop computation has the following ingredients:

• A goal post, the postcondition, defined as a property that any satisfactory end state 
of the computation must satisfy. Example: “Result is the maximum value in the 
array”. The goal is represented in the figure by the set of states POST satisfying post.

• An invariant property inv, which is a generalization of the goal, that is to say includes 
the goal as a special case. Example: “Result is the maximum value in a non-empty 
array slice beginning at the lower bound”. The invariant is represented in the figure 
by the set of states INV satisfying inv.

• An initial point init which is known to be in INV, that is to say to satisfy the invariant. 
Example: the state in which the value of i is the array’s lower bound and the value of 
Result is that of the array element at that index, satisfying the invariant since the 
maximum of a one-element slice is the value of the element.

• A transformation body which, starting from a point in INV but not in POST, yields a 
point closer to POST and still in INV. In the example this transformation extends the 
array slice by one element, and replaces Result by the value of that element if higher 
than the previous Result. The loop body in function maxarray is an implementation 
of that transformation.

• An upper bound on the number of applications of body necessary to bring a point in 
INV to POST. This will be the variant, as explained next.

Computations by successive approximations are a mainstay of numerical analysis, 
but the idea applies more broadly. An important difference is that in pure mathematics we 
accept that a series of approximations may have a limit even though it cannot reach it 
through a finite number of approximations: the sequence 1, 1/2, 1/3, 1/4, …, 1/n, … has 

INV

POST

init

body

body

body

body

body
body
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limit 0 but no element of the sequence has value zero. In computing, we want to see the 
results on our screen during our lifetime, so we insist that all approximation sequences 
reach their goal after a finite number of iterations.

Computer implementations of numerical algorithms also require finite convergence: even 
when the mathematical algorithm would only converge at infinity, we cut off the 
approximation process when we feel that we are close enough.

The practical way to guarantee termination of a loop process is to associate with the 
loop an integer quantity, the loop variant, which enjoys the following properties:

• The variant is always non-negative.
• Any execution of the loop body (the transformation called body in the figure) 

decreases the variant.

Since a non-negative integer quantity cannot decrease forever, your ability to exhibit 
such a variant for one of your loops guarantees that the loop will always terminate.The 
variant is an upper bound, for each point in the sequence, of the maximum number of 
applications of body that will land the point in POST. In the array maximum computation, 
a variant is easy to find: t  upper – i. This satisfies both conditions:

• Because the routine precondition requires t  capacity to be positive (that is to say, the 
routine is only applicable to non-empty arrays) and the invariant of class ARRAY 
indicates that capacity = upper – lower + 1, the property i <= t  upper (part of the 
loop’s invariant) will always be satisfied when i is initialized to t  lower.

• Any execution of the loop body performs the instruction i := i + 1, reducing the 
variant by one.

In this example the loop is simply an iteration over a sequence of integer values in a 
finite interval, known in common programming languages as a “for loop” or a “DO loop”; 
termination is not difficult to prove, although one must always check the details (here, for 
example, that i always starts no greater than t  upper because of the routine’s 
precondition). For more sophisticated loops, the number of iterations is not that easy to 
determine in advance, so ascertaining termination is more of a challenge; the only 
universal technique is to find a variant.

One more notion is needed to transform the scheme just outlined into a software text 
describing a loop: we need a simple way of determining whether a certain iteration has 
reached the goal (the postcondition) post. Because the iteration is constrained to remain 
within INV, and POST is part of INV, it is usually possible to find a condition exit such that 
an element of INV belongs to POST if and only if it satisfies exit. In other words, the 
postcondition post and the invariant inv are related by

post = inv and exit
so that we can stop the loop — whose intermediate states, by construction, always satisfy 
inv — as soon as exit is satisfied. In the maxarray example, the obvious exit condition is 
i = t  upper: if this property is true together with the invariant, which states that Result is 
the maximum value in the array slice [t  lower, i], then Result is the maximum value in the 
array slice [t  lower, t  upper], hence in the entire array — the desired postcondition.
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The syntax for loops follows directly from the preceding rationale. It will include the 
elements listed as necessary:

• A loop invariant inv — an assertion.

• An exit condition exit, whose conjunction with inv achieves the desired goal.

• A variant var — an integer expression.

• A set of initialization instructions init, which always produces a state that satisfies 
inv and makes var non-negative.

• A set of body instructions body which, when started in a state where inv holds and 
var is non-negative, preserves the invariant and decreases the variant while keeping 
it non-negative (so that the resulting state still satisfies inv and has for var a value 
that is less than before but has not gone below zero).

The loop syntax combining these ingredients is straightforward:

from
init

invariant
inv

variant
var

until
exit

loop
body

end

The invariant and variant clauses are optional. The from clause is required (but the 
init instructions may be empty). The effect of this instruction is to execute the init 
instructions and then, zero or more times, the body instructions; the latter are executed 
only as long as exit is false.

In Pascal, C etc. the loop would be a “while” loop, since the loop body is executed 
zero or more times, unlike the “repeat … until” loop for which the body is always 
executed at least once. Here the test is an exit condition, not a continuation condition, and 
the loop syntax includes room for initialization. So the equivalent in Pascal of from init 
until exit loop body end is

init;
while not exit do body
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With a variant and an invariant the loop for maxarray appears as

from
i := t  lower; Result := t @ lower

invariant
-- Result is the maximum of the elements of t at indices t  lower to i.

variant
t  lower – i

until
i = t  upper

loop
i := i + 1
Result := Result  max (t @ i)

end

Note that the invariant is expressed informally as a comment; the discussion section 
of this chapter will explain this limitation of the assertion language.

Here is another example, first shown without variant or invariant. The purpose of the 
following function is to compute the greatest common divisor (gcd) of two positive 
integers a and b with Euclid’s algorithm:

gcd (a, b: INTEGER): INTEGER
-- Greatest common divisor of a and b

require
a > 0; b > 0

local
x, y: INTEGER

do
from

x := a; y := b
until

x = y
loop

if x > y then x := x – y else y := y – x end
end
Result := x

ensure
-- Result is the greatest common divisor of a and b

end

How do we know that function gcd ensures its postcondition — that it indeed 
computes the greatest common divisor of a and b? One way to check this is to note that 
the following property is true after loop initialization and preserved by every iteration: 
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x > 0; y > 0

-- The pair <x, y> has the same greatest common divisor as the pair <a, b>

This will serve as our loop invariant inv. Clearly, INV is satisfied after execution of 
the from clause. Also, if inv is satisfied before an execution of the loop body 

if x > y then x := x – y else y := y – x end

under the loop continuation condition x /= y, then inv will still be satisfied after execution 
of this instruction; this is because replacing the greater of two positive non-equal numbers 
by their difference leaves them positive and does not change their gcd. 

We have shown inv to be satisfied before the first iteration and preserved by every 
iteration. It follows that on loop exit, when x = y becomes true, inv still holds; that is to say:

x = y and “The pair <x, y> has the same greatest common divisor as the pair <a, b>”

which implies that the gcd is x because of the mathematical property that the gcd of any 
integer x and itself is x.

How do we know that the loop will always terminate? We need a variant. If x is greater 
than y, the loop body replaces x by x – y; if y is greater than x, it replaces y by y – x. We 
cannot choose x as a variant, because we cannot be sure that an arbitrary loop iteration will 
decrease x; nor can we be sure that it will decrease y, so y is also not an appropriate variant. 
But we can be sure that it will decrease either x or y, and hence their maximum x  max (y); 
this maximum will never become negative, so it provides the sought variant. We may now 
write the loop with all its clauses: 

from
x := a; y := b

invariant
x > 0; y > 0
-- The pair <x, y> has the same greatest common divisor as the pair <a, b>

variant
x  max (y)

until
x = y

loop
if x > y then x := x – y else y := y – x end

end

As noted, the invariant and variant clauses in loops are optional. When present, 
they help clarify the purpose of a loop and check its correctness. Any non-trivial loop may 
be characterized by an interesting invariant and variant; many of the examples in 
subsequent chapters include variants and invariants, providing insights into the underlying 
algorithms and their correctness. 
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11.13  USING ASSERTIONS
We have now seen all the constructs involving assertions and should review all the 
benefits that we can derive from them. There are four main applications: 

• Help in writing correct software. 
• Documentation aid. 
• Support for testing, debugging and quality assurance. 
• Support for software fault tolerance. 

Only the last two assume the ability to monitor assertions at run time.

Assertions as a tool for writing correct software 

The first use is purely methodological and perhaps the most important. It has been 
explored in detail in the preceding sections: spelling out the exact requirements on each 
routine, and the global properties of classes and loops, helps developers produce software 
that is correct the first time around, as opposed to the more common approach of trying to 
debug software into correctness. The benefits of precise specifications and a systematic 
approach to program construction cannot be overemphasized. Throughout this book, 
whenever we encounter a program element, we shall seek to express as precisely as 
possible the formal properties of that element. 

The key idea runs through this chapter: the principle of Design by Contract. To use 
features from a certain module is to contract out for services. Good contracts are those 
which exactly specify the rights and obligations of each party, and the limits to these rights 
and obligations. In software design, where correctness and robustness are so important, we 
need to spell out the terms of the contracts as a prerequisite to enforcing them. Assertions 
provide the means to state precisely what is expected from and guaranteed to each side in 
these arrangements. 

Using assertions for documentation: the short form of a class

The second use is essential in the production of reusable software elements and, more 
generally, in organizing the interfaces of modules in large software systems. 
Preconditions, postconditions and class invariants provide potential clients of a module 
with basic information about the services offered by the module, expressed in a concise 
and precise form. No amount of verbose documentation can replace a set of carefully 
expressed assertions, appearing in the software itself.

To learn how a particular project ignored this rule and lost an entire space mission at a 
cost of $500 million, see the very last section of this chapter.

The automatic documentation tool short uses assertions as an important component 
in extracting from a class the information that is relevant to potential clients. The short 
form of a class is a high-level view of the class. It only includes the information that is 
useful to authors of client classes; so it does not show anything about secret features and, 
for public features, it does not show the implementation (the do clauses). But the short 
form does retain the assertions, which provide essential documentation by stating the 
contracts that the class offers to its clients. 
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Here is the short form of class STACK4:

note
description: "Stacks: Dispenser structures with a Last-In, First-Out %

%access policy, and a fixed maximum capacity"
class interface STACK4 [G] creation 

make

feature -- Initialization
make (n: INTEGER)

-- Allocate stack for a maximum of n elements
require

non_negative_capacity: n >= 0
ensure

capacity_set: capacity = n
end

feature -- Access
capacity: INTEGER

-- Maximum number of stack elements
count: INTEGER

-- Number of stack elements
item: G

-- Top element
require

not_empty: not empty -- i.e. count > 0
end

feature -- Status report
empty: BOOLEAN

-- Is stack empty?
ensure

empty_definition: Result = (count = 0)
end

full: BOOLEAN
-- Is stack full?

ensure
full_definition: Result = (count = capacity)

end
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feature -- Element change
put (x: G)

-- Add x on top
require

not_full: not full
ensure

not_empty: not empty
added_to_top: item = x
one_more_item: count = old count + 1

end
remove

-- Remove top element
require

not_empty: not empty -- i.e. count > 0 
ensure

not_full: not full
one_fewer: count = old count – 1

end
invariant

count_non_negative: 0 <= count
count_bounded: count <= capacity
empty_if_no_elements: empty = (count = 0)

end
This short form is not a syntactically valid class text (hence the use of class interface

rather than the usual class to avoid any confusion), although it is easy to turn it into a valid 
deferred class, a notion to be seen in detail in our study of inheritance.

In the ISE environment, you obtain the short form of a class by clicking on the 
corresponding button in a Class Tool displaying a class; you can generate plain text, as 
well as versions formated for a whole host of formats such as HTML (for Web browsing), 
RTF (Microsoft’s Rich Text Format), FrameMaker’s MML, TEX, troff and others. You 
can also define your own format, for example if you are using some text processing tool 
with its specific conventions for specifying fonts and layout.

If you compare the short form’s assertions to those of the class, you will notice that all 
the clauses involving representation have disappeared, since that attribute is not exported.

The short form of documentation is particularly interesting for several reasons:

• The documentation is at a higher level of abstraction than what it describes, an 
essential requirement for quality documentation. The actual implementation, 
describing the how, has been removed, but the assertions, explaining the what (or in 
some cases the why) are still there. Note that the header comments of routines, which 
complement assertions by giving a less formal explanation of each routine’s purpose, 
are retained, as well as the description entry of the note clause.
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• A direct consequence of the Self-Documentation principle studied in our review of 
modularity concepts, the short form treats documentation not as a separate product 
but as information contained in the software itself. This means that there is only one 
product to maintain, a requirement that runs through this book. There is also, as a 
result, a much better chance that the documentation will be correct, since by having 
everything at the same place you decrease the risk of forgetting to update the 
documentation after a change to the software, or conversely.

• The short form can be extracted from the class by automatic tools. So the 
documentation is not something that you have to write; instead it is something that 
you ask “the computer” to produce, at the click of a mouse button, when you need it.

It is interesting to compare this approach with the notion of package interface present 
in Ada (“specification part”), where you write a module (package) in two parts: the 
interface and the implementation. Java uses a similar mechanism. The interface of a 
package has some similarities to the short form of a class, but also significant differences:

• There are no assertions, so all the “specification” that you can give is in the form of 
type declarations and comments.

• The interface is not produced by a tool but written separately. So the developer has 
to state many things twice: the headers of routines, their signatures, any header 
comments, declarations of public variables. This forced redundancy is tedious (it 
would be even more so with assertions) and, as always, raises the risk of 
inconsistency, as you may change one of the two parts and forget to update the other.

The short form (complemented by its variant the flat-short form, which deals with 
inheritance and is studied in a later chapter) is a principal contribution of the object-
oriented method. In the daily practice of O-O development it appears all the time not just 
as a tool for documenting software, particularly reusable libraries, but also as the standard 
format in which developers and managers study existing designs, prepare new designs, 
and discuss proposed designs.

The reason for the central role of the short form in O-O development is that it finally 
fulfills the goal defined by the analysis of reusability requirements at the beginning of this 
book. There we arrived at the requirement for abstracted modules as the basic unit of reuse. 
A class in its short (or flat-short) form is the abstracted module that we have been seeking.

Monitoring assertions at run time

It is time now to deal in full with the question “what is the effect of assertions at run time?”. 
As previewed at the beginning of this chapter, the answer is up to the developer, based on a 
compilation option. To set that option, you should not, of course, have to change the actual 
class texts; you will rely instead on the Ace file. Recall that an Ace file, written in Lace, allows 
you to describe how to assemble and compile a system. 

Recall too that Lace is just one possible control language for assembling O-O systems, 
not an immutable component of the method. You will need something like Lace, even 
if it is not exactly Lace, to go from individual software components to complete 
compilable systems.
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Here is how to adapt a simple Ace (the one used as example in the original 
presentation of Lace) to set some assertion-monitoring options:

system painting root
GRAPHICS

default
assertion (require)

cluster
base_library: " \ library \ base"
graphical_library: " \ library \ graphics"

option
assertion (all): BUTTON, yy-unknown_BITMAP

end
painting_application: " \ user \ application"

option
assertion (no)

end
end -- system painting

The default clause indicates that for most classes of the system only preconditions 
will be checked (require). Two clusters override this default: graphical_library, which 
will monitor all assertions (all), but only for classes BUTTON and yy-unknown_BITMAP; 
and painting_application, which has disabled any assertion checking for all its classes. 
This illustrates how to define an assertion monitoring level for the system as a whole, for 
all the classes of a cluster, or for some classes only.

The following assertion checking levels may appear between parentheses in 
assertion (…):

• no: do not execute anything for assertions. In this mode assertions have no more 
effect on execution than comments.

• require: check that preconditions hold on routine entry.
• ensure: check that postconditions hold on routine exit.
• invariant: check that class invariants hold on routine entry and exit for qualified 

calls.
• loop: check that loops invariants hold before and after every loop iteration, and that 

variants decrease while remaining non-negative.
• check: execute check instructions by checking that the corresponding assertions 

hold. all is a synonym for check.

Excluding no, each of these levels implies the previous ones; in particular it does not 
make sense to monitor postconditions unless you also monitor preconditions, since the 
principles of Design by Contract indicate that a routine is required to ensure its 
postcondition only if it was called with its precondition satisfied (otherwise “the customer 
is wrong”). This explains why check and all are synonyms.
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If turned on, assertion monitoring will have no visible effect, except for the CPU 
cycles that it takes away from your computation, as long as the assertions that it monitors 
all evaluate to true. But having any assertion evaluate to false is a rather serious event 
which will usually lead to termination. Actually it will trigger an exception, but unless you 
have taken special measures to catch the exception (see next) everything will stop. An 
exception history table will be produced, of the general form

Failure: object: O2 class: YOUR_CLASS routine: your_routine
Cause: precondition violation, clause: not_too_small

Called by: object: O2 class: YOUR_CLASS routine: his_routine
Called by: object: O1 class: HER_CLASS routine: her_routine
…
This gives the call chain, starting from the routine that caused the exception, the 

object to which is was applied and its generating class. Objects are identified by internal 
codes. The form shown here is only a sketch; the discussion of exceptions will give a more 
complete example of the exception history table.

The optional labels that you can add to the individual clauses of an assertion, such as 
not_too_small in

your_routine (x: INTEGER)
require

not_too_small: x >= Minimum_value
…

prove convenient here, since they will be listed in the exception trace, helping you identify 
what exactly went wrong.

How much assertion monitoring?

What level of assertion tracing should you enable? The answer is a tradeoff between the 
following considerations: how much you trust the correctness of your software; how 
crucial it is to get the utmost efficiency; how serious the consequences of an undetected 
run-time error can be.

In extreme cases, the situation is clear:
• When you are debugging a system, or more generally testing it prior to release, you 

should enable assertion monitoring at the highest level for the classes of the system 
(although not necessarily for the libraries that it uses, as explained next). This ability 
is one of the principal contributions to software development of the method 
presented in this book. Until they have actually had the experience of testing a large, 
assertion-loaded system using the assertion monitoring mechanisms described in 
this section, few people realize the power of these ideas and how profoundly they 
affect the practice of software development.

• If you have a fully trusted system in an efficiency-critical application area — the 
kind where every microsecond counts — you may consider removing all monitoring.
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From [Hoare 1973].

Second Assertion 
Violation rule, page 
347.

See the class text 
starting on page 372.
The last advice is somewhat paradoxical since in the absence of formal proving 
techniques (see the discussion section of this chapter) it is seldom possible to “trust a 
system fully” — except by monitoring its assertions. This is a special case of a general 
observation made with his customary eloquence by C.A.R. Hoare:

It is absurd to make elaborate security checks on debugging runs, when no trust 
is put in the results, and then remove them in production runs, when an erroneous 
result could be expensive or disastrous. What would we think of a sailing 
enthusiast who wears his life-jacket when training on dry land but takes it off as 
soon as he goes to sea?

An interesting possibility is the option that only checks preconditions: assertion 
(require). In production runs — that is to say, past debugging and quality assurance — it 
has the advantage of avoiding catastrophes that would result from undetected calls to 
routines outside of their requirements, while costing significantly less in run-time 
overhead than options that also check postconditions and invariants. (Invariants, in 
particular, can be quite expensive to monitor since the method suggests writing rich 
invariants that include all relevant consistency conditions on a class, and the invariant is 
checked on entry and exit for every qualified call.)

Precondition checking is indeed the default compilation option if you do not include 
a specific assertion option in your Ace, so that the clause default assertion (require)
appearing in the example Ace for system painting was not necessary.

This option is particularly interesting for libraries. Remember the basic rule on 
assertion violations: a violated precondition indicates an error in the client; a violated 
postcondition or invariant indicates an error in the supplier. So if you are relying on 
reusable libraries that you assume to be of high quality, it is generally not desirable to 
monitor their postconditions and invariants: this would mean that you suspect the libraries 
themselves, and although the possibility of a library error is of course always open it 
should only be investigated (for a widely used library coming from a reputable source) 
once you have ruled out the presence, a priori much more likely, of an error in your own 
client software. But even for a perfect library it is useful to check preconditions: the goal 
is to find errors in client software.

Perhaps the most obvious example is array bound checking. In the ARRAY class we 
saw that put, item and the latter’s synonym infix "@" all had the precondition clauses

index_not_too_small: lower <= i
index_not_too_large: i <= upper

Enabling precondition checking for the class solves a well-known problem of any 
software that uses arrays: the possibility of an out-of-bounds array access, which will 
usually scoop some memory area containing other data or code, causing ravages. Many 
compilers for conventional programming languages offer special compilation options to 
monitor array access at run time. But in object technology, just as we treat arrays through 
general notions of class and object rather than special constructs, we can handle array 
bound monitoring through the general mechanism for precondition checking. Just use a 
version of ARRAY compiled with assertion (require).
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From [Hoare 1981]; 
slightly abridged.
Should bounds always be checked? Hoare thinks so:

In our Algol compiler every occurrence of every subscript of every array element 
was on every occasion checked at run time against the declared bounds. Many 
years later we asked our customers whether they wished us to provide an option 
to switch off these checks in the interest of efficiency in production runs.
Unanimously they urged us not to — they already knew how frequently index 
errors occur on production runs where failure could be disastrous. I note with 
fear and horror that even today, language designers and users have not learned 
this lesson. In any respectable branch of engineering, failure to observe such 
elementary precautions would have long been against the law.
These comments should be discussed not just for arrays but for preconditions in 

general. If indeed “index errors frequently occur on production runs” this must be true of 
other precondition violations too.

One may defend a less extreme position. (Some might of course see here an attempt 
at self-preservation, coming from a “language designer” who has provided a way to turn 
off assertion checking, through Lace options such as assertion (no), and presumably does 
not like being branded as acting “against the law”.) First, a company which delivers 
software in which precondition errors “frequently occur on production runs” probably has 
a problem with its software quality practices, which run-time assertion monitoring will not 
solve. Monitoring addresses the symptoms ( faults in the terminology introduced earlier in 
this chapter), not the cause (defects and errors). True, assertion monitoring is in such a case 
beneficial to the software’s end-users: however unpleasant it is to have a system end its 
interruption with some message spouting insults about preconditions and other venomous 
beasts unknown to a layman, this is better than continuing operation and producing bad 
results. But in the long term a practice of always delivering systems with some level of 
assertion monitoring also has negative effects: it can encourage among developers, even 
unconsciously, a happy-go-lucky attitude towards correctness, justified by the knowledge 
that if an error remains it will be caught by the users through an assertion violation, 
reported to the supplier, and fixed for the following release. So can’t we stop testing right 
now and start shipping?

It is hard to give an absolute answer to the question “should we leave some assertion 
monitoring on?” without some knowledge of the performance overhead of assertion 
monitoring. If adding some monitoring multiplied the execution time by ten, few people 
outside of the mission-critical-computing community would support Hoare’s view; if the 
overhead were two percent, few people would disagree with it. In practice, of course, the 
penalty will be somewhere in-between.

How much is it, by the way? This clearly depends on what the software does and how 
many assertions it has, but it is possible to give empirical observations. In ISE’s experience 
the cost for monitoring preconditions (the default option, including of course array bounds 
checking) is on the order of 50%. What is frustrating is that more than 75% of that cost is 
due not to precondition checking per se but to the supporting machinery of monitoring 
calls — recording every routine entry and every routine exit — so that if a precondition 
fails the environment can say which one and where. (A message of the form Execution 
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Page 15.
stopped because some assertion was violated somewhere would not be very useful.) This 
may be called the Precondition Checking Paradox: precondition checking is by itself cheap 
enough, but to get it you have to pay for something else. As to postcondition and invariant 
checking, they can bring the penalty to 100% to 200%. (Although circumstances vary, 
preconditions are often relatively simple consistency conditions such as x > 0 or a /= Void, 
whereas many postconditions and invariants express more advanced semantic properties.)

One might fear that bringing performance into this discussion may lead to 
compromising on correctness, against the principle expressed at the beginning of this book:

Necessary as tradeoffs between quality factors may be, one factor stands out 
from the rest: correctness. There is never any justification for compromising on 
correctness for the sake of other concerns, such as efficiency. If the software 
does not perform its function, the rest is useless. 

Considering performance when we decide whether to leave assertion monitoring on 
is not, however, a violation of this principle. The point is not to sacrifice correctness for 
efficiency, but to determine what we should do for systems that are not correct — 
obviously because we have not worked hard enough at making them correct.

In fact, efficiency may be part of correctness. Consider a meteorological system that 
takes twelve hours to predict the next-day’s weather (two hours would be more useful, of 
course). The system has been thoroughly optimized; in particular it does not have run-time 
checking for array bound violations or other such faults. It has also undergone careful 
development and extensive testing. Now assume that adding the run-time checks 
multiplies the execution time by two, giving a forecasting system that takes 24 hours to 
predict tomorrow’s weather. Would you enable these checks? No.

Although the examples that first come to mind when discussing such performance vs.
safety issues tend to be of the Patriot-against-Scud variety, I prefer the weather forecasting 
example because here one cannot dismiss the efficiency issue offhand by saying “just buy 
a faster microprocessor”. In meteorological computing, the hardware tends already to be 
the fastest parallel computer available on the market.

Let us not stop here but ask the really hard questions. Assume the original running 
time of twelve hours was with checking enabled. Would you disable it to get a six-hour 
forecast? Now assume that you also have the option of applying the improved efficiency to 
keep the same running time but use a more accurate forecasting model (since you can afford 
more grid points); would you do it? I think that in either case, if offered “an option to switch 
off the checks in the interest of efficiency in production runs”, almost everyone will say yes.

So in the end the choice of assertion monitoring level at production time is not as 
simple as Hoare’s rule suggests. But a few precise and strict principles do hold:

• Remember that a software system should be made reliable before it begins operation. 
The key is to apply the reliability techniques described in the software engineering 
literature, including those which appear in this chapter and throughout this book.

• If you are a project manager, never let the developers assume that the production 
versions will have checks turned on. Make everyone accept that — especially for the 
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biggest production runs, those which by nature make the consequences of potential 
errors most frightening — all checks may be off.

• Make sure that during development assertion checking is always turned on at least 
at the precondition level.

• Perform extensive testing with all the checks enabled. Also turn all checks on as 
soon as any bug is encountered during development.

• For the standard production versions, decide whether to choose a no-check version 
or a protected version (usually at the precondition level) based on your assessment, 
from an engineering perspective, of the relative weight of the three factors cited at 
the beginning of this discussion: how much you trust the correctness of your 
software (meaning in part how hard you have worked at making it correct and 
convincing yourself and others that it is); how crucial it is to get the utmost 
efficiency; and how serious the consequences of an undetected run-time error can be.

• If you decide to go for a no-check version, also include in your delivery a version 
that checks at least for preconditions. That way, if the system starts exhibiting 
abnormal behavior against all your expectations, you can ask the users — those at 
least who have not been killed by the first erroneous production runs — to switch to 
the checking version, helping you find out quickly what is wrong.

Used in this way, run-time assertion monitoring provides a remarkable aid for quickly 
weeding out any errors that may have survived a systematic software construction process.

11.14  DISCUSSION

The assertion mechanism presented in this chapter raises some delicate issues, which we 
must now examine.

Why run-time monitoring?

Should we really have to check assertions at run time? After all we were able, using 
assertions, to give a theoretical definition of what it means for a class to be correct: every 
creation procedure should ensure the invariant, and every routine body, when started in a 
state satisfying the precondition and the invariant, should maintain the invariant and 
ensure the postcondition. This means that we should simply prove the m + n
corresponding properties mathematically (for m creation procedures and n exported 
routines), and then do away with run-time assertion monitoring.

We should, but we cannot. Although mathematical program proving has been an 
active area of research for many years, and has enjoyed some successes, it is not possible 
today to prove the correctness of realistic software systems written in full-fledged 
programming languages.

We would also need a more extensive assertion language. The IFL sublanguage, 
discussed below, could be used as part of a multi-tier proof strategy.
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Even if proof techniques and tools eventually become available, one may suspect 
that run-time checks will not go away, if only to cope with hard-to-predict events such as 
hardware faults, and to make up for possible bugs in the proof software itself — in other 
words to apply the well-known engineering technique of multiple independent checking.

The expressive power of assertions

As you may have noted, the assertion language that we have used is essentially the 
language of boolean expressions, extended with a few concepts such as old. As a result, 
we may find it too restrictive when we would like to include in our classes some of the 
properties that were easy to express in the mathematical notation for abstract data types.

The assertions for stack classes provide a good example of what we can and cannot 
say. We found that many of the preconditions and axioms from the original ADT 
specification of chapter 6 gave assertion clauses; for example the axiom
A4 • not empty (put (s, x))
gives the postcondition not empty in procedure put. But in some cases we do not have the 
immediate counterpart in the class. None of the postconditions for remove in the stack 
classes given so far includes anything to represent the axiom
A2 •  remove (put (s, x)) = s

We can of course add an informal property to the postcondition by resorting to 
a comment: 

remove
-- Remove top element

require
not_empty: not empty -- i.e. count > 0 

do
count := count – 1

ensure
not_full: not full
one_ fewer: count = old count – 1
LIFO_ policy: -- item is the last element pushed (by put) 

     -- and not yet removed, if any.
end

Similar informal assertions, syntactically expressed as comments, appeared in the 
loop invariants for maxarray and gcd.

In such a case, two of the principal uses of assertions discussed earlier remain 
applicable at least in part: help in composing correct software, and help in documentation 
(an assertion clause that is syntactically a comment will appear in the short form). The 
other uses, in particular debugging and testing, assume the ability to evaluate assertions 
and do not apply any more.
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It would be preferable to express all assertions formally. The best way to reach this 
goal is to extend the assertion language so that it can describe arbitrary properties; this 
requires the ability to describe complex mathematical objects such as sets, sequences, 
functions and relations, and including the full power of first-order predicate calculus, 
which allows quantified expressions (“for all” and “there exists”). Formal specification 
languages exist which provide at least part of this expressive power. The best known are 
Z, VDM, Larch and OBJ-2; both Z and VDM have had object-oriented extensions, such 
as Object-Z, in recent years, and the last two were close to O-O concepts already. The 
bibliographic notes to chapter 6 provide references.

Including a full specification language into the language of this book would have 
completely changed its nature. The language is meant to be simple, easy to learn, 
applicable to all areas of software construction, and implementable efficiently (with a final 
run-time performance similar to that of Fortran and C, and a fast compilation process).

Instead, the assertion mechanism is an engineering tradeoff: it includes enough 
formal elements to have a substantial effect on software quality; but stops at the point of 
diminishing return — the threshold beyond which the benefits of more formality might 
start being offset by the decrease of learnability, simplicity and efficiency.

Determining that threshold is clearly a matter of personal judgment. I have been surprised 
that, for the software community at large, the threshold has not moved since the first edition 
of this book. Our field needs more formality, but the profession has not realized it yet.

So for the time being, and probably for quite a while, assertions will remain boolean 
expressions extended with a few mechanisms such as the old expression in postconditions. 
The limitation is not as stringent as it seems at first, because boolean expressions can use 
function calls.

Including functions in assertions

A boolean expression is not restricted to using attributes or local entities. We have already 
used the possibility of calling functions in assertions: the precondition for put in our stack 
classes was not full, were full is the function

full: BOOLEAN
-- Is stack full?

do
Result := (count = capacity)

ensure
full_definition: Result = (count = capacity)

end

This is our little assertion secret: we get out of the stranglehold of propositional 
calculus — basic boolean expressions involving attributes, local entities and boolean 
operators such as and, or, not — thanks to function routines, which give us the power to 
compute a boolean value in any way we like. (You should not be troubled by the presence 
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of a postcondition in full itself, as it does not create any harmful circularity. Details 
shortly.)

Using function routines is a way to obtain more abstract assertions. For example, some 
people may prefer replacing the precondition of the array operations, expressed earlier as

index_not_too_small: lower <= i
index_not_too_large: i <= upper

by a single clause of the form
index_in_bounds: correct_index (i)

with the function definition
correct_index (i: INTEGER): BOOLEAN

-- Is i within the array bounds?
do

Result := (i >= lower) and (i <= upper)
ensure

definition: Result = ((i >= lower) and (i <= upper))
end

Another advantage of the use of functions in assertions is that it may provide a way 
to circumvent the limitations on expressive power arising from the absence of first-order 
predicate calculus mechanisms. The informal invariant of our maxarray loop

-- Result is the maximum of the elements of t at indices t  lower to i

may be expressed formally as 
Result = (t  slice (lower, i))  max

assuming a function slice which yields the set of elements between two indices of an array, 
and a function max which yields the maximum element in a set.

This approach has been explored in [M 1995a] as a way to extend the power of the 
assertion mechanism, possibly leading to a fully formal development method (that is to 
say, to software that may be proven correct mathematically). Two central ideas in this 
investigation are the use of libraries in any large-scale proof process, so that one could 
prove real, large-scale systems in a multi-tier proof structure using conditional proofs, 
and the definition of a restricted language of a purely applicative nature — IFL, for 
Intermediate Functional Language — in which to express the functions used in assertions. 
IFL is a subset of the notation of this book, which excludes some imperative constructs 
such as arbitrary assignments.

The risk that such efforts try to address is clear: as soon as we permit functions in 
assertions, we introduce potentially imperative elements (routines) into the heretofore 
purely applicative world of assertions. Without functions, we had the clear and clean 
separation of roles emphasized in the earlier discussion: instructions prescribe, assertions 
describe. Now we open the gates of the applicative city to the imperative hordes.

Yet it is hard to resist the power of using functions, as the alternatives are not without 
their drawbacks either:
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• Including a full specification sublanguage could, as noted, cause problems of ease of 
learning and efficiency.

• Perhaps worse, it is not even clear that commonly accepted assertion languages 
would suffice. Take what most people versed in these topics would suggest as the 
natural candidate: first-order predicate calculus. This formalism will not enable us to 
express some properties of immediate interest to developers and common use in 
assertions, such as “the graph has no cycles” (a typical invariant clause). 
Mathematically this would be stated as r+ ∩ r = ∅ where r is the graph’s relation 
and + is transitive closure. Although it is possible to conceive of a specification 
language that supports these notions, most do not.
This is all the more troubling because, for a programmer, writing a boolean-valued 

function routine cyclic that explores the graph and returns true if and only if there is a 
cycle, is not particularly hard. Such examples provide a strong argument for contenting 
ourselves with a basic assertion language and using functions for anything beyond its 
expressive power.

But the need to separate applicative and imperative elements remains. Any function 
routine used in an assertion to specify the properties of a software element should be 
“beyond reproach”, more precisely beyond imperative reproach; it should not cause any 
permanent change of the abstract state.

This informal requirement is clear enough in practice; the IFL sublanguage formalizes it 
by excluding all the imperative elements which either change the global state of the 
system or do not have trivial applicative equivalents, in particular:

• Assignments to attributes.
• Assignments in loops.
• Calls to routines not themselves in IFL.

If you exert the proper care by sticking to functions that are simple and self-evidently 
correct, the use of function routines in assertions can provide you with a powerful means 
of abstraction.

A technical point may have caught your attention. A function f  used by an assertion 
for a routine r (or the invariant of the class containing r) may itself have assertions, as 
illustrated by both the full and correct_index examples. This raises a potential problem for 
run-time assertion monitoring: if as part of a call to r we evaluate an assertion and this 
causes a call to f, we do not want the call to evaluate any assertion that f  itself may have. 
For one thing, it is easy to construct examples that would cause infinite recursion. But 
even without that risk it would be just wrong to evaluate the assertions of f. This would 
mean that we treat as peers the routines of our computation, such as r, and their assertions’s 
functions, such as f — contradicting the rule that assertions should be on a higher plane 
than the software they protect, and their correctness crystal-clear. The rule is simple: 

Assertion Evaluation rule
During the process of evaluating an assertion at run-time, routine calls shall 
be executed without any evaluation of the associated assertions.
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If a call to f occurs as part of assertion checking for r, that is too late to ask whether 
f satisfies its assertions. The proper time for such a question is when you decide to use f  in 
the assertions applicable to r.

We can use an analogy introduced earlier. Think of f  as a security guard at the 
entrance of a nuclear plant, in charge of inspecting the credentials of visitors. There are 
requirements on guards too. But you will run the background check on a guard in advance; 
not while he is screening the day’s visitors.

Class invariants and reference semantics 

The object-oriented model developed so far includes two apparently unrelated aspects, 
both useful:

• The notion of class invariant, as developed in this chapter.

• A flexible run-time model which, for various reasons detailed in an earlier 
chapter (in particular the modeling needs of realistic systems), makes 
considerable use of references.

Unfortunately these individually desirable properties cause trouble when put together.

The problem is, once again, dynamic aliasing, which prevents us from checking the 
correctness of a class on the basis of that class alone. We have seen that the correctness of 
a class means m + n properties expressing that (if we concentrate on the invariant INV, 
ignoring preconditions and postconditions which play no direct role here):

P1 •  Every one of the m creation procedures produces an object that satisfies INV. 

P2 •  Every one of the n exported routines preserves INV. 

These two conditions seem sufficient to guarantee that INV is indeed invariant. The 
proof is apparently trivial: since INV will be satisfied initially, and preserved by every 
routine call, it should by induction be satisfied at all stable times. 

This informal proof, however, is not valid in the presence of reference semantics and 
dynamic aliasing. The problem is that attributes of an object may be modified by an 
operation on another object. So even if all a  r operations preserve INV on the object OA 
attached to a, some operation b  s (for b attached to another object) may destroy INV for 
OA. So even with conditions P1 and P2 satisfied, INV may not be an invariant. 

Here is a simple example. Assume classes A and B, each with an attribute whose type 
is the other’s class: 

class A … feature forward: B … end
class B … feature backward: A … end

We require that following the forward reference (if defined) from an instance of A
and then the backward reference from the corresponding B will yield the original A. This 
may be expressed as an invariant property of A: 

round_trip: (forward /= Void) implies (forward  backward = Current)
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Here is a situation involving instances of both classes and satisfying the invariant:

Invariant clauses of the round_trip form are not uncommon; think of forward in class 
PERSON denoting a person’s residence, and backward in class HOUSE denoting a house’s 
resident. Then round_trip states that the resident of any person’s residence is that person, 
a simple consistency requirement. Another example is the linked implementation of trees, 
where the attributes of a tree node include references to its first child and to its parent, 
introducing the following round_trip-style property in the invariant:

(first_child /= Void) implies (first_child  parent = Current)

Assume, however, that the invariant clause of B, if any, says nothing about the 
attribute backward. The following version of A appears consistent with the invariant: 

class A feature

forward: B

attach (b1: B)
-- Link b1 to current object.

do
forward := b1

-- Update b1’s backward reference for consistency:
if b1 /= Void then

b1  attach (Current)
end

end
invariant

round_trip: (forward /= Void) implies (forward  backward = Current)
end

The call b1  attach is meant to restore the invariant after an update of forward. Class 
B must provide its own attach procedure: 

class B feature

backward: B

OA

(A)

OB

(B)

backward
forward
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Violating the 
invariant
attach (a1: A)
-- Link a1 to current object.

do
backward := a1

end
end

Class A appears to be correct: a procedure-less creation instruction ensures the 
invariant round_trip (since it initializes forward to a void reference), and its sole 
procedure will always preserve round_trip. But consider execution of the following: 

a1: A; b1: B
…
create a1; create b1
a1  attach (b1)
b1  attach (Void)

Here is the situation after the last instruction: 

The invariant is violated on OA! This object is now linked to OB, but OB is not 
linked to OA since its backward field is void. (A call to b1  attach (…) could also have 
linked OB to an instance of A other than OA, which would be equally incorrect.)

What happened? Dynamic aliasing has struck again. The proof of correctness of 
class A outlined above is valid: every operation of the form a1  r, where a1 is a reference 
to object OA, will preserve round_trip since the corresponding features of A (here there is 
only one, attach) have been designed accordingly. But this is not sufficient to preserve the 
consistency of OA, since properties of OA may involve instances of other classes, such as 
B in the example, and the proof says nothing about the effect of these other classes’ 
features on the invariant of A.

This problem is important enough to deserve a name: Indirect Invariant Effect. It 
may arise as soon as we allow dynamic aliasing, through which an operation may modify 
an object even without involving any entity attached to it. But we have seen how much we 
need dynamic aliasing; and the forward-backward scheme, far from being just an 
academic example, is as noted a useful pattern for practical applications and libraries.

OA

(A)

OB

(B)

backward
forward

a1 b1
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What can we do? The immediate answer involves the conventions for run-time 
monitoring of assertions. You may have wondered why the effect of enabling assertion 
monitoring at the assertion (invariant) level was described as

“Check that class invariants hold on routine entry and exit for qualified calls.”

Why both entry and exit? Without the Indirect Invariant Effect, it would suffice to 
check the invariant when exiting qualified calls. (It is also checked at the end of creation 
calls.) But now we have to be more careful, since between the termination of a call and the 
beginning of the next one on the same object, some call may have affected that object even 
though its target was another object.

A more satisfactory solution would be to obtain a statically enforceable validity rule, 
which would guarantee that whenever the invariant of a class A involves references to 
instances of a class B, the invariant of B includes a mirror clause. In our example we can 
avoid trouble by including in B an invariant clause trip_round mirroring round_trip:

trip_round: (backward /= Void) implies (backward  forward = Current)

It may be possible to generalize this observation to a universal mirroring rule. 
Whether such a rule indeed exists, solving the Indirect Invariant Effect and removing the 
need for double run-time monitoring, requires further investigation.

More to come

We are not done with Design by Contract. Two important consequences of the principles 
remain to be studied:

• How they lead to a disciplined exception handling mechanism; this is the topic of the 
next chapter.

• How they combine with inheritance, allowing us to specify that any semantic 
constraints that apply to a class also apply to its descendants, and that semantic 
constraints on a feature apply to its eventual redeclarations; this will be part of our 
study of inheritance.

More generally, assertions and Design by Contract will accompany us throughout 
the rest of this book, enabling us to check, whenever we write software elements, that we 
know what we are doing.

11.15  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Assertions are boolean expressions expressing the semantic properties of classes and 
reintroducing the axioms and preconditions of the corresponding abstract data types. 

• Assertions are used in preconditions (requirements under which routines are 
applicable), postconditions (properties guaranteed on routine exit) and class 
invariants (properties that characterize class instances over their lifetime). Other 
constructs that involve assertions are loop invariants and the check instruction. 
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• A precondition and a postcondition associated with a routine describe a contract 
between the class and its clients. The contract is only binding on the routine 
inasmuch as calls observe the precondition; the routine then guarantees the 
postcondition on return. The notion of contracting provides a powerful metaphor for 
the construction of correct software. 

• The invariant of a class expresses the semantic constraints on instances of the class. 
The invariant is implicitly added to the precondition and the postcondition of every 
exported routine of the class.

• A class describes one possible representation of an abstract data type; the 
correspondence between the two is expressed by the abstraction function, which is 
usually partial. The inverse relation is in general not a function. 

• An implementation invariant, part of the class invariant, expresses the correctness of 
the representation vis-à-vis the corresponding abstract data type. 

• A loop may have a loop invariant, used to deduce properties of the result, and a 
variant, used to ascertain termination.

• If a class is equipped with assertions, it is possible to define formally what it means 
for the class to be correct.

• Assertions serve four purposes: aid in constructing correct programs; documentation 
aid; debugging aid; basis for an exception mechanism.

• The assertion language of our notation does not include first-order predicate 
calculus, but can express many higher-level properties through function calls, 
although the functions involved must be simple and of unimpeachable correctness.

• The combination of invariants and dynamic aliasing raises the Indirect Invariant 
Effect, which may cause an object to violate its invariant through no fault of its own.

11.16  BIBLIOGRAPHICAL NOTES

According to Tony Hoare:

An early advocate of using assertions in programming was none other than Alan 
Turing himself. On 24 June 1950 at a conference in Cambridge, he gave a short 
talk entitled “Checking a Large Routine” which explains the idea with great 
clarity. “How can one check a large routine in the sense that it’s right? In order 
that the man who checks may not have too difficult a task, the programmer should 
make a number of definite assertions which can be checked individually, and from 
which the correctness of the whole program easily follows.”

The notion of assertion as presented in this chapter comes from the work on program 
correctness pioneered by Bob Floyd [Floyd 1967], Tony Hoare [Hoare 1969] and Edsger 
Dijkstra [Dijkstra 1976], and further described in [Gries 1981]. The book Introduction to 
the Theory of Programming Languages [M 1990] presents a survey of the field.
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The notion of class invariant comes from Hoare’s work on data type invariants 
[Hoare 1972a]. See also applications to program design in [Jones 1980] [Jones 1986]. A 
formal theory of morphisms between abstract data types may be found in [Goguen 1978]. 

Formal specification languages include Z, VDM, OBJ-2 and Larch; see the 
bibliographical references to chapter 6. Object-oriented formal specification languages 
include Object Z, Z++, MooZ, OOZE, SmallVDM and VDM++, all of which are 
described in [Lano 1994] which gives many more references.

The IEEE Computer Society publishes standards for the terminology of software errors, 
defects, failures [IEEE 1990] [IEEE 1993]. Its Web page is at http://www.computer.org.

Surprisingly, few programming languages have included syntactical provision for 
assertions; an early example (the first to my knowledge) was Hoare’s and Wirth’s Algol W 
[Hoare 1966], the immediate precursor of Pascal. Others include Alphard [Shaw 1981]
and Euclid [Lampson 1977], which were specifically designed to allow the construction 
of provably correct programs. The connection with object-oriented development 
introduced by the notation developed in this book was foreshadowed by the assertions of 
CLU [Liskov 1981] which, however, are not executable. Another CLU-based book by 
Liskov and Guttag [Liskov 1986], one of the few programming methodology texts to 
discuss in depth how to build reliable software, promotes the “defensive programming” 
approach of which the present chapter has developed a critique.

The notion of Design by Contract presented in this chapter and developed in the rest 
of this book comes from [M 1987a] and was further developed in [M 1988], [M 1989c], 
[M 1992b] and [M 1992c]. [M 1994a] discusses the tolerant and demanding approaches 
to precondition design, with particular emphasis on their application to the design of 
reusable libraries, and introduces the “tough love” policy. Further developments of the 
ideas have been contributed by James McKim in [McKim 1992a] (which led to some of 
the initial ideas for IFL), [McKim 1995], [McKim 1996], [McKim 1996a]; see also 
[Henderson-Sellers 1994a] which examines the viewpoint of the supplier.

EXERCISES

E11.1  Complex numbers

Write the abstract data type specification for a class COMPLEX describing the notion of 
complex number with arithmetic operations. Assume perfect arithmetic. 

E11.2  A class and its ADT

Examine all the preconditions and axioms of the STACK abstract data type introduced in 
an earlier chapter and study whether and how each is reflected in class STACK4.
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E11.3  Complete assertions for stacks

Show that by introducing a secret function body which returns the body of a stack, it is 
possible to make the assertions in a STACK class reflect the full corresponding abstract 
data type specification. Discuss the theoretical and practical value of this technique.

E11.4  Exporting the size

Why is capacity exported for the bounded implementation of stacks, class STACK2?

E11.5  An implementation invariant

Write the implementation invariant for class STACK3.

E11.6  Assertions and exports

The discussion of using functions in assertions introduced a function correct_index for the 
precondition of item and put. If you add this function to class ARRAY, what export status 
must you give it?

E11.7  Finding the bugs

Show that each of the four attempts at binary search algorithms advertized as “wrong” is 
indeed incorrect. (Hint: unlike proving an algorithm correct, which requires showing that 
it will work for all possible cases, proving it incorrect only requires that you find one case 
in which the algorithm will produce a wrong result, fail to terminate, or execute an illegal 
operation such as an out-of-bounds array access or other precondition violation.)

E11.8  Invariant violations

The discussion in this chapter has shown that a precondition violation indicates an error 
in the client, and a postcondition violation indicates an error in the supplier. Explain why 
an invariant violation also reflects a supplier error.

E11.9  Random number generators

Write a class implementing pseudo-random number generation, based on a sequence 
ni = f (ni-1) where f  is a given function and the seed n0 will be provided by clients of the 
class. Functions should have no side effects. (Assume f is known; you can find such 
functions in textbooks such as [Knuth 1981], and in numerical libraries.)
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E11.10  A queue module

Write a class implementing queues (first-in, first-out policy), with appropriate assertions, 
in the style of the STACK classes of this chapter. 

E11.11  A set module

Write a class implementing sets of elements of an arbitrary types, with the standard set 
operations (membership test, addition of a new element, union, intersection etc.). Be sure 
to include the proper assertions. Any correct implementation, such as linked lists or arrays, 
is acceptable.

POSTSCRIPT: THE ARIANE 5 CRASH
As this book was being printed, the European Space Agency released the report of the 
international investigation into the test flight of the Ariane 5 launcher, which crashed on 
June 4, 1996, 40 seconds after lift-off, at a reported cost of 500 million dollars (uninsured).

The cause of the crash: a failure of the on-board computer systems. The cause of that 
failure: a conversion from a 64-bit floating-point number (the mission’s “horizontal bias”) 
to a 16-bit signed integer produced an exception because the number was not 
representable with 16 bits. Although some other possible exceptions were monitored 
(using the Ada mechanisms described in the next chapter) prior analysis had shown that 
this particular one could not occur; so it was decided not to encumber the code with an 
extra exception handler.

The real cause: insufficient specification. The analysis that the value would always 
fit in 16 bits was in fact correct — but for the Ariane 4 flight trajectory! The code was 
reused for Ariane 5, and the assumption, although stated in an obscure part of some 
technical document, was simply forgotten. It did not apply any more to Ariane 5.

With the Design by Contract approach, it would have been stated in a precondition:
require

horizontal_bias <= Maximum_horizontal_bias

naturally prompting the quality assurance team to check all uses of the routine and to detect 
that some could violate the assertion. Although we will never know, it seems almost certain 
that the mistake would have been caught, probably through static analysis, and at worst 
during testing thanks to the assertion monitoring mechanisms described in this chapter.

The lesson is clear: reuse without contracts is folly. The “abstracted modules” that 
we have defined as our units of reuse must be equipped with clear specifications of their 
operating conditions — preconditions, postconditions, invariants; and these specifications 
must be in the modules themselves, not in external documents. The principles that we have 
learned, particularly Design by Contract and Self-Documentation, are a required condition 
of any successful reusability policy. Even if your mistakes would cost less than half a 
billion dollars, remember this rule as you go after the great potential benefits of reuse: to 
be reusable, a module must be specified; and the programming language must support 
assertion mechanisms that will put the specification in the software itself.
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When the contract is broken: 
exception handling
Like it or not, it is no use pretending: in spite of all static precautions, some unexpected 
and undesired event will sooner or later occur while one of your systems is executing. This 
is known as an exception and you must be prepared to deal with it.

12.1  BASIC CONCEPTS OF EXCEPTION HANDLING

The literature on exception handling is often not very precise about what really constitutes 
an exception. One of the consequences is that the exception mechanisms present in such 
programming languages as PL/I and Ada are often misused: instead of being reserved for 
truly abnormal cases, they end up serving as inter-routine goto instructions, violating the 
principle of Modular Protection.

Fortunately, the Design by Contract theory introduced in the preceding chapter 
provides a good framework for defining precisely the concepts involved.

Failures

Informally, an exception is an abnormal event that disrupts the execution of a system. To 
obtain a more rigorous definition, it is useful to concentrate first on a more elementary 
concept, failure, which follows directly from the contract idea.

A routine is not just some arbitrary sequence of instructions but the implementation 
of a certain specification — the routine’s contract. Any call must terminate in a state that 
satisfies the precondition and the class invariant. There is also an implicit clause in the 
contract: that the routine must not have caused an abnormal operating system signal, 
resulting for example from memory exhaustion or arithmetic overflow and interrupting 
the normal flow of control in the system’s execution.

It must refrain from causing such events, but of course not everything in life is what 
it must be, and we may expect that once in a while a routine call will be unable to satisfy 
its contract — triggering an abnormal signal, producing a final state that violates the 
postcondition or the invariant, or calling another routine in a state that does not satisfy that 
routine’s precondition (assuming run-time assertion monitoring in the last two cases).
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Such a case will be called a failure.

The discussion will use the phrase “routine failure”, or just “failure”, as an 
abbreviation for “failure of a routine call”. Of course what succeeds or fails is not a routine 
(an element of the software text) but one particular call to that routine at run time.

Exceptions

From the notion of failure we can derive a precise definition of exceptions. A routine fails 
because of some specific event (arithmetic overflow, assertion violation…) that interrupts 
its execution. Such an event is an exception.

Often an exception will cause failure of the routine. But you can prevent this from 
occurring by writing the routine so that it will catch the exception and try to restore a state 
from which the computation will proceed. This is the reason why failure and exception are 
different concepts: every failure results from an exception, but not every exception results 
in failure.

The study of software anomalies in the previous chapter introduced the terms fault
(for a harmful execution event), defect (for an inadequacy of system, which may cause 
faults) and error (for a mistake in the thinking process, which may lead to defects). A 
failure is a fault; an exception is often a fault too, but not if its possible occurrence has 
been anticipated so that the software can recover from the exception.

Sources of exceptions

The software development framework introduced so far opens the possibility of specific 
categories of exception, listed at the top of the facing page.

Case E1 reflects one of the basic requirements of using references: a call a  f  is only 
meaningful if a is attached to an object, that is to say non-void. This was discussed in the 
presentation of the dynamic model.

Case E2 also has to do with void values. Remember that “attachment” covers 
assignment and argument passing, which have the same semantics. We saw in the 
discussion of attachment that it is possible to attach a reference to an expanded target, the 
result being to copy the corresponding object. This assumes that the object exists; if the 
source is void, the attachment will trigger an exception.

Definitions: success, failure
A routine call succeeds if it terminates its execution in a state satisfying the 
routine’s contract. It fails if it does not succeed.

Definition: exception
An exception is a run-time event that may cause a routine call to fail.
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Case E3 follows from signals that the operating system sends to an application when 
it detects an abnormal event, such as a fault in an arithmetic operation (underflow, 
overflow) or an attempt to allocate memory when none is available.

Case E4 arises when a routine fails, as a result of an exception that happened during 
its own execution and from which it was not able to recover. This will be seen in more 
detail below, but be sure to note the rule that results from case E4:

Cases E5 to E10 can only occur if run-time assertion monitoring has been enabled at 
the proper level: at least assertion (require) for E5, assertion (loop) for E8 and E9 etc.

Case E11 assumes that the software may include calls to a procedure raise whose 
sole goal is to raise an exception. Such a procedure will be introduced later.

Causes of failure

Along with the list of possible exception cases, it is useful for the record to define when a 
failure (itself the source of an exception in the caller, as per case E4) can occur:

Definition: exception cases
An exception may occur during the execution of a routine r as a result of any 
of the following situations:
E1 • Attempting a qualified feature call a  f and finding that a is void.
E2 • Attempting to attach a void value to an expanded target.
E3 • Executing an operation that produces an abnormal condition detected 

by the hardware or the operating system.
E4 • Calling a routine that fails.
E5 • Finding that the precondition of r does not hold on entry.
E6 • Finding that the postcondition of r does not hold on exit.
E7 • Finding that the class invariant does not hold on entry or exit.
E8 • Finding that the invariant of a loop does not hold after the from clause 

or after an iteration of the loop body.
E9 • Finding that an iteration of a loop’s body does not decrease the variant.
E10 • Executing a check instruction and finding that its assertion does not 

hold.
E11 • Executing an instruction meant explicitly to trigger an exception.

Failures and exceptions
A failure of a routine causes an exception in its caller.



WHEN THE CONTRACT IS BROKEN: EXCEPTION HANDLING  §12.2 414

We have yet to see 
what it means for a 
routine to “recover” 
from an exception.
The definitions of failure and exception are mutually recursive: a failure arises from 
an exception, and one of the principal sources of exceptions in a calling routine (E4) is the 
failure of a called routine.

12.2  HANDLING EXCEPTIONS
We now have a definition of what may happen — exceptions — and of what we would 
prefer not to happen as a result — failure. Let us equip ourselves with ways to deal with 
exceptions so as to avoid failure. What can a routine do when its execution is suddenly 
interrupted by an unwelcome diversion?

As so often in this presentation, we can get help towards an answer by looking at 
examples of how not to do things. Here the C mechanism (coming from Unix) and an Ada 
textbook will oblige.

How not to do it — a C-Unix example

The first counter-example mechanism (most notably present on Unix, although it has been 
made available on other platforms running C) is a procedure called signal which you can 
call under the form

signal (signal_code, your_routine)

with the effect of planting a reference to your_routine into the software, as the routine that 
should be called whenever a signal of code signal_code occurs. A signal code is one of a 
number of possible integers such as SIGILL (illegal instruction) and SIGFPE (floating-
point exception). You may include as many calls to signal as you like, so as to associate 
different routines with different signals.

Then assume some instruction executed after the call to signal triggers a signal of 
code signal_code. Were it not for the signal call, this event would immediately terminate 
the execution in an abnormal state. Instead it will cause a call to your_routine, which 
presumably performs some corrective action, and then will … resume the execution exactly 
at the point where the exception occurred. This is dangerous, as you have no guarantee that 
the cause of the trouble has been addressed at all; if the computation was interrupted by a 
signal it was probably impossible to complete it starting from its initial state.

What you will need in most cases is a way to correct the situation and then restart
the routine in a new, improved initial state. We will see a simple mechanism that 
implements this scheme. Note that one can achieve it in C too, on most platforms, by 
combining the signal facility with two other library routines: setjmp to insert a marker into 
the execution record for possible later return, and longjmp to return to such a marker, even 
if several calls have been started since the setjmp. The setjmp-longjmp mechanism is, 

Definition: failure cases
A routine call will fail if and only if an exception occurs during its execution 
and the routine does not recover from the exception.
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however, delicate to use; it can be useful in the target code generated by a compiler — and 
can indeed serve, together with signal, to implement the high-level O-O exception 
mechanism introduced later in this chapter — but is not fit for direct consumption by 
human programmers.

How not to do it — an Ada example

Here is a routine taken from an Ada textbook:

sqrt (x: REAL) return REAL
begin

if x < 0.0 then
raise Negative

else
normal_square_root_computation

end
exception

when Negative =>
put ("Negative argument")
return

when others => …
end -- sqrt

This example was probably meant just as a syntactical illustration of the Ada 
mechanism, and was obviously written quickly (for example it fails to return a value in the 
exceptional case); so it would be unfair to criticize it as if it were an earnest example of 
good programming. But it provides a useful point of reference by clearly showing an 
undesirable way of handling exceptions. Given the intended uses of Ada — military and 
space systems — one can only hope that not too many actual Ada programs have taken 
this model verbatim.

The goal is to compute the real square root of a real number. But what if the number 
is negative? Ada has no assertions, so the routine performs a test and, if it finds n to be 
negative, raises an exception.

The Ada instruction raise Exc interrupts execution of the current routine, triggering 
an exception of code Exc. Once raised, an exception can be caught, through a routine’s (or 
block’s) exception clause. Such a clause, of the form

exception
when code_a1, code_a2, …=> Instructions_a;
when code_b1, … => Instructions_b;
…

is able to handle any exception whose code is one of those listed in the when subclauses; 
it will execute Instructions_a for codes code_a1, code_a2, … and so on for the others. One 
of the subclauses may, as in the example, start with when others, and will then handle any 
exception not explicitly named in the other subclauses. If an exception occurs but its code 
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is not listed (explicitly or through when others), the routine will pass it to its caller; if 
there is no caller, meaning that the failed routine is the main program, execution terminates 
abnormally.

In the example there is no need to go to the caller since the exception, just after being 
raised, is caught by the exception clause of the routine itself, which contains a subclause 
when Negative => …

But what then do the corresponding instructions do? Here they are again:

put ("Negative argument")
return

In other words: print out a message — a delicate thought, considering was happens 
next; and then return to the caller. The caller will not be notified of the event, and will 
continue its execution as if nothing had happened. Thinking again of typical applications 
of Ada, we may just wish that artillery computations, which can indeed require square root 
computations, do not follow this scheme, as it might direct a few missiles to the wrong 
soldiers (some of whom may, however, have the consolation of seeing the error message 
shortly before the encounter).

This technique is probably worse than the C-Unix signal mechanism, which at least 
picks up the computation where it left. A when subclause that ends with return does not 
even continue the current routine (assuming there are more instructions to execute); it gives 
up and returns to the caller as if everything were fine, although everything is not fine. 
Managers — and, to continue with the military theme, officers — know this situation well: 
you have assigned a task to someone, and are told the task has been completed — but it has 
not. This leads to some of the worst disasters in human affairs, and in software affairs too.

This counter-example holds a lesson for Ada programmers: under almost no 
circumstances should a when subclause terminate its execution with a return. The 
qualification “almost” is here for completeness, to account for a special case, the false 
alarm, discussed below; but that case is very rare. Ending exception handling with a 
return means pretending to the caller that everything is right when it is not. This is 
dangerous and unacceptable. If you are unable to correct the problem and satisfy the Ada 
routine’s contract, you should make the routine fail. Ada provides a simple mechanism to 
do this: in an exception clause you may execute a raise instruction written as just

raise

whose effect is to re-raise the original exception to the caller. This is the proper way of 
terminating an execution that is not able to fulfill its contract.

Ada Exception rule
The execution of any Ada exception handler should end by either executing 
a raise instruction or retrying the enclosing program unit.
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Exception handling principles
These counter-examples help show the way to a disciplined use of exceptions. The 
following principle will serve as a basis for the discussion.

Let us do away first with the false alarm case, which corresponds to the basic C-Unix 
mechanism as we have seen it. Here is an example. Some window systems will cause an 
exception if the user of an interactive system resizes a window while some process is 
executing in it. Assume that such a process does not perform any window output; then the 
exception was harmless. But even in such case there are usually better ways, such as 
disabling the signals altogether, so that no exception will occur. This is how we will deal 
with false alarms in the mechanism of the next sections.

False alarms are only possible for operating system signals — in fact, only for signals 
of the more benign kind, since you cannot ignore an arithmetic overflow or an inability to 
allocate requested memory. Exceptions of all the other categories indicate trouble that 
cannot be ignored. It would be absurd, for example, to proceed with a routine after finding 
that its precondition does not hold.

So much for false alarms (unfortunately, since they are the easiest case to handle). 
For the rest of this discussion we concentrate on true exceptions, those which we cannot 
just turn off like an oversensitive car alarm.

Retrying is the most hopeful strategy: we have lost a battle, but we have not lost the 
war. Even though our initial plan for meeting our contract has been disrupted, we still 
think that we can satisfy our client by trying another tack. If we succeed, the client will be 
entirely unaffected by the exception: after one or more new attempts following the initial 
failed one, we will return normally, having fulfilled the contract. (“Mission accomplished, 
Sir. The usual little troubles along the way, Sir. All fine by now, Sir.”)

What is the “other tack” to be tried on the second attempt? It might be a different 
algorithm; or it might be the same algorithm, executed again after some changes have been 
brought to the state of the execution (attributes, local entities) in the hope of preventing 
the exception from occurring again. In some cases, it may even be the original routine tried 
again without any change whatsoever; this is applicable if the exception was due to some 

Disciplined Exception Handling principle
There are only two legitimate responses to an exception that occurs during 
the execution of a routine:
R1 •Retrying: attempt to change the conditions that led to the exception 

and to execute the routine again from the start.
R2 •Failure (also known as organized panic): clean up the environment, 

terminate the call and report failure to the caller.
In addition, exceptions resulting from some operating system signals (case 
E3 of the classification of exceptions) may in rare cases justify a false alarm
response: determine that the exception is harmless and pick up the routine’s 
execution where it started.
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external event — transient hardware malfunction, temporarily busy device or 
communication line — which we do not control although we expect it will go away.

With the other response, failure, we accept that we not only have lost the battle (the 
current attempt at executing the routine body) but cannot win the war (the attempt to 
terminate the call so as to satisfy the contract). So we give up, but we must first ensure two 
conditions, explaining the use of “organized panic” as a more vivid synonym for “failure”:

• Making sure (unlike what happened in the sqrt counter-example) that the caller gets 
an exception. This is the panic aspect: the routine has failed to live up to its contract.

• Restoring a consistent execution state — the organized aspect.

What is a “consistent” state? From our study of class correctness in the previous 
chapter we know the answer: a state that satisfies the invariant. We saw that in the course 
of its work a routine execution may temporarily violate the invariant, with the intention of 
restoring it before termination. But if an exception occurs in an intermediate state the 
invariant may be violated. The routine must restore it before returning control to its caller.

The call chain

To discuss the exception handling mechanism it will be useful to have a clear picture of 
the sequence of calls that may lead to an exception. This is the notion of call chain, already 
present in the explanation of the Ada mechanism.

Let r0 be the root creation procedure of a certain system (in Ada r0 would be the main 
program). At any time during the execution, there is a current routine, the routine whose 
execution was started last; it was started by the execution of a certain routine; that routine 
was itself called by a routine; and so on. If we follow this called-to-caller chain all the way 
through we will end up at r0. The reverse chain (r0, the last routine r1 that it called, the last 
routine r2 that r1 called, and so on down to the current routine) is the call chain.

If a routine produces an exception (as pictured at the bottom-right of the figure), it 
may be necessary to go up the chain until finding a routine that is equipped to handle the 
exception — or stop execution if we reach r0, not having found any applicable exception 
handler. This was the case in Ada when no routine in the call chain has an exception clause 
with a when clause that names the exception type or others.

r0
r1

r2

r3

r4

Routine call
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12.3  AN EXCEPTION MECHANISM

From the preceding analysis follows the exception mechanism that fits best with the 
object-oriented approach and the ideas of Design by Contract.

The basic properties will follow from a simple language addition — two keywords 
— to the framework of the preceding chapters. A library class, EXCEPTIONS, will also 
be available for cases in which you need to fine-tune the mechanism.

Rescue and Retry

First, it must be possible to specify, in the text of a routine, how to deal with an exception 
that occurs during one of its calls. We need a new clause for that purpose; the most 
appropriate keyword is rescue, indicating that the clause describes how to try to recover 
from an undesirable run-time event. Because the rescue clause describes operations to be 
executed when the routine’s behavior is outside of the standard case described by the 
precondition (require), body (do) and postcondition (ensure), it will appear, when 
present, after all these other clauses:

routine
require

precondition
local

… Local entity declarations …
do

body
ensure

postcondition
rescue

rescue_clause
end

The rescue_clause is a sequence of instructions. Whenever an exception occurs 
during the execution of the normal body, this execution will stop and the rescue_clause
will be executed instead. There is at most one rescue clause in a routine, but it can find 
out what the exception was (using techniques introduced later), so that you will be able to 
treat different kinds of exception differently if you wish to.

The other new construct is the retry instruction, written just retry. This instruction 
may only appear in a rescue clause. Its execution consists in re-starting the routine body 
from the beginning. The initializations are of course not repeated.

These constructs are the direct implementation of the Disciplined Exception 
Handling principle. The retry instruction provides the mechanism for retrying; a rescue
clause that does not execute a retry leads to failure.
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How to fail without really trying

The last observation is worth emphasizing:

So if you have wondered how routines can fail in practice — causing case E4 of the 
exception classification — this is it.

As a special case, consider a routine which does not have a rescue clause. In practice 
this will be the case with the vast majority of routines since the approach to exception 
handling developed here suggests equipping only a select few routines with such a clause.
Ignoring possible local entity declarations, arguments, precondition and postcondition, the 
routine appears as

routine
do

body
end

Then if we consider — as a temporary convention — that the absence of a rescue
clause is the same thing as an empty rescue clause, that is to say

routine
do

body
rescue

-- Nothing here (empty instruction list)
end

the Failure principle has an immediate consequence: if an exception occurs in a routine 
without rescue clause it will cause the routine to fail, triggering an exception in its caller.

Treating an absent rescue clause as if it were present but empty is a good enough 
approximation at this stage of the discussion; but we will need to refine this rule slightly 
when we start looking at the effect of exceptions on the class invariant.

An exception history table

If a routine fails, either because it has no rescue clause at all or because its rescue clause 
executes to the end without a retry, it will interrupt the execution of its caller with a 
“Routine failed” (E4) exception. The caller is then faced with the same two possibilities: 
either it has a rescue clause that can execute a successful retry and get rid of the 
exception, or it will fail too, passing the exception one level up the call chain.

Failure principle
Execution of a rescue clause to its end, not leading to a retry instruction, 
causes the current routine call to fail.



§12.3   AN EXCEPTION MECHANISM 421

An exception 
history table
If in the end no routine in the call chain is able to recover from the exception, the 
execution as a whole will fail. In such a case the environment should print out a clear 
description of what happened, the exception history table. Here is an example:

This is a record not only of the exceptions that directly led to the execution’s failure 
but of all recent exceptions, up to a limit of 100 by default, including those from which the 
execution was able to recover through a retry. From top to bottom the order is the reverse 
of the order in which calls were started; the creation procedure is on the last line.

The Routine column identifies, for each exception, the routine whose call was 
interrupted by the exception. The Object column identifies the target of that call; here the 
objects have names such as O1, but in a real trace they will have internal identifiers, useful 
to determine whether two objects are the same. The Class column gives the object’s 
generating class.

The Nature of exception column indicates what happened. This is where, for a 
assertion violation as in the second entry from the top, the environment can take advantage 
of assertion labels, interval_big_enough in the example, to identify the precise clause that 
was violated.

The last column indicates how the exception was handled: Retry or Fail. The table 
consists of a sequence of sections separated by thick lines; each section except the last led 
to a Retry. Since a Retry enables the execution to restart normally, an arbitrary number of 
calls may have occurred between two calls separated by a thick line.

Ignoring any such intermediate calls — successful and as such uninteresting for the 
purposes of this discussion — here is the call and return chain corresponding to the above 
exception history table. To reconstruct the action you should follow the arrows counter-
clockwise from the call to make at the top left.

Object Class Routine Nature of exception Effect

O4 Z_FUNCTION split (from E_FUNCTION) Feature interpolate: 
Called on void 
reference.

Retry

O3 INTERVAL integrate interval_big_enough: 
Precondition violated.

Fail

O2 EQUATION solve (from GENERAL_EQUATION) Routine failure Fail

O2 EQUATION  filter Routine failure Retry

O2 MATH new_matrix (from BASIC_MATH) enough_memory: 
Check violated.

Fail

O1 
(root)

INTERFACE make Routine failure Fail
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A failed 
execution
12.4  EXCEPTION HANDLING EXAMPLES

We now have the basic mechanism. Let us see how to apply it to common situations.

Fragile input

Assume that in an interactive system you need to prompt your system’s user to enter an 
integer. Assume further that the only procedure at your disposal to read the integer, 
read_one_integer, leaving its result in the attribute last_integer_read, is not robust: if 
provided with something else than integer input, it may fail, producing an exception. Of 
course you do not want your own system to fail in that case, but since you have no 
control over read_one_integer you must use it as it is and try to recover from the 
exception if it occurs. Here is a possible scheme:

get_integer
-- Get integer from user and make it available in last_integer_read.
-- If input initially incorrect, ask again as many times as necessary.

do
print ("Please enter an integer: ")
read_one_integer

rescue
retry

end

This version of the routine illustrates the retry strategy: we just keep retrying.

An obvious criticism is that if a user keeps on entering incorrect input, the routine 
will forever keep asking for a value. This is not a very good solution. We might put an 
upper bound, say five, on the number of attempts. Here is the revised version:

make

new_matrix

filter
solve

integrate

splitCallNormal return

Failure return Retry (one or more times)
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Maximum_attempts: INTEGER = 5
-- Number of attempts before giving up getting an integer.

get_integer
-- Attempt to read integer in at most Maximum_attempts attempts.
-- Set value of integer_was_read to record whether successful.
-- If successful, make integer available in last_integer_read.

local
attempts: INTEGER

do
if attempts < Maximum_attempts then

print ("Please enter an integer: ")
read_one_integer
integer_was_read := True

else
integer_was_read := False
attempts := attempts + 1

end
rescue

retry
end

This assumes that the enclosing class has a boolean attribute integer_was_read 
which will record how the operation went. Callers should use the routine as follows to try 
to read an integer and assign it to an integer entity n:

get_integer
if integer_was_read then

n := last_integer_read
else

“Deal with case in which it was impossible to obtain an integer”
end

Recovering from hardware or operating system exceptions

Among the events that trigger exceptions are signals sent by the operating system, some 
of which may have originated with the hardware. Examples include: arithmetic overflow 
and underflow; impossible I/O operations; “illegal instruction” attempts (which, with a 
good object-oriented language, will come not from the O-O software but from companion 
routines, written in lower-level languages, which may overwrite certain areas of memory); 
creation or clone operations that fail because no memory is available; user interrupts (a 
user hitting the “break” key or equivalent during execution).

Theoretically you may view such conditions as assertion violations. If a + b
provokes overflow, it means that the call has not observed the implicit precondition on the 
+ function for integer or real numbers, stating that the mathematical sum of the two 
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arguments should be representable on the computer. A similar implicit precondition on the 
allocation of a new object (creation or clone) is that enough memory is available; if a write 
fails, it is because the environment — files, devices, users — did not meet the applicability 
conditions. But in such cases it is impractical or impossible to express the assertions, let 
alone check them: the only solution is to attempt the operation and, if the hardware or 
operating system signals an abnormal condition, to treat it as an exception.

Consider the problem of writing a function quasi_inverse which for any real number 

x must return either its inverse  or, if that is impossible to compute because x is too small, 
the value 0. This type of problem is essentially impossible to solve without an exception 
mechanism: the only practical way to know whether x has a representable inverse is to 

attempt the division ; but if this provokes overflow and you cannot handle exceptions, 
the program will crash and it will be too late to return 0 as a result.

On some platforms it may be possible to write a function invertible such that invertible (x)
is true if and only if the inverse of x can be computed. You can then use invertible to write 
quasi_inverse. But this is usually not a practical solution since such a function will not be 
portable across platforms, and in time-sensitive numerical computations will cause a 
serious performance overhead, a call to invertible being at least as expensive as the 
inversion itself.

With the rescue-retry mechanism you can easily solve the problem, at least on 
hardware that triggers a signal for arithmetic underflow:

quasi_inverse (x: REAL): REAL
-- 1/x if possible, otherwise 0

local
division_tried: BOOLEAN

do
if not division_tried then

Result := 1/x
end

rescue
division_tried := True
retry

end
The initialization rules set division_tried to false at the start of each call. The body 

does not need any else clause because these rules also initialize Result to 0.

Retrying for software fault tolerance

Assume you have written a text editor and (shame on you) you are not quite sure it is 
entirely bug-free, but you already want to get some initial user feedback. Your guinea pigs 
are willing to tolerate a system with some remaining errors; they might accept for example 
that once in a while it will be unable to carry out a command that they have requested; but 

1
x
---

1
x
---
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Chapter 21.
they will not use it to enter serious texts (which is what you want them to do, to test your 
editor under realistic conditions) if they fear that a failure may result in a catastrophe, such 
as brutal exit and loss of the last half-hour’s work. With the Retrying mechanism you can 
provide a defense against such behavior.

Assume that the editor, as will usually be the case, contains a basic command 
execution loop of the form

from … until exit loop
execute_one_command

end

where the body of routine execute_one_command is of the form

“Decode user request”
“Execute appropriate command in response to request”

The “Execute…” instruction chooses among a set of available routines (for 
example delete a line, change a word etc.) We will see in a later chapter how the 
techniques of inheritance and dynamic binding yield simple, elegant structures for such 
multi-way decisions.

The assumption is that the different routines are not entirely safe; some of them may 
fail at unpredictable times. You can provide a primitive but effective protection against 
such an event by writing the routine as

execute_one_command
-- Get a request from the user and, if possible,
-- execute the corresponding command.

do
“Decode user request”
“Execute appropriate command in response to request”

rescue
message ("Sorry, this command failed")
message ("Please try another command")
message ("Please report this failure to the author")
“Instructions to patch up the state of the editor”
retry

end
This scheme assumes in practice that the types of supported user request include 

“save current state of my work” and “quit”, both of which had better work correctly. A 
user who sees the message Sorry, this command failed will most likely want to save the 
results of the current session and get out as quickly as possible.

Some of the routines implementing individual operations may have their own rescue
clauses, leading to failure (so that the above rescue clause of execute_one_command takes 
over) but only after printing a more informative, command-specific message.
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N-version programming

Another example of retrying for software fault tolerance is an implementation of the “N-
version programming” approach to improving software reliability.

N-version programming was inspired by redundancy techniques that have proved 
their usefulness in hardware. In mission-critical setups it is frequent to encounter 
redundant hardware configurations, where several devices — for example computers — 
perform an identical function, and an arbitrating mechanism compares the results, 
deciding for the majority in case of discrepancy. This approach guards against single-
component failures and is common in aerospace applications. (In a famous incident, an 
early space shuttle launch had to be delayed because of a bug in the software for the 
arbitrating computer itself.) N-version programming transposes this approach to software 
by suggesting that for a mission-critical development two or more teams, working in 
environments as distinct as possible, should produce alternative systems, in the hope that 
errors, if any, will be different.

This is a controversial idea; one may argue that the money would be better spent in 
improving the correctness and robustness of a single version than in financing two or more 
imperfect implementations. Let us, however, ignore these objections and refrain from any 
judgment on the idea itself, but see how the retry mechanism would support the idea of 
using several implementations where one takes over if the others fail:

do_task
-- Solve a problem by applying one of several possible implementations.

require
…

local
attempts: INTEGER

do
if attempts = 0 then

implementation_1
elseif attempts = 1 then

implementation_2
end

ensure
…

rescue
attempts := attempts + 1
if attempts < 2 then

“Perhaps some instructions to reset to stable state”
retry

end
end

The generalization to more than two alternative implementations is immediate.
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This example is typical of the use of retry. The rescue clause never attempts to reach 
the original goal using a substitute implementation; reaching this goal, as expressed by the 
postcondition if there is one, is the privilege of the normal body. Note that after two 
attempts (or n in the general case) the routine simply executes its rescue clause to the end 
and so fails.

Let us look more closely at what happens when an exception is triggered during the 
execution of r. The normal execution (the body) stops; the rescue clause is executed 
instead. Then two cases may occur:

• The rescue clause may execute a retry, usually after some other instructions. In this 
case, execution of the routine will start anew. This new attempt may succeed; then 
the routine will terminate normally and return to its client. The call is a success; the 
contract has been fulfilled. Execution of the client is not affected, except of course 
that the call may have taken longer than normal. If, however, the retry attempt again 
causes an exception, the process of executing the rescue clause will start anew. 

• If the rescue clause does not execute a retry, it will continue to its end. (This happens 
in the last example when attempts >= 2.) In this case the routine fails: it returns 
control to its caller, signaling an exception. Because the caller gets an exception, the 
same rule determines how its own execution continues.

This mechanism strictly adheres to the Disciplined Exception Handling principle: 
either a routine succeeds, that is to say its body executes to the end and satisfies the 
postcondition, or it fails. When interrupted by an exception, you may either report failure 
or try your normal body again; in no way can you exit through the rescue clause and 
pretend to your caller that you succeeded.

12.5  THE TASK OF A RESCUE CLAUSE

The last comments get us started towards a better understanding of the exception 
mechanism by suggesting the theoretical role of rescue clauses. Some formal reasoning 
will help us obtain the complete picture.

The correctness of a rescue clause

The formal definition of class correctness stated two requirements on the features of a 
class. One (C1) requires creation procedures to start things off properly. The other (C2), 
more directly relevant for the present discussion, states that to satisfy its contract, every 
routine, started with its precondition and the class invariant both satisfied, must preserve 
the invariant and ensure its postcondition. This was illustrated by the diagram depicting 
the typical object lifecycle:
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The formal rule read:

where prer is the precondition, INV the class invariant, Bodyr the body of the routine, and 
postr the postcondition. To keep things simple let us ignore the arguments xr.

Let Rescuer be the rescue clause of a routine, ignoring any branch that leads to a 
retry — that is to say keeping only those branches that will result in failure if executed. 
Rule C2 is a specification of the body Bodyr of the routine, in terms of what initial states 
it assumes and what final states it can guarantee. Can we obtain a similar specification for 
RESCUEr ? It should be of the form

{ ? }  Rescuer  { ? }
with the question marks replaced by actual assertions. (Here it is useful to try answering 
the question for yourself before reading on: how would you fill in the question marks?)

Consider first the input assertion — the question mark on the left of Rescuer . 
Anything non-trivial that we write there would be wrong! Remember the discussion of 
attractive job offers: for whoever implements the task A in {P} A {Q}, the stronger the 
precondition P, the easier the job, since a precondition restricts the set of input cases that 
you must handle. Any precondition for Rescuer would make the job easier by restricting 
the set of states in which Rescuer may be called to action. But we may not assume any such 
restriction since exceptions, by their very nature, may happen at any time. If we knew when 
an exception will happen, it probably would not be an exception any more. Think of 
hardware failures: we have no clue as to when a computer can start to malfunction. Nor do 
we know, in an interactive system, when a user will feel like hitting the “break” key.

So the only P assertion that we can afford here (to replace the question mark on the 
left) is the one that asserts nothing at all: True, the assertion that all states satisfy.

For a lazy Rescuer implementor — again in reference to the discussion of job offers 
in the previous chapter — this is bad news; in fact the precondition True is always the 
worst possible news for a supplier, the case in which “the customer is always right”!

C2 • For every exported routine r and any set of valid arguments xr:
{prer (xr ) and INV}  Bodyr  {postr (xr) and INV}

 create a  make (…)
S1

S2

S3

S4

a  f (…)

a  g (…)

a  f (…)
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What about the output assertion (the Q)? As discussed earlier, a rescue clause that 
leads to a failure must, before returning control to its caller with an exception, restore a 
stable state. This means reestablishing the invariant.

Hence the rule that we seek, with no more question marks:

Similar reasoning yields the corresponding rule for any branch Retryr of the rescue 
clause leading to a retry instruction:

A clear separation of roles

It is interesting to contrast the formal roles of the body and the rescue clause:

C2 • {prer and INV}  Bodyr  {postr (xr) INV}

C3 •  {True}  Rescuer  {INV}

The input assertion is stronger for Bodyr : whereas the rescue clause is not permitted 
to assume anything at all, the routine’s body may assume the precondition and the 
invariant. This makes its job easier.

The output assertion, however, is also stronger for Bodyr : whereas the rescue clause 
is only required to restore the invariant, the normal execution must also ensure the 
postcondition — the official job of the routine. This makes its job harder.

These rules reflect the separation of roles between the body (the do clause) and the 
rescue clause. The task of the body is to ensure the routine’s contract; not directly to handle 
exceptions. The task of the rescue clause is to handle exceptions, returning control to the 
body or (in the failure case) to the caller; not to ensure the contract.

As an analogy — part of this book’s constant effort to provide readers not just with 
theoretically attractive concepts but also with practical skills that they can apply to the 
pursuit of their careers — consider the difficulty of choosing between two noble 
professions: cook and firefighter. Each has its grandeur, but each has its servitudes. A 
gratifying quality of the cook's job is that he may assume, when he shows up at work in 
the morning, that the restaurant is not burning (satisfies the invariant); presumably his 
contract does not specify any cooking obligation under burning circumstances. But with a 
non-burning initial state the cook must prepare meals (ensure the postcondition); it is also 
a component of his contract, although perhaps an implicit one, that throughout this 
endeavor he should maintain the invariant, if he can, by not setting the restaurant on fire.

Correctness rule for failure-inducing rescue clauses
C3 •          {True}  Rescuer  {INV}

Correctness rule for retry-inducing rescue clauses
C4 •          {True}  Retryr  {INV and prer}
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The firefighter, for his part, may assume nothing as to the state in which he finds the 
restaurant when he is called for help at any time of day or night. There is not even any 
guarantee that the restaurant is indeed burning — no precondition of the form is_burning, 
or of any other form save for True — since any call may be a false alarm. In some cases, 
of course, the restaurant will be burning. But then a firefighter’s only duty is to return it to 
a non-burning state; his job description does not require that he also serve a meal to the 
assembly of patiently waiting customers.

When there is no rescue clause

Having formalized the role of rescue clauses we can take a second look at what happens 
when an exception occurs in a routine that has no such clause. The rule introduced earlier 
— with a warning that it would have to be revised — stated that an absent rescue clause 
was equivalent to a present but empty one (rescue end). In light of our formal rules, 
however, this is not always appropriate. C3 requires that

{True}  Rescuer  {INV}

If  Rescuer  is an empty instruction and the invariant INV is anything other than True, 
this will not hold.

Hence the exact rule. The class ANY — mother of all classes — includes a procedure

default_rescue

-- Handle exception if no Rescue clause.

-- (Default: do nothing)

do

end

A routine that does not have a Rescue clause is considered to have one that, rather 
than being empty as first suggested, has the form

rescue

default_rescue

Every class can redefine default_rescue (using the feature redefinition mechanism 
studied as part of inheritance in a later chapter) to perform some specific action, instead 
of the default empty effect defined in GENERAL.

Rule C3 indicates the constraint on any such action: starting in any state, it must 
restore the class invariant INV. Now you will certainly remember that producing a state 
that satisfies the invariant was also the role of the creation procedures of a class, as 
expressed by the rule labeled C1. In many cases, you will be able to write the redefinition 
of default_rescue so that it relies on a creation procedure.
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12.6  ADVANCED EXCEPTION HANDLING

The extremely simple mechanism developed so far handles most of the needs for 
exception handling. But certain applications may require a bit of fine-tuning:

• You may need to find out the nature of the latest exception, so as to handle different 
exceptions differently.

• You may want to specify that certain signals should not trigger an exception.

• You may decide to trigger an exception yourself.

We could extend the language mechanism accordingly, but this does not seem the 
right approach, for at least three reasons: the facilities are needed only occasionally, so that 
we would be needlessly burdening the language; some of them (in particular anything that 
has to do with signals) may be platform-dependent, whereas a language definition should 
be portable; and when you select a set of these facilities it is hard to be sure that you will 
not at some later time think of other useful ones, which would then force a new language 
modification — not a pleasant prospect.

For such a situation we should turn not to the language but to the supporting library. 
We introduce a library class EXCEPTIONS, which provides the necessary fine-tuning 
capabilities. Classes that need these capabilities will inherit EXCEPTIONS, using the 
inheritance mechanism detailed in later chapters. (Some developers may prefer to use the 
client relation rather than inheritance.)

Exception queries

Class EXCEPTIONS provides a number of queries for obtaining some information about 
the last exception. You can find out the integer code of that exception:

exception: INTEGER
-- Code of last exception that occurred

original_exception: INTEGER
-- Original code of last exception that triggered current exception

The difference between exception and original_exception is significant in the case 
of an “organized panic” response: if a routine gets an exception of code oc (indicating for 
example an arithmetic overflow) but has no rescue clause, its caller will get an exception 
whose own code, given by the value of exception, indicates “failure of a called routine”. 
It may be useful at that stage, or higher up in the call chain, to know what the original cause 
was. This is the role of original_exception.

The exception codes are integers. Values for the predefined exceptions are given by 
integer constants provided by EXCEPTIONS (which inherits them from another class 
EXCEPTION_CONSTANTS). Here are some examples:
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Check_instruction: INTEGER = 7
-- Exception code for violated check

Class_invariant: INTEGER =…
-- Exception code for violated class invariant

Incorrect_inspect_value: INTEGER = …
-- Exception code for inspect value which is not one
-- of the inspect constants, if there is no Else_part

Loop_invariant: INTEGER = …
-- Exception code for violated loop invariant

Loop_variant: INTEGER = …
-- Exception code for non-decreased loop variant

No_more_memory: INTEGER = …
-- Exception code for failed memory allocation

Postcondition: INTEGER = …
-- Exception code for violated postcondition

Precondition: INTEGER =…
-- Exception code for violated precondition

Routine_failure: INTEGER = …
-- Exception code for failed routine

Void_assigned_to_expanded: INTEGER …
Since the integer values themselves are irrelevant, only the first one has been shown.
A few other self-explanatory queries provide further information if needed:
meaning (except: INTEGER)

-- A message in English describing the nature of exceptions
-- of code except

is_assertion_violation: BOOLEAN
-- Is last exception originally due to a violated assertion
-- or non-decreasing variant?

ensure
Result = (exception = Precondition) or (exception = Postcondition) or

(exception = Class_invariant) or
(exception = Loop_invariant) or (exception = Loop_variant)

is_system_exception: BOOLEAN
-- Is last exception originally due to external event (operating system error)?

is_signal: BOOLEAN
-- Is last exception originally due to an operating system signal?

tag_name: STRING
-- Tag of last violated assertion clause

original_tag_name: STRING
-- Assertion tag for original form of last assertion violation.
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recipient_name: STRING
-- Name of routine whose execution was interrupted by last exception

class_name: STRING
-- Name of class including recipient of last exception

original_recipient_name: STRING
-- Name of routine whose execution was interrupted by
-- original form of last exception

original_class_name: STRING
-- Name of class including recipient of original form of last exception

With these features a rescue clause can handle different kinds of exception in 
different ways. For example you can write it, in a class inheriting from EXCEPTIONS, as

rescue
if is_assertion_violation then

“Process assertion violation case”
else if is_signal then

“Process signal case”
else

…
end

or, with an even finer grain of control, as

rescue
if exception = Incorrect_inspect_value then

“Process assertion violation case”
else if exception = Routine_Failure then

“Process signal case”
else

…
end

Using class EXCEPTIONS, we can modify the quasi_inverse example so that it will 
only attempt the retry if the exception was overflow. Other exceptions, such as one 
generated when the interactive user presses the Break key, will not cause the retry. The 
instruction in the rescue clause becomes:

if exception = Numerical_error then
division_tried := True; retry

end
Since there is no else clause, exceptions other than Numerical_error will result in 

failure, the correct consequence since the routine has no provision for recovery in such 
cases. When writing a rescue clause specifically to process a certain kind of possible 
exception, you may use this style to avoid lumping other, unexpected kinds with it.
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How fine a degree of control?

One may express reservations about going to the level of specific exception handling 
illustrated by the last two extracts. This chapter has developed a view of exceptions as 
undesired events; when one happens, the reaction of the software and its developer is “I 
don’t want to be here! Get me out as soon as possible!”. This seems incompatible with 
exerting fine control, depending on the exception’s source, over what happens in a 
rescue clause.

For that reason, I tend in my own work to avoid using detailed case analysis on 
exception sources, and stick to exception clauses that try to fix things if they can, and then 
fail or retry.

This style is perhaps too austere, and some developers prefer a less restricted 
exception handling scheme that makes full use of the query mechanisms of class 
EXCEPTIONS while remaining disciplined. If you want to use such a scheme you will 
find in EXCEPTIONS all that you need. But do not lose sight of the following principle, a 
consequence of the discussion in the rest of this chapter:

Developer exceptions

All the exceptions studied so far resulted from events caused by agents external to the 
software (such as operating system signals) or from involuntary consequences of the 
software’s action (as with assertion violations). It may be useful in some applications to 
cause an exception to happen on purpose.

Such an exception is called a developer exception and is characterized by an integer 
code (separate from the general exception code, which is the same for all developer 
exceptions) and an associated string name, which may be used for example in error 
messages. You can use the following features to raise a developer exception, and to 
analyze its properties in a rescue clause:

trigger (code: INTEGER; message: STRING)
-- Interrupt execution of current routine with exception
-- of code code and associated text message.

developer_exception_code: INTEGER
-- Code of last developer exception

developer_exception_name: STRING
-- Name associated with last developer exception

Exception Simplicity principle
All processing done in a rescue clause should remain simple, and focused on 
the sole goal of bringing the recipient object back to a stable state, permitting 
a retry if possible.
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is_developer_exception: BOOLEAN
-- Was last exception originally due to a developer exception?

is_developer_exception_of_name (name: STRING): BOOLEAN
-- Is the last exception originally due to a developer
-- exception of name name?

ensure
Result := is_developer_exception and then

equal (name, developer_exception_name)

It is sometimes useful to associate with a developer exception a context — any object 
structure that may be useful to the software element handling the exception:

set_developer_exception_context (c: ANY)
-- Define c as the context associated with subsequent developer
-- exceptions (as caused by calls to trigger).

require
context_exists: c /= Void

developer_exception_context: ANY
-- Context set by last call to set_developer_exception_context
-- void if no such call.

These facilities enable a style of development that heavily relies on some software 
elements triggering exceptions that others will process. In one compiler that I have seen, 
the developers took advantage of this mechanism, in the parsing algorithm, to stick to a 
relatively linear control structure, recognizing the various elements of the input text one 
after the other. Such sequential treatment is only possible if the elements parsed are the 
expected ones; any syntactical error disrupts the process. Rather than complicating the 
control structure by adding possibly nested if … then … else constructs, the developers 
chose to raise a developer exception whenever encountering an error, then dealt with it 
separately in the calling routine. As hinted earlier, this is not my favorite style, but there 
is nothing inherently wrong with it, so the developer exception mechanisms are there for 
those who want them.

12.7  DISCUSSION

We have now completed the design of an exception mechanism for object-oriented 
software construction, compatible with the rest of the approach and resulting directly from 
the ideas of Design by Contract developed in the preceding chapter. Thanks in particular 
to the retry instructions the mechanism is more powerful than what you will find in many 
languages; at the same time it may appear stricter because of its emphasis on retaining the 
ability to reason precisely about the effect of each routine.

Let us explore a few alternative design ideas that could have been followed, and why 
they were not retained.
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Disciplined exceptions

Exceptions, as they have been presented, are a technique to deal with erroneous conditions 
that may be arise at run time: assertion violations, hardware signals, attempts to access 
void references.

The approach we have explored is based on the contracting metaphor: under no 
circumstances should a routine pretend it has succeeded when in fact it has failed to 
achieve its purpose. A routine may only succeed (perhaps after experiencing some 
exceptions but recovering from them through one or more retry, unbeknownst to the 
client) or fail.

Exceptions in Ada, CLU or PL/I do not follow this model. Using the Ada model, and 
instruction

raise exc

cancels the routine that executed it and returns control to its caller, which may handle the 
exception exc in a special handler clause or, if it has no such handler, will itself return 
control to its caller. But there is no rule as to what a handler may do. Hence it is perfectly 
possible to ignore an exception, or to return an alternate result. This explains why some 
developers use this exception mechanism simply to deal with cases other than the easiest 
one for an algorithm. Such applications of exceptions really use raise as a goto instruction, 
and a fairly dangerous one since it crosses routine boundaries. In my opinion, they are 
abuses of the mechanism.

There have traditionally been two viewpoints on exceptions: many practicing 
programmers, knowing how essential it is to retain control at run time whenever an 
abnormal condition is detected (whether due to a programming error or to an 
unforeseeable hardware event, say numerical overflow or hardware failure), consider 
them an indispensable facility. Computing scientists preoccupied with correctness and 
systematic software construction have often for their part viewed exceptions with 
suspicion, as an unclean facility used to circumvent the standard rules on control 
structures. The mechanism developed above will, it is hoped, appeal to both sides.

Should exceptions be objects?

An object-oriented zealot (and who, having discovered and mastered the beauty of the 
approach, does not at times risk succumbing to zeal?) may criticize the mechanism 
presented in this chapter for not treating exceptions as first-class citizens of our software 
society. Why is an exception not an object?

One recent language, the object-oriented extension of Pascal for Borland’s Delphi 
environment has indeed taken the attitude that exceptions should be treated as objects.

It is not clear that such a solution would bring any benefit. The reasoning is in part a 
preview of the more general discussion that will help us, in a later chapter, tackle the 
question “how do we find the objects and classes?” An object is an instance of an 
abstractly defined data type, characterized by features. An exception has some features, of 
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course, which we saw in class EXCEPTIONS: its type, which was given by an integer 
code; whether it is a signal, an assertion violation, a developer exception; its associated 
message if it is a developer exception. But these features are queries; in most classes 
describing true “objects” there should also be commands changing the objects’ state. 
Although one might conceive of commands applicable to exception objects, for example 
to disarm an exception after it has occurred, this seems incompatible with reliability 
requirements. Exceptions are not under the control of the software system; they are 
triggered by events beyond its reach.

Making their properties accessible through the simple queries and commands of the 
class EXCEPTIONS seems enough to satisfy the needs of developers who want fine-grain 
access to the exception handling mechanism.

The methodological perspective

A final note and preview. Exception handling is not the only answer to the general problem 
of robustness — how to deal with special or undesired cases. We have gained a few 
methodological insights, but a more complete answer will appear in the chapter discussing 
the design of module interfaces, allowing us to understand the place of exception handling 
in the broader arsenal of robustness-enhancing techniques.

12.8  KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Exception handling is a mechanism for dealing with unexpected run-time conditions.

• A failure is the impossibility, for a routine execution, to fulfill the contract.

• A routine gets an exception as a result of the failure of a routine which it has called, 
of an assertion violation, of an abnormal condition signaled by the hardware or 
operating system.

• It is also possible for a software system to trigger a “developer exception” explicitly.

• A routine will deal with an exception by either Retry or Organized Panic. Retry 
reexecutes the body; Organized Panic causes a routine failure and sends an exception 
to the caller.

• The formal role of an exception handler not ending with a retry is to restore the 
invariant — not to ensure the routine’s contract, as that is the task of the body (the 
do clause). The formal role of a branch ending with retry is to restore the invariant 
and the precondition so that the routine body can try again to achieve its contract.

• The basic language mechanism for handling exceptions should remain simple, if 
only to encourage straightforward exception handling — organized panic or 
retrying. For applications that need finer control over exceptions, their properties and 
their processing, a library class called EXCEPTIONS is available; it provides a 
number of mechanisms for distinguishing between exception types, as well as for 
triggering developer-defined exceptions.
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12.9  BIBLIOGRAPHICAL NOTES
[Liskov 1979] and [Cristian 1985] offer other viewpoints on exceptions. Much of the work 
on software fault tolerance derives from the notion of “recovery block” [Randell 1975]; a 
recovery block for a task is used when the original algorithm for the task fails to succeed. 
This is different from rescue clauses which never by themselves attempt to achieve the 
original goal, although they may restart the execution after patching up the environment.

[Hoare 1981] contains a critique of the Ada exception mechanism.
The approach to exception handling developed in this chapter was first presented 

in [M 1988e] and [M 1988].

EXERCISES

E12.1  Largest integer
Assume a machine that generates an exception when an integer addition overflows. Using 
exception handling, write a reasonably efficient function that will return the largest 
positive integer representable on the machine.

E12.2  Exception objects
Notwithstanding the skeptical comments expressed in the discussion section as to the 
usefulness of treating exceptions as objects, press the idea further and discuss what a class 
EXCEPTION would look like, assuming an instance of that class denotes an exception that 
has occurred during execution. (Do not confuse this class with EXCEPTIONS, the class, 
meant to be used through inheritance, which provides general exception properties.) Try 
in particular to include commands as well as queries.
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Except for one crucial set of mechanisms, we have now seen the basic techniques of 
object-oriented software construction. The major missing piece is inheritance and all that 
goes with it. Before moving to that last component of the approach, we should review a 
few mechanisms that will be important to the writing of actual systems: external routines 
and the encapsulation of non-O-O software; argument passing; control structures; 
expressions; string manipulation; input and output.

These are technical aspects, not essential to the understanding of the method; but we 
will need them for some later examples, and they blend well with the fundamental 
concepts. So even on your first reading you should spend some time getting at least 
generally familiar with them.

13.1  INTERFACING WITH NON-O-O SOFTWARE
So far, we have expressed software elements entirely in the object-oriented notation. But 
the software field grew up long before object technology became popular, and you will 
often need to interface your software with non-O-O elements, written in such languages 
as C, Fortran or Pascal. The notation should support this process.

We will first look at the language mechanism, then reflect on its broader significance 
as a part of the object-oriented software development process.

External routines

Our object-oriented systems are made of classes, consisting of features, particularly 
routines, that contain instructions. What is, among these three, the right level of 
granularity for integrating external software?

The construct must be common to both sides; this excludes classes, which exist only 
in object-oriented languages. (They may, however, be the right level of integration 
between two different O-O languages.) Instructions are too low-level; a sequence in which 
two object-oriented instructions bracket a C instruction:

create x  make (clone (a))
(struct A) *x = &y; /* A piece of C */
x  display

would be very hard to understand, validate and maintain.
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This leaves the feature level, the right one since encapsulating features is compatible 
with O-O principles: a class is an implementation of a data type protected by information 
hiding; features are the unit of interaction of the class with the rest of the software; since 
clients rely on the features’ official specification (the short form) independently of their 
implementation, it does not matter to the outside world whether a feature is internally 
written in the object-oriented notation or in another language.

Hence the notion of external routine. An external routine will have most of the 
trappings of a normal routine: name, argument list, result type if it is a function, 
precondition and postcondition if appropriate. Instead of a do clause it will have an 
external clause stating the language used for the implementation. Here is an example, 
extracted from a class describing character files:

put (c: CHARACTER)
-- Add c to end of file.

require
write_open: open_for_write

external
 "C" alias "_char_write";

ensure
one_more: count = old count + 1

end
The alias clause is optional, useful only if the name of the external routine, in its 

language of origin, is different from the name given in the class. This happens for example 
when the external name would not be legal in the object-oriented notation, as here with a 
name beginning with an underscore (legal in C).

Advanced variants
The mechanism just described covers most cases and will suffice for the purposes of this 
book. In practice some refinements are useful:

• Some external software elements may be macros rather than routines. They will 
appear to the O-O world as routines, but any call will be expanded in-line. This may 
be achieved by varying the language name (as in "C:[macro]… ").

• It is also necessary to permit calls to routines of “Dynamic Link Libraries” (DLL) 
available on Windows and other platforms. Instead of being a static part of the system, 
a DLL routine is loaded at run time, on the first call. It is even possible to define the 
routine and library names at run time. DLL support should include both a way to 
specify the names statically (as in external "C:[dll]…") and a completely dynamic 
approach using library classes DYNAMIC_LIBRARY and DYNAMIC_ROUTINE
which you can instantiate at run time, to create objects representing dynamically 
determined libraries and routines.

• You may also need communication in the reverse direction, letting non-O-O 
software create objects and call features on them. For example you may want the 
callback mechanism of a non-O-O graphical toolkit to call certain class features.
All these facilities are present in the O-O environment described in the last chapter. 

Their detailed presentation, however, falls beyond the scope of this discussion.
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Uses of external routines

External routines are an integral part of the method, fulfilling the need to combine old 
software with new. Any software design method emphasizing reusability must allow 
accessing code written in other languages. It would be hard to convince potential users that 
reusability begins this minute and that all existing software must be discarded.

Openness to the rest of the world is a requirement for most software. This might be 
termed the Principle of Modesty: authors of new tools should make sure that users can 
still access previously available facilities. 

External routines are also necessary to provide access to machine-dependent or 
operating system capabilities. The file class is a typical example. Another is class ARRAY, 
whose interface was presented in earlier chapters but whose implementation will rely on 
external routines: the creation procedure make use a memory allocation routine, the access 
function item will use an external mechanism for fast access to array elements, and so on.

This technique ensures a clean interface between the object-oriented world and other 
approaches. To clients, an external routine is just a routine. In the example, the C routine 
_char_write has been elevated to the status of a feature of a class, complete with 
precondition and postcondition, and the standard name put. So even facilities which 
internally rely on non-O-O mechanisms get repackaged in data abstractions; the rest of the 
object-oriented software will see them as legitimate members of the group, their lowly 
origins never to be mentioned in polite society.

Object-oriented re-architecturing

The notion of external routine fits well with the rest of the approach. The method’s core 
contribution is architectural: object technology tells us how to devise the structure of our 
systems to ensure extendibility, reliability and reusability. It also tells us how to fill that 
structure, but what fundamentally determines whether a system is object-oriented is its 
modular organization. It is often appropriate, then, to use an O-O architecture — what is 
sometimes called a wrapper — around internal elements that are not all O-O.

One extreme but not altogether absurd way to use the notation would rely solely on 
external routines, written in some other language, for all actual computation. Object 
technology would then serve as a pure packaging tool, using its powerful encapsulation 
mechanisms: classes, assertions, information hiding, client, inheritance.

In general there is no reason to go that far, since the notation is perfectly adequate to 
express computations of all kinds and execute them as efficiently as older languages such 
as Fortran or C. But object-oriented encapsulation of external software is useful in several 
cases. We have seen one of them: providing access to platform-specific operations. 
Another is to address a problem that faces many organizations: managing so-called legacy 
software. During the sixties, seventies and eighties, companies have accumulated a legacy 
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of Cobol, Fortran, PL/I and C code, which is becoming harder and harder to maintain, and 
not just because the original developers are gone or going. Object technology offers an 
opportunity to re-engineer such systems by re-architecturing them, without having to 
rewrite them completely.

Think of this process as the reverse of turkey stuffing: instead of keeping the structure and 
changing the internals, you keep the entrails and replace the skeleton, as if repackaging 
the content of a turkey into the bones of a zebra or a mouse. It must be noted, however, 
that such non-software applications of the idea appear neither useful nor appetizing.

This technique, which we may call object-oriented re-architecturing, offers an 
interesting solution for preserving the value of existing software assets while readying 
them for future extension and evolution.

It will only work, however, under specific conditions:

• You must be able to identify good abstractions in the existing software. Since you 
are not dealing with object-oriented software, they will typically be function 
abstractions, not data abstractions; but that is normal: it is your task to find the 
underlying data abstractions and repackage the old software’s routines into the new 
software’s classes. If you cannot identify proper abstractions already packaged in 
routines, you are out of luck, and no amount of object-oriented re-architecturing 
attempts will help.

• The legacy software must be of good quality. Re-architectured junk is still junk — 
possibly worse than the original, in fact, as the junkiness will be hidden under more 
layers of abstraction.

These two requirements are partly the same, since quality in software, O-O or not, is 
largely determined by quality of structure.

When they are satisfied, it is possible to use the external mechanism to build some 
very interesting object-oriented software based on earlier efforts. Here are two examples, 
both part of the environment described in the last chapter.

• The Vision library provides portable graphics and user interface mechanisms, 
enabling developers to write graphical applications that will run on many different 
platforms, with the native look-and-feel, for the price of a recompilation. Internally, 
it relies on the native mechanisms, used through external routines. More precisely, 
its lower level — WEL for Windows, GEL for GTK — encapsulates the mechanisms 
of the corresponding platforms. WEL, GEL and consorts are also usable directly, 
providing developers who do not care about portability with object-oriented 
encapsulations of the Windows, Motif and Presentation Manager Application 
Programming Interfaces.

• Another library, Math, provides an extensive set of facilities for numerical 
computation in such areas as probability, statistics, numerical integration, linear and 
non-linear equations, ordinary differential equations, eigenproblems, fitting and 
interpolation, orthogonal factorizations, linear least squares, optimization, special 
functions, Fast Fourier Transforms and time series analysis. Internally, it is based 
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on a commercial subroutine library, the NAG library from Nag Ltd. of Oxford, but 
it provides a completely object-oriented interface to its users. The library hides the 
underlying routines and instead is organized around such abstract concepts as 
integrator, matrix, discrete function, exponential distribution and many others; each 
describes “objects” readily understandable to a mathematician, physicist or 
economist, and is represented in the library by a class: INTEGRATOR, BASIC_
MATRIX, DISCRETE_FUNCTION, EXPONENTIAL_DISTRIBUTION. The result 
builds on the quality of the external routines — NAG is the product of hundreds of 
person-years of devising and implementing numerical algorithms — and adds the 
benefits of O-O ideas: classes, information hiding, multiple inheritance, assertions, 
systematic error handling through exceptions, simple routines with short argument 
lists, consistent naming conventions.

These examples are typical of how one can combine the best of traditional software 
and object technology.

The compatibility issue: hybrid software or hybrid languages?

Few people would theoretically disagree with the principle of modesty and deny the need 
for some integration mechanism between O-O developments and older software. The 
matter becomes more controversial when it comes to deciding on the level of integration. 

A whole set of languages — the best known are Objective-C, C++, Java, Object 
Pascal and Ada 95 — have taken the approach of adding O-O constructs to an existing 
non-O-O language (respectively C in the first three cases, Pascal and Ada). Known as 
hybrid languages, they are discussed in varying degree of detail in a later chapter. 

The integration technique described above, relying on external routines and object-
oriented re-architecturing, follows from a different principle: that the need for software
compatibility does not mean that we should burden the language with mechanisms that 
may be at odds with the principles of object technology. In particular:

• A hybrid adds a new language level to the weight of an existing language such as C. 
The result can be quite complex, limiting one of the principal attractions of object 
technology — the essential simplicity of the ideas.

• Beginners as a result often have trouble mastering a hybrid language, since they do 
not clearly see what is truly O-O and what comes from the legacy.

• Some of the older mechanisms may be incompatible with at least some aspects of 
object-oriented ideas. We have seen how the type concepts inherited from C make it 
hard to equip C++ environments with garbage collection, even though automatic 
memory management is part of the appeal of object technology. There are many 
other examples of clashes between the C or Pascal type system and the O-O view.
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• The non-O-O mechanisms are still present, often in apparent competition with their 
higher-level object-oriented counterparts. For example C++ offers, along with 
dynamic binding, the ability to choose a function at run time through arithmetic on 
function pointers. This is disconcerting for the non-expert who lacks guidance on 
which approach to choose in a particular case. The resulting software, although 
compiled by an O-O environment, is still, deep-down, C code, and does not yield the 
expected quality and productivity benefits — giving object technology a bad name 
through no fault of its own.

If the aim is to obtain the best possible software process and products, compromising 
at the language level does not seem the right approach. Interfacing object-oriented tools 
and techniques with previous achievements is not the same thing as mixing widely 
different levels of technology.

With the usual precautions about attaching too much weight to a metaphor, we can think 
of the precedent of electronics. It is definitely useful to combine different technology 
levels in a single system, as in an audio amplifier which still includes a few diodes 
together with transistors and integrated circuits. But the levels remain separate: there is 
little use for a basic component that would be half-diode, half-transistor.

O-O development should provide compatibility with software built with other 
approaches, but not at the expense of the method’s power and integrity. This is what the 
external mechanism achieves: separate worlds, each with its own consistency and 
benefits, and clear interfaces between these worlds.

13.2  ARGUMENT PASSING 
One aspect of the notation may require some clarification: what may happen to values 
passed as arguments to routines?

Consider a routine call of the form

r (a1, a2, …, an)

corresponding to a routine 

r (x1: T1, x2: T2, …, xn: Tn) …

where the routine could be a function as well as a procedure, and the call could be 
qualified, as in b  r (…). The expressions a1, a2, …, an are called actual arguments, and 
the xi are called formal arguments. (Recall that we reserve the term “parameter” for 
generic type parameters.) 

The relevant questions are: what is the correspondence between actual and formal 
arguments? What operations are permitted on formal arguments? What effect will they 
have on the corresponding actuals? For all three we should stick to simple and safe rules.

We already know the answer to the first question: the effect of actual-formal 
argument association is the same as that of a corresponding assignment. Both operations 
are called attachments. For the above call we can consider that the routine’s execution 
starts by executing instructions informally equivalent to the assignments
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x1 := a1; x2 := a2; … xn := an

On the second question: within the routine body, any formal argument x is protected. 
The routine may not apply to it any direct modification, such as: 

• An assignment to x, of the form x := … 

• A creation instruction with x as its target: create x  make (…)

Readers familiar with the passing mechanism known as call by value will note that the 
restriction is harsher here: with call by value, formals are initialized to actuals but may 
then be the target of arbitrary operations. 

The answer to the third question — what can the routine actually do to the actuals? 
— follows from the use of attachment to define the semantics of actual-formal association 
Attachment means copying either a reference or an object. As you will remember from the 
discussion of attachment, this depends on whether the types involved are expanded:

• For reference types (the more common case), argument passing will copy a 
reference, either void or attached to an object.

• For expanded types (which include in particular the basic types: INTEGER, REAL
and the like), argument passing will actually copy an object.

In the first case, the prohibition of direct modification operations means that you 
cannot modify the reference through reattachment or creation; but if the reference is not 
void you can modify the attached object through appropriate routines.

If xi is one of the formal arguments to routine r, the body of the routine could contain 
a call of the form 

xi  p (…)

where p is a procedure applicable to xi, meaning a procedure declared in the base class of 
xi’s type Ti. This routine may modify the fields of the object attached to xi at execution 
time, which is the object attached to the corresponding actual argument ai. 

xi

The routine may not change this 
reference (e.g. reattach it to 
another object) O1

The routine may change fields of this 
object (through calls to other routines).
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So although a call q (a) can never change the value of a — the corresponding object 
if a is expanded, the reference otherwise — it can, in the reference case, change the 
attached object.

There are many reasons for not permitting routines to modify their arguments 
directly. One of the most striking is the Conflicting Assignments To Actual trick. Assume 
a language that permits assignments to arguments, and a procedure

dont_I_look_innocuous (a, b: INTEGER)
-- But do not trust me too much.

do
a := 0; b := 1

end

Then consider the call dont_I_look_innocuous (x, x) for some entity x. What is the 
value of x on return: 0 or 1? The answer depends on how the compiler implements formal-
to-actual update on routine exit. This has fooled more than a few Fortran programmers, 
among others.

Permitting argument-modifying routines would also force us to impose restrictions 
on actual arguments: the actual corresponding to a modifiable formal must be an element 
that can change its value (a writable entity); this allows variable attributes, but not constant 
attributes, Current, or general expressions such as a + b. By precluding argument-
modifying routines we can avoid imposing such restrictions and accept any expression as 
actual argument.

As a consequence of these rules, there are only three ways to modify the value of a 
reference x: through a creation instruction create x…; through an assignment x := y; and 
through a variant of assignment, assignment attempt x ?= y, studied in a later chapter. 
Passing x as actual argument to a routine will never modify x.

This also means that a routine returns at most one result: none if it is a procedure; the 
official result (represented in the routine’s body by the entity Result) if it is a function. To 
achieve the effect of multiple results, you can either:

• Use a function that returns an object with several fields (or more commonly a 
reference to such an object).

• Use a procedure that sets several fields of an object, corresponding to attributes that 
the client may then query.

The first technique is appropriate when the result is truly made of several 
components; a function may not for example return two values corresponding to the title 
and publication year of a book, but it may return a single value of type BOOK, with 
attributes title and publication_ year. The second technique is applicable for a routine that, 
besides its principal job, sets some status indicators. We will study it, as well as the more 
general question of side effects, in the discussion of module design principles. 
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13.3  INSTRUCTIONS 
The object-oriented notation developed in this book is imperative: we specify 
computations through commands, also called instructions. (The word “statement” is 
commonly used in this sense but we will steadfastly avoid it since it is misleading: a 
statement is an expression of facts, not a command.)

Except for some specific properties of loops, intended to make their verification 
easier, instructions will look familiar to anyone who has had some experience with a 
modern language of the Algol line such as Pascal, Ada or Modula, or even just with C 
or a derivative. They include: Procedure call; Assignment; Creation; Conditional; 
Multi_branch; Loop; Check; Debug; Retry; Assignment attempt.

Procedure call 

A routine call involves a routine, possibly with actual arguments. In a call instruction, the 
routine must be a procedure; if it is a function, the call is an expression. Although for the 
moment we are interested in instructions, the following rules apply to both cases.

A call is either qualified or unqualified. An unqualified call to a routine of the 
enclosing class uses the current instance as target; it appears under the form

r (without arguments), or
r (x, y, …) (with arguments)
A qualified call explicitly names its target, denoted by an expression: if a is an 

expression of a certain type, C is the base class of that type, and q is one of the routines of 
C, then a qualified call is of the form a  q. Again, q may be followed by a list of actual 
arguments; a may be an unqualified function call with arguments, as in p (m)   q (n) where 
the target is p (m). You may also use as target a more complex expression, provided you 
enclose it in parentheses, as in (vector1 + vector2)   count.

Multidot qualified calls, of the form a   q1   q2 …   qn are also permitted, where a as 
well as any of the qi may include a list of actual arguments. 

Export controls apply to qualified calls. Recall that a feature f declared in a class B is 
available to a class A if the feature clause declaring f  begins with feature (without further 
qualification) or feature {X, Y, …} where one of X, Y, … is A or an ancestor of A. Then:

To understand the reason for the second rule, note that a  q  r  s is a shorthand for 

Qualified Call rule
A qualified call of the form b  q1  q2 ….   qn appearing in a class C is valid 
only if it satisfies the following conditions: 
R1 • The feature appearing after the first dot, q1, must be available to C. 
R2 • In a multidot call, every feature after the second dot, that is to say every 

qi for i > 1, must also be available to C. 
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b := a  q; c := b  r; c  s

which is only valid if q, r and s are all available to C, the class where this fragment appears. 
Whether r is available to the base class of q’s type, and s available to the base class of r’s 
type, is irrelevant. 

As you will remember it is also possible to express calls in infix or prefix form; an 
expression such as a + b is a different syntax for a call that would otherwise be written 
a  plus (b). The same validity rules apply to such expressions as to the dot form.

Assignment 

The assignment instruction is written 

x := e

where x is a writable entity and e an expression of compatible type. A writable entity is either: 

• A non-constant attribute of the enclosing class. 

• A local entity of the enclosing routine, including Result for a function.

Other, non-writable kinds of entity include constant attributes (introduced in 
declarations such as Zero: INTEGER = 0) and formal arguments of a routine — to which, 
as we just saw, the routine may not assign a new value. 

Creation instruction

The creation instruction was studied in an earlier chapter in its two forms: without a 
creation procedure, as in create x, and with a creation procedure, as in create x  p (…). In 
both cases, x must be a writable entity.

Conditional 

A conditional instruction serves to specify that different forms of processing should be 
applied depending on certain conditions. The basic form is

if boolean_expression then
instruction; instruction; …

else
instruction; instruction; …

end
where each branch may have an arbitrary number of instructions (possibly none).

This will execute the instructions in the first branch if the boolean_expression
evaluates to true, and those in the second branch otherwise. You may omit the else part if 
the second instruction list is empty, giving: 

if boolean_expression then
instruction; instruction; …

end
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When there are more than two relevant cases, you can avoid nesting conditional 
instructions in else parts by using one or more elseif branches, as in 

if c1 then
instruction; instruction; …

elseif c2 then
instruction; instruction; …

elseif c3 then
instruction; instruction; …

…
else

instruction; instruction; …
end

where the else part remains optional. This avoids the repeated nesting of 

if c1 then
instruction; instruction; …

else
if c2 then

instruction; instruction; …
else

if c3 then
instruction; instruction; …
…

else
instruction; instruction; …

end
end

end
For handling a set of cases defined by the possible values of a certain expression, the 

multi-branch inspect, studied next, may be more convenient than the plain conditional.

The object-oriented method, in particular through polymorphism and dynamic 
binding, tends to reduce the need for explicit conditional and multi-branch instructions by 
supporting an implicit form of choice: you apply a feature to an object, and if the feature 
has several variants the right one automatically gets selected at run time on the basis of the 
object’s type. When applicable, this implicit style is usually preferable. But of course some 
of your algorithms will still require explicit choice instructions.

Multi-branch

The multi-branch (also known as a Case instruction because of the corresponding keyword 
in Pascal, where it was first introduced based on a design by Tony Hoare) discriminates 
between a set of conditions that are all of the form e = vi where x is an expression and the 
vi are constants of the same type. Although a conditional instruction (if e = v1 then …
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elseif e = v2 then…) would do the job, two reasons justify a special instruction, departing 
from the usual rule that if the notation offers one good way to do something it does not 
need to offer two:

• This case is so common as to justify specific syntax, which will enhance clarity by 
avoiding the useless repetition of “e =”.

• Compilers can use a particularly efficient implementation technique, the jump table, 
not applicable to general conditional instructions and avoiding explicit tests.

For the type of the discriminated values (the type of e and the vi), the multi-branch 
instruction only needs to support two possibilities: integers and booleans. The rule will 
indeed be that e and the vi must be declared as either all INTEGER or all CHARACTER. 
The general form of the instruction is:

inspect
e

when v1 then
instruction; instruction; …

when v2 then
instruction; instruction; …

…
else

instruction; instruction; …
end

All the vi values must be different. The else… part is optional. Each of the branches 
may have an arbitrary number of instructions, possibly none.

The effect of the instruction is the following: if the value of e is equal to one of the 
vi (this can be the case for at most one of them), execute the instructions in the 
corresponding branch; otherwise, execute the instructions in the else branch if any.

If there is no else branch and the value of e does not match any of the vi, the effect is 
to raise an exception (of code Incorrect_inspect_value). This policy may seem surprising, 
since the corresponding conditional instruction would simply do nothing in this case. But 
it highlights the specificity of the multi-branch. When you write an inspect with a set of 
vi values, you should include an else branch, empty or not, if you are prepared for run-time 
values of e that match none of the vi. If you do not include an else, you are making an 
explicit statement: that you expect the value of e always to be one of the vi. By checking 
this expectation and raising an exception if it is not met, the implementation is providing 
a service. Doing nothing would be the worst possible response, since this case usually 
reflects a bug (forgetting a possible case to be handled in its own specific way), which in 
any case should be fixed as early as possible.

A typical application of the multi-branch is to decode a single-character user input:



§13.3   INSTRUCTIONS 451

This is an elementary
scheme. See chapter 
21 for more sophisti-
cated user command 
processing techniques

“UNIQUE VALUES”,
18.6, page 654. Do 
and Si are also known
as Ut and Ti.

The Discrimination 
principle appears on
page 655.

See “LOOP INVARI-
ANTS AND VARI-
ANTS”, 11.12, page 
380.
inspect
first_input_letter

when 'D' then
“Delete line”

when 'I' then
“Insert line”

…
else

message ("Unrecognized command; type H for help")
end

In the integer case, the vi can be Unique values, a concept detailed in a later chapter. 
This makes it possible to define a number of abstract constants, in a declaration such as 
Do, Re, Mi, Fa, Sol, La, Si: INTEGER unique, and then discriminate among them in an 
instruction such as inspect note when Do then… when Re then… end.

Like conditionals, multi-branch instructions should not be used as a substitute for the 
implicit discrimination techniques of object technology, based on dynamic binding. The 
restriction to integer and character values helps avoid misuse; the Discrimination 
principle, introduced together with unique values, will provide further guidance.

Loop 

The syntax of loops was introduced in the presentation of Design by Contract: 

from
initialization_instructions

invariant
invariant

variant
variant

until
exit_condition

loop
loop_instructions

end

The invariant and variant clauses are optional. The from clause is required (but 
may be empty); it specifies the loop initialization instructions. Leaving aside the optional 
clauses, the execution of such a loop consists of executing the initialization_instructions
followed by the “loop process”, itself defined as follows: if the exit_condition is true, the 
loop process is a null instruction; if it is false, the loop process is the execution of the loop_
instructions followed (recursively) by a new loop process. 

 

.
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Check 

The check instruction was also seen in the discussion of assertions. It serves to express 
that certain assertions must be satisfied at certain points: 

check
assertion -- One or more clauses

end

Debug 

The debug instruction is a facility for conditional compilation. It is written 
debug instruction; instruction; … end
For every class, you may turn on or off the corresponding debug option of the control 

file (the Ace). If on, any debug instruction in the class is equivalent to the instructions it 
contains; if off, it has no effect on the execution.

You can use this instruction to include special actions that should only be executed 
in debugging mode, for example instructions to print out some values of interest.

Retry 

The last instruction is retry, introduced in the discussion of exceptions. It may only appear 
in a rescue clause, and will restart the body of a routine that was interrupted by an exception.

13.4  EXPRESSIONS 
An expression serves to denote a computation that yields a value — an object, or a 
reference to an object. Expressions include the following varieties: 

• Manifest constants.
• Entities (attributes, local routine entities, formal routine arguments, Result).
• Function calls.
• Expressions with operators (technically are a special case of function calls).
• Current.

Manifest constants 

A manifest constant is a value that denotes itself (such as the integer value written 0) — as 
opposed to a symbolic constant, whose name is independent of the denotation of the value.

There are two boolean manifest constants, written True and False. Integer constants 
follow the usual form and may be preceded by a sign. Examples are 

453  –678  +66623

Real constants use a decimal point. Either the integer part or the fractional part may 
be absent; you may include a sign, and specify an integer power of 10 by e followed by 
the exponent value. Examples are:
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DECLARATION”, 
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52.5   –54.44  +45.01  .983  –897.  999.e12

Character constants consist of a single character written in quotes, as in 'A'; they 
describe single characters. For strings of more than one character we will use the library 
class STRING, discussed later in this chapter.

Function calls 

Function calls follow the same syntax as procedure calls studied earlier in this chapter. 
They may be qualified or unqualified; in the qualified case, multidot notation is available. 
Assuming the proper class and function declarations, examples are: 

b  f
b  g (x, y, …)
b  h (u, v)  i  j (x, y, …)

The Qualified Call rule introduced for procedures applies to function calls as well. 

Current object

The reserved word Current denotes the current instance of the class and may be used in an 
expression. Note that Current itself is an expression, not a writable entity; thus an 
assignment to Current, such as Current := some_value, would be syntactically illegal. 

When referring to a feature (attribute or routine) of the current instance, it is not 
necessary to write Current   f; just f suffices. Because of this rule, we will use Current less 
frequently than in object-oriented languages where every feature reference must be 
explicitly qualified. (In Smalltalk, for example, there is no such convention; a feature is 
always qualified, even when it applies to the current instance, written self.) Cases in which 
you will need to name Current explicitly include: 

• Passing the current instance as argument to a routine, as in a  f (Current). A common 
application is to create a duplicate of the current instance, as in x := clone (Current).

• Testing whether a reference is attached to the current instance, as in the test 
x = Current. 

• Using Current as anchor in an “anchored declaration” of the form like Current, as 
will be seen in the study of inheritance. 

Expressions with operators 

Operators are available to construct composite expressions. 

Unary operators are + and –, applicable to integer and real expressions, and not, 
applicable to boolean expressions. 

Binary operators, which take exactly two operands, include the relational operators 

=   /=   <   >   <=   >=

where /= is “not equal”. The relational operators yield boolean results.
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Multiary expressions involve one or more operands, combined with operators. 
Numerical operands may be combined using the following operators: 

+   –   ∗   /   ^   //   \\

where // is integer division, \\ is integer remainder and ^ is power (exponentiation).

Boolean operands may be combined with the operators and, or, xor, and then, 
or else, implies. The last three are explained in the next section; xor is exclusive or.

The precedence of operators, based on the conventions of ordinary mathematics, has 
been devised according to the “Principle of Least Surprise”. To avoid any uncertainty or 
confusion, this book makes generous use of parentheses even where they are not needed, 
as in the examples of the next section.

Non-strict boolean operators 

The operators and then and or else (whose names have been borrowed from Ada) as 
well as implies are not commutative, and are called non-strict boolean operators. Here 
is their semantics:

The boolean values from mathematics are written in regular font: true and false; True and
False are predefined language constants and hence written in color italics. 

The first two definitions at first seem to yield the same semantics as and and or. But 
the difference is what happens when b is not defined. In that case the expressions using 
the standard boolean operators are mathematically undefined, but the above definitions 
may still yield a result: if a is false, a and then b is false regardless of b; and if a is true, 
a or else b is true regardless of b. Similarly, a implies b is true if a is false, even if b is 
undefined. So the non-strict operators may yield a result when the standard ones do not.

A typical application is the boolean expression (using integer division //)

(i /= 0) and then (j // i  =  k)

which, from the above definition, has value false if i is equal to zero (as the first operand is 
then false). If the expression had been written using and rather than and then, then its 
second operand would be undefined when i is zero, so that the status of the whole expression 
is unclear in this case. This uncertainty is reflected in what may happen at run time: 

Non-strict boolean operators

• a and then b has value false if a has value false, and otherwise has the 
value of b.

• a or else b has value true if a has value true, and otherwise has the 
value of b.

• a implies b has the same value as: (not a) or else b.
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B1  • If the compiler generates code that evaluates both operands and then takes their 
boolean “and”, a division by zero will result at run time, producing an exception.

B2 • If, on the other hand, the generated code only evaluates the second operand when 
the first is true, otherwise returning false as the value of the expression, then the 
expression will indeed evaluate to false.

To guarantee interpretation B2, use and then. Similarly, 

(i = 0) or else ( j // i  /=  k) 

will evaluate to true if i is zero, whereas the or variant could produce a run-time error.

An expression using and then always yields the same value as the corresponding 
expression written using and if both are defined. But the and then form may yield a value 
(false) in cases when the and form does not. The same holds with or else (and the value true) 
with respect to or. In this sense, the non-commutative operators may be said to be “more 
defined than or equal to” their respective counterparts. This also means that the non-strict 
interpretation — strategy B2 — is a correct implementation for the ordinary operators: a 
compiler writer may decide to implement and as and then and or as or else. But he does not 
have to, so the software developer may not rely on the assumption that and and or will be non-
strict; only and then and or else guarantee the correct behavior in cases such as the last two 
examples.

One might wonder why two new operators are needed; would it not be simpler and 
safer to just keep the standard operators and and or and take them to mean and then and 
or else? This would not change the value of any boolean expression when both operands 
are defined, but would extend the set of cases in which expressions may be given a 
consistent value. This is indeed the way some programming languages, notably ALGOL 
W and C, interpret boolean operators. There are, however, both theoretical and practical 
reasons for keeping two sets of distinct operators: 

• On the theoretical side, the standard mathematical boolean operators are 
commutative: a and b always has the same value as b and a, whereas a and then b
may be defined when b and then a is not. When the order of operands does not 
matter it is preferable to use a commutative operator.

• In practice, some compiler optimizations become impossible if we require the 
compiler to evaluate the operands in a given sequence, as is the case with the non-
commutative operators. So it is better to use the standard operators if both operands 
are known to be defined. 

Note that it is possible to simulate the non-strict operators through conditional 
instructions in a language that does not include such operators. For example, instead of 

b := ((i /= 0) and then (j // i  =  k))

one may write 

if i = 0 then b := false else b := (j // i = k) end
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The non-strict form is of course simpler. This is particularly clear when it is used as 
the exit condition of a loop, such as the following iteration on an array:

from
i := a  lower

invariant
-- For all elements in the interval [a  lower .. i –- 1], (a @ i) /= x

variant
a  upper — i

until
i > a  upper or else (a @ i = x)

loop
i := i + 1

end;
Result := (i <= a  upper)

whose purpose is to make Result true if and only if the value x appears in the array a. The 
use of or would be incorrect here: a compiler may generate code that will always evaluate 
both operands, so that for the last index examined (i > a  upper) if no array value equals x, 
there will be an erroneous attempt at run time to access the non-existent array item a @ 
(a  upper + 1), causing a run-time error (a precondition violation if assertion checking is on).

It is possible to program this example safely without non-strict operators, but the 
result is heavy and inelegant (try it).

Another example is an assertion — appearing for example in a class invariant — 
expressing that the first value of a certain list l of integers is non-negative — provided, of 
course, that the list is not empty. You may express this as

l  empty or else l  first >= 0
Using or would have been incorrect. Here there is no way to write the condition 

without non-strict operators (except by writing a special function and calling it in the 
assertion). The Base libraries of algorithms and data structures contain many such cases.

The implies operator, describing implication, is also non-strict. Mathematical logic 
defines “a implies b” as “not a or b”; but in practical uses property b is often meaningless 
for false a, so that it is appropriate to use or else rather than or; this is the official definition 
given above. In this case there is no need for a strict variant.

The implies form does not always come first to mind when you are not used to it, but 
it is often clearer; for example you might like the last example better under the form

(not l  empty) implies (l  first >= 0)

13.5  STRINGS
Class STRING describes character strings. It enjoys a special status since the notation 
permits manifest string constants, understood as denoting instances of STRING.

A string constant is written enclosed in double quotes, as in 
"ABcd Ef ~∗_ 01"
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The double quote character must be preceded by a percent % if it appears as one of 
the characters of the string. 

Non-constant character strings are also instances of class STRING, whose creation 
procedure make takes as argument the expected initial length of the string, so that 

text1, text2: STRING; n: INTEGER;
…
create text1  make (n)

will dynamically allocate a string text1, reserving the space for n characters. Note that n is 
only an initial size, not a maximum; any string can grow or shrink to an arbitrary size.

Numerous features are available on instances of STRING: concatenation, character or 
substring extraction, comparison etc. (They may change the size of the string, automatically 
triggering re-allocation if it becomes greater than the currently allocated size.)

Assignment of a STRING to another implies sharing: after text2 := text1, any 
modification to the contents of text1 will also affect the contents of text2 and conversely. 
To duplicate rather than share, use by text2 := clone (text1). 

You can declare a constant string attribute:
message: STRING = "Your message here"

13.6  INPUT AND OUTPUT
Two Kernel Library classes provide basic input and output facilities: FILE and STD_FILES. 

Among the operations defined on an object f declared of type FILE are the following: 

create f  make ("name") --Associate f  with a file of name name.
f  open_write -- Open f  for writing
f  open_read -- Open f  for reading
f  put_string ("A_STRING") --Write the given string on f

For I/O operations on the standard input, output and error files, you can inherit from 
STD_FILES, which defines the features input, output and error. Alternatively you can use 
the predefined value io, as in io  put_string ("ABC"), bypassing inheritance.

13.7  LEXICAL CONVENTIONS 
Identifiers are sequences of characters, all of which must be letters, digits or underscore 
characters (_); the first character of an identifier must be a letter. There is no limit to the 
length of identifiers, and all the characters of identifiers are significant. This can be used 
to make both feature names and class names as clear as possible.

Letter case is not significant in identifiers, so that Hi, hi, HI and hI all denote the 
same identifier. The reason is that it would be dangerous to allow two identifiers that differ 
from each other by just one character, say Structure and structure, to denote different 
elements. Better ask developers to use some imagination than risk mistakes. 
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Chapter 26.

Page 456.
The notation, however, comes with a set of precise standard style conventions, 
detailed in a later chapter entirely devoted to style: classes (INTEGER, POINT…) and 
formal generic parameters (G in LIST [G]) in all upper case; predefined entities and 
expressions (Result, Current…) and constant attributes (Pi) start with an upper-case letter 
and continue in lower case; all other identifiers (non-constant attributes, formal routine 
arguments, local entities) in all lower case. Although compilers do not enforce them since 
they are not part of the notation’s specification, these rules are essential to the readability 
of software texts; the libraries and this book apply them consistently.

13.8  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• External routines are accessible through a well-defined interface. 

• Object technology can serve as a wrapping mechanism for legacy software.

• Routines may not directly modify their arguments, although they may change the 
objects associated with these arguments. 

• The notation includes a small set of instructions: assignment, conditional, loop, call, 
debug, check. 

• Expressions follow common usage. Current is an expression denoting the current 
instance. Not being an entity, Current may not be the target of an assignment. 

• Non-strict boolean operators yield the same values as the standard boolean operators 
when both operands are defined, but are defined in some cases when the standard 
operators are not. 

• Strings, input and output are covered by simple library classes. 

• Letter case is not significant in identifiers, although the style rules include 
recommended conventions

EXERCISES

E13.1  External classes

The discussion of how to integrate external software mentioned that although features are 
the right level of integration for non-O-O software elements, interaction with another 
object-oriented language might take place at the class level. Discuss a notion of “external 
class” meant for that purpose, and its addition to the notation of this book.

E13.2  Avoiding non-strict operators

Write a loop that determines if an element x appears in an array a, similar to the algorithm 
given in this chapter but not using any of the non-strict operators.
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Introduction to inheritance 
I nteresting systems are seldom born into an empty world. 

Almost always, new software expands on previous developments; the best way to 
create it is by imitation, refinement and combination. Traditional design methods largely 
ignored this aspect of system development. In object technology it is an essential concern. 

The techniques studied so far are not enough. Classes do provide a good modular 
decomposition technique and possess many of the qualities expected of reusable 
components: they are homogeneous, coherent modules; you may clearly separate their 
interface from their implementation according to the principle of information hiding; 
genericity gives them some flexibility; and you may specify their semantics precisely thanks 
to assertions. But more is needed to achieve the full goals of reusability and extendibility. 

For reusability, any comprehensive approach must face the problem of repetition and 
variation, analyzed in an earlier chapter. To avoid rewriting the same code over and over 
again, wasting time, introducing inconsistencies and risking errors, we need techniques to 
capture the striking commonalities that exist within groups of similar structures — all text 
editors, all tables, all file handlers — while accounting for the many differences that 
characterize individual cases. 

For extendibility, the type system described so far has the advantage of guaranteeing 
type consistency at compile time, but prohibits combination of elements of diverse forms 
even in legitimate cases. For example, we cannot yet define an array containing 
geometrical objects of different but compatible types such as POINT and SEGMENT.

Progress in either reusability or extendibility demands that we take advantage of the 
strong conceptual relations that hold between classes: a class may be an extension, 
specialization or combination of others. We need support from the method and the 
language to record and use these relations. Inheritance provides this support. 

A central and fascinating component of object technology, inheritance will require 
several chapters. In the present one we discover the fundamental concepts. The next three 
chapters will describe more advanced consequences: multiple inheritance, renaming, 
subcontracting, influence on the type system. Chapter 24 complements these technical 
presentations by providing the methodological perspective: how to use inheritance, and 
avoid misusing it.
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See also exercise 
E24.4, page 869.
14.1  POLYGONS AND RECTANGLES 
To master the basic concepts we will use a simple example. The example is sketched rather 
than complete, but it shows the essential ideas well. 

Polygons 
Assume we want to build a graphics library. Classes in this library will describe 
geometrical abstractions: points, segments, vectors, circles, ellipses, general polygons, 
triangles, rectangles, squares and so on. 

Consider first the class describing general polygons. Operations will include 
computation of the perimeter, translation, rotation. The class may look like this: 

note
description: "Polygons with an arbitrary number of vertices"

class POLYGON creation
…

feature -- Access
count: INTEGER

-- Number of vertices
perimeter: REAL

-- Length of perimeter
do … end

feature -- Transformation
display

-- Display polygon on screen.
do … end

rotate (center: POINT; angle: REAL)
-- Rotate by angle around center.

do
… See next …

end
translate (a, b: REAL)

-- Move by a horizontally, b vertically.
do … end

… Other feature declarations …
feature {NONE} -- Implementation

vertices: LINKED_LIST [POINT]
-- Successive points making up polygon

invariant
same_count_as_implementation: count = vertices  count
at_least_three: count >= 3

-- A polygon has at least three vertices (see exercise 14.2)
end
The attribute vertices yields the list of vertices; the choice of a linked list is only one 

possible implementation. (An array might be better.)
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The text of class 
POINT appeared on 
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Here is a possible implementation for a typical procedure, rotate. The procedure 
performs a rotation by a certain angle around a certain rotation center. To rotate a polygon, 
it suffices to rotate every vertex in turn:

rotate (center: POINT; angle: REAL)
-- Rotate around center by angle.

do
from

vertices  start
until

vertices  after
loop

vertices  item  rotate (center, angle)
vertices  forth

end
end

To understand this procedure, note that feature item from LINKED_LIST yields the 
value of the currently active list element (where the cursor is). Since vertices is of type 
LINKED_LIST [POINT], vertices  item denotes a point, to which we may apply procedure 
rotate defined for class POINT in an earlier chapter. It is valid — and common — to give 
the same name, here rotate, to features of different classes, as the target of any feature 
always has a clearly defined type. (This is the O-O form of overloading.)

Another routine, more important for our immediate purposes, is the function to 
compute the perimeter of a polygon. Since our polygons have no special properties, the 
only way to compute their perimeter is to loop through their vertices and sum the edge 
lengths. Here is an implementation of perimeter: 

perimeter: REAL
-- Sum of edge lengths

local
this, previous: POINT

do
from

vertices  start; this := vertices  item
check not vertices  after end -- A consequence of at_least_three

until
vertices  is_last

loop
previous := this
vertices  forth
this := vertices  item
Result := Result + this  distance (previous)

end
Result := Result + this  distance (vertices  first)

end

this

previous

(start)

(is_last)

first



INTRODUCTION TO INHERITANCE  §14.1 462

The list interface will 
be discussed in 
“ACTIVE DATA 
STRUCTURES”, 
23.4, page 774.
The loop simply adds the successive distances between adjacent vertices. Function 
distance was defined in class POINT. Result, representing the value to be returned by the 
function, is automatically initialized to 0 on routine entry. From class LINKED_LIST we 
use features first to get the first element, start to move the cursor to that first element, 
forth to advance it to the next, item to get the value of the element at cursor position, is_
last to know whether the current element is the last one, after to know if the cursor is past 
the last element. As recalled by the check instruction the invariant clause at_least_three
will guarantee that the loop starts and terminates properly: since it starts in a not after
state, vertices  item is defined, and applying forth one or more time is correct and will 
eventually yield a state satisfying is_last, the loop’s exit condition.

Rectangles 

Now assume we need a new class representing rectangles. We could start from scratch. 
But rectangles are a special kind of polygon and many of the features are the same: a 
rectangle will probably be translated, rotated or displayed in the same way as a general 
polygon. Rectangles, on the other hand, also have special features (such as a diagonal), 
special properties (the number of vertices is four, the angles are right angles), and special 
versions of some operations (to compute the perimeter of a rectangle, we can do better 
than the above general polygon algorithm). 

We can take advantage of this mix of commonality and specificity by defining class 
RECTANGLE as an heir to class POLYGON. This makes all the features of POLYGON — 
called a parent of RECTANGLE — by default applicable to the heir class as well. It 
suffices to give RECTANGLE an inheritance clause: 

class RECTANGLE inherit
POLYGON

feature
… Features specific to rectangles … 

end
The feature clause of the heir class does not repeat the features of the parent: they 

are automatically available because of the inheritance clause. It will only list features that 
are specific to the heir. These may be new features, such as diagonal; but they may also 
be redefinitions of inherited features.

The second possibility is useful for a feature that was already meaningful for the 
parent but requires a different form in the heir. Consider perimeter. It has a better 
implementation for rectangles: no need to compute four vertex-to-vertex distances; the 
result is simply twice the sum of the two side lengths. An heir that redefines a feature for 
the parent must announce it in the inheritance clause through a redefine subclause: 

class RECTANGLE inherit
POLYGON

redefine perimeter end
feature

…
end
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For a list, i_th (i) 
gives the element at 
position i (the i-th 
element, hence the 
name of the query).
This allows the feature clause of RECTANGLE to contain a new version of 
perimeter, which will supersede the POLYGON version for rectangles. If the redefine
subclause were not present, a new declaration of perimeter among the features of 
RECTANGLE would be an error: since RECTANGLE already has a perimeter feature 
inherited from POLYGON, this would amount to declaring a feature twice.

The RECTANGLE class looks like the following: 
note

description: "Rectangles, viewed as a special case of general polygons"
class RECTANGLE inherit

POLYGON
redefine perimeter end

creation
make

feature -- Initialization
make (center: POINT; s1, s2, angle: REAL)

-- Set up rectangle centered at center, with side lengths
-- s1 and s2 and orientation angle.

do … end
feature -- Access

side1, side2: REAL
-- The two side lengths

diagonal: REAL
-- Length of the diagonal

perimeter: REAL
-- Sum of edge lengths
-- (Redefinition of the POLYGON version)

do
Result := 2 ∗ (side1 + side2)

end
invariant

four_sides: count = 4
first_side: (vertices  i_th (1))  distance (vertices  i_th (2)) = side1
second_side: (vertices  i_th (2))  distance (vertices  i_th (3)) = side2
third_side: (vertices  i_th (3))  distance (vertices  i_th (4)) = side1
fourth_side: (vertices  i_th (4))  distance (vertices  i_th (1)) = side2

end
Because RECTANGLE is an heir of POLYGON, all features of the parent class are 

still applicable to the new class: vertices, rotate, translate, perimeter (in redefined form) 
and any others. They do not need to be repeated in the new class. 

This process is transitive: any class that inherits from RECTANGLE, say SQUARE, 
also has the POLYGON features.

1 2

34

side1
side2
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An inheritance 
link
Basic conventions and terminology

The following terms will be useful in addition to “heir” and “parent”.

In the literature you will also encounter the terms “subclass” and “superclass”, but 
we will stay away from them because they are ambiguous; sometimes “subclass” means 
heir (immediate descendant), sometimes it is used in the more general sense of proper 
descendant, and it is not always clear which. In addition, we will see that the “subset” 
connotation of this word is not always justified.

Associated terminology applies to the features of a class: a feature is either inherited
(coming from a proper ancestors) or immediate (introduced in the class itself).

In graphical representations of object-oriented software structures, where classes are 
represented by ellipses (“yy-bubbles”), inheritance links will appear as single arrows. This 
distinguishes them from links for the other basic inter-class relation, client, which as you 
will recall uses a double arrow. (For further distinction this book uses black for client and 
color for inheritance.)

A redefined feature is marked ++, a convention from the Business Object Notation 
(B.O.N.).

The arrow points upward, from the heir to the parent; the convention, easy to 
remember, is that it represents the relation “inherits from”. In some of the literature you 
will find the reverse practice; although in general such choices of graphical convention are 
partly a matter of taste, in this case one convention appears definitely better than the other 
— in the sense that one suggests the proper relationship and the other may lead to 
confusion. An arrow is not just an arbitrary pictogram but indicates a unidirectional link, 
between the two ends of the arrow. Here:

Inheritance terminology
A descendant of a class C is any class that inherits directly or indirectly from 
C, including C itself. (Formally: either C or, recursively, a descendant of an 
heir of C.)
A proper descendant of C is a descendant other than C itself.
An ancestor of C is a class A such that C is a descendant of A. A proper 
ancestor of C is a class A such that C is a proper descendant of A. 

POLYGON

RECTANGLE

perimeter

diagonal
perimeter++ Inherits from
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• Any instance of the heir may be viewed (as we shall see in more detail) as an instance 
of the parent, but not conversely.

• The text of the heir will always mention the parent (as in the inherit clause above), 
but not conversely; it is in fact an important property of the method, resulting among 
others from the Open-Closed principle, that a class does not “know” the list of its 
heirs and other proper descendants.

Mathematically, the direction of the relationship is reflected in algebraic models for 
inheritance, which use a morphism (a generalization of the notion of function) from the 
heir’s model to the parent’s model — not the other way around. One more reason for 
drawing the arrow from the heir to the parent.

Although with complex systems we cannot have an absolute rule for class placement 
in inheritance diagrams, we should try whenever possible to position a class above its heirs.

Invariant inheritance

You will have noticed the invariant of class RECTANGLE, which expresses that the number 
of sides is four and that the successive edge lengths are side1, side2, side1 and side2.

Class POLYGON also had an invariant, which still applies to its heir:

Because the parents may themselves have parents, this rule is recursive: in the end 
the full invariant of a class is obtained by anding the invariant clauses of all its ancestors.

The rule reflects one of the basic characteristics of inheritance: to say that B inherits 
from A is to state that one may view any instance of B also as an instance of A (more on 
this property later). As a result, any consistency constraint applying to instances of A, as 
expressed by the invariant, also applies to instances of B.

In the example, the second clause (at_least_three) invariant of POLYGON stated that 
the number of sides must be at least three; this is subsumed by the four_sides subclause in 
RECTANGLE’s invariant clause, which requires it to be exactly four.

You may wonder what would happen if the heir’s clause, instead of making the parent’s 
redundant as here (since count = 4 implies count >= 3), were incompatible with it, as with 
an heir of POLYGON that would introduce the invariant clause count = 2. The result is 
simply an inconsistent invariant, not different from what you get if you include, in the 
invariant of a single class, two separate subclauses that read count >= 3 and count = 2.

Inheritance and creation

Although it was not shown, a creation procedure for POLYGON might be of the form

Invariant inheritance rule
The invariant property of a class is the boolean and of the assertions appearing 
in its invariant clause and of the invariant properties of its parents if any.
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See “FEATURE 
RENAMING”, 15.2, 
page 535.
make_ polygon (vl: LINKED_LIST [POINT])
-- Set up with vertices taken from vl.

require
vl  count >= 3

do
… Initialize polygon representation from the items of vl …

ensure
-- vertices and vl have the same items (can be expressed formally)

end
This procedure takes a list of points, containing at least three elements, and uses it to 

set up the polygon.
The procedure has been given a special name make_ polygon to avoid any name conflict 
when RECTANGLE inherits it and introduces its own creation procedure make. This is 
not the recommended style; in the next chapter we will learn how to give the standard 
name make to the creation procedure in POLYGON, and use renaming in the inheritance 
clause of RECTANGLE to remove any name clash.

The creation procedure of class RECTANGLE, shown earlier, took four arguments: 
a point to serve as center, the two side lengths and an orientation. Note that feature vertices
is still applicable to rectangles; as a consequence, the creation procedure of RECTANGLE
should set up the vertices list with the appropriate point values (the four corners, to be 
computed from the center, side lengths and orientation given as arguments). 

The creation procedure for general polygons is awkward for rectangles, since only 
lists of four elements satisfying the invariant of class RECTANGLE would be acceptable. 
Conversely, the creation procedure for rectangles is not appropriate for arbitrary polygons. 
This is a common case: a parent’s creation procedure is not necessarily right as creation 
procedure for the heir. The precise reason is easy to spot; it follows from the observation 
that a creation procedure’s formal role is to establish the class invariant. The parent’s 
creation procedure was required to establish the parent’s invariant; but, as we have seen, 
the heir’s invariant may be stronger (and usually is); we cannot then expect that the 
original procedure will guarantee the new invariant.

In the case of an heir adding new attributes, the creation procedures might need to 
initialize these attributes and so require extra arguments. Hence the general rule:

An inherited creation procedure is still available to the heir as a normal feature of the 
class (although, as we shall see, the heir may prefer to make it secret); but it does not by 
default retain its status as a creation procedure. Only the procedures listed in the heir’s 
own creation clause have that status.

Creation Inheritance rule
An inherited feature’s creation status in the parent class (that is to say, 
whether or not it is a creation procedure) has no bearing on its creation status 
in the heir.
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In some cases, of course, a parent’s creation procedure may still be applicable as a 
creation procedure; then you will simply list it in the creation clause:

class B inherit
A

creation
make

feature
…

where make is inherited — without modification — from A, which also listed it in its own 
creation clause.

An example hierarchy
For the rest of the discussion it will be useful to consider the POLYGON-RECTANGLE
example in the context of a more general inheritance hierarchy of geometrical figure types, 
such as the one shown on the next page.

Figures have been classified into open and closed variants. Along with polygons, an 
example of closed figure is the ellipse; a special case of the ellipse is the circle.

Various features appear next to the applicable classes. The symbol ++, as noted, 
means “redefined”; the symbols + and * will be explained later.

In the original example, for simplicity, RECTANGLE was directly an heir of 
POLYGON. Since the sketched classification of polygons is based on the number of 
vertices, it seems preferable to introduce an intermediate class QUADRANGLE, at the 
same level as TRIANGLE, PENTAGON and similar classes. Feature diagonal can be 
moved up to the level of QUADRANGLE.

Note the presence of SQUARE, an heir to RECTANGLE, characterized by the 
invariant side1 = side2. Similarly, an ellipse  has two focuses (or foci), which for 
a circle  are the same point, giving CIRCLE an invariant property of the form 
equal (focus1 = focus2).

14.2  POLYMORPHISM

Inheritance hierarchies will give us considerable flexibility for the manipulation of 
objects, while retaining the safety of static typing. The supporting techniques, 
polymorphism and dynamic binding, address some of the fundamental issues of software 
architecture discussed in part B of this book. Let us begin with polymorphism.

Polymorphic attachment
“Polymorphism” means the ability to take several forms. In object-oriented development 
what may take several forms is a variable entity or data structure element, which will have 
the ability, at run time, to become attached to objects of different types, all controlled by 
the static declaration.
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Figure type 
hierarchy
OPEN_
FIGURE

SEGMENT POLYLINE

POLYGON ELLIPSE

QUADRANGLE
CIRCLETRIANGLE

display*
rotate*

extent*

…
barycenter*
…

perimeter*

perimeter+

diagonal

SQUARE
perimeter++

perimeter++

perimeter+

CLOSED_
FIGURE

FIGURE

RECTANGLEperimeter++

side1, side2

∗

∗∗
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Polymorphic 
reference 
reattachment
Assume, with the inheritance structure shown in the figure, the following 
declarations using short but mnemonic entity names:

p: POLYGON; r: RECTANGLE; t: TRIANGLE
Then the following assignments are valid:
p := r
p := t
These instructions assign to an entity denoting a polygon the value of an entity 

denoting a rectangle in the first case, a triangle in the second.
Such assignments, in which the type of the source (the right-hand side) is different 

from the type of the target (the left-hand side), are called polymorphic assignments. An 
entity such as p which appears in some polymorphic assignment is a polymorphic entity.

Before the introduction of inheritance, all our assignments were monomorphic (non-
polymorphic): we could assign — in the various examples of earlier chapters — a point to 
a point, a book to a book, an account to an account. With polymorphism, we are starting 
to see more action on the attachment scene.

The polymorphic assignments taken as example are legitimate: the inheritance 
structure permits us to view an instance of RECTANGLE or TRIANGLE as an instance of 
POLYGON. We say that the type of the source conforms to the type of the target. In the 
reverse direction, as with r := p, the assignment would not be valid. This fundamental type 
rule will be discussed in more detail shortly.

Instead of an assignment, you may achieve polymorphism through argument passing, 
as with a call of the form f (r) or f (t) and a feature declaration of the form

f ( p: POLYGON) do … end
As you will remember, assignment and argument passing have the same semantics, 

and are together called attachment; we can talk of polymorphic attachment when the 
source and target have different types.

What exactly happens during a polymorphic attachment?
All the entities appearing in the preceding cases of polymorphic attachment are of 
reference types: the possible values for p, r and t are not objects but references to objects. 
So the effect of an assignment such as p := r is simply to reattach a reference:

(POLYGON)

O1
p

r

(RECTANGLE)

O2

(after)

(before)
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See “COMPOSITE 
OBJECTS AND 
EXPANDED TYPES”, 
8.7, page 254.

This is extracted 
from class ARRAY as 
it appears on page 
372.
So in spite of the name you should not imagine, when thinking of polymorphism, 
some run-time transmutation of objects. Once created, an object never changes its type. 
Only references do so by getting reattached to objects of different types. This also means 
that polymorphism does not carry any efficiency penalty; a reference reattachment — a 
very fast operation — costs the same regardless of the objects involved.

Polymorphic attachments will only be permitted for targets of a reference type — not 
for the other case, expanded types. Since a descendant class may introduce new attributes, 
the corresponding instances may have more fields; the last figure suggested this by 
showing the RECTANGLE object bigger than the POLYGON object. Such differences in 
object size do not cause any problem if all we are reattaching is a reference. But if instead 
of a reference p is of an expanded type (being for example declared as expanded
POLYGON), then the value of p is directly an object, and any assignment to p would 
overwrite the contents of that object. No polymorphism is possible in that case.

Polymorphic data structures
Consider an array of polygons:

poly_arr: ARRAY [POLYGON]
When you assign a value x to an element of the array, as in
poly_arr  put (x, some_index)

(for some valid integer index value some_index), the specification of class ARRAY
indicates that the assigned value’s type must conform to the actual generic parameter:

class ARRAY [G] creation
…

feature -- Element change
put (v: G; i: INTEGER)

-- Assign v to the entry of index i
…

end
Because v, the formal argument corresponding to x, is declared of type G in the class, 

and the actual generic parameter corresponding to G is POLYGON in the case of poly_arr, 
the type of x must conform to POLYGON. As we have seen, this does not require x to be 
of type POLYGON: any descendant of POLYGON is acceptable.

So assuming that the array has bounds 1 and 4, that we have declared some entities as
p: POLYGON; r: RECTANGLE; s: SQUARE; t: TRIANGLE

and created the corresponding objects, we may execute
poly_arr  put (p, 1)
poly_arr  put (r, 2)
poly_arr  put (s, 3)
poly_arr  put (t, 4)

yielding an array of references to objects of different types:
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A polymorphic 
array

Dimensions of 
generalization

(See page 317.)
The graphical objects have been represented by the corresponding geometrical shapes 
rather than the usual multi-field object diagrams.

Such a data structure, containing objects of different types (all of them descendants 
of a common type), are called polymorphic data structures. We will encounter many 
examples in later discussions. The use of arrays is just one possibility; any other container 
structure, such as a list or stack, can be polymorphic in the same way.

The introduction of polymorphic data structures achieves the aim, stated at the 
beginning of chapter 10, of combining genericity and inheritance for maximum flexibility 
and safety. It is worth recalling the figure that illustrated the idea:

Types that were informally called SET_OF_BOOKS and the like on the earlier figure 
have been replaced with generically derived types, such as SET [BOOK].

This combination of genericity and inheritance is powerful. It enables you to 
describe object structures that are as general as you like, but no more. For example:

(POLYGON)

(RECTANGLE)

(SQUARE)

(TRIANGLE)

1

3

4

2

LIST [PERSON] LIST [BOOK] LIST [JOURNAL]

SET [BOOK]

LINKED_LIST [BOOK]

Abstraction

Specialization

Type parameterizationType parameterization
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We will study ANY in 
“Universal classes”, 
page 580.
• LIST [RECTANGLE]: may contain squares, but not triangles.

• LIST [POLYGON]: may contain squares, rectangles, triangles, but not circles.

• LIST [FIGURE]: may contain instances of any of the classes in the FIGURE
hierarchy, but not books or bank accounts.

• LIST [ANY]: may contain objects of arbitrary types.

The last case uses class ANY, which by convention is an ancestor to all classes.

By choosing as actual generic parameter a class at a varying place in the hierarchy, 
you can set the limits of what your container will accept.

14.3  TYPING FOR INHERITANCE
That the remarkable flexibility provided by inheritance does not come at the expense of 
reliability follows from the use of a statically typed approach, in which we guarantee at 
compile time that no incorrect run-time type combination can occur.

Type consistency 

Inheritance is consistent with the type system. The basic rules are easy to explain on the 
above example. Assume the following declarations: 

p: POLYGON
r: RECTANGLE

referring to the earlier inheritance hierarchy, of which the relevant extract is this:

POLYGON

QUADRANGLE

perimeter+

diagonal

RECTANGLEperimeter++

side1, side2

display*
rotate*

extent*

…
barycenter*
…

FIGURE
∗
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Chapter 17 dis-
cusses typing.
Then the following are valid: 

• p  perimeter: no problem, since perimeter is defined for polygons. 

• p  vertices, p  translate (…), p  rotate (…) with valid arguments. 

• r  diagonal, r  side1, r  side2: the three features considered are declared at the 
RECTANGLE or QUADRANGLE level. 

• r  vertices, r  translate (…), r  rotate (…): the features considered are declared at the 
POLYGON level or above, and so are applicable to rectangles, which inherit all 
polygon features. 

• r  perimeter: same case as the previous one. The version of the function to be called 
here is the redefinition given in RECTANGLE, not the original in POLYGON. 

The following feature calls, however, are illegal since the features considered are not 
available at the polygon level:

p  side1
p  side2
p  diagonal

These cases all result from the first fundamental typing rule:

Recall that the ancestors of C include C itself. The phrasing “where the type of x is 
based on a class C   ” is a reminder that a type may involve more than just a class name if 
the class is generic: LINKED_LIST [INTEGER] is a class type “based on” the class name 
LINKED_LIST; the generic parameters play no part in this rule. 

Like all other validity rules reviewed in this book, the Feature Call rule is static; this 
means that it can be checked on the sole basis of a system’s text, rather than through run-
time controls. The compiler (which typically is the tool performing such checking) will 
reject classes containing invalid feature calls. If we succeed in defining a set of tight-proof 
type rules, there will be no risk, once a system has been compiled, that its execution will 
ever apply a feature to an object that is not equipped to handle it. 

Static typing is one of object technology’s main resources for achieving the goal of 
software reliability, introduced in the first chapter of this book.

It has already been mentioned that not all approaches to object-oriented software 
construction are statically typed; the best-known representative of dynamically typed
languages is Smalltalk, which has no static Feature Call rule but will let an execution 
terminate abnormally in the case of a “message not understood” run-time error. The 
chapter on typing will compare the various approaches further.

Feature Call rule
In a feature call x  f, where the type of x is based on a class C, feature f  must 
be defined in one of the ancestors of C. 



INTRODUCTION TO INHERITANCE  §14.3 474

See “Types and 
classes”, page 324.
Limits to polymorphism 

Unrestrained polymorphism would be incompatible with a static notion of type. 
Inheritance governs which polymorphic attachments are permissible.

The polymorphic attachments used as examples, such as p := r and p := t, all had as 
source type a descendant of the target’s class. We say that the source type conforms to the 
target class; for example SQUARE conforms to RECTANGLE and to POLYGON but not to 
TRIANGLE. This notion has already been used informally but we need a precise definition:

Why is the notion of descendant not sufficient? The reason is again that since we 
encountered genericity we have had to make a technical distinction between types and 
classes. Every type has a base class, which in the absence of genericity is the type itself 
(for example POLYGON is its own base class), but for a generically derived type is the 
class from which the type is built; for example the base class of LIST [POLYGON] is LIST. 
The second part of the definition indicates that B [Y] will conform to A [X] if B is a 
descendant of A and Y a descendant of X.

Note that, as every class is a descendant of itself, so does every type conform to itself.

With this generalization of the notion of descendant we get the second fundamental 
typing rule:

The Type Conformance rule expresses that you can assign from the more specific to 
the more general, but not conversely. So p := r is valid but r := p is invalid.

The rule may be illustrated like this. Assume I am absent-minded enough to write just 
“Animal” in the order form I send to the Mail-A-Pet company. Then, whether I receive a 
dog, a ladybug or a killer whale, I have no right to complain. (The hypothesis is that 
classes DOG etc. are all descendants of ANIMAL.) If, on the other hand, I specifically 
request a dog, and the mailman brings me one morning a box with a label that reads 
ANIMAL, or perhaps MAMMAL (an intermediate ancestor), I am entitled to return it to 
the sender — even if from the box come unmistakable sounds of yelping and barking. 
Since my order was not fulfilled as specified, I shall owe nothing to Mail-A-Pet. 

Definition: conformance
A type U conforms to a type T only if the base class of U is a descendant of 
the base class of T; also, for generically derived types, every actual parameter 
of U must (recursively) conform to the corresponding formal parameter in T.

Type Conformance rule
An attachment of target x and source y (that is to say, an assignment x := y, or 
the use of y as an actual argument to a routine call where the corresponding 
formal argument is x) is only valid if the type of y conforms to the type of x.
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The original discus-
sion was “The mold 
and the instance”, 
page 167.
Instances

With the introduction of polymorphism we need a more specific terminology to talk about 
instances. Informally, the instances of a class are the run-time objects built according to 
the definition of a class. But now we must also consider the objects built from the 
definition of its proper descendants. Hence the more precise definition:

The last part of this definition implies, since the descendants of a class include the class 
itself, that a direct instance of C is also an instance of C.

So the execution of

p1, p2: POLYGON; r: RECTANGLE
… 
create p1 …; create r …; p2 := r

will create two instances of POLYGON but only one direct instance (the one attached to 
p1). The other object, to which the extract attaches both p2 and r, is a direct instance of 
RECTANGLE — and so an instance of both POLYGON and RECTANGLE.

Although the notions of instance and direct instance are defined above for a class, 
they immediately extend to any type (with a base class and possible generic parameters).

Polymorphism means that an entity of a certain type may become attached not only 
to direct instances of that type, but to arbitrary instances. We may indeed consider that the 
role of the type conformance rule is to ensure the following property:

Static type, dynamic type 

The name of the last property suggests the concepts of “static type” and “dynamic type”. 
The type used to declare an entity is the static type of the corresponding reference. If, at 
run time, the reference gets attached to an object of a certain type, this type becomes the 
dynamic type of the reference.

So with the declaration p: POLYGON, the static type of the reference that p denotes 
is POLYGON; after the execution of create p, the dynamic type of that reference is also 
POLYGON; after the assignment p := r, with r of type RECTANGLE and non-void, the 
dynamic type is RECTANGLE.

Definition: direct instance, instance
A direct instance of a class C is an object produced according to the exact 
definition of C, through a creation instruction create x… where the target x
is of type C (or, recursively, by cloning a direct instance of C).
An instance of C is a direct instance of a descendant of C.

Static-dynamic type consistency
An entity declared of a type T may at run time only become attached to 
instances of T.



INTRODUCTION TO INHERITANCE  §14.3 476

See “States of a refer-
ence”, page 240.

NONE will be seen in 
“The bottom of the 
pit”, page 582.
The Type Conformance rule states that the dynamic type must always conform to the 
static type. 

To avoid any confusion remember that we are dealing with three levels: an entity is 
an identifier in the class text; at run time its value is a reference (except in the expanded 
case); the reference may get attached to an object. Then:

• An object only has a dynamic type, the type with which it has been created. That type 
will never change during the object’s lifetime.

• At any time during execution, a reference has a dynamic type, the type of the object 
to which it is currently attached (or the special type NONE if the reference is void). 
The dynamic type may change as a result of reattachment operations.

• Only an entity has both a static type and dynamic types. Its static type is the type with 
which it was declared: T if the declaration was x: T. Its dynamic type at some 
execution-time instant is the type of its reference value, meaning the type of the 
attached object.
In the expanded case there is no reference; the value of x is an object of type T, and x has 
T as both its static type and as its only possible dynamic type.

Are the restrictions justified? 

The two typing rules may sometimes seem too restrictive. For example, the second 
instruction in both of the following sequences will be statically rejected: 

R1 • p:= r; r := p

R2 • p := r; x := p  diagonal

In R1, we refuse to assign a polygon to a rectangle entity even though that polygon 
happens at run time to be a rectangle (like refusing to accept a dog because it comes in a 
box marked “animal”). In R2, we decide that diagonal is not applicable to p even though 
at run time it would in fact be — as it were by accident. 

But closer examination of these examples confirms that the rules are justified. If you 
attach a reference to an object, better avoid later problems by making sure that they are of 
compatible types. And if you want to apply a rectangle operation, why not declare the 
target as a rectangle? 

In practice, cases of the form R1 and R2 are unlikely. Assignments such as p := r
will normally occur as part of some control structure that depends on run-time conditions, 
such as user input. A more realistic polymorphic scheme may look like this:

create r  make (…); …
screen  display_icons -- Display icons representing various polygons
screen  wait_for_mouse_click -- Wait for the user to click the mouse button
x := screen  mouse_ position -- Find out at what position 

-- the mouse was clicked
chosen_icon := screen  icon_where_is (x) -- Find out what icon appears at the 

-- mouse’s position
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After a 
polymorphic
attachment
if chosen_icon = rectangle_icon then
p := r

elseif …
 p := “Some other type of polygon” …

º
end
… Uses of p, for example p  display, p  rotate, …
On the last line, p can denote arbitrary polygons, so you should only apply general 

POLYGON features. Clearly, operations valid for rectangles only, such as diagonal, 
should be applied to r only (for example in the first clause of the if). Where p as such is 
going to be used, in the instructions following the if instruction, only operations defined 
for all variants of polygons are applicable to it.

In another typical case, p could just be a formal routine argument:

some_routine (p: POLYGON) is… 

and you execute a call some_routine (r), valid as per the Type Conformance rule; but when 
you write the routine you do not know about this call. In fact a call some_routine (t) for t
or type TRIANGLE, or any other descendant of POLYGON for that matter, would be 
equally valid, so all you can assume is that p represents some kind of polygon — any kind 
of polygon. It is quite appropriate, then, that you should be restricted to applying 
POLYGON features to p.

It is in this kind of situation — where you cannot predict the exact type of the 
attached object — that polymorphic entities such as p are useful.

Can ignorance be bliss?

It is worthwhile reinforcing the last few points a bit since the concepts now being 
introduced will be so important in the rest of our discussion. (There will be nothing really 
new in this short section, but it should help you understand the basic concepts better, 
preparing you for the more advanced ones which follow.)

If you are still uneasy at the impossibility of writing p  diagonal even after a call 
p :=r — case R2 — you are not alone; this is a shock to many people when they start 
grappling with these concepts. We know that p is a rectangle because of the assignment, 
so why may we not access its diagonal? For one thing, that would be useless. After the 
polymorphic assignment, as shown in the following extract from an earlier figure, the 
same RECTANGLE object now has two names, a polygon name p and a rectangle name r:

p

r (RECTANGLE)

O2
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In such a case, since you do know that the object O2 is a rectangle and have access 
to it through its rectangle name r, why would you write a diagonal access operation in the 
form p  diagonal? This is uninteresting since you can just write it as r  diagonal; using the 
object’s official rectangle name removes any doubt as to the validity of applying a 
rectangle operation. Using the polygon name p, which could just as well denote a triangle 
object, brings nothing and introduces uncertainty.

Polymorphism, in fact, loses information: when as a result of the assignment p := r
you are able to refer to the rectangle object O2 under its polygon name p, you have lost 
something precious: the ability to use rectangle-specific features. What then is the 
purpose? In this case, there is none. The only interesting application, as noted, arises when 
you do not know for sure what kind of polygon p is, as a result of a conditional instruction 
if some_condition then p:= r else p := something_else …, or because p is a formal routine 
argument and you do not know what the actual argument will be. But then in such cases it 
would be incorrect and dangerous to apply to p anything else than POLYGON features.

To continue with the animal theme, imagine that someone asks “do you have a pet?” 
and you answer “yes, a cat!”. This is similar to a polymorphic assignment, making a 
single object known through two names of different types: “my_ pet” and “my_cat” 
now denote the same animal. But they do not serve the same purpose; the first has less 
information than the second. You can use either name if you call the post-sales division 
of Mail-A-Pet, Absentee Owner Department (“I am going on holiday; what’s your price 
for keeping my_ pet [or: my_cat] for two weeks”); but if you phone their Destructive 
Control Department to ask “Can I bring my_ pet for a de-clawing Tuesday?”, you 
probably will not get an appointment until the employee has made you confirm that you 
really mean my_cat.

When you want to force a type

In some special cases there may be a need to try an assignment going against the grain of 
inheritance, and accept that the result is not guaranteed to yield an object. This does not 
normally occur, when you are properly applying the object-oriented method, with objects 
that are internal to a certain software element. But you might for example receive over the 
network an object advertized to be of a certain type; since you have no control over the 
origin of the object, static type declarations will guarantee nothing, and you must test the 
type before accepting it.

When we receive that box marked “Animal” rather than the expected “Dog”, we might 
be tempted to open the “Animal” box anyway and take our chances, knowing that if its 
content is not the expected dog we will have forfeited our right to return the package, and 
depending on what comes out of it we may not even live to tell the story.

Such cases require a new mechanism, assignment attempt, which will enable us to 
write instructions of the form r ?= p (where ?= is the symbol for assignment attempt, 
versus := for assignment), meaning “do the assignment if the object type is the expected 
one for r, otherwise make r void”. But we are not equipped yet to understand how this 
instruction fits in the proper use of the object-oriented method, so we will have to return 
to it in a subsequent chapter. (Until then, you did not read about it here.)
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Polymorphic creation

The introduction of inheritance and polymorphism suggests a small extension to the 
mechanism for creating objects, allowing direct creation of objects of a descendant type.

The basic creation instruction, as you will recall, is of one of the forms

create x

create x  make (…)

where the second form both assumes and requires that the base class of x’s type T contain 
a creation clause listing make as one of the creation procedures. (A creation procedure 
may of course have any name; make is the recommended default.) The effect of the 
instruction is to create a new object of type T, initialize it to the default values, and attach 
it to x. In addition, the second form will apply make, with the arguments given, to the just 
created and initialized object.

Assume that T has a proper descendant U. We may want to use x polymorphically 
and, in some cases, make it denote a newly created direct instance of U rather than T. A 
possible solution uses a local entity of type U:

some_routine (…)

local
u_temp: U

do
…; create u_temp  make (…); x := u_temp; …

end

This works but is cumbersome, especially in a multi-choice context where we may 
want to attach x to an instance of one of several possible descendant types. The local 
entities, u_temp above, play only a temporary part; their declarations and assignments 
clutter up the software text. Hence the need for a variant of the creation instruction:

create {U} x

create {U} x  make (…)

The effect is the same as with the create forms, except that the created object is a 
direct instance of U rather than T. The constraint on using this variant is obvious: type U
must conform to type T and, in the second form, make must be defined as a creation 
procedure in the base class of U; if that class indeed has one or more creation procedures, 
only the second form is valid. Note that whether T ’s own base class has creation 
procedures is irrelevant here; all that counts is what U requires.

A typical use involves creation of an instance of one of several possible types:
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f: FIGURE
…
“Display a set of figure icons”
if chosen_icon = rectangle_icon then

create {RECTANGLE} f
else if chosen_icon = circle_icon then

create {CIRCLE} f
else

…
end

This new form of creation instruction suggests introducing the notion of creation 
type of a creation instruction, denoting the type of the object that will be created: 

• For the implicit-type form create x …, the creation type is the type of x.

• For the explicit-type form create {U} x …, the creation type is U.

14.4  DYNAMIC BINDING

Dynamic binding will complement redefinition, polymorphism and static typing to make 
up the basic tetralogy of inheritance.

Using the right variant

Operations defined for all polygons need not be implemented identically for all variants. 
For example, perimeter has different versions for general polygons and for rectangles; let 
us call them perimeterPOL and perimeterRECT. Class SQUARE will also have its own 
variant (yielding four times the side length). You may imagine further variants for other 
special kinds of polygon. This immediately raises a fundamental question: what happens 
when a routine with more than one version is applied to a polymorphic entity?

In a fragment such as 

create p  make (…); x := p  perimeter
it is clear that perimeterPOL will be applied. It is just as clear that in 

create r  make (…); x := r  perimeter
perimeterRECT will be applied. But what if the polymorphic entity p, statically declared as 
a polygon, dynamically refers to a rectangle? Assume you have executed 

create r  make (…)
p := r
x := p  perimeter

The rule known as dynamic binding implies that the dynamic form of the object
determines which version of the operation to apply. Here it will be perimeterRECT.
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As noted, of course, the more interesting case arises when we cannot deduce from a 
mere reading of the software text what exact dynamic type p will have at run time, as in

-- Compute perimeter of figure built according to user choice
p: POLYGON 
… 
if chosen_icon = rectangle_icon then

{RECTANGLE} p  make (…)
elseif chosen_icon = triangle_icon then

create {TRIANGLE} p  make (…)
elseif

…
end
… 
x := p  perimeter

or after a conditional polymorphic assignment if … then p := r elseif… then p := t…; or 
if p is an element of a polymorphic array of polygons; or simply if p is a formal argument, 
declared of type POLYGON, of the enclosing routine — to which callers can pass actual 
arguments of any conforming type. 

Then depending on what happens in any particular execution, the dynamic type of p
will be RECTANGLE, or TRIANGLE, and so on. You have no way to know which of these 
cases will hold. But thanks to dynamic binding you do not need to know: whatever p 
happens to be, the call will execute the proper variant of perimeter.

This ability of operations to adapt automatically to the objects to which they are 
applied is one of the most important properties of object-oriented systems, directly 
addressing some of the principal quality issues discussed at the beginning of this book. We 
will examine its consequences in detail later in this chapter. 

Dynamic binding also gives the full story about the information-loss aspects of 
polymorphism discussed earlier. Now we really understand why it is not absurd to lose 
information about an object: after an assignment p := q, or a call some_routine (q) where 
p is the formal argument, we have lost the type information specific to q but we can rest 
assured that if we apply an operation p  polygon_feature where polygon_feature has a 
special version applicable to q, that version will be the one selected.

It is all right to send your pets to an Absentee Owner Department that caters to all kinds 
— provided you know that when meal time comes your cat will get cat food and your dog 
will get dog food.

Redefinition and assertions 

If a client of POLYGON calls p  perimeter, it expects to get the value of p’s perimeter, as 
defined by the specification of function perimeter in the definition of the class. But now, 
because of dynamic binding, the client may well be calling another routine, redefined in 
some descendant. In RECTANGLE, the redefinition, while improving efficiency, preserves 
the result; but what prevents you from redefining perimeter to compute, say, the area?
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This is contrary to the spirit of redefinition. Redefinition should change the 
implementation of a routine, not its semantics. Fortunately we have a way to constrain the 
semantics of a routine — assertions. The basic rule for controlling the power of 
redefinition and dynamic binding is simple: the precondition and postcondition of a 
routine will apply (informally speaking) to any redefinition; and, as we have already seen, 
the class invariant automatically carries over to all the descendants. 

The exact rules will be given in chapter 16. But you should already note that 
redefinition is not arbitrary: only semantics-preserving redefinitions are permitted. It is up 
to the routine writer to express the semantics precisely enough to express his intent, while 
leaving enough freedom to future reimplementers.

On the implementation of dynamic binding

One might fear that dynamic binding could be a costly mechanism, requiring a run-time 
search of the inheritance graph and hence an overhead that grows with the depth of that 
graph and becomes unacceptable with multiple inheritance (studied in the next chapter). 

Fortunately this is not the case with a properly designed (and statically typed) O-O 
language. This issue will be discussed in more detail at the end of this chapter, but we can 
already reassure ourselves that efficiency consequences of dynamic binding should not be 
a concern for developers working with a decent environment.

14.5  DEFERRED FEATURES AND CLASSES 

Polymorphism and dynamic binding mean that we can rely on abstractions as we design 
our software, and rest assured that execution will choose the proper implementations. But 
so far everything was fully implemented.

We do not always need everything to be fully implemented. Abstract software 
elements, partially implemented or not implemented at all, help us for many tasks: 
analyzing the problem and designing the architecture (in which case we may keep them in 
the final product to remind ourselves of the analysis and design); capturing commonalities 
between implementations; describing the intermediate nodes in a classification. 

Deferred features and classes provide the needed abstraction mechanism.

Moving arbitrary figures 

To understand the need for deferred routines and classes, consider again the FIGURE
hierarchy, reproduced for convenience on the facing page.

The most general notion is that of FIGURE. Relying on the mechanisms of 
polymorphism and dynamic binding, you may want to apply the general scheme described 
earlier, as in: 
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The FIGURE 
hierarchy 
again
transform (f: FIGURE)
-- Apply a specific transformation to f.

do
f  rotate (…)
f  translate (…)

end
with appropriate values for the missing arguments. Then all the following calls are valid:

transform (r) -- with r: RECTANGLE
transform (c) -- with c: CIRCLE
transform (figarray  item (i)) -- with figarray: ARRAY [POLYGON]

In other words, you want to apply rotate and translate to a figure f, and let the 
underlying dynamic binding mechanism pick the appropriate version (different for classes 
RECTANGLE and CIRCLE) depending on the actual form of f, known only at run time. 

OPEN_
FIGURE

SEGMENT POLYLINE

POLYGON ELLIPSE

QUADRANGLE CIRCLETRIANGLE

display*
rotate*

extent*

…
barycenter*
…

perimeter*

perimeter+

diagonal

SQUAREperimeter++

perimeter++

perimeter+

CLOSED_
FIGURE

FIGURE

RECTANGLEperimeter++ side1, side2

∗

∗∗

*   deferred
+   effected
++ redefined
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This should work, and is a typical example of the elegant style made possible by 
polymorphism and dynamic binding, applying the Single Choice principle. You should 
simply have to redefine rotate and translate for the various classes involved.

But there is nothing to redefine! FIGURE is a very general notion, covering all kinds 
of two-dimensional figure. You have no way of writing a general-purpose version of rotate 
and translate without more information on the figures involved. 

So here is a situation where routine transform would execute correctly thanks to 
dynamic binding, but is statically illegal since rotate and translate are not valid features 
of FIGURE. Type checking will catch f  rotate and f  translate as invalid operations. 

You could, of course, introduce at the FIGURE level a rotate procedure which would 
do nothing. But this is a dangerous road to follow; rotate (center, angle) has a well-defined 
intuitive semantics, and “do nothing” is not a proper implementation of it. 

Deferring a feature
What we need is a way to specify rotate and translate at the FIGURE level, while making 
it incumbent on descendants to provide actual implementations. This is achieved by 
declaring the features as “deferred”. We replace the whole instruction part of the body 
(do Instructions) by the keyword deferred. Class FIGURE will declare:

rotate (center: POINT; angle: REAL)
-- Rotate by angle around center.

deferred
end

and similarly for translate. This means that the feature is known in the class where this 
declaration appears, but implemented only in proper descendants. Then a call such as catch 
f  rotate in procedure transform becomes valid. 

With such a declaration, rotate is said to be a deferred feature. A non-deferred feature 
— one which has an implementation, such as all the features that we had encountered up 
to this one — is said to be effective.

Effecting a feature
In some proper descendants of FIGURE you will want to replace the deferred version by 
an effective one. For example:

class POLYGON inherit
CLOSED_FIGURE

feature
rotate (center: POINT; angle: REAL)

-- Rotate by angle around center.
do

… Instructions to rotate all vertices (see page 461) …
end

…
end



§14.5   DEFERRED FEATURES AND CLASSES 485

“Conflicts under 
sharing: undefinition 
and join”, page 551.
Note that POLYGON inherits the features of FIGURE not directly but through 
CLOSED_FIGURE; procedure rotate remains deferred in CLOSED_FIGURE.

This process of providing an effective version of a feature that is deferred in a parent 
is called effecting. (The term takes some getting used to, but is consistent: to effect a 
feature is to make it effective.)

A class that effects one or more inherited features does not need to list them in its 
redefine subclause, since there was no true definition (in the sense of an implementation) 
in the first place. It simply provides an effective declaration of the features, which must be 
type-compatible with the original, as in the rotate example.

Effecting is of course close to redefinition, and apart from the listing in the redefine
subclause will be governed by the same rules. Hence the need for a common term:

The examples used to introduce redefinition and effecting illustrate the difference 
between these two forms of redeclaration:

• When we go from POLYGON to RECTANGLE, we already had an implementation 
of perimeter in the parent; we want to offer a new implementation in RECTANGLE. 
This is a redefinition. Note that the feature gets redefined again in SQUARE.

• When we go from FIGURE to POLYGON, we had no implementation of rotate in 
the parent; we want to offer an implementation in POLYGON. This is an effecting. 
Proper descendants of POLYGON may of course redefine the effected version.

There may be a need to change some properties of an inherited deferred feature, 
while leaving it deferred. These properties may not include the feature’s implementation 
(since it has none), but they may include the signature of the feature — the type of its 
arguments and result — and its assertions; the precise constraints will be reviewed in the 
next chapter. In contrast with a redeclaration from deferred to effective, such a 
redeclaration from deferred to deferred is considered to be a redefinition and requires the 
redefine clause. Here is a summary of the four possible cases of redeclaration:

This shows one case that we have not seen yet: undefinition, or redeclaration from 
effective to deferred — forgetting one’s original implementation to start a new life.

Definition: redeclaration
To redeclare a feature is to redefine or effect it.

Redeclaring from →
                     to ↓

Deferred Effective

Deferred Redefinition Undefinition

Effective Effecting Redefinition
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Deferred classes
A feature, as we have seen, is either deferred or effective. This distinction extends to classes:

So for a class to be effective, all of its features must be effective. One or more 
deferred features make the class deferred. In the latter case you must mark the class:

So FIGURE will be declared (ignoring the note clause) as:

deferred class FIGURE feature
rotate (…)

… Deferred feature declaration as shown earlier …
… Other feature declarations …

end
Conversely, if a class is marked as deferred it must have at least one deferred 

feature. But a class may be deferred even if it does not declare any deferred feature of its 
own: it might have a deferred parent, from which it inherits a deferred feature that it does 
not effect. In our example, the class OPEN_FIGURE most likely does not effect display, 
rotate and other deferred features that it inherits from FIGURE, since the notion of open 
figure is still not concrete enough to support default implementations of these operations. 
So the class is deferred, and will be declared as

deferred class OPEN_FIGURE inherit
FIGURE

…
even if it does not itself introduce any deferred feature.

A descendant of a deferred class is an effective class if it provides effective 
definitions for all features still deferred in its parents, and does not introduce any deferred 
feature of its own. Effective classes such as POLYGON and ELLIPSE must provide 
implementations of display, rotate and any other routines that they inherit deferred. 

For convenience we will say that a type is deferred if its base class is deferred. So 
FIGURE, viewed as a type, is deferred; and if the generic class LIST is deferred — as it 
should be if it represents general lists regardless of the implementation — the type 
LIST [INTEGER] is deferred. Only the base class counts here: C [X] is effective if class C 
is effective and deferred if C if is deferred, regardless of the status of X.

Definition: deferred, effective class
A class is deferred if it has a deferred feature. A class is effective if it is not 
deferred.

Deferred class declaration rule
The declaration of a deferred class must use the juxtaposed keywords 
deferred class (rather than just class for an effective class).
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Graphical conventions

The graphical symbols that have illustrated inheritance figures can now be fully explained. 
An asterisk marks a deferred feature or class:

FIGURE*
display*
perimeter* -- At the level of OPEN_FIGURE in the illustration of page 483

A plus sign means “effective” and marks the effecting of a feature:

perimeter+ -- At the level of POLYGON in the illustration of page 483

You may mark a class with a plus sign + to indicate that it is effective. This is only 
used for special emphasis; an unmarked class is by default understood as effective, like a 
class declared as just class C …, without the deferred keyword, in the textual notation.

You may also attach a single plus sign to a feature, to indicate that it is being effected. 
For example perimeter appears, deferred and hence in the form perimeter*, as early as 
class CLOSED_FIGURE, since every closed figure has a perimeter; then at the level of 
POLYGON the feature is effected to indicate the polygon algorithm for computing a 
perimeter, and so appears next to POLYGON as perimeter+.

Finally, two plus signs (informally suggesting double effecting) mark redefinition:

perimeter++ -- At the level of RECTANGLE and SQUARE in the figure of page 483

What to do with deferred classes 

The presence of deferred elements in a system prompts the question “what happens if we 
apply rotate to an object of type FIGURE?”; more generally, if we apply a deferred routine 
to a direct instance of a deferred class. The answer is draconian: there is no such thing as 
an object of type FIGURE — no such thing as a direct instance of a deferred class.

Recall that the creation type of a creation instruction is the type of x in the form create x, 
and is U in the explicit-type form create {U} x. A type is deferred if its base class is.

So the creation instruction create f… is invalid, and will be rejected by the compiler, 
if the type of f  is one of FIGURE, OPEN_FIGURE, CLOSED_FIGURE, all deferred. This 
rule removes any danger of causing erroneous feature calls.

Note, however, that even though f ’s type is deferred you can still use f as target in the 
type-explicit form of the creation instruction, as in create{RECTANGLE} f, as long as 
the creation type, here RECTANGLE, is one of the effective descendants of FIGURE. We 
saw how to use this technique in a multi-branch instruction to create a FIGURE object 
which, depending on the context, will be a direct instance of RECTANGLE, or of 
CIRCLE, etc.

Deferred Class No-Instantiation rule
The creation type of a creation instruction may not be deferred



INTRODUCTION TO INHERITANCE  §14.5 488

See also exercise 
E14.5, page 518.

f could also be a for-
mal argument, as in 
some_routine 
   (f: FIGURE) … 

List with 
cursor
At first the rule may appear to limit the usefulness of deferred classes to little more 
than a syntactic device to fool the static type system. This would be true but for 
polymorphism and dynamic binding. You cannot create an object of type FIGURE, but 
you can declare a polymorphic entity of that type, and use it without knowing the type 
(necessarily based on an effective class) of the attached object in a particular execution:

f: FIGURE
…
f := “Some expression of an effective type, such as CIRCLE or POLYGON ”
…
f  rotate (some_ point, some_angle)
f  display
…

Such examples are the combination and culmination of the O-O method’s unique 
abstraction facilities: classes, information hiding, Single Choice, inheritance, polymorphism,
dynamic binding, deferred classes (and, as seen next, assertions). You manipulate objects 
without knowing their exact types, specifying only the minimum information necessary to 
ensure the availability of the operations that you require (here, that these objects are 
figures, so that they can be rotated and displayed). Having secured the type checker’s 
stamp of approval, certifying that these operations are consistent with your declarations, 
you rely on a benevolent power — dynamic binding — to apply the correct version of each 
operation, without having to find out what that version will be.

Specifying the semantics of deferred features and classes

Although a deferred feature has no implementation, and a deferred class has either no 
implementation or a partial implementation only, you will often need to express their 
abstract semantic properties. You can use assertions for that purpose.

Like any other class, a deferred class can have a class invariant; and a deferred 
feature can have a precondition, a postcondition or both.

Consider the example of sequential lists, described independently of any particular 
implementation. As with many other such structures, it is convenient to associate with 
each list a cursor, indicating a currently active position:

before after
item

index

count1

Cursor
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The class is deferred:
note

description: "Sequentially traversable lists"
deferred class

LIST [G]
feature -- Access

count: INTEGER
-- Number of items

deferred
end

 index: INTEGER
-- Cursor position

deferred
end

 item: G is 
-- Item at cursor position

deferred
end

feature -- Status report
after: BOOLEAN

--Is cursor past last item?
deferred
end

before: BOOLEAN
--Is cursor before first item?

deferred
end

feature -- Cursor movement
forth

--Advance cursor by one position.
require

not after
deferred
ensure

index = old index + 1
end

… Other features …
invariant

non_negative_count: count >= 0
offleft_by_at_most_one: index >= 0
offright_by_at_most_one: index <= count + 1
after_definition: after = (index = count + 1)
before_definition: before = (index = 0)

end
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The invariant expresses the relations between the various queries. The first two 
clauses state that the cursor may only get off the set of items by one position left or right:

The last two clauses of the invariant could also be expressed as postconditions:
ensure Result = (index = count + 1) in after and ensure Result = (index = 0) in before. 
This choice always arises for a property involving argumentless queries only. In such a 
case I prefer to use an invariant clause, treating the property as applying globally to the 
class, rather than attaching it to any particular feature.

The assertions of forth express precisely what this procedure must do: advance the 
cursor by one position. Since we want to maintain the cursor within the range of list 
elements, plus two “sentinel” positions as shown on the last figure, application of forth 
requires not after; the result, as stated by the postcondition, is to increase index by one.

Here is another example, our old friend the stack. Our library will need a general 
STACK [G] class, which we now know will be deferred since it should cover all possible 
implementations; proper descendants such as FIXED_STACK and LINKED_STACK will 
describe specific implementations. One of the deferred procedures of STACK is put:

put (x: G)
-- Add x on top.

require
not full

deferred
ensure

not_empty: not empty
pushed_is_top: item = x
one_more: count = old count + 1

end
The boolean functions empty and full (also deferred at the STACK level) express 

whether the stack is empty, and whether its representation is full. 
Only with assertions do deferred classes attain their full power. As noted (although 

the details will wait until two chapters from now), preconditions and postconditions apply 
to all redeclarations of a routine. This is especially significant in the deferred case: these 
assertions, if present, will set the limits for all permissible effectings. So the above 
specification constrains all variants of put in descendants of STACK.

Thanks to these assertion techniques you can make deferred classes informative and 
semantics-rich, even though they do not prescribe any implementation.

At the end of this chapter we will come back to deferred classes and explore further 
their many roles in the object-oriented process of analysis, design and implementation.

before after

count10 count+1

(Left (Right
sentinel)sentinel)

Occupied positions
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14.6  REDECLARATION TECHNIQUES
The possibility of redeclaring a feature — redefining or effecting it — provides us with a 
flexible, incremental development style. Two techniques add to its power:

• The ability to redeclare a function into an attribute.

• A simple notation for referring to the original version in the body of a redefinition.

Redeclaring a function into an attribute

Redeclaration techniques provide an advanced application of one of the central principles 
of modularity that led us to the object-oriented method: uniform access.

As you will recall, the Uniform Access principle stated (originally in less technical 
terms, but we can afford to be precise now) that there should not be any fundamental 
difference, from a client’s perspective, between an attribute and an argumentless function. 
In both cases the feature is a query; all that differs is its internal representation.

The first example was a class describing bank accounts, where the balance feature 
can be implemented as a function, which adds all the deposits and subtracts all the 
withdrawals, or as an attribute, updated whenever necessary to reflect the current balance. 
To the client, this makes no difference except possibly for performance.

With inheritance, we can go further, and allow a class that inherits a routine to 
redefine it as an attribute.

Our old example is directly applicable. Assume an original ACCOUNT1 class:

class ACCOUNT1 feature
balance: INTEGER

-- Current balance
do

Result := list_of_deposits  total – list_of_withdrawals  total
end

…
end
Then a descendant can choose the second implementation of our original example, 

redefining balance as an attribute:

class ACCOUNT2 inherit
ACCOUNT1

redefine balance end
feature

balance: INTEGER
-- Current balance

…
end
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ACCOUNT2 will likely have to redefine certain procedures, such as withdraw and 
deposit, so that on top of their other duties they update balance, maintaining invariant the 
property balance = list_of_deposits  total – list_of_withdrawals  total.

In this example the redeclaration is a redefinition. An effecting can also turn a 
deferred feature into an attribute. For example a deferred LIST class may have a feature

count: INTEGER

-- Number of inserted items

deferred
end

Then an array implementation may effect this feature as an attribute:

count: INTEGER

If we are asked to apply the classification that divides features into attributes and routines, 
we will by convention consider a deferred feature as a routine — even though, for a 
deferred feature with a result and no argument, the very notion of deferment means that 
we have not yet chosen between routine and attribute implementations. The phrase 
“deferred feature” is suitably vague and hence preferable to “deferred routine”.

Combined with polymorphism and dynamic binding, such redeclarations of routines 
into attributes carry the Uniform Access principle to its extreme. Not only can we 
implement a client’s request of the form a  service through either storage or computation, 
without requiring the client to be aware of our choice (the basic Uniform Access idea): we 
now have a situation where the same call could, in successive executions of the request 
during a single session, trigger a field access in some cases and a routine call in some 
others. This could for example happen with successive executions of the same a  balance 
call, if in the meantime a is polymorphically reattached to different objects.

Not the other way around

You might expect to be able to redefine an attribute into an argumentless function. But no. 
Assignment, an operation applicable to attributes, makes no sense for functions. Assume 
x is an attribute of a class C, and a routine of C contains the instruction 

a := some_expression

Were a descendant of C to redefine a, then the routine — assuming it is not also 
redefined — would become inapplicable, since one cannot assign to a function. 

The lack of symmetry (redeclaration permitted from function to attribute but not 
conversely) is unfortunate but inevitable, and not a real impediment in practice. It makes the 
use of an attribute a final, non-reversible implementation choice, whereas using a function 
still leaves room for later storage-based (rather than computation-based) implementations.
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Using the original version in a redefinition

Consider a class that redefines a routine inherited from a parent. A common scheme for 
the redefinition is to perform what the original version did, preceded or followed by some 
other specific actions.

For example, a class BUTTON inheriting from WINDOW might redefine procedure 
display to indicate that to display a button is to display it as a window, then draw the border:

class BUTTON inherit
WINDOW

redefine display end
feature -- Output

display
-- Display as a button.

do
“Display as a normal window”; -- See below 
draw_border

end
… Other features …

end
where draw_border is a procedure of the new class. What we need to “Display as a normal 
window” is a call to the original, pre-redefinition version of display, known technically as 
the precursor of draw_border.

This case is common enough to justify a specific notation. The construct
Precursor

may be used in lieu of a feature name, but only in the body of a redefined routine. A call 
to this feature, with arguments if required, is a call to the parent’s version of the routine 
(the precursor).

So in the last example the “Display as a normal window” part may be written as just
Precursor

meaning: call the version of this feature in class WINDOW. This would be illegal in any 
context other than the redefinition of a routine inherited from WINDOW, where WINDOW
is a direct parent. Precursor is a reserved entity name, such as Result or Current, and like 
them is written in italics with an upper-case first letter.

In this example the redefined routine is a procedure, and so a call to the Precursor
construct is an instruction. The call would be an expression in the redefinition of a function:

some_query (n: INTEGER): INTEGER
-- Value returned by parent version if positive, otherwise zero

do
Result := (Precursor (n))  max (0)

end
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In cases of multiple inheritance studied in the next chapter, a routine may have several 
precursors (enabling you to join several inherited routines into one). Then you will need 
to remove the ambiguity by specifying the parent, as in Precursor {WINDOW}.

Note that the use of the Precursor construct does not make the precursor feature a 
feature of the class; only the redefined version is. (For one thing, the precursor version 
might fail to maintain the new invariant.) The only effect of the construct is to facilitate 
the task of the redefiner if the new job includes the old.

For any more complicated case, and in particular if you want to use both the precursor 
and the redefined version as features of the class, you will rely on a technique based on 
repeated inheritance, which actually duplicates a parent feature, yielding two full-fledged 
features in the heir. This will be part of the discussion of repeated inheritance.

14.7  THE MEANING OF INHERITANCE 

We have now seen the basic techniques of inheritance. More remains to be studied, in 
particular how to deal with multiple inheritance, and the details of what happens to 
assertions in the context of inheritance (the notion of subcontracting).

But first we must reflect on the fundamental concepts and understand what they 
mean in the quest for software quality and an effective software development process.

The dual perspective

Nowhere perhaps does the dual role of classes as modules and types, defined when we first 
encountered the notion of class, appear more clearly than in the study of inheritance. In 
the module view, an heir describes an extension of the parent module; in the type view, it 
describes a subtype of the parent type.

Although some aspects of inheritance belong more to the type view, most are useful 
for both views, as suggested by the following approximate classification (which refers to 
a few facilities yet to be studied: renaming, descendant hiding, multiple and repeated 
inheritance). No aspect seems to belong exclusively to the module view.

Addition of features
Redefinition
Renaming
Descendant hiding
Multiple inheritance
Repeated inheritance

Polymorphism
Dynamic binding
Deferred features, 
effecting

MODULE
VIEW

TYPE
VIEW



§14.7   THE MEANING OF INHERITANCE 495

See “ONE MECHA-
NISM, OR MORE?”,
24.6, page 833.

“The Open-Closed 
principle”, page 57.
The two views reinforce each other, giving inheritance its power and flexibility. The 
power can in fact be intimidating, prompting proposals to separate the mechanism into 
two: a pure module extension facility, and a subtyping mechanism. But when we probe 
further (in the chapter on the methodology of inheritance) we will find that such a 
separation would have many disadvantages, and bring no recognizable benefit. 
Inheritance is a unifying principle; like many of the great unifying ideas of science, it 
brings together phenomena that had hitherto been treated as distinct.

The module view

From the module viewpoint, inheritance is particularly effective as a reusability technique. 

A module is a set of services offered to the outside world. Without inheritance, every 
new module must itself define all the services it offers. Of course, the implementations of 
these services may rely on services provided by other modules: this is the purpose of the 
client relation. But there is no way to define a new module as simply adding new services 
to previously defined modules. 

Inheritance gives that possibility. If B inherits from A, all the services (features) of A
are automatically available in B, without any need to define them further. B is free to add 
new features for its own specific purposes. An extra degree of flexibility is provided by 
redefinition, which allows B to take its pick of the implementations offered by A, keeping 
some as they are while overriding others by locally more appropriate versions. 

This leads to a style of software development which, instead of trying to solve every 
new problem from scratch, encourages building on previous accomplishments and 
extending their results. The spirit is one of both economy — why redo what has already 
been done? — and humility, in line with Newton’s famous remark that he could reach so 
high only because he stood on the shoulders of giants. 

The full benefit of this approach is best understood in terms of the Open-Closed 
principle introduced in an earlier chapter. (It may be worthwhile to reread the 
corresponding section now in light of the concepts just introduced.) The principle stated 
that a good module structure should be both closed and open: 

• Closed, because clients need the module’s services to proceed with their own 
development, and once they have settled on a version of the module should not be 
affected by the introduction of new services they do not need. 

• Open, because there is no guarantee that we will include right from the start every 
service potentially useful to some client. 

This double requirement looks like a dilemma, and classical module structures offer 
no clue. But inheritance solves it. A class is closed, since it may be compiled, stored in a 
library, baselined, and used by client classes. But it is also open, since any new class may 
use it as a parent, adding new features and redeclaring inherited features; in this process 
there is no need to change the original or to disturb its clients. This property is fundamental 
in applying inheritance to the construction of reusable, extendible software. 
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Draft structure 
for a table 
library
If the idea were driven to the extreme, every class would add just one feature to those of its 
parents! This, of course, is not recommended. The decision to close a class should not be 
taken lightly; it should be based on a conscious judgment that the class as it stands already 
provides a coherent set of services — a coherent data abstraction — to potential clients.

Also remember that the Open-Closed principle does not cover late hacking of inadequate 
services. If bad judgment resulted in a poor feature specification we cannot update the 
class without affecting its clients. Thanks to redefinition, however, the Open-Closed 
principle remains applicable if the change is compatible with the advertized specification. 

Among one of the toughest issues in designing reusable module structures was the 
necessity to take advantage of commonalities that may exist between groups of related 
data abstractions — all hash tables, all sequential tables etc. By using class structures 
connected by inheritance, we can benefit from the logical relationships that exist between 
these implementations. The diagram below is a rough and partial sketch of a possible 
structure for a table management library. The scheme naturally uses multiple inheritance, 
discussed in more detail in the next chapter. 

This inheritance diagram is only a draft although it shows inheritance links typical of such 
a structure. For a systematic inheritance-based classification of tables and other 
containers, see [M 1994a].

With this view we can express the reusability requirement quite concretely: the idea 
is to move the definition of every feature as far up in the diagram as possible, so that it 
may be shared by the greatest possible number of descendant classes. Think of the process 

TABLE
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BINARY_
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BOUNDED_
TABLE

SEQUENTIAL_
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LINKED_
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as the reusability game, played on boards that represent inheritance hierarchies such as the 
one on the last figure, with tokens that represent features. He who moves the most features 
the highest, as a result of discovering higher-level abstractions, and along the way merges 
the most tokens, as a result of discovering commonalities, wins.

The type view

From the type perspective, inheritance addresses both reusability and extendibility, in 
particular what an earlier discussion called continuity. The key is dynamic binding. 

A type is a set of objects characterized (as we know from the theory of abstract data 
types) by certain operations. INTEGER describes a set of numbers with arithmetic 
operations; POLYGON, a set of objects with operations vertices, perimeter and others.

For types, inheritance represents the is relation, also known as is-a, as in “every dog 
is a mammal”, “every mammal is an animal”. Similarly, every rectangle is a polygon. 

What does this relation mean? 

• If we consider the values in each type, the relation is simply set inclusion: dogs make 
up a subset of the set of animals; similarly, instances of RECTANGLE make up a 
subset of the instances of POLYGON. (This comes from the definition of “instance” 
earlier in this chapter; note that a direct instance of RECTANGLE is not a direct 
instance of POLYGON).

• If we consider the operations applicable to each type, saying that every B is an A
means that every operation applicable to instances of A is also applicable to instances 
of B. (With redefinition, however, B may provide its own implementation, which for 
instances of B overrides the implementation given in A.) 

Using this relation, you can describe is-a networks representing many possible type 
variants, such as all the variants of FIGURE. Each new version of a routine such as rotate
and display is defined in the class that describes the corresponding type variant. In the 
table example, each class in the graph will provide its own implementation of search, 
insert, delete, except of course when the parent’s version is still appropriate.

A caveat about the use of “is” and “is-a”. Beginners — but, I hope, no one who has 
read so far with even a modicum of attention — sometimes misuse inheritance to model 
the instance-to-mold relation, as with a class SAN_FRANCISCO inheriting from CITY. 
This is most likely a mistake: CITY is a class, which may have an instance representing 
San Francisco. To avoid such mistakes, it suffices to remember that the term is-a does not 
stand for “x is an A” (as in “San_francisco is a CITY ”), a relation between an instance and 
a category, but for “every B is an A” (as in “Every CITY is a GEOGRAPHICAL_UNIT  ”), 
a relation between two categories — two classes in software terms. Some authors prefer 
to call this relation “is-a-kind-of  ” or, like [Gore 1996], “can act as a”. This is partly a 
matter of taste (and partly a matter of substance, to be discussed in the chapter on 
inheritance methodology); once we have learned to avoid the trivial mistake, we can 
continue to use the well-accepted “is” or “is-a” terminology, never forgetting that it 
describes a relation between categories.
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Inheritance and decentralization

With dynamic binding we can produce the decentralized software architectures
necessary to achieve the goals of reusability and extendibility. Compare the O-O approach 
— self-contained classes each providing its set of operation variants — with classical 
approaches. In Pascal or Ada, you may use a record type with variants

type FIGURE =
record

“Common fields if any”
case figtype: (polygon, rectangle, triangle, circle, …) of

polygon: (vertices: LIST_OF_POINTS; count: INTEGER);
rectangle: (side1, side2: REAL; …);
… 

end
to define the various forms of figures. But this means that every routine that does 
something to figures (rotate and the like) must discriminate between possibilities: 

case f  figure_type of
polygon: …
circle: …
…

end
Routines search and others in the table case would use the same structure. The 

trouble is that all these routines possess far too much knowledge about the overall system: 
each must know exactly what types of figure are allowed in the system. Any addition of a 
new type, or change in an existing one, will affect every routine. 

Ne sutor ultra crepidam, the shoemaker should not look beyond the sandal, is a 
software design principle: a rotation routine has no business knowing the exhaustive list 
of figure types. It should be content enough with the information necessary to do its job: 
rotating certain kinds of figure. 

This distribution of knowledge among too many routines is a major source of 
inflexibility in classical approaches to software design. Much of the difficulty of 
modifying software may be traced to this problem. It also explains in part why software 
projects are so difficult to keep under control, as apparently small changes have far-
reaching consequences, forcing developers to reopen modules that were thought to have 
been closed for good. 

Object-oriented techniques deal with the problem head-on. A change in a particular 
implementation of an operation will only affect the class to which the implementation 
applies. Addition of a new type variant will in many cases leave the others completely 
unaffected. Decentralization is the key: classes manage their own implementations and do 
not meddle in each other’s affairs. Applied to humans, this would sound like Voltaire’s 
Cultivez votre jardin, tend your own garden. Applied to modules, it is an essential 
requirement for obtaining decentralized structures that will yield gracefully to requests for 
extension, modification, combination and reuse. 
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Representation independence

Dynamic binding also addresses one of the principal reusability issues: representation 
independence — the ability to request an operation with more than one variant, without 
having to know which variant will be applied. The discussion of this notion in an earlier 
chapter used the example of a call 

present := has (x, t)

which should use the appropriate search algorithm depending on the run-time form of t. 
With dynamic binding, we have exactly that: if t is declared as a table, but may be 
instantiated as any of binary search tree, closed hash table etc. (assuming all needed 
classes are available), then the call 

present := t  has (x)

will find, at run time, the appropriate version of has. Dynamic binding achieves what the 
earlier discussion showed to be impossible with overloading and genericity: a client may 
request an operation, and let the underlying language system automatically find the 
appropriate implementation. 

So the combination of classes, inheritance, redefinition, polymorphism and dynamic 
binding provides a remarkable set of answers to the questions raised at the beginning of 
this book: requirements for reusability; criteria, principles and rules of modularity. 

The extension-specialization paradox

Inheritance is sometimes viewed as extension and sometimes as specialization. Although 
these two interpretations appear contradictory, there is truth in both — but not from the 
same perspective.

It all depends, again, on whether you look at a class as a type or a module. In the first 
case, inheritance, or is, is clearly specialization; “dog” is a more specialized notion than 
“animal”, and “rectangle” than “polygon”. This corresponds, as noted, to subset inclusion: 
if B is heir to A, the set of run-time objects represented by B is a subset of the 
corresponding set for A. 

But from the module perspective, where a class is viewed as a provider of services, B
implements the services (features) of A plus its own. Fewer objects often allows more
features, since it implies a higher information value; going from arbitrary animals to dogs 
we can add the specific property of barking, and from arbitrary polygons to rectangles we 
can add the feature diagonal. So with respect to features implemented the subsetting goes 
the other way: the features applicable to instances of A are a subset of those for instances of B. 

Features implemented rather than services offered (to clients) because of the way 
information hiding combines with inheritance: as we will see, B may hide from its clients 
some of the features exported by A to its own.

Inheritance, then, is specialization from the type viewpoint and extension from the 
module viewpoint. This is the extension-specialization paradox: more features to apply, 
hence fewer objects to apply them to. 
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The extension-specialization paradox is one of the reasons for avoiding the term 
“subclass”, which suggests “subset”. Another, already noted, is the literature’s sometimes 
confusing use of “subclass” to indicate direct as well as indirect inheritance. No such 
problem arises for the precisely defined terms heir, descendant and proper descendant and 
their counterparts parent, ancestor and proper ancestor.

14.8  THE ROLE OF DEFERRED CLASSES
Among the inheritance-related mechanisms addressing the problems of software 
construction presented at the beginning of this book, deferred classes are prominent.

Back to abstract data types 

Loaded with assertions, deferred classes come close to representing abstract data types. A 
deferred class covering the notion of stack provides an excellent example. Procedure put
has already been shown; here is a possible version for the full class. 

note
description:

"Stacks (Last-in, First-Out dispenser structures), independently of %
%any representation choice"

deferred class
STACK [G]

feature -- Access
count: INTEGER

-- Number of elements inserted.
deferred
end

item: G
-- Last element pushed.

require
not_empty: not empty

deferred
end

feature -- Status report
empty: BOOLEAN

-- Is stack empty?
do

Result := (count = 0)
end

full: BOOLEAN
-- Is stack full?

deferred
end
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feature -- Element change
put (x: G)

-- Push x onto top.
require

not full
deferred
ensure

not_empty: not empty
pushed_is_top: item = x
one_more: count = old count + 1

end
remove

-- Pop top element.
require

not empty
deferred
ensure

not_full: not full
one_less: count = old count — 1

end
change_top (x: T)

-- Replace top element by x
require

not_empty: not empty
do

remove; put (x)
ensure

not_empty: not empty
new_top: item = x
same_number_of_items: count = old count

end
wipe_out

-- Remove all elements.
deferred
ensure

no_more_elements: empty
end

invariant
non_negative_count: count >= 0
empty_count: empty = (count = 0)

end
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The class shows how you can implement effective routines in terms of deferred ones: 
for example, change_top has been implemented as a remove followed by a put. (This 
implementation may be inefficient in some representations, for example with arrays, but 
effective descendants of STACK may redefine the routine.) 

If you compare class STACK with the abstract data type specification given in the 
chapter on ADTs, you will find the similarities striking. Note in particular how the ADT 
functions map to features of the class, and the PRECONDITIONS paragraph to routine 
preconditions. Axioms are reflected in routine postconditions and in the class invariant. 

The addition of operations change_top, count and wipe_out is not an important 
difference since they could be specified as part of the abstract data type. Also minor is the 
absence of an explicit equivalent of the abstract data type function new, since creation 
instructions (which may rely on creation procedures introduced by effective descendants) 
will take care of object creation. There remain three significant differences.

The first is the introduction of a function full, accounting for implementations that 
will only accept a limited number of successive insertions, for example array 
implementations. This is typical of constraints that are irrelevant at the specification level 
but necessary in the design of practical systems. Note, however, that this is not an intrinsic 
difference between abstract data types and deferred classes, since we may adapt the ADT 
specification to cover the notion of bounded stack. Also, no generality is lost since some 
implementations (linked, for example) may have a version of full that always returns false. 

The second difference, mentioned in the discussion of Design by Contract, is that an 
ADT specification is purely applicative (functional): it only includes functions, without 
side effects. A deferred class is imperative (procedural) in spite of its abstractness; put, for 
example, is specified as a procedure that will modify a stack, not as a function that takes 
a stack and returns a new stack. 

Finally, as also noted in the earlier discussion, the assertion mechanism is not 
expressive enough for some ADT axioms. Of the four stack axioms 

all but A2 have a direct equivalent in the assertions. (For A3 we assume that descendants’ 
creation procedures will state ensure empty.) An earlier discussion explained the reasons 
for this limitation, and hinted at possible ways — formal specification languages, IFL — 
to remove it.

     For any x: G, s: STACK [G]
A1 •  item (put (s, x)) = x
A2 •  remove (put (s, x)) = s

A3 •  empty (new)
A4 •  not empty (put (s, x))
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Deferred classes as partial implementations: the notion of behavior class
Not all deferred classes are as close as STACK to an abstract data type. In-between a fully 
abstract class like STACK, where all the fundamental features are deferred, and an 
effective class such as FIXED_STACK, describing just one implementation of an abstract 
data type, there is room for all degrees of partial ADT implementations or, said differently, 
groups of possible implementations. 

The review of table implementation variants, which helped us understand the role of 
partial commonality in our study of reusability issues, provides a typical example. The 
original figure showing the relations between the variants can now be redrawn as an 
inheritance diagram:

The most general class, TABLE, is fully or almost fully deferred, since at that level 
we may specify a few features but not provide any substantial implementation. Among the 
variants is SEQUENTIAL_TABLE, representing tables in which elements are inserted 
sequentially. Examples of sequential tables include array, linked list and sequential file 
implementations. The corresponding classes, in the lowest part of the figure, are effective.

Classes such as SEQUENTIAL_TABLE are particularly interesting. The class is still 
deferred, but its status is intermediate between full deferment, as with TABLE, and full 
effecting, as with ARRAY_TABLE. It has enough information to allow implementing some 
specific algorithms; for example we can implement sequential search fully:

has (x: G): BOOLEAN
-- Does x appear in table?

do
from start until after or else equal (item, x) loop

forth
end
Result := not after

end

SEQUENTIAL_
TABLE

ARRAY_
TABLE

LINKED_
TABLE

FILE_
TABLE

TABLE
∗

∗
after* 
forth* 
item* 
start*
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after+ 
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in lieu of item).

“Specifying the 
semantics of deferred 
features and 
classes”, page 488.

“Factoring Out 
Common Behav-
iors”, page 85.
This function is effective, although it relies for its algorithm on deferred features. The 
features start (bring the cursor to the first position), forth (advance the cursor by one 
position), item (value of element at cursor position), after (is the cursor after the last 
element?) are deferred in SEQUENTIAL_TABLE; each of the heirs of this class shown in 
the figure effects them in a different way, corresponding to its choice of implementation. 
These various effectings were given in the discussion of reusability. ARRAY_TABLE, for 
example, can represent the cursor as an integer i, so that the procedure start is implemented 
as i := 1, item as t @ i and so on.

Note how important it is to include the precondition and postcondition of forth, as 
well as the invariant of the enclosing class, to make sure that all future effectings observe 
the same basic specification. These assertions appeared earlier in this chapter (in a slightly 
different context, for a class LIST, but directly applicable here).

This discussion shows the correspondence between classes and abstract data types in 
its full extent:

• A fully deferred class such as TABLE corresponds to an ADT.

• A fully effective class such as ARRAY_TABLE corresponds to an implementation of 
an ADT.

• A partially deferred class such as SEQUENTIAL_TABLE corresponds to a family of 
related implementations (or, equivalently, a partial implementation) of an ADT.

A class such as SEQUENTIAL_TABLE, which captures a behavior common to 
several ADT variants, may be called a behavior class. Behavior classes provide some of 
the fundamental design patterns of object-oriented software construction.

Don’t call us, we’ll call you

SEQUENTIAL_TABLE is representative of how object technology, through the notion of 
behavior class, answers the last one among the major reusability issues still open from the 
discussion in chapter 4: Factoring out common behaviors.

Particularly interesting is the possibility for an effective routine of a behavior class 
to rely on deferred routines for its implementation, as illustrated by has. This is how you 
may use partially deferred classes to capture common behaviors in a set of variants. The 
deferred class only describes what is common; variations are left to descendants. 

Several of the design examples of later chapters rely on this technique, which plays 
a central role in the application of object-oriented techniques to building reusable 
software. It is particularly useful for domain-specific libraries and has been applied in 
many different contexts. A typical example, described in [M 1994a], is the design of the 
Lex and Parse libraries, a general-purpose solution to the problem of analyzing languages. 
Parse, in particular, defines a general parsing scheme, which will process any input text 
whose structure conforms to a certain grammar (for a programming language, some data 
format etc.). The higher-level behavior classes contain a few deferred features such as 
post_action describing semantic actions to be executed just after a certain construct has 
been parsed. To define your own semantic processing, you just effect these features.
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This scheme is broadly applicable. Business applications, in particular, often follow 
standard patterns — process all the day’s invoices, perform appropriate validation on a 
payment request, enter new customers … — with individual components that may vary. 

In such cases we may provide a set of behavior classes with a mix of effective 
features to describe the known part and deferred features to describe the variable elements. 
Typically, as in the preceding example, the effective features call the deferred ones. Then 
descendants can provide the effectings that satisfy their needs.

Not all the variable elements need to be deferred. If a default implementation is available, 
include it in the ancestor as an effective feature, which descendants may still redefine; this 
facilitates the work on the descendants, since they only need to provide new versions for 
features that depart from the default. (Recall that to become effective, that is, directly 
usable, a class must effect all its parents’ deferred features.) Apply this technique only if 
a sound default exists; if not, as with display for FIGURE, the feature should be deferred.

This technique is part of a general approach that we may dub don’t call us, we’ll call 
you: rather than an application system that calls out reusable primitives, a general-purpose 
scheme lets application developers “plant” their own variants at strategic locations.

The idea is not entirely new. IBM’s ancient and venerable database management system, 
IMS, already relied on something of the sort. In more recent software, a common structure for 
graphics systems (such as X for Unix) has an “event loop” which at each iteration calls specific 
functions provided by each application developer. This is known as a callback scheme.

What the O-O method offers, thanks to behavior classes, is systematic, safe support 
for this technique, through classes, inheritance, type checking, deferred classes and 
features, as well as assertions that enable the developer of the fixed part to specify what 
properties the variable replacements must always satisfy.

Programs with holes
With the techniques just discussed we are at the heart of the object-oriented method’s 
contribution to reusability: offering not just frozen components (such as found in 
subroutine libraries), but flexible solutions that provide the basic schemes and can be 
adapted to suit the needs of many diverse applications.

One of the central themes of the discussion of reusability was the need to combine 
this goal with adaptability — to get out of the reuse or redo dilemma. This is exactly the 
effect of the scheme just described, for which we can coin the name “programs with 
holes”. Unlike a subroutine library, where all is fixed except for the values of the actual 
arguments that you can pass, programs with holes, using classes patterned after the 
SEQUENTIAL_TABLE model, have room for user-contributed parts.

These observations help to put in perspective the “Lego block” image often used to 
discuss reusability. In a Lego set, the components are fixed; the child's creativity goes 
towards arranging them into an interesting structure. This exists in software, but sounds 
more like the traditional idea of subroutines. Often, software development needs to do 
exactly the reverse: keep the structure, but change the components. In fact the components 
may not be there at all yet; in their place you find placeholders (deferred features), useful 
only when you plug in your own variants. 
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“Seamless develop-
ment”, page 931.
In analogies with child games, we can go back to a younger age and think of those 
playboards where toddlers have to match shapes of blocks with shapes of holes — to realize 
that the square block goes into the square hole and the round block into the round hole.
You can also picture a partially deferred behavior class (or a set of such classes, called 

a “library” or a “framework”) as having a few electrical outlets — the deferred features — 
into which the application developer will plug compatible devices. The metaphor nicely 
suggests the indispensable safeguards: the assertions, which express the requirements on 
acceptable pluggable devices, in the same way that an outlet’s specification would prescribe 
a range of acceptable voltages, currents and other electrical parameters.

Deferred classes for analysis and global design 
Deferred classes are also a key tool for using the method not just for implementation but 
also at the earliest and highest levels of system building — analysis and global design. The 
aim is to produce a system specification and architecture; for design, we also need an 
abstract description of each module, without implementation details. 

The advice commonly given is to use separate notations: some analysis “method” (a 
term that in many cases just covers a graphical notation) and a PDL (Program Design 
Language, again often graphical). But this approach has many drawbacks:

• By introducing a gap between the successive steps, it poses a grave threat to software 
quality. The necessity of translating from one formalism to another may bring in 
errors and endangers the integrity of the system. Object technology, instead, offers 
the promise of a seamless, continuous software process.

• The multi-tiered approach is particularly detrimental to maintenance and evolution. 
It is very hard to guarantee that design and implementation will remain consistent 
throughout the system’s evolution. 

• Finally, most existing approaches to analysis and design offer no support for the 
formal specification of functional properties of modules independently of their 
implementation, in the form of assertions or a similar technique.
The last comment gives rise to the paradox of levels: precise notations such as the 

language of this book are sometimes dismissed as “low-level” or “implementation-
oriented” because they externally look like programming languages, whereas thanks to 
assertions and such abstraction mechanisms as deferred classes they are actually higher-
level than most of the common analysis and design approaches. Many people take a while 
to realize this, so early have they been taught the myth that high-level must mean vague; 
that to be abstract one has to be imprecise.

The use of deferred classes for analysis and design allows us to be both abstract and 
precise, and to keep the same language throughout the software process. We avoid 
conceptual gaps (“impedance mismatches”); the transition from high-level module 
descriptions to implementations can now proceed smoothly, within one formalism. But 
even unimplemented operations of design modules, now represented by deferred routines, 
may be characterized quite precisely by preconditions, postconditions and invariants. 

The notation which we have by now almost finished developing covers analysis and 
design as well as implementation. The same concepts and constructs are applied at all 
stages; only the level of abstraction and detail differs. 
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14.9  DISCUSSION 
This chapter has introduced the basic concepts of inheritance. Let us now assess the merits 
of some of the conventions introduced. Further comments on the inheritance mechanism 
(in particular on multiple inheritance) appear in the next chapter.

Explicit redefinition 

The role of the redefine subclause is to enhance readability and reliability. Compilers do 
not really need it: since a class may have at most one feature of a given name, a feature 
declared in a class with the same name as an ancestor’s feature can only be a redefinition 
of that feature — or a mistake.

The possibility of a mistake should not be taken lightly, as a programmer may be 
inheriting from a class without being aware of all the features declared in its ancestors. To 
avoid this dangerous case, any redefinition must be explicitly requested. This is the aim of 
the redefine subclause, which is also helpful to a reader of the class.

Accessing the precursor of a routine

You will have noted the rule on the Precursor (…) construct: it may only appear in the 
redefined version of a routine.

This ensures that the construct serves its purpose: enabling a redefinition to rely on 
the original implementation. The explicit naming of the parent avoids any ambiguity (in 
particular with multiple inheritance). Allowing arbitrary routines to access arbitrary 
ancestor features could make a class text very hard to understand, all the time forcing the 
reader to go the text of many other classes.

Dynamic binding and efficiency

One might fear that dynamic binding, for all its power, would lead to unacceptable run-
time overhead. The danger exists, but careful language design and good implementation 
techniques avert it.

The problem is that dynamic binding requires some more work to be done at run time. 
Compare the usual routine call of traditional programming languages (Pascal, Ada, C…)

[1]

f (x, a, b, c…)

with the object-oriented form

[2]

x  f (a, b, c…)

The difference between the two was explained, in the introduction to the notion of 
class, as a consequence of the module-type identification. But now we know that more 
than style is at stake: there is also a difference of semantics. In [1], it is known statically 
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— at compile time, or at worst at link time, if you use a linker to combine separately 
compiled modules — what exact feature the name f denotes. With dynamic binding, 
however, no such information is available statically for f  in [2]: the feature to be selected 
depends on the type of the object to which x will be attached during a particular execution. 
What that type will be cannot, in the general case at least, be predicted from the text of the 
software; this is the source of the flexibility of the mechanism, touted earlier.

Let us think for a moment of a naïve implementation. We keep at run time a copy of 
the class hierarchy. Each object contains information about its type — a node in that 
hierarchy. To interpret x  f, the run-time environment looks at that node to see if the 
corresponding class has a feature f. If so, great, we have found what we need. If not, we 
look at the node’s parent, and repeat the operation. We may have to go all the way to the 
topmost class (or the topmost classes in the case of multiple inheritance).

In a typed language we have the guarantee that somewhere along the way we will find a 
suitable feature; in an untyped language such as Smalltalk we may fail to do so, and have 
to terminate the execution with a “message not understood” diagnostic.

This scheme is still applied, with various optimizations, in many implementations of 
non-statically typed languages. It implies a considerable performance penalty. Worse, that 
penalty is not predictable, and it grows with the depth of the inheritance structure, as the 
algorithm may have to go back all the way to the root of the inheritance hierarchy. This 
means introducing a direct conflict between reusability and efficiency, since working 
harder at reusability often leads to introducing more levels of inheritance. Imagine the 
plight of the poor designer who, whenever tempted to add an inheritance link, must assess 
whether it is really worth the resulting performance hit. No software developer should be 
forced into such choices.

This approach is one of the primary sources of inefficiency in Smalltalk 
environments. It also explains why Smalltalk does not (in common commercial 
implementations at least) support multiple inheritance, since the penalty in this case would 
be enormous, due to the need to traverse an entire graph, not just a linear chain.

Fortunately, the use of static typing avoids such unpleasantness. With the proper type 
system and compiling algorithms, there is no need ever to traverse the inheritance 
structure at run time. Because in a statically typed O-O language the possible types for x
are not arbitrary but confined to descendants of x’s original type, the compiler can prepare 
the work of the run-time system by building arrayed data structures that contain all the 
needed type information. With these data structures, the overhead of dynamic binding 
becomes very small: an index computation and an array access. Not only is this penalty 
small; even more importantly, it is constant (more precisely, bounded by a constant), so 
that there is no need to worry about any reusability-efficiency tradeoff as discussed above. 
Whether the deepest inheritance structure in your system is 2 or 20, whether you have 100 
classes or 10,000, the maximum overhead is exactly the same. This is true for both single 
and multiple inheritance.

The discovery, in 1985, of this property — that even in the presence of multiple 
inheritance it was possible to implement a dynamically-bound feature call in constant 
time — was the key impetus for the project that, among other things, yielded both the first 
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and the present editions of this book: to build a modern software development 
environment, starting from the ideas brilliantly introduced by Simula 67 and extending 
them to multiple inheritance (prolonged experience with Simula having shown that the 
limitation to single inheritance was unacceptable, as explained in the next chapter), 
reconciling them with modern principles of software engineering, and combining them 
with the most directly useful results of formal approaches to software specification, 
construction and verification. The design of an efficient, constant-time dynamic binding 
mechanism, which may at first sight appear to be somewhat peripheral in this set of goals, 
was in reality an indispensable enabler.

These observations will be surprising to anyone who has been introduced to object 
technology through the lens of O-O analysis and design presentations that treat 
implementation and efficiency as mundane issues to be addressed after one has solved 
everything else. In the reality of industrial software development — the reality of 
engineering tradeoffs — efficiency is one of the key factors that must be considered at 
every step. (As noted in an earlier chapter, if you dismiss efficiency, efficiency will 
dismiss you.) Object technology is much more than constant-time dynamic binding; but 
without constant-time dynamic binding there can be no successful object technology.

Estimating the overhead

With the  techniques described so far, it is possible to give rough figures on the overhead 
of dynamic binding. The following figures are drawn from ISE’s experience, using 
dynamic binding (that is to say, disabling the static binding optimization explained next).

For a procedure that does nothing — a procedure declared as p1 do end — the 
penalty for dynamic binding over static binding (that is to say, over the equivalent 
procedure in C) is about 30%.

This is of course an upper bound, since real-life procedures do something. The price 
for dynamic binding is the same for any routine call regardless of what it does; so the more 
a routine does, the smaller the relative penalty. If instead of p1 we use a procedure that 
performs some arbitrary but typical operations, as in

p2 (a, b, c: INTEGER) is 
local

x, y
do 

x := a; y := b + c +1; x := x * y; p2
if x > y then x := x + 1 else x := x — 1 end 

end
then the overhead goes down to about 15%. For a routine that does anything more 
significant (for example by executing a loop), it can become very small.

Static binding as an optimization

In some cases you need the utmost in efficiency, and even the small overhead just 
discussed may be undesirable. Then you will notice that the overhead is not always 
justified. A call x  f (a, b, c…) need not be dynamically bound when either:
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S1  • f  is not redeclared anywhere in the system (it has only one declaration).

S2  • x is not polymorphic, that is to say is not the target of any attachment whose 
source has a different type.

In any such case — detectable by a good compiler — the code generated for 
x  f (a, b, c…) can be identical to what a compiler for C, Pascal, Ada or Fortran would 
generate for f (x, a, b, c…). No overhead of any kind is necessary.

ISE’s compiler, part of the environment described in the last chapter of this book, 
currently applies optimization S1; the addition of S2 is planned. (S2 analysis is in fact a 
consequence of the type analysis mechanisms described in the chapter on typing.)

Although S1 is interesting in itself, its direct benefit is limited by the relatively low 
cost of dynamic binding given in the preceding statistics. The real payoff is indirect, since 
S1 enables a third optimization:

S3  • Apply automatic routine inlining when appropriate

Routine inlining means expanding the body of a routine within the text of its caller, 
eliminating the need for any actual call. For example, with a routine

set_a (x: SOME_TYPE)
-- Make x the new value of attribute a.

do
a := x

end
the compiler may generate, for the call s  set_a (some_value), the same code that a Pascal 
compiler would generate for the assignment s  a := some_value (not permitted by our 
notation, of course, since it violates information hiding). In this case there is no overhead 
at all, since the generated code does not use a routine call.

Inline expansion has traditionally been viewed as an optimization that 
programmers should specify. Ada includes the provision for an inline pragma (directive 
to the compiler); C and C++ offer similar mechanisms. But this approach suffers from 
inherent limitations. Although for a small, stationary program a competent developer can 
have a good idea of what should be inlined, this ceases to be true for large, evolutionary 
developments. In that case, a compiler with a decent inlining algorithm will beat the 
programmers’ guesses 100% of the time.

For any call to which automatic static binding (S1) is applicable, an O-O compiler 
can (as in the case of ISE’s) determine whether automatic routine inlining (S3) is 
worthwhile, based on an analysis of the space-time tradeoffs. This is one of the most 
dramatic optimizations — one of the reasons why it is possible to match the efficiency of 
hand-crafted C or Fortran code and sometimes, especially on large systems, exceed it.

To the efficiency advantage, which grows with the size and complexity of the 
software, the automatic approach to inlining adds the advantage of safety and flexibility. 
As you will have noted, inlining is semantically correct only for a routine that can be 
statically bound, as in cases S1 and S2. It is not only common but also consistent with the 
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method, in particular the Open-Closed principle, to see a developer, midway through the 
development of a large system, add a redefinition of a feature which until then had only 
one implementation. If that routine has been inlined manually, the result is erroneous 
semantics (since dynamic binding is now required, and inlining of course means static 
binding). Developers should concentrate on building correct software, not performing 
optimizations that are tedious, error-prone when done manually, and automatable.

There are some other correctness requirements for inlining; in particular, it is only 
applicable to non-recursive calls. When correct, inlining should only be applied when the 
space-time tradeoff makes sense: the inlined routine should be small, and should be called 
from only one place or a small number of places.

A final note on efficiency. Published statistics for object-oriented languages show 
that somewhere between 30% and 60% of calls truly need dynamic binding, depending on 
how extensively the developers use the method’s specific facilities. (In ISE’s software the 
proportion is indeed around 60%.) With the optimizations just described, you will only 
pay the price of dynamic binding for calls that need it. For the remaining dynamic calls, 
the overhead is not only small and constant-bounded, it is logically necessary; in most 
cases, achieving the equivalent effect without O-O mechanisms would have required the 
use of conditional instructions (if … then … or case … of …), which can be more costly 
than the simple array-indirection mechanism outlined above. So it is not surprising that O-
O software, processed by a good compiler, can compete with hand-produced C code.

A button by any other name: when static binding is wrong

By now the reader will have understood a key consequence of the principles of inheritance 
presented in this chapter:

In the call x  r, if x is declared of type A but ends up at run time attached to an object 
of type B, and you have redefined r in B, calling the original version (say rA) is not a 
choice; it is a bug!

No doubt you had a reason for redefining r. The reason may have been optimization, 
as with perimeter for RECTANGLE; but it may have been that the original version rA was 
simply incorrect for B. Consider the example, sketched earlier, of a class BUTTON that 
inherits from a class WINDOW in a window system, because buttons are a special kind of 
window; the class redefines procedure display because displaying a button is a little 
different from displaying an ordinary window (for example you must display the border). 
Then if w is of type WINDOW but dynamically attached, through polymorphism, to an 
object of type BUTTON, the call w  display must execute the button version! Using 
displayWINDOW would result in garbled display on the screen.

Dynamic Binding principle
Static binding is semantically incorrect unless its effect is identical to that of 
dynamic binding.
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From the definition 
of class correctness 
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version may fail 
to satisfy the 
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As another example, assume a video game with a data structure LIST [AIRCRAFT]
— a polymorphic data structure, as we have learned to use them — and a loop that 
executes item  land on each element of the list. Each aircraft type may have a different 
version of land, the landing procedure. Executing the default version is not an option but 
a mistake. (We may of course imagine real flight control software rather than just a game.)

We should not let the flexibility of the inheritance-based type system — specifically, 
the type conformance rule — fool us here: the ability to declare an entity at a level of 
abstraction (WINDOW, AIRCRAFT) higher than the actual type of the attached object 
during one particular execution (BUTTON or BOEING_747_400) is only a facility for the 
engineering of the software, at system writing time. During program execution the only 
thing that matters is the objects to which we apply features; entities — names in the text 
of the software — have long been forgotten. A button by any other name is still a button; 
whether the software called it a button, or for generality treated it as a window, does not 
change its nature and properties.

Mathematical analysis supports and explains this reasoning. From the chapter on 
assertions you may remember the correctness condition for a routine:

{prer (xr) and INV}  Bodyr  {postr (xr) and INV}

which we can simplify for the benefit of this discussion (keeping the part relative to the 
class invariant only, ignoring the arguments, and using as subscript the name A of the 
enclosing class) as

[A-CORRECT]

{INVA}  rA  {INVA}
meaning in plain English: any execution of routine r from class A will preserve the 
invariant of class A. Now assume that we redefine r in a proper descendant B. The 
corresponding property will hold if the new class is correct:

[B-CORRECT]

{INVB}  rB  {INVB}

As you will recall, invariants accumulate as we go down an inheritance structure: so 
INVB implies INVA, but usually not the other way around.

A

B

rA

rB
++

rA preserves the invariant of A…

 
 
 
… and rB preserves the invariant of B…

… but rA has no particular reason to 
preserve the invariant of B!

INVA

INVB = INVA and other_clauses
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Remember for example how RECTANGLE added its own clauses to the invariant of 
POLYGON. Another example, studied in the presentation of invariants, is a class 
ACCOUNT1 with features withdrawals_list and deposits_list; then, perhaps for efficiency 
reasons, a proper descendant ACCOUNT2 adds an attribute balance to store an account’s 
current balance at all time, with the new invariant clause given in the earlier discussion:

consistent_balance: deposits_list  total – withdrawals_list  total = current_balance

As a result, we may have to redefine some of the routines of ACCOUNT1; for 
example a procedure deposit that merely used to add a list element to deposits_list must 
now update balance as well. Otherwise the class is simply wrong. This is similar to 
WINDOW ’s version of the display procedure not being correct for an instance of BUTTON.

Now assume static binding applied to an object of type B, accessible through an 
entity of type A. Because the corresponding routine version, rA, will usually not preserve 
the needed invariant — as with depositACCOUNT1 for an object of type ACCOUNT2, or 
displayWINDOW for an object of type BUTTON — the result will be to produce an 
inconsistent object, such as an ACCOUNT2 object with an incorrect balance field, or a 
BUTTON object improperly displayed on the screen.

Such a result — an object that does not satisfy the invariant of its generating class, 
that is to say, the fundamental and universal constraints on all objects of its kind — is one 
of the worst events that could occur during the execution of a software system. If such a 
situation can arise, we can no longer hope to predict what execution will do.

To summarize: static binding is either an optimization or a bug. If it has the same 
semantics as dynamic binding (as in cases S1 and S2), it is an optimization, which 
compilers may perform. If it has a different semantics, it is a bug.

The C++ approach to binding
Given its widespread use and its influence on other languages, it is necessary to explain 
how the C++ language addresses some of the issues discussed here.

The C++ convention is surprising. By default, binding is static. To be dynamically 
bound, a routine (function or method in C++ terms) must be specially declared as virtual.

Two decisions are involved here:

C1  • Making the programmer responsible for selecting static or dynamic binding.

C2  • Using static binding as the default.

Both are damaging to object-oriented software development, but there is a difference 
of degree: C1 is arguable; C2 is hard to defend.

Compared to the approach of this book, C1 results from a different appreciation of 
which tasks should be handled by humans (software developers), and which by computers 
(more precisely, compilers). This is the same debate that we encountered with automatic 
memory management. The C++ approach, in the C tradition, is to give the programmer 
full control over the details of what happens at run time, be it object deallocation or routine 
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call. The spirit of object technology instead suggests relying on compilers for tasks that 
are tedious and error-prone, if algorithms are available to handle them. On a large scale 
and in the long run, compilers always do a better job.

Developers are responsible for the efficiency of their software, of course, but they 
should direct their efforts to the area where they can make a real difference: the choice of 
proper software structures and algorithms. Language designers and compilers writers are 
responsible for the rest.

Hence the disagreement on decision C1: C++ considers that static binding, as well 
as inlining, should be specified by developers; the O-O approach developed in this book, 
that it is the responsibility of the compiler, which will optimize calls behind the scenes. 
Static binding is an optimization, not a semantic choice.

C1 has another negative consequence on the application of the method. Whenever 
you declare a routine you must specify a binding policy: virtual or not, that is to say 
dynamic or static. This policy runs against the Open-Closed principle since it forces you 
to guess from the start what will be redefinable and what will not. This is not how 
inheritance works in practice: you may have to redefine a feature in a distant descendant, 
without having ever foreseen the need for such a redefinition in the original. With the C++ 
approach, if the original designer did not have enough foresight, you need to go back to 
the ancestor class to change the declaration to virtual. (This assumes that you can modify 
its source text. If it is not available, or you are not entitled to change it, tough luck.)

Because of all this, decision C1 — requiring programmers to specify a binding 
policy — impedes the effectiveness of the object-oriented method. 

C2 — the use of static binding as the default in the absence of a special “virtual” 
marker — is worse. Here it is hard to find justifications for the language design. Static 
binding, as we have seen, is always the wrong choice when its semantics differs from that 
of dynamic binding. There can be not reason for choosing it as the default.

Making programmers rather than compilers responsible for optimization when 
things are safe (that is to say, asking them to request static binding explicitly when they 
think it is appropriate) is one thing; forcing them to write something special to get the 
correct semantics is quite another. When the concern for efficiency, misplaced or not, 
starts to prevail over the basic requirement of correctness, something is wrong.

Even in a language that makes the programmer responsible for choosing a binding 
policy (decision C1), the default should be the reverse: instead of requiring dynamically 
bound functions to be declared as virtual, the language should by default use dynamic 
binding and allow programmers to mark as static, or some such keyword, those features 
for which they want to request the optimization — trusting them, in the C-C++ tradition, 
to ascertain that it is valid.

The difference is particularly important for beginners, who naturally tend to stick 
with the default. Even with less intimidating a language than C++, no one can be expected 
to master all the details of inheritance right away; the responsible policy is to guarantee 
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the correct semantics for novices (and more generally for developers starting a new 
project, who will “want to make it right before making it faster”), then provide an 
optimization facility for people who need it and understand the issues.

Given the software industry’s widespread concern for “upward compatibility”, 
getting the C++ committee to change the language’s binding policy, especially C2, will be 
hard, but it is worth trying in light of the dangers of the current conventions.

The C++ approach has regrettably influenced other languages; for example the dynamic 
binding policy of Borland’s Delphi language, continuing earlier Pascal extensions, is 
essentially that of C++. Note, however, that Java, a recent derivative of C++, has adopted 
dynamic binding as its policy.

These observations call for some practical advice. What can the developer do in C++ 
or a language that follows its policy? The best suggestion — for developers who do not 
have the option of switching to better tools, or waiting for the language to change — is to 
declare all functions as virtual, hence allowing for arbitrary redeclarations in the spirit of 
object-oriented software development. (Some C++ compilers unfortunately put a limit on 
the number of virtuals in a system, but one may hope that such limitations will go away.)

The paradox of this advice is that it takes you back to a situation in which all calls 
are implemented through dynamic binding and require a bit of extra execution time. In 
other words, language conventions (C1 and C2) that are promoted as enhancing efficiency 
end up, at least if one follows correctness-enhancing rules, working against performance!

Not surprisingly, C++ experts have come to advise against becoming “too much” 
object-oriented. Walter Bright, author of a best-selling C++ compiler, writes

It’s generally accepted that the more C++ [mechanisms] you use in a class, the 
slower your code will be. Fortunately, you can do a few things to tip the scales 
in your favor. First, don’t use virtual functions [i.e. dynamic binding], virtual 
base classes [deferred classes], destructors, and the like, unless you need them.
[…] Another source of bloat is multiple inheritance […] For a complex class 
hierarchy with only one or two virtual functions, consider removing the virtual 
aspect, and maybe do the equivalent with a test and branch.

In other words: avoid using object-oriented techniques. (The same text also 
advocates “grouping all the initialization code” to favor locality of reference — an 
invitation to violate elementary principles of modular design which, as we have seen, 
suggest that each class be responsible for taking care of its own initialization needs.)

This chapter has suggested a different approach: let the O-O software developer rely 
on the guarantee that the semantics of calls will always be the correct one — dynamic 
binding. Then use a compiler sophisticated enough do generate statically bound or inlined 
code for those calls that have been determined, on the basis of rigorous algorithmic 
analysis, not to require a d ynamically bound implementation.
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14.10  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• With inheritance, you can define new classes by extension, specialization and 

combination of previously defined ones. 

• A class inheriting from another is said to be its heir; the original is the parent. Taken 
to an arbitrary number of levels (including zero), these relations yield the notion of 
descendant and ancestor. 

• Inheritance is a key technique for both reusability and extendibility. 

• Fruitful use of inheritance requires redefinition (the possibility for a class to override 
the implementation of some of its proper ancestors’ features), polymorphism (the 
ability for a reference to become associated at run time with instances of different 
classes), dynamic binding (the dynamic selection of the appropriate variant of a 
redefined feature), type consistency (the requirement that an entity be only attached 
to instances of descendant types).

• From the module perspective, an heir extends the services of its parents. This 
particularly serves reusability.

• From the type perspective, the relation between an heir and a parent of the original 
class is the is relation. This serves both reusability and extendibility.

• You may redefine an argumentless function into an attribute, but not the other 
way around. 

• Inheritance techniques, especially dynamic binding, permit highly decentralized 
software architectures where every variant of an operation is declared within the 
module that describes the corresponding data structure variant. 

• With a typed language it is possible to achieve dynamic binding at low run-time cost. 
Associated optimizations, in particular compiler-applied static binding and 
automatic in-line expansion, help O-O software execution match or surpass the 
efficiency of traditional approaches.

• Deferred classes contain one or more deferred (non-implemented) features. They 
describe partial implementations of abstract data types.

• The ability of effective routines to call deferred ones provides a technique for 
reconciling reusability with extendibility, through “behavior classes”.

• Deferred classes are a principal tool in the use of object-oriented methods at the 
analysis and design stages. 

• Assertions are applicable to deferred features, allowing deferred classes to be 
precisely specified. 

• When the semantics is different, dynamic binding is always the right choice; static 
binding is incorrect. When they have the same abstract effect, using static binding as 
the implementation is an optimization technique, best left to the compiler to detect 
and apply safely, together with inlining when applicable.
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14.11  BIBLIOGRAPHICAL NOTES 
The concepts of (single) inheritance and dynamic binding were introduced by Simula 67, 
on which references may be found in chapter 35. Deferred routines are also a Simula 
invention, under a different name (virtual procedures) and different conventions. 

The is-a relation is studied, more with a view towards artificial intelligence 
applications, in [Brachman 1983]. 

A formal study of inheritance and its semantics is given in [Cardelli 1984].
The double-plus graphical convention to mark redefinition comes from Nerson’s and 

Waldén’s Business Object Notation for analysis and design; references in chapter 27.
Some elements of the discussion of the role of deferred features come from [M 1996].
The Precursor construct (similar to the Smalltalk super construct, but with the 

important difference that its use is limited to routine redefinitions) is the result of 
unpublished work with Roger Browne, James McKim, Kim Waldén and Steve Tynor.

EXERCISES

E14.1  Polygons and rectangles

Complete the versions of POLYGON and RECTANGLE sketched at the beginning of this 
chapter. Include the appropriate creation procedures. 

E14.2  How few vertices for a polygon?

The invariant of class POLYGON requires every polygon to have at least three vertices; note 
that function perimeter would not work for an empty polygon. Update the definition of the 
class so that it will cover the degenerate case of polygons with fewer than three vertices. 

E14.3  Geometrical objects with two coordinates

Write a class TWO_COORD describing objects that are characterized by two real 
coordinates, having among its heirs classes POINT, COMPLEX and VECTOR. Be careful 
to attach each feature to its proper level in the hierarchy. 

E14.4  Inheritance without classes

This chapter has presented two views of inheritance: as a module, an heir class offers the 
services of its parent plus some; as a type, it embodies the is-a relation (every instance of 
the heir is also an instance of each of the parents). The “packages” of modular but not 
object-oriented languages such as Ada or Modula-2 are modules but not types; inheritance 
in its first interpretation might still be applicable to them. Discuss how such a form of 
inheritance could be introduced in a modular language. Be sure to consider the Open-
Closed principle in your discussion. 
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E14.5  Non-creatable classes

It is not permitted to create an instance of a deferred class. In an earlier chapter we saw 
another way to make a class non-creatable: include an empty creation clause. Are the two 
mechanisms equivalent? Can you see cases for using one rather than the other? (Hint: a 
deferred class must have at least one deferred feature.)

E14.6  Deferred classes and rapid prototyping

Deferred classes may not be instantiated. It was argued, on the other hand, that a first 
version of a class design might leave all the features deferred. It may be tempting to 
attempt the “execution” of such a design: in software development, one sometimes wishes, 
early in the game, to execute incomplete implementations, so as to get an early hands-on 
experience of some aspects of the system even though other aspects have not been 
finalized. Discuss the pros and cons of having a “prototype” option in the compiler, which 
would allow instantiating a deferred class and executing a deferred feature (amounting to 
a null operation). Discuss the details of such an option. 

E14.7  Table searching library (term project)

Based on the discussion of tables in this chapter and the chapter on reusability, design a 
library of table classes covering various categories of table representations, such as hash 
tables, sequential tables, tree tables etc. 

E14.8  Kinds of deferred feature

Can an attribute be deferred?

E14.9  Complex numbers

(This exercise assumes that you have read up to at least chapter 23.) An example in the 
discussion of module interfaces uses complex numbers with two possible representations, 
changes in representations being carried out behind the scenes. Study whether it is 
possible to obtain equivalent results through inheritance, by writing a class COMPLEX
and its heirs CARTESIAN_COMPLEX and POLAR_COMPLEX. 



15  
Multiple inheritance 
Full application of inheritance requires an important extension to the framework defined 
in the preceding chapter. In studying the basics of the mechanism we have encountered the 
notion that a class may need more than one parent. Known as multiple inheritance (to 
distinguish it from the more restrictive case of single inheritance), this possibility is 
necessary to build robust object-oriented architectures by combining different abstractions.

Multiple inheritance, in its basic form, is a straightforward application of the 
principles of inheritance already seen; you just allow a class to include an arbitrary number 
of parents. More detailed probing brings up two interesting issues:

• The need for feature renaming, which in fact has useful applications in single 
inheritance too.

• The case of repeated inheritance, in which the ancestor relation links two classes in 
more than one way.

15.1  EXAMPLES OF MULTIPLE INHERITANCE 

The first task is to form a good idea of when multiple inheritance is useful. Let us study a 
few typical examples from many different backgrounds; a few will be shown in some 
detail, others only sketched.

This review is all the more necessary that in spite of the elegance, necessity and 
fundamental simplicity of multiple inheritance, obvious to anyone who cares to study the 
concepts, this facility has sometimes been presented (often, as one later finds out, based 
solely on experience with languages or environments that cannot deal with it) as complex, 
mysterious, error-prone — as the object-oriented method’s own “goto”. Although it has no 
basis in either fact or theory, this view has been promoted widely enough to require that we 
take the time to review a host of cases in which multiple inheritance is indispensable.

As it will turn out, the problem is not to think of valuable examples, but to stop the 
flow of examples that will start pouring in once we open the tap.
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What not to use as an introductory example

To dispel a frequent confusion, we must first consider an example whose use (with some 
variants) by many introductory papers, books and lectures may account for some of the 
common mistrust of multiple inheritance. Not that there is anything fundamentally wrong 
with the example; it is simply inadequate for an introductory presentation, since it is not 
typical of simple, straightforward uses of multiple inheritance.

The standard form of this example involves classes TEACHER and STUDENT, part 
of the model for some university system; you will be invited to note that some students are 
also teachers, prompting a new class TEACHING_ASSISTANT that inherits from both 
TEACHER and STUDENT.

Is this example an improper use of inheritance? Not necessarily. But as an 
introduction to multiple inheritance it is about as bad as they can get. The problem is that 
TEACHER and STUDENT are not separate abstractions but variations on a common 
theme: person, or more accurately UNIVERSITY_PERSON. So if we draw the full picture 
we see a case of not just multiple but repeated inheritance — the scheme, studied later in 
this chapter, in which a class is a proper descendant of another through two paths or more:

Repeated inheritance is a special case; as will be noted when we get to it, using this 
facility requires good experience with the more elementary forms of inheritance, single and 
multiple. So it is not a matter for beginners, if only because it seems to create conflicts (what 
about a feature name or subscribe_to_health_plan which TEACHING_ASSISTANT inherits 

TEACHING_
ASSISTANT

STUDENTTEACHER

TEACHING_
ASSISTANT

UNIVERSITY_
PERSON

STUDENTTEACHER
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from both of its parents, even though they are really in each case a single feature coming 
from the common ancestor UNIVERSITY_PERSON?). With a well-reasoned approach we 
will be able to remove these conflicts simply. But it is a serious mistake to begin with such 
exceptional and seemingly tricky cases as if they were typical of multiple inheritance.

The truly common cases do not raise any such problem. Instead of dealing with 
variants of a single abstraction, they combine distinct abstractions. This is the form that 
you will need most often in building inheritance structures, and the one that introductory 
discussions should describe. The following examples belong to that pattern.

Can an airplane be an asset?

Our first proper example belongs to system modeling more than to software construction 
in the strict sense. But it is typical of situations that require multiple inheritance.

Assume a class AIRPLANE describing the abstraction suggested by its name. 
Queries may include passenger_count, altitude, position, speed; commands may include 
take_off, land, set_speed.

In a different domain, we may have a class ASSET describing the accounting notion 
of an asset — something which a company owns, although it may still be paying 
installments on it, and which it can depreciate or resell. Features may include purchase_ price,
resale_value, depreciate, resell, pay_installment.

You must have guessed where we are heading: companies may own company planes. 
For the pilot, a company plane is just a plane with its usual features: it takes off, lands, has 
a certain speed, flies somewhere. From the viewpoint of the accountant (the one who 
grumbles that the money would have been better kept in the bank or spent on more 
productive ventures) it is an asset, with a purchase value (too high), an estimated resale 
value (too low), and the need to pay interest on the loan each month.

To model the notion of company plane we can resort to multiple inheritance:

class COMPANY_PLANE inherit
PLANE
ASSET

feature
… Any feature that is specific to company planes
     (rather than applying to all planes or all assets) …

end

COMPANY_
PLANE

ASSETPLANE
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To specify multiple parents in the inherit clause, just list them one after the other. 
(As usual, you can use semicolons as optional separators.) The order in which you list 
parents is not significant.

Cases similar to COMPANY_PLANE abound in system modeling. Here are a few:

• Wristwatches (a special case of the notion of watch, itself specializing the general 
notion of clock — there are a few inheritance links here) provide commands such as 
setting the time, and queries such as the current time and date. Electronic calculators 
provide arithmetic features. There also exist some (quite handy) watch-calculators, 
elegantly modeled through multiple inheritance.

• Boats; trucks; AMPHIBIOUS_VEHICLE. A variant is: boats; planes; HYDROPLANE. 
(There is a hint of repeated inheritance here, as with TEACHING_ASSISTANT, since 
both parents may themselves be descendants of some VEHICLE class.)

• You eat in a restaurant; you travel in a train car. To make your trip more enjoyable, 
the railway company may let you eat in an instance of EATING_CAR. A variant of 
this example is SLEEPING_CAR.

• On an instance of SOFA_BED you may not only read but also sleep.

• A MOBILE_HOME is a VEHICLE and a HOUSE.

And so on. Multiple inheritance is the natural tool to help model the endless 
combinations that astute people never tire of concocting.

For a software engineer the preceding examples may at first appear academic, since 
we get paid not to model the world but to build systems. In many practical applications, 
however, you will encounter similar combinations of abstractions. A detailed example, 
from ISE’s own graphical development environment appears later in this chapter.

Numeric and comparable values

The next example is much more directly useful to the daily practice of object-oriented 
software construction. It is essential to the buildup of the Kernel library.

Some of the Kernel library’s classes — that is to say, classes describing abstractions 
of potential use to all applications — require arithmetic features: operations such as 
infix "+", infix "–", infix "∗", prefix "–" as well as special values zero (identity element 
for "+") and one (identity element for "∗"). Kernel library classes that use these features 
include INTEGER, REAL and DOUBLE; but many non-predefined classes may need them 
too, for example a class MATRIX describing matrices of some application-specific kind. It 
is appropriate to capture the corresponding abstraction through a deferred class 
NUMERIC, itself a part of the Kernel library:

deferred class NUMERIC feature
… infix "+", infix "–", infix "∗", prefix "–", zero, one …

end
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Technically the 
exact model is that 
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Mathematically, NUMERIC has a precise specification: its instances represent 
members of a ring (a set equipped with two operations, both of which separately give it 
the structure of a group, one commutative, with distributivity between the two operations).

Some classes also need an order relation, with features for comparing arbitrary 
elements: infix "<", infix "<=", infix ">", infix ">=". Again this is useful not only to some 
Kernel library classes, such as STRING whose instances are comparable through lexical 
ordering, but also to many application classes; for example you may write a class 
TENNIS_CHAMPION which takes into account the ranking of professional tennis players, 
with a feature "<" such that tc1 < tc2 tells us whether tc2 is ranked ahead of tc1. So it is 
appropriate to capture the corresponding abstraction through a deferred class 
COMPARABLE, itself a part of the Kernel library:

deferred class COMPARABLE feature
… infix "<", infix "<=", infix ">", infix ">=" …

end
COMPARABLE has a precise mathematical model: its instances represent members 

of a set ordered by a total order relation.

Not all descendants of COMPARABLE should be descendants of NUMERIC: in class 
STRING, we need the order features for lexicographical ordering but not the arithmetic 
features. Conversely, not all descendants of NUMERIC should be descendants of 
COMPARABLE: the set of real matrices has addition, multiplication, zero and one, giving 
it a ring structure, but no total order relation. So it is appropriate that COMPARABLE and 
NUMERIC, representing completely different abstractions, should remain distinct classes, 
neither of them a descendant of the other.

Objects of certain types, however, are both comparable and numeric. (In 
mathematical terms. the structures modeled by their generating classes are totally ordered 
rings.) Example classes include REAL and INTEGER: integers and real numbers can be 
compared for "<=" as well as added and multiplied. These classes should be defined 
through multiple inheritance, as in (see the figure on the next page):

expanded class REAL inherit
NUMERIC
COMPARABLE

feature
…

end
Types of objects that need to be both comparable and numeric are sufficiently common 
to suggest a class COMPARABLE_NUMERIC, still deferred, covering the merged 
abstraction by multiply inheriting from COMPARABLE and NUMERIC. So far this 
solution has not been adopted for the library because it does not bring any obvious 
advantage and seems to open the way to endless combinations: why not COMPARABLE_
HASHABLE, HASHABLE_ADDABLE_SUBTRACTABLE? Basing such deferred classes 
on well-accepted mathematical abstractions, such as ring or totally ordered set, seems to 
yield the right level of granularity. Related issues in the methodology of inheritance are 
discussed in detail in chapter 16.
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Multiple 
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Windows and 
subwindows
Windows are trees and rectangles

Assume a window system that allows nesting windows to an arbitrary depth:

In the corresponding class WINDOW, we will find features of two general kinds:

• Some deal with a window as a member of a hierarchical structure: list of 
subwindows, parent window, number of subwindows, add or remove a subwindow.

• Others cover its properties as a graphical object occupying a graphical area: height, 
width, x position, y position, display, hide, translate.

INTEGER

NUMERICCOMPARABLE

REAL

DOUBLE MATRIXSTRING
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It is possible to write the class as a single piece, with all these features mixed 
together. But this would be bad design. To keep the structure manageable we should 
separate the two aspects, treating class WINDOW as the combination of two abstractions:

• Hierarchical structures, which should be covered by a class TREE.
• Rectangular screen objects, covered by a class RECTANGLE.

In practice we may need more specific class names (describing some particular 
category of trees, and a graphical rather than purely geometrical notion of rectangle), but 
the ones above will be convenient for this discussion. WINDOW will appear as:

class WINDOW inherit
TREE [WINDOW]
RECTANGLE

feature
… Specific window features …

end
Note that class TREE will be generic, so we need to specify an actual generic 

parameter, here WINDOW itself. The recursive nature of this definition reflects the 
recursion in the situation modeled: a window is a tree of windows.

This example will, later on in the discussion, help us understand the need for a feature 
renaming mechanism associated with inheritance.

A further refinement might follow from the observation that some windows are 
purely text windows. Although we might represent this property by introducing a class 
TEXT_WINDOW as a client of STRING with an attribute

text: STRING

we may prefer to consider that each text window is also a string. In this case we will use 
multiple inheritance from WINDOW and STRING. (If all windows of interest are text 
windows, we might directly use triple inheritance from TREE, RECTANGLE and STRING, 
although even in that case it is probably better to work in two successive stages.)

The general question of how to choose between heir and client relations, as in the 
case of TEXT_WINDOW, is discussed in detail in the chapter on inheritance methodology.

Trees are lists and list elements 

Class TREE itself provides a striking example of multiple inheritance.

A tree is a hierarchical structure made of nodes, each containing some information. 
Common definitions tend to be of the form “A tree is either empty or contains an object 
called the root, together with (recursively) a list of trees, called the children of the root”, 
complemented by a definition of node, such as “An empty tree has no nodes; the nodes of 
a non-empty tree comprise its root and (recursively) the nodes of its children”. Although 
useful, and reflective of the recursiveness inherent in the notion of tree, these definitions 
fail to capture its essential simplicity.
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A tree of 
integers
To get a different perspective, observe that there is no significant distinction between 
the notion of tree and that of node, as we may identify a node with the subtree of which it 
is the root. This suggests aiming for a class TREE [G] that describes both trees and nodes. 
The formal generic parameter G represents the type of information attached to every node; 
the tree below, for example, is an instance of TREE [INTEGER]. 

Now consider a notion of LIST, with a class that has been sketched in earlier chapters. 
A general implementation (linked, for example) will need an auxiliary class CELL to 
describe the individual elements of a list.

These notions suggest a simple definition of trees: a tree (or tree node) is a list, the 
list of its children; but it is also a potential list element, as it can be made into a subtree of 
another tree.

Although this definition would need some refinement to achieve full mathematical 
rigor, it directly yields a class definition:

deferred class TREE [G] inherit
LIST [G]
CELL [G]

feature
…

end
From LIST come the features to find out the number of children (count), add a child, 

remove a child and so on.
From CELL come the features having to do with a node’s siblings and parents: next 

sibling, add a sibling, reattach to a different parent node.

Definition: tree
A tree is a list that is also a list element.

89

235 –2

0–130 5 1000

(CELL)

LIST
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A composite 
figure
This example is typical of the reusability benefits of multiple inheritance. Writing 
specific features for subtree insertion or removal would needlessly replicate the work done 
for lists. Writing specific features for sibling and parent operations would needlessly 
replicate the work done for list elements. Only a facelift is needed in each case.

In addition you will have to take care, in the feature clause, of the specific features 
of trees and of the little mutual compromises which, as in any marriage, are necessary to 
ensure that life together is harmonious and prolific. In a class TREE derived from these 
ideas, which has been used in many different applications (from graphics to structural 
editing), these specific features fit on little more than a page; for the most part, the class is 
simply engendered as the legitimate fruit of the union between lists and list elements. 

This process is exactly that used in mathematics to combine theories: a topological vector 
space, for example, is a vector space that also is a topological space; here too, some 
connecting axioms need to be added to finish up the merger. 

Composite figures

The following example is more than an example; it is a design pattern useful in many 
different contexts.

Consider an inheritance structure containing classes for various graphical figures, 
such as the one used in the preceding chapter to introduce some of the fundamental 
concepts of inheritance — FIGURE, OPEN_FIGURE, POLYGON, RECTANGLE, 
ELLIPSE and so on. So far, as you may have noted, that structure used single inheritance.

Assume that we have included in this hierarchy all the basic figure patterns that we 
need. That is not enough yet: many figures are not basic. Of course we could build any 
graphical illustration from elementary shapes, but that is not a convenient way to work; 
instead, we will want to build ourselves a library of figures, some basic, some constructed 
from the basic ones. For example, from basic segment and circle figures

we may assemble a composite figure, representing a wheel

which someone may in turn use as a predefined pattern to draw, say, a bicycle; and so on. 
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A composite 
figure is a 
figure and a list 
of figures
We need a general mechanism for adding a new figure type which will be built from 
previously defined ones but, once defined, will be on a par with them. Computer drawing 
tools provide a Group command for this purpose.

Let us call the corresponding notion COMPOSITE_FIGURE. A composite figure is 
clearly a figure; so COMPOSITE_FIGURE should inherit from FIGURE, achieving the 
goal of treating composite figures “on a par” with basic ones. A composite figure is also 
a list of figures — its constituents; each of them may be basic or itself composite. Hence 
the use of multiple inheritance:

To get an effective class for COMPOSITE_FIGURE we choose an implementation 
of lists; LINKED_LIST is just one possibility. The class declaration will look like this:

OPEN_
FIGURE

SEGMENT POLYLINE

POLYGON ELLIPSE

QUADRANGLE CIRCLETRIANGLE

display*
rotate*

extent*

…
barycenter*

perimeter*

perimeter+

diagonal

SQUAREperimeter++

perimeter++

perimeter+

CLOSED_
FIGURE

FIGURE

RECTANGLE
perimeter++

side1, side2

∗

∗∗ COMPOSITE_
FIGURE

LINKED_LIST

BASIC
FIGURES
(see previous
chapter)
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class COMPOSITE_FIGURE inherit
FIGURE
LINKED_LIST [FIGURE]

feature
…

end
The feature clause is particularly pleasant to write. An operation on a composite 

figure is, in many cases, an operation on all of its constituents taken in sequence. For 
example, procedure display will be effected as follows in COMPOSITE_FIGURE:

display
-- Display figure by displaying all its components in turn.

do
from

start
until

after
loop

item  display
forth

end
end

As in earlier discussions, we assume that our list classes offer traversal mechanisms based 
on the notion of cursor: start moves the cursor to the first element if any (otherwise after 
is immediately true), after indicates whether the cursor is past all elements, item gives the 
value of the element at cursor position, and forth advances the cursor by one position.

I find this scheme admirable and hope its beauty will strike you too. Almost 
everything is concentrated here: classes, multiple inheritance, polymorphic data structures 
(LINKED_LIST [FIGURE]), dynamic binding (the call item  display will apply the proper 
variant of display based on the type of each list element), recursion (note that any list 
element — any item — may itself be a composite figure, with no limit on the degree of 
nesting). To think that some people will live an entire life and never see this!

It is in fact possible to go further. Consider other COMPOSITE_FIGURE features 
such as rotate and translate; because they all must apply the corresponding operation to 
every member figure in turn, their body will look very much like display. For an object-
oriented designer this is cause for alert: we do not like repetition; we transform it, through 
encapsulation, into reuse. (This could yield a good motto.) The technique to use here is to 
define a deferred “iterator” class, whose instances are little machines able to iterate over 
a COMPOSITE_FIGURE. Its effective descendants may include DISPLAY_ITERATOR 
and so on. This is a straightforward scheme and is left to the reader as an exercise.

The technique describing composite structures through multiple inheritance, using a 
list or other container class as one of the parents, is a general design pattern, directly 
useful in widely different areas. Make sure to look at the exercise asking you to apply 
similar reasoning to the notion of submenu in a window system: a submenu is a menu, but 
it is also a menu entry. Another deals with composite commands in an interactive system.
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A marriage of 
convenience

The deferred STACK 
class appeared on 
page 500; class 
ARRAY was sketched 
on page 372.
The marriage of convenience 

In the preceding examples the two parents played a symmetric role. This is not always the 
case; sometimes each parent brings a contribution of a different nature.

An important application of multiple inheritance is to provide an implementation of 
an abstraction defined by a deferred class, using facilities provided by effective class.

Consider the implementation of stacks as arrays. Since classes are available to cover 
stacks as well as arrays (deferred for STACK, effective for ARRAY, both seen in earlier 
chapters), the best way to implement class ARRAYED_STACK, describing stacks 
implemented as arrays, is to define it as an heir to both STACK and ARRAY. This is 
conceptually right: an arrayed stack is a stack (as seen by clients) and is also an array 
(internally). The general form is: 

note
description: "Stacks implemented as arrays"

class ARRAYED_STACK [G] inherit
STACK [G]
ARRAY [G]

… A rename subclause will be added here (see page 540) …
feature

… Implementation of the deferred routines of STACK
    in terms of ARRAY operations (see below)…

end

ARRAYED_STACK offers the same functionality as STACK, effecting its deferred 
features such as full, put, count through implementations relying on array operations.

Here is an outline of some typical features: full, count and put. The condition under 
which a stack is full is given by 

ARRAYED_
STACK

∗
STACK ARRAY
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See “Using a parent’s
creation procedure”, 
page 539.
full: BOOLEAN
-- Is stack representation full?

do
Result := (count = capacity)

end
Here capacity, inherited from class ARRAY, is the number of positions in the array. 

For count we need an attribute:

count: INTEGER

This is a case of effecting a deferred feature into an attribute. Here finally is put:

put (x: G)
-- Push x on top.

require
not full

do
count := count + 1
array_put (x, count)

end
Procedure array_put, inherited from ARRAY, assigns a new value to an array element 

given by its index. 
The array features capacity and array_ put had different names in class ARRAY: count and 
put. The name change is explained later in this chapter.

ARRAYED_STACK is representative of a common kind of multiple inheritance, 
called the marriage of convenience. It is like a marriage uniting a rich family and a noble 
family. The bride, a deferred class, belongs to the aristocratic family of stacks: it brings 
prestigious functionality but no practical wealth — no implementation worth speaking of. 
(What good is an effective change_top with a deferred put and remove?) The groom comes 
from a well-to-do bourgeois family, arrays, but needs some luster to match the efficiency 
of its implementation. The two make a perfect match. 

Besides providing effective implementations of routines deferred in STACK, class 
ARRAYED_STACK may also redefine some which were not deferred. In particular, with 
an array representation, change_top (x: G), implemented in STACK as remove followed by 
put (x), may be implemented more efficiently as 

array_put (x, count)

To make this redefinition valid, do not forget to announce it in the inheritance clause: 

class ARRAYED_STACK [G] inherit
STACK [G]

redefine change_top end
… The rest as before …

The invariant of the class might read
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invariant
non_negative_count: count >= 0
bounded: count <=capacity

The two parts of the assertion are of a different nature. The first expresses a property 
of the abstract data type. (It was in fact already present in the parent class STACK, and so 
is redundant; it is included here for pedagogical purposes, but should not appear in a final 
version of the class.) The second line involves capacity, that is to say the array 
representation: it is an implementation invariant. 

You might take a minute to compare ARRAYED_STACK, as sketched here, with 
STACK2 of an earlier discussion, and see how dramatically inheritance simplifies the class. 
This comparison will be pursued in the discussion of the methodology of inheritance, which 
will also address some of the criticisms occasionally heard against marriage-of-
convenience inheritance and, more generally, against what is sometimes called 
implementation inheritance.

Structure inheritance

Multiple inheritance is indispensable when you want to state explicitly that a certain class 
possesses some properties beyond the basic abstraction that it represents. 

Consider for example a mechanism that makes object structures persistent (storable 
on long-term storage). You may have to request that the lead object in a storable structure 
be equipped with the corresponding store and retrieve operations: in addition to its other 
properties such an object is “storable”. In the Kernel library, as we have seen, this property 
is captured by a class STORABLE, from which any other class can inherit. Clearly, such 
classes may have other parents as well, so this would not work without multiple inheritance. 
This form of inheritance, from a class that describes a general structural property — often 
with a name that ends with -ABLE — is similar to inheritance from classes COMPARABLE
and NUMERIC seen earlier in this chapter. The discussion of inheritance methodology will 
define it as inheritance of the structural kind.

Without multiple inheritance, there would be no way to specify that a certain 
abstraction must possess two structural properties — numeric and storable, comparable 
and hashable. Selecting one of them as the parent would be like having to choose between 
your father and your mother.

Facility inheritance

Here is another typical case. Many tools need “history” facilities, enabling their users to 
perform such operations as:

• Viewing the list of recent commands.

• Executing again a recent command.

• Executing a new command defined by editing a recent one and changing a few 
details.
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See chapter 24.

See chapter 36.
• Undoing the effect of the last command not yet undone

Such a mechanism makes any interactive tool nicer to use. But it is a chore to write. 
As a result, only a few tools (such as certain “shells” under Unix and Windows) support it, 
often partially. Yet the general techniques are tool-independent. They can be encapsulated 
in a class, from which a session-control class for any tool can then inherit. (A solution 
based on the client relation may be possible, but is less attractive.) Once again, without 
multiple inheritance such an inheritance link would conflict with other possible parents.

A similar case is that of a class TEST encapsulating a number of mechanisms useful 
for testing a class: getting and storing user input, printing and storing output, comparing 
with expected values, recording all the results, comparing with earlier test runs (regression 
testing), managing the testing process. Although a client-based solution may be preferable 
in some cases, it is convenient to have the possibility, for testing a class X, of defining a 
class X_TEST that inherits from X and from TEST.

In later chapters we will encounter other cases of such facility inheritance, whereby 
a class F encapsulates a set of related facilities, such as constants or routines from a 
mathematical library, which any class can then obtain by inheriting from F.

Although the use of inheritance in such cases is sometimes viewed with suspicion, it 
is in fact a perfectly legitimate application of the concept. It does differ in one respect from 
the other examples of multiple inheritance reviewed in this chapter: in the cases just 
reviewed, we could achieve our goals, albeit less conveniently, with a client rather than 
inheritance link.

Buttonholes

Here is a case in which, as in earlier ones, multiple inheritance is indispensable. It is 
similar in spirit to “company planes”, “sleeping cars” and other examples of the 
combination-of-abstractions type encountered earlier. Rather than using concepts from 
some external model, however, this one deals with genuine software abstractions. The 
reason why it has been moved to the end of this review of multiple inheritance examples 
is that understanding it requires a little background preparation.

Like other graphical applications, many tools of the development environment 
presented in the last chapter offer “buttons”, on which you can click to trigger certain 
operations. They also use a “pick and throw” mechanism (a variation on traditional “drag-
and-drop”), through which you can select a visual object, causing the mouse cursor to 
change into a “pebble” that indicates the type of the object, and bring it to a hole of a 
matching shape. You can “throw” the pebble into the hole by right-clicking; this causes 
some operation to occur. For example, a Class Tool, which you use to explore the 
properties of a class in the development environment, has a “class hole” into which you 
can drag-and-drop a class pebble; this causes the tool to retarget itself to the selected class.
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Pick-and-
throw

See [M 1994a] on 
library design.
In the figure, a user has picked somewhere — in a Feature Tool — the class 
INTEGER, by right-clicking on its name. He is moving it towards the class hole of the 
Class Tool currently targeted to (showing the text of) class ARRAY. Note the row of format 
buttons at the bottom; clicking on one of them will show other information for ARRAY; for 
example if you left-click on  you will get the short form. The pick-and-throw (unless 
canceled by a left-click) will end when the user right-clicks on the class hole, whose shape, 
representing Class, matches that of the pebble. This will retarget the Class Tool on the 
right to the selected class — INTEGER.

In some cases it may be convenient to let a hole act as button too, so that you can not 
only throw an object into it but also, independently of any pick-and-throw, left-click on it 
to produce a certain effect. For example the class hole, in which the small dot suggests the 
presence of a current target (first ARRAY, then INTEGER) can serve as a button; left-clicking 
on it retargets the tool to its current target, which is useful if the display was overwritten. 
Such holes which double up as buttons are called buttonholes.

As you will have guessed, class BUTTONHOLE multiply inherits from BUTTON
and from HOLE. The new class simply combines the features and properties of its parents, 
since a buttonhole reacts like a button to the operations on buttons, and like a hole to the 
operations on holes.

An assessment
The examples accumulated so far are representative of the power and usefulness of 
multiple inheritance. Experience in building general-purpose libraries confirms that 
multiple inheritance is needed throughout.

Whenever you must combine two abstractions, not having multiple inheritance 
would mean that you choose one of them as the official parent, and duplicate all the other’s 
features by copy-and-paste — making the new class, as it were, an illegitimate child. On 
the illegitimate side, you lose polymorphism, the Open-Closed principle, and all the 
reusability benefits of inheritance. This is not acceptable.

The pebble being dragged

The class hole

Format buttons

INTEGER



§15.2   FEATURE RENAMING 535
15.2  FEATURE RENAMING
Multiple inheritance raises an interesting technical problem: name clashes. The solution, 
feature renaming, turns out to have applications far beyond that original problem, and 
leads to a better understanding of the nature of classes.

Name clashes

A class has access to all the features of its parents. It can use them without having to 
indicate where they come from: past the inherit clause in class C inherit A …, a feature 
f of C is known just as f. The same is true of clients of C: for x of type C in some other 
class, a call to the feature is written just x  f, without any reference to the A origin of f. If 
the metaphors were not so incompatible, we could view inheritance as a form of adoption: 
C adopts all the features of A.

It adopts them under their assigned names: the set of feature names of a class 
includes all of its parents’ feature name sets.

What then if two or more parents have used the same name for different features? We 
have relied on the rule of no intra-class overloading: within a class, a feature name denotes 
only one feature. This could now be violated because of the parents. Consider

class SANTA_BARBARA inherit
LONDON
NEW_YORK 

feature
…

end-- class SANTA_BARBARA
What can we do if both LONDON and NEW_YORK had a feature named the same, 

say foo (for some reason a favorite name in programming examples)?
Do not attach too much importance to the names in this example, by the way. No useful 
abstraction is assumed behind the class names, especially none that would justify the 
inheritance structure. The names simply make the example easier to follow and remember 
than if we called our classes A, B and C.

Under no circumstances should we renounce the no-overloading rule, essential to 
keep classes simple and easy to understand. Within a class, a name should mean just one 
thing. So class SANTA_BARBARA as shown is invalid and the compiler must reject it.

This rule seems rather harsh. In an approach emphasizing construction-box-like 
combination of modules from several sources, we may expect attempts to combine 
separately developed classes that contain identically named features.

As an example, we saw earlier a version of class TREE that inherits from CELL and LIST, 
both of which have a feature called item; for a cell, it returns the value stored in the cell, 
and for a list it returns the value at the current cursor position. Both also have a feature 
called put. These choices of name are all reasonable, and we would not like to have to 
change the original classes just because someone got a clever idea for defining trees by 
combining them.
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What can be done? You should not have to go back to the parents. You may not have 
access to the source text of LONDON and NEW_YORK; you may have access to it, but not 
be permitted to change it; you may be permitted but unwilling, as LONDON comes from 
an external supplier and you know there will be new releases, which would force you to 
do the work all over again; and most importantly you know about the Open-Closed 
principle, which says one should not disturb modules when reusing them for new 
extensions, and you are rightly wary of changing the interface of classes (LONDON and 
NEW_YORK) which may already have numerous clients that rely on the old names.

It is a mistake to blame the parents for a name clash occurring in inheritance: the 
problem is in the would-be heir. There too should the solution be.

The language solution to name clashes follows from these observations. A class that 
inherits different but identically named features from different parents is invalid, but will 
become valid by including one or more rename subclauses in the inheritance clause. A 
rename subclause gives a new local name to one or more inherited features. For example:

class SANTA_BARBARA inherit
LONDON

rename foo as fog end
NEW_YORK

feature
…

end

Both within SANTA_BARBARA and in its clients, the foo feature from LONDON will 
be referred to as fog, and the one from NEW_YORK as foo. Clients of LONDON, of course, 
will still know the feature as foo. 

This is enough (assuming there is no other clash, and no other feature of LONDON 
or NEW_YORK is called fog) to remove the clash. Of course, we could have renamed the 
NEW_YORK feature instead; or we could have renamed both for symmetry:

class SANTA_BARBARA inherit
LONDON

rename foo as fog end
NEW_YORK

rename foo as zoo end
feature

…

end

The rename subclause follows the name of a parent and comes before the redefine
subclause if any. It can of course rename several features, as in
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A name clash, 
removed
class TREE [G] inherit
CELL [G]

rename item as node_item, put as put_right end

which removes clashes between features of CELL and their namesakes in the other parent, 
LIST. The clause renames the item feature from CELL as node_item, since this feature 
denotes the item attached to the current node, and similarly renames put as put_right.

Effects of renaming

Let us make sure we fully understand the results of a renaming. Assume the last form of 
class SANTA_BARBARA (the one that renames both inherited versions of foo):

(Note the graphical symbol for renaming: .) Assume entities of the three types:

l: LONDON; n: NEW_YORK; s: SANTA_BARBARA

Then l  foo and s  fog are both valid; after a polymorphic assignment l := s they 
would have the same effect, since the feature names represent the same feature. Similarly 
n  foo and s  zoo are both valid, and after n := s they would have the same effect.

None of the following, however, is valid:

• l  zoo, l  fog, n  zoo, n  fog since neither LONDON nor NEW_YORK has a feature 
called fog or zoo.

• s  foo since as a result of the renaming SANTA_BARBARA has no feature called foo.

Artificial as the names are, this example also illustrates the nature of the name clash 
issue. Believe it or not, I have heard it presented as a “deep semantic problem”. It is neither 
semantic nor deep; rather, a simple syntactical problem. Had one of the class authors been 
led by the local context to choose the name fog in the first class or zoo in the second, no clash 
would have occurred; yet in each case the change is just one letter. The name clash is, as it 
were, a case of bad luck; it does not reveal any intrinsic problem with the classes or their 
ability to be combined. If you think of multiple inheritance as marriage, this is not a dramatic 
case, discovered at the last minute, of a rare blood incompatibility; it is more like realizing 
that the spouses’ mothers are both called Tatiana, making life a little more complicated for 
their grandchildren to come, but easy to solve through proper naming conventions.

foo

foo      fog
SANTA_

BARBARA

LONDON NEW_YORKfoo

foo      zoo
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Renaming and redeclaration

In the last chapter we studied another inheritance mechanism: redeclaration of an inherited 
feature. (Remember that redeclaration includes the redefinition of an already effective 
feature, and the effecting of a deferred one.) It is illuminating to compare the effect of 
renaming and redeclaring a feature:

• Redeclaration changes the feature, but keeps its name.

• Renaming changes the name but keeps the feature.

With redeclaration you can ensure that the same feature name refers to different
actual features depending on the type of the object to which it is applied (that is to say, the 
dynamic type of the corresponding entity). This is a semantic mechanism.

Renaming is a syntactic mechanism, allowing you to refer to the same feature under 
different names in different classes. 

In some cases you may want to do both:

class SANTA_BARBARA inherit
LONDON

rename
foo as fog

redefine
fog

end
…

Then assuming l: LONDON; s: SANTA_BARBARA as before, and the polymorphic 
assignment l := s, the calls l  foo and s  fog will both trigger the redefined version (whose 
declaration must appear in a feature clause of the class).

You will have noted that the redefine subclause uses the new name. This is normal 
since that name is the only one under which the feature is known in the class. Accordingly, 
the rename clause appears before all other inheritance subclauses (redefine, and others 
yet to be studied: export, undefine, select). Past the rename clause, the feature — like an 
immigrant given a new identity at Ellis Island by a customs officer who found the old 
name too hard to pronounce — has shed its ancestral name and will be known under its 
new one to class, clients and descendants alike.

Local name adaptation

The ability to rename an inherited feature is interesting even in the absence of a name 
clash. It allows the designer of a class to define the appropriate name for every feature, 
whether immediate (declared in the class itself) or inherited.

The name under which a class inherits a facility from an ancestor is not necessarily 
the most telling one for its clients. The original name may have been well adapted to the 
ancestor’s clients, but the new class has its own context, its own abstraction, which may 
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See “Standard 
names”, page 882.
suggest its own naming conventions. To provide this abstraction it finds the ancestor’s 
features useful, but not necessarily the feature names. Renaming, which enables us to 
distinguish features from feature names, provides the solution.

The construction of class WINDOW as an heir of TREE provides a good example. 
TREE describes the hierarchical structure, common to general trees and windows; but the 
tree names may not be desirable for the interface that WINDOW presents to its clients. 
Renaming provides the ability to put these names in tune with the local context:

class WINDOW inherit
TREE [WINDOW]

rename
child as subwindow, is_leaf as is_terminal, root as screen,
arity as child_count, …

end
RECTANGLE

feature
… Specific window features …

end

Similarly, TREE inheriting from CELL may rename right as right_sibling and so on. 
Through renaming, a class may offer its clients a consistent set of names for the services 
it offers, regardless of how these services were built from facilities provided by ancestors. 

The game of the name

The use of renaming for local name adaptation highlights the importance of naming — 
feature naming, but also class naming — in object-oriented software construction. A class 
is formally a mapping from feature names to features; the feature names determine how it 
will be known to the rest of the world.

In a later chapter we will see a number of systematic rules for choosing feature 
names. Interestingly, they promote a set of across-the-board names — count, put, item, 
remove, … — to emphasize commonalities between abstractions over the inevitable 
differences. This style, which increases the likelihood of name clashes under multiple 
inheritance, decreases the need for “vanity” renaming of the kind illustrated with 
WINDOW. But whatever general naming conventions we follow, we must have the 
flexibility to adapt the names to the local needs of each class.

Using a parent’s creation procedure 

Let us see one more example of renaming, illustrating a typical scheme where the renamed 
feature is a creation procedure. Remember ARRAYED_STACK, obtained by inheritance from 
STACK and ARRAY; the creation procedure of ARRAY allocates an array with given bounds: 
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make (minb, maxb: INTEGER)
-- Allocate array with bounds minb and maxb
-- (empty if minb > maxb)

do … end
To create a stack, we must allocate the array so that it will accommodate a given 

number of items. The implementation will rely on the creation procedure of ARRAY:

class ARRAYED_STACK [G] inherit
STACK [G]

redefine change_top end
ARRAY [G]

rename
count as capacity, put as array_put, make as array_make

end
creation

make
feature -- Initialization

make (n: INTEGER)
-- Allocate stack for at most n elements.

require
non_negative_size: n >= 0

do
array_make (1, n) 

ensure
capacity_set: capacity = n
empty: count = 0

end
… Other features (see “The marriage of convenience”, page 530) …

invariant
count >= 0; count <= capacity

end
Note that here our naming conventions — the use of make as the standard name for 

basic creation procedures — would cause a name clash, which, however, does not occur 
thanks to renaming.

We also need to remove ambiguities for count and put, both used for features of 
ARRAY as well as STACK. Query count, by convention, denotes the number of items in a 
structure; for ARRAYED_STACK, the relevant count is the number of elements pushed, 
that is to say, count from STACK; the other count, from ARRAY, becomes the stack’s 
capacity — the maximum number of pushable items — and so is renamed capacity. 
Similarly, put for stacks is the push operation; we keep the array put (the operation that 
replaces the element at a certain array position) under the new name array_ put. It is used, 
as you will remember, in the effecting of the other put, the stack pushing procedure.
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15.3  FLATTENING THE STRUCTURE

Renaming is only one of the tools that the inheritance craftsman can use to build rich 
classes satisfying the needs of his clients. Another is redefinition. Later in this chapter, and 
in the next one, we will see a few more mechanisms: undefinition, join, select, descendant 
hiding. The power of these combined mechanisms makes inheritance sometimes obtrusive, 
and suggests the need for a special, inheritance-free version of a class: the flat form.

The flat form

In the view that we see emerging, inheritance is a supplier technique more than a client 
technique. It is primarily an internal tool for constructing classes effectively. True, the 
client side will need to know about the inheritance structure if it is to use polymorphism 
and dynamic binding (with a1: A; b1: B you need to know that B is a descendant of A if 
you are to use the assignment a1 := b1); apart from that case, however, the inheritance 
structure that led to a particular class is none of the clients’ business.

Like a good car mechanic, we are entirely led by the needs of our customers, but how we 
go about taking care of them in the back of the garage is our responsibility.

As a consequence, it should be possible to present a class in a self-contained manner, 
independent from any knowledge of its ancestry. This is particularly important in the case 
of using inheritance to separate various components of a composite abstraction, such as 
the tree and rectangle parts of the window concept.

The flat form of a class serves that purpose. It is not something you will ever write; 
instead, you will rely on a tool of the software development environment to produce it for 
you, through a command-line script (flat class_name) or when you click on a certain icon.

The flat form of a class C is a valid class text which has exactly the same semantics 
as C when viewed from a client, except for polymorphic uses, but includes no inheritance 
clause. It is what the class would have looked like had its author not been able to use 
inheritance. To produce a flat form means:

• Removing the entire inherit clause if any.

• Keeping all the feature declarations or redeclarations of C.

• Adding declarations for all inherited features, copied from the declarations in the 
applicable parents and taking into account all the inheritance transformations that 
were specified in the inheritance clause: renaming, redefinition, undefinition, 
select, feature join.

• Adding to each inherited feature a comment line of the form from ANCESTOR
indicating the name of the proper ancestor from which the current version is derived: 
the closest one that declared or redeclared the feature (and, in the case of a feature 
join, described later in this chapter, the winning side).

• Reconstructing the full preconditions and postconditions of inherited routines 
(according to the rules on assertion inheritance explained in the next chapter).
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An “immediate” 
feature is one intro-
duced in the class 
itself.

Displaying a 
flat form
• Reconstructing the full invariant, by anding all the parents’ invariants, after applying 
the proper transformations if they use any renamed or selected feature.

The resulting class text shows all the features of the class at the same level, not 
making any difference (except for the from ANCESTOR comments) between immediate 
and inherited features. If present, the labels of feature clauses — as in feature -- Access
— are retained; clauses with identical labels, whether from parents or the class itself, are 
merged. Within each feature clause the features appear alphabetically.

The illustration below shows the beginning of the flat form of the Base library class 
LINKED_TREE, produced in a Class Tool of ISE’s development environment (and 
scrolled past the note clause). To obtain this result, you target the Class Tool to the class, 
and click on the Flat format button.

Uses of the flat form

The flat form is a precious tool for developers: it enables them to see the full set of 
properties of a class, all together in one place, ignoring how these features were derived 
in the inheritance games. A potential drawback of inheritance is that when reading a class 
text you may not immediately see what a feature name means, since the declaration can 
be in any ancestor. The flat form solves this problem by giving you the full picture.

The flat form may also be useful to deliver a stand-alone version of a class, not 
encumbered by the class history. That version will not be usable polymorphically.

Format buttons: flat flat-short short



§15.4   REPEATED INHERITANCE 543

See “Using asser-
tions for documen-
tation: the short 
form of a class”, 
page 389.

Repeated 
inheritance
The flat-short form
The flat form is a valid class text. So in its just mentioned role as documentation, it is of 
interest for the supplier side — for developers working on the class itself or a new 
descendant. The client side needs more abstraction.

In an earlier chapter we saw the tool that provides this abstraction: short
(corresponding in the last figure to the second button to the right of flat.)

Combining the two notions yields the notion of flat-short form. Like the short form, 
the flat-short form of a class only includes public information, removing any non-exported 
feature and, for exported features, removing any implementation aspects, do clauses in 
particular. But like the flat form, it treats all features, immediate or inherited, as peers — 
whereas for a class with parents the non-flat short form only shows information about 
immediate features.

The flat-short form is the primary mechanism for documenting classes, in particular 
reusable library classes, for the benefits of their users (client authors). The book presenting 
the Base libraries [M 1994a] provides all the class specifications in that form.

15.4  REPEATED INHERITANCE
Master Jacques: Is it to your coachman or to your cook, Sir, that 
you would like to talk? For I am both the one and the other.

Molière, The Miser

As noted at the beginning of this chapter, repeated inheritance arises whenever a class is 
a descendant of another in more than one way. This case causes some potential 
ambiguities, which we must resolve.

Repeated inheritance will only arise explicitly in advanced development; so if you are 
only surveying the key components of the method you may skip directly to the next chapter.

Sharing ancestors 

As soon as multiple inheritance is allowed into a language, it becomes possible for a class 
D to inherit from two classes B and C, both of which are heirs, or more generally 
descendants, of the same class A. This situation is called repeated inheritance. 

A

D

B C

A

D

(1) Indirect

(2) Direct
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If B and C are heirs of proper descendants of A (case 1 in the figure), the repeated 
inheritance is said to be indirect. If A, B and C are all the same class (case 2), the repeated 
inheritance is direct; this is achieved by writing

class D inherit
A
A
…

feature
…

end

Intercontinental drivers 

The following system modeling example will enable us to see under what circumstances 
repeated inheritance may occur and to study the problem that it raises. Assume a class 
DRIVER with attributes such as 

age: INTEGER
address: STRING
violation_count: INTEGER -- The number of recorded traffic violations

and routines such as 

pass_birthday do age := age + 1 end
pay_ fee

-- Pay the yearly license fee.
do … end

An heir of DRIVER, taking into account the specific characteristics of US tax rules, 
may be US_DRIVER. Another may be FRENCH_DRIVER (with reference to places where 
cars are driven, not citizenship). 

Now we may want to consider people who drive in both France and the US, perhaps 
because they reside in each country for some part of the year. A simple way to express this 
situation is to use multiple inheritance: class FRENCH_US_DRIVER will be declared as 
heir to both US_DRIVER and FRENCH_DRIVER. As shown by the figure at the top of the 
facing page, this causes repeated inheritance.

To make sure that the example is a proper use of inheritance we assume that US_DRIVER
and FRENCH_DRIVER are not just distinguished by the value of some attribute 
representing the country of driving, but are indeed distinct abstraction variants, each with 
its specific features. Chapter 24 discusses in depth the methodology of using inheritance.

Sharing and replication

The first and principal problem of repeated inheritance appears clearly in the 
intercontinental driver example:

What is the meaning in the repeated descendant (FRENCH_US_DRIVER in 
the example) of a feature inherited from the repeated ancestor (DRIVER)? 
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Kinds of driver

Page 536.
Consider a feature such as age. It is inherited from DRIVER by both US_DRIVER
and FRENCH_DRIVER; so at first sight the name clash rule seems to require renaming. 
But this would be too stringent: there is no real conflict since age from US_DRIVER and 
age from FRENCH_DRIVER are not really different features: they are one feature, from 
DRIVER. Unless you are trying to hide something from someone, you have the same age 
wherever you happen to be driving. The same applies to procedure pass_birthday.

If you read carefully the rule about name clashes, you will have noted that it does not 
preclude such cases. It stated:

A class that inherits different but identically named features from different 
parents is invalid.

Here the versions of age and pass_birthday that FRENCH_US_DRIVER inherits 
from its two parents are not “different ” features, but a single feature in each case. So there 
is no real name clash. (An ambiguity could still exist if one of the features was redeclared 
in an intermediate ancestor; we will see shortly how to resolve it. For the moment we 
assume that nothing is redeclared.)

In such cases, when a feature coming from a repeated ancestor is inherited under the 
same name from two or more parents, the clear rule is that it should give a single feature 
in the repeated descendant. This case will be called sharing.

Is sharing always appropriate? No. Consider address, pay_ fee, violation_count: our 
dual drivers will most likely declare two different addresses to the respective Departments 
of Motor Vehicles; paying the yearly fee is a separate process for each country; and traffic 
violations are distinct. For each of these features inherited from DRIVER, class FRENCH_
US_DRIVER needs not one but two different features. This case will be called replication.

FRENCH_US_
DRIVER

DRIVER

US_
DRIVER

FRENCH_
DRIVER

pass_birthday 
pay_ fee

age 
address 
violation_count
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What the example — and many others — also shows is that we could not get what 
we need with a policy that would either share all features of a repeated ancestor or 
replicate all of them. This is too coarse a level of granularity. We need the ability to tune 
the policy separately for each repeatedly inherited feature.

We have seen how to obtain sharing: just do nothing — inherit the original version 
from both parents under the same name. How do we obtain replication? By doing the 
reverse: inheriting it under two different names.

This idea is consistent with the general rule, simple and clear, that we apply to 
features and their names: within a class, a feature name denotes only one feature; two 
separate names denote two separate features. So to replicate a repeatedly inherited feature 
we simply make sure that some renaming occurs along the way.

This rule applies to attributes as well as routines. It gives us a powerful replication 
mechanism: from one feature of a class, it is possible in a descendant to get two or more 
features. For an attribute, this means an extra field in all the instances; for a routine, it 
means a new routine, initially with the same algorithm.

Except in special cases involving redeclaration, the replication can be conceptual only: 
no code actually gets duplicated, but the repeated descendant has access to two features.

The rule gives us the desired flexibility for combining classes. For example the class 
FRENCH_US_DRIVER may look like this: 

class FRENCH_US_DRIVER inherit
FRENCH_DRIVER

rename
address as french_address,
violation_count as french_violation_count,
pay_ fee as pay_ french_ fee

end
US_DRIVER

rename
address as us_address,
violation_count as us_violation_count,
pay_ fee as pay_us_ fee

end
feature

…
end

Repeated Inheritance rule
In a repeated descendant, versions of a repeatedly inherited feature inherited 
under the same name represent a single feature. Versions inherited under 
different names represent separate features, each replicated from the original 
in the common ancestor.
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Sharing and 
replication

Attribute 
replication
The renaming occurs here at the last stage — in the repeated descendant — but some 
or all of it could also have been done by intermediate ancestors FRENCH_DRIVER and 
US_DRIVER; all that counts is whether in the end a feature is repeatedly inherited under 
one name or more.

The features age and pass_birthday, which have not been renamed along any of the 
inheritance paths, will remained shared, as desired. 

A replicated attribute such as address will, as noted, yield a new field in each of the 
instances of the repeated descendant. So assuming there are no other features than the ones 
listed, here is how instances of the classes will look:

(Instances of FRENCH_DRIVER and US_DRIVER have the same composition as those of 
DRIVER as shown.)

This is the conceptual picture, but with a good implementation it must be the concrete 
representation too. Particularly important is the ability not to replicate the fields for shared 
attributes such as age in FRENCH_US_DRIVER. A naïve implementation would replicate 
all fields anyway; some fields, such as the duplicate age field, would simply never be used. 
Such waste of space is not acceptable, since it would accumulate as we go down inheritance 

FRENCH_US_
DRIVER

DRIVER
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DRIVER

FRENCH_
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     french_violations_count 
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Redundant 
inheritance
hierarchies, and lead to catastrophic space inefficiency. (As a general rule, one must be very 
careful with attributes, as every attribute field will be present at run time in each one of the 
potentially many instances of a class and its descendants.)

The compiling mechanism of the development environment described at the end of 
this book indeed makes sure that no attribute space is lost: conceptually shared attributes 
are shared physically too. This is one of the most difficult parts of implementing 
inheritance and the calling machinery of dynamic binding, especially under the additional 
requirement that repeated inheritance must not affect the performance achievements 
described in earlier chapters:

• Zero cost for genericity.

• Small, constant-bounded cost for dynamic binding (that cost must be the same 
whether or not a system includes repeated inheritance).

The implementation meets these goals, making repeated inheritance a technique that 
any system can use at no extra cost.

Repeated inheritance in C++ follows a different pattern. The level of granularity for 
deciding to share or duplicate is the class. So if you need to duplicate one field from the 
repeated ancestor, you will need to duplicate all. For that reason, C++ users tend to stay 
away from this mechanism altogether. Java has eliminated the problem — by eliminating 
multiple inheritance.

Unobtrusive repeated inheritance

Cases of repeated inheritance similar to the “transcontinental drivers”, with duplicated 
features as well as shared ones, do occur in practice, but not frequently. They are not for 
beginners; only after you have reached a good level of sophistication and practice in object 
technology should you encounter any need for them.

If you are writing a straightforward application and end up using repeated 
inheritance, you are probably making things more complicated than you need to. 

The figure shows a typical beginner’s (or absent-minded developer’s) mistake: D is 
made an heir of B, and also needs facilities from A; but B itself inherits from A. Forgetting 
that inheritance is transitive, the developer wrote 

A

D

B
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See “THE GLOBAL 
INHERITANCE 
STRUCTURE”, 
16.2, page 580.
class D… inherit
B

A

…

This case causes repeated inheritance, but what it really shows is redundant
inheritance. One of the pleasant consequences of the conventions discussed so far, and of 
the corresponding implementation, is that they will yield the expected behavior in such a 
case: in the absence of renaming, all features will be shared; no new features will be 
introduced, and there will be no performance overhead. Even if B renames some attributes, 
the only consequence will be some waste of space.

The only exception is the case in which B has redefined a feature of A, which causes 
an ambiguity in D. But then, as explained below, you will get an error message from the 
compiler, inviting you to select one of the two versions for use in D.

A case of redundant but harmless inheritance may occur when A is a class 
implementing general-purpose facilities like input or output (such as the class STD_FILES
from the Kernel library), needed by D as well as B. It is enough for D to inherit from B: 
this makes D a descendant of A, giving it access to all the needed features. Inheriting 
redundantly will not, however, have any harmful consequences — in fact, it will have no 
consequences at all.

Such involuntary and innocuous cases of repeated inheritance may also occur as a result 
of inheritance from universal classes ANY and GENERAL, studied in the next chapter.

The renaming rule

(This section introduces no new concept but gives a more precise formulation of the rules 
seen so far, and an explanatory example.)

We can now give a precise working of the rule prohibiting name clashes:

Definition: final name

The final name of a feature in a class is:
• For an immediate feature (that is to say, a feature declared in the class 

itself), the name under which it is declared.
• For an inherited feature that is not renamed, its final name (recursively) 

in the parent from which it is inherited.
• For a renamed feature, the name resulting from the renaming.

Single Name rule

Two different effective features of a class may not have the same final name.
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A name clash occurs if two different features, both effective, still have the same 
name even after renaming subclauses have been taken into account. Such a name clash 
makes the class invalid, but is easy to correct by adding the proper renaming subclause.

The key word is different features. If a feature from a repeated ancestor is inherited 
from both parents under the same name, the sharing rule applies: only one feature is being 
inherited, so there is no name clash.

The prohibition of name clashes only applies to effective features. If one or more 
homonymous features are deferred, you can actually merge them since there is no 
incompatibility between implementations; the details will be seen shortly.

The rules are simple, intuitive and straightforward. To check our understanding one 
final time, let us build a simple example showing a legitimate case and an invalid case:

class A feature
this_one_OK: INTEGER

end

class B inherit A feature
portends_trouble: REAL

end

class C inherit A feature
portends_trouble: CHARACTER

end

class D inherit
-- This class is invalid!

B
C

end

That class D inherits this_one_OK twice — once from B, once from C — does not
cause a name clash, since the feature will be shared; it is indeed the same feature, coming 
from A, in each case.

The two features called portends_trouble, however, deserve their name: they are 
different features, and so they cause a name clash, making class D invalid. (They have 
different types, but giving them the same type would not affect this discussion.)

It is easy to make class D valid through renaming; for example:

class D inherit
-- This class is now quite valid.

B
rename portends_trouble as does_not_portend_trouble_any_more end

C
end

A

D

B C

this_one_OK

portends_trouble portends_trouble
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Redefinition 
causing 
potential 
ambiguity
Conflicting redefinitions

In the cases seen so far only names could change along the various inheritance paths. What 
if some intermediate ancestor, such as B or C on the last figure, redeclares a feature that is 
then repeatedly inherited? Under dynamic binding there may be an ambiguity in D.

Two simple mechanisms, undefinition and selection, will solve the issue. As usual 
you will be invited to participate in the development of these mechanisms and will see that 
once a problem is stated clearly the language solution follows immediately.

Assume that somewhere along the way a repeatedly inherited feature gets redefined:

Class B redefines feature f (this is the conventional meaning of the ++ symbol, as you 
will recall). So now you have two variants of f available in D: the redefined version from 
B, and the version from C, which here is the original version from A. (We might assume 
that C also redefines f in its own way, but this would bring nothing to the discussion except 
more symmetry.) This is different from all the previous cases, in which there was only one 
version of the feature, possibly inherited under different names.

What are the consequences? The answer depends on whether D inherits the two 
versions of f under the same name or different names, that is to say whether the repeated 
inheritance rule implies sharing or replication. Let us review the two cases in turn.

Conflicts under sharing: undefinition and join

Assume first that the two versions are inherited under the same name. This is the sharing: 
case: with just one feature name, there must be exactly one feature. Three possibilities:

S1  • If one of the two versions is deferred and the other effective, there is no difficulty: 
the effective version will serve to effect the other. Note that in the Single Name rule 
this case was explicitly permitted: the rule only prohibited name clashes between 
two effective features.

A

D

B C

f

f ++
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Two parents 
with features 
to be merged
S2  • If both versions are effective, but each of them appears in a redefine subclause, 
there is no problem either: both inherited versions are merged into a new version, 
whose redefinition appears in the class.

S3  • But if the versions are both effective and not both redefined, we have a true name 
clash: class D will be rejected as violating the Single Name rule.

Often S3 will indeed reflect an error: you have created an ambiguity for a certain 
feature name, and you must resolve it. The usual resolution is to rename one of the two 
variants; then instead of sharing you get replication — two different features. This is the 
other main case, replication, studied next.

In some situations, however, you may want a more sophisticated resolution of the S3 
conflict: letting one of the two variants, say the one from B, take over. Then the obvious 
solution is to transform this case into S1 by making one of the two variants deferred.

The rules on redefinition allow us to redefine an effective f into a deferred version; 
but they would force us to introduce an intermediate class, say C', an heir of C whose only 
role is to redefine f  into a deferred version; then we would make D inherit from C' rather 
than C. This is heavy and inelegant. Instead, we need a simple language mechanism: 
undefine. It will yield a new subclause in the inheritance part:

class D inherit
B
C

undefine f end
feature

…
end
If more than one subclause is present, undefine naturally comes after rename (since 

any undefinition should apply to the final name of a feature) but before redefine (since we 
should take care of any undefinition before we redefine anything).

A sign that a proposed language mechanism is desirable is, almost always, that it 
should solve several problems rather than just one. (Conversely, bad language 
mechanisms tend to cause as many problems, through their interactions with other 
language traits, as they purport to solve.) The undefinition mechanism satisfies this 
property: it gives us the ability to join features under multiple — not necessarily repeated 
— inheritance. Assume that we wish to combine two abstractions into one:

D

B Cf g 
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The need for 
selection
We want D to treat the two features f  and g as a single feature; this clearly requires 
that they have compatible signatures (number and types of arguments and result if any), and 
compatible semantics. Assuming that they have different names, and that we want to keep 
the f name, we can achieve the desired result by combining renaming with undefinition:

class D inherit
B
C rename

g as f
undefine

f
end

feature
…

end
Here the victory of B is total: it imposes both the feature and the feature name. All 

other combinations are possible: we may get the feature from one of the parents and the 
name from the other; or we may rename both features to an entirely new name for D.

Another way to join features is more symmetric: replace both inherited versions by a 
new one. To achieve this, simply make sure that the features have the same final name, 
adding a rename subclause if necessary, and list them both in redefine subclauses, with a 
new declaration in the class. Then there is no illicit name clash (this is case S2 above), and 
both features are joined into the new version.

Note the versatility of the renaming mechanism (showing that it satisfies the just 
introduced criterion for good language traits): originally introduced as a technique for 
removing name clashes, it now enables us to introduce name clashes — name clashes of a 
desirable kind, resolved by undefining one of the inherited versions to let the other take over.

Conflicts under replication: selection
There remains to consider the case of conflicting redefinitions under replication, that is to 
say when the repeated descendant inherits the separately redefined features with different 
names, and they are both effective.

A

D

B C

f

f  bf  ++
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On the B branch in the figure, feature f is renamed bf and is also redefined. Favoring 
again simplicity over symmetry we assume no change in the C branch; renaming or 
redefining f in C would not affect the discussion. Also, note that the result would be the 
same if B redefined the feature without renaming it, the renaming then occurring at the D 
level. Let us assume this is not a case of join (which would arise if we redefined both 
features, under S2 above, or undefined one of them).

Because the features are inherited under different names bf and f, replication applies: 
D gets two separate features from the feature f of A. In contrast with previous cases of 
replication, these are not duplicates of the same feature, but different features.

Here, unlike in the sharing case, there is no name clash. But as the careful reader will 
have noted, a different problem arises (the last issue of repeated inheritance), due to 
dynamic binding. Assume that a polymorphic entity a1 of type A, the common ancestor, 
becomes attached at run time to an instance of D, the common descendant. What then 
should the call a1  f do? 

The rule of dynamic binding states that the version of f to apply is the one deduced 
from the type of the target object, here D. But now for the first time that rule is ambiguous: 
D has two versions — known locally as bf and f — of the original f of A.

The observation made in the case of name clashes, which led to the renaming 
mechanism, applies here too: we cannot, in an approach favoring clarity and reliability, let 
the compiler make the choice behind the scenes through some default rule. The author of 
the software must be in control.

This shows the need for a simple language mechanism to resolve the ambiguity:

class D inherit
B

C 
select f end

feature
…

end
to trigger C’s version under dynamic binding for an entity of type A, and

class D inherit
B 

select bf end
C

feature
…

end
to select B’s version instead. The select clause will naturally appear after rename, 
undefine and redefine if present (you select variants once everything has been named and 
defined). Here is the rule governing its usage:
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The case in which 
both are redefined 
corresponds to S2, 
page 552.

“Using the original 
version in a redefini-
tion”, page 493.
The select resolves the ambiguity once and for all: proper descendants of the class 
do not need to repeat it (and should not).

Selecting everything
Every redefinition conflict must be resolved through select. When combining two classes 
that cause several such conflicts, you may want one of the classes to win all or most of 
these conflicts. This happens in particular with inheritance of the “marriage of 
convenience” form, as illustrated by ARRAYED_STACK inheriting from STACK and 
ARRAY, if the parents have a common ancestor. (In the Base libraries, both classes cited 
are indeed distant descendants of a general CONTAINER class.) In such a case, since one 
of the parents — what has been called the noble parent, here STACK — provides the 
specification, you will probably want to resolve all conflicts, or most of them, in its favor.

The following important notational facility simplifies your task in such cases, by 
avoiding the need to list all conflicting features individually. At most one of the parent 
listings in the inherit clause may be of the form

SOME_PARENT
select all end

The effect is simply, as suggested by the keyword all, to resolve in favor of 
SOME_PARENT all redefinition conflicts — more precisely all the conflicts that might 
remain after the application of other select subclauses. This last qualification means that 
you can still request some other parent’s version for certain features.

Keeping the original version of a redefined feature
(This section describes a more specialized technique and may be skipped on first reading.)

In the introduction to inheritance we saw a simple construct allowing a redefined 
feature to call the original version: Precursor. The repeated inheritance mechanism, 
through its support for feature duplication, provides a more general (but also heavier) 
solution in those rare cases for which the basic mechanism does not suffice.

Consider again the earlier example: BUTTON inheriting from WINDOW and 
redefining display as

display
-- Display button on the screen.

do
window_display
special_button_actions

end

Select rule
A class that inherits two or more different effective versions of a feature from 
a repeated ancestor, and does not redefine them both, must include exactly one 
of them in a select clause.
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where window_display takes care of displaying the button as if it were a normal window, 
and special_button_actions adds button-specific elements such as displaying the button’s 
border. Feature window_display is exactly the same as the WINDOW version of display.

We have seen how to write window_display simply as Precursor. (If there is any 
ambiguity, that is to say if two or more parents redefine their display routine into the new 
one, the selected parent will appear in double braces, as in Precursor {WINDOW}.) We 
can achieve the same goal, although less simply, through repeated inheritance:

note
WARNING: "This is a first attempt — this version is invalid!"

class BUTTON inherit
WINDOW

redefine display end
WINDOW

rename display as window_display end
feature

…
end
Because one of the branches renames display, the repeated inheritance rule indicates 

that BUTTON will have two versions of that feature, one redefined and keeping the 
original name, the other not redefined but having the name window_display.

As indicated, this is almost valid but not quite: we need a select. If (as will usually 
be the case) we want to select the redefined version, this will give:

note
note: "This the (valid!) repeated inheritance scheme for continuing to use %

%the original version of a redefined feature"
class BUTTON inherit

WINDOW
redefine

display
select

display
end

WINDOW
rename

display as window_display
export

{NONE} window_display
end

feature
…

end

The selection
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If several features need this scheme, you can list them together (in other words, you 
do not need to inherit more than twice from the parent). Often you will want to resolve all 
conflicts in favor of the redefined versions; in that case, use select all.

The export clause (studied only in the next chapter, although there is little more to it than 
shown here) changes the export status of an inherited feature: WINDOW probably 
exported the original display, now known as window_display, but BUTTON makes it 
secret. Although window_display is a full-fledged feature of the class, which needs it for 
its internal purposes, clients have no use for it. As discussed in earlier examples, 
exporting the original version of an inherited feature might make the class formally 
incorrect if that version does not satisfy the new class invariant.

To apply hiding to all features inherited along a certain branch you can, here too, use the 
keyword all, as in export {NONE} all.

This pattern of exporting only the redefined version, making the original secret under 
a new name, is the most common. It is not universal; the heir class sometimes needs to 
export both versions (assuming the original does not violate the invariant), or to hide both.

How useful is this technique using repeated inheritance to keep the original version of 
a redefined feature? Usually you do not need it: the Precursor construct suffices. You 
should use repeated inheritance when you do not just require the old version for 
implementing the redefined one, but want to keep it, along with the redefined version, as 
one of the features of the new class.

Remember that if both are exported they must both make sense for the corresponding 
abstraction; in particular, they must preserve the invariant.

An advanced example

Here is an extensive example showing various aspects of repeated inheritance at work.

The problem, similar in spirit to the last example, comes from an interesting 
discussion in the basic book on C++ [Stroustrup 1991].

Consider a class WINDOW with its display procedure and two heirs, WINDOW_
WITH_BORDER and WINDOW_WITH_MENU representing the abstractions suggested 
by their names. Each redefines display so that it will first perform the standard window 
display, and then display the border in the first case, and the menu cells in the second.

We may want to describe windows that have both a border and a menu; hence the use 
of repeated inheritance for class WINDOW_WITH_BORDER_AND_MENU.
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Window 
variants
In class WINDOW_WITH_BORDER_AND_MENU we will again redefine display; 
here the redefined version should apply the standard window display, then display the 
border, then display the menu.

The original WINDOW class has the following form:
class WINDOW feature

display
-- Display window (general algorithm)

do
…

end
… Other features …

end
For an heir such as WINDOW_WITH_BORDER we need to apply the original 

display and add border display. We do not need repeated inheritance here, but can simply 
rely on the Precursor construct:

class WINDOW_WITH_BORDER inherit
WINDOW

redefine display end
feature -- Output

display
-- Draw window and its border.

do 
Precursor
draw_border

end
feature {NONE} -- Implementation

draw_border do … end
…

end

WINDOW_WITH_
BORDER_AND_MENU

WINDOW

WINDOW_
WITH_BORDER

display

WINDOW_
WITH_MENU
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Note the addition of a procedure draw_border which displays the border. It has been 
hidden from clients (exported to NONE), since from the outside it makes no sense to 
display the border only. Class WINDOW_WITH_MENU is exactly symmetrical:

class WINDOW_WITH_MENU inherit
WINDOW

redefine display end
feature -- Output

display
-- Draw window and its menu.

do 
Precursor
draw_menu

end
feature {NONE} -- Implementation

draw_menu do … end
…

end

It remains to write the common heir WINDOW_WITH_BORDER_AND_MENU
of these two classes, a repeated descendant of WINDOW. Here is a first attempt:

note
WARNING: "This is a first attempt — this version will not work properly!"

class WINDOW_WITH_BORDER_AND_MENU inherit
WINDOW_WITH_BORDER

redefine display end
WINDOW_WITH_MENU

redefine display end
feature

display
-- Draw window and its border.

do 
Precursor {WINDOW_WITH_BORDER}
Precursor {WINDOW_WITH_MENU}

end
…

end

Note the need to name the parent in each use of Precursor: each parent has a display
feature, each redefined into the same new display (otherwise we would have an invalid 
name clash, of course), so in each case we must say which one we want.
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Exercise E15.10, 
page 568.
But, as Stroustrup notes (for a different solution), this is not correct: both parent 
versions call the original WINDOW version, which will end up being called twice, possibly 
producing garbled output. To get a correct form, we may among other solutions let the new 
class inherit directly from WINDOW, making it a triple descendant of that class:

note
note: "This is a correct version"

class WINDOW_WITH_BORDER_AND_MENU inherit
WINDOW_WITH_BORDER

redefine
display

export {NONE}
draw_border

end
WINDOW_WITH_MENU

redefine
display

export {NONE}
draw_menu

end
WINDOW

redefine display end
feature

display
-- Draw window and its border.

do 
Precursor {WINDOW}
draw_border
draw_menu

end
…

end
Note that for good measure we have made features draw_border and draw_menu 

hidden in the new class, as there does not seem to be any reason for clients of 
WINDOW_WITH_BORDER_AND_MENU to call them directly.

In spite of its lavish use of repeated inheritance, this class does not need any select
since it redefines all inherited versions of display into one. This is the benefit of using 
Precursor rather than feature replication.

A good way to test your understanding of repeated inheritance is to rewrite this 
example without making use of the Precursor construct, that is to say by using repeated 
inheritance to obtain feature replication at the level of the two intermediate classes. You 
will, of course, need select subclauses.
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The only changes are
the additions marked
with an arrow.
In the version obtained above, there is sharing only, no replication. Let us extend 
Stroustrup’s example by assuming that WINDOW also has a query id (perhaps an integer) 
used to identify each window. If each window is identified at most once, then id will be 
shared and we do not need to change anything. But if we want to keep track separately of 
instances of each window type, an instance of WINDOW_WITH_BORDER_AND_MENU
will have three separate identifiers. The new class combines sharing with replication:

note
note: "More complete version with separate identifiers"

class WINDOW_WITH_BORDER_AND_MENU inherit
WINDOW_WITH_BORDER

rename
id as border_id

redefine
display

export {NONE}
draw_border

end
WINDOW_WITH_MENU

rename
id as menu_id

redefine
display

export {NONE}
draw_menu

end
WINDOW

rename
id as window_id

redefine
display

select
window_id

end
feature

…. The rest as before …
end
Note the need for selecting one of the versions of id.

Repeated inheritance and genericity

To finish this review of repeated inheritance, we must consider a specific case which could 
cause trouble if left unchecked. It arises for features involving formal generic parameters. 
Consider the following scheme (which could also arise with indirect repeated inheritance): 
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class A [G] feature
f: G; …

end

class B inherit
A [INTEGER]
A [REAL]

end

In class B, the repeated inheritance rule would imply that f  is shared. But this leaves 
an ambiguity on its type: does it return an integer or a real? The same problem would occur 
if f were a routine with an argument of type G. 

Such an ambiguity is not acceptable. Hence the rule:

You can remove the ambiguity by renaming the offending feature at the point of 
inheritance, to get duplication rather than renaming. 

Rules on names

(This section only formalizes previously seen rules, and may be skipped on first reading.)

We have seen that name clashes are prohibited when they could cause ambiguity, but 
that some cases are valid. To finish off this presentation of multiple and repeated 
inheritance without leaving any ambiguity, it is useful to summarize the constraints on 
name clashes with a single rule:

Genericity in Repeated Inheritance rule

The type of any feature that is shared under the repeated inheritance rule, and 
the type of any of its arguments if it is a routine, may not be a generic 
parameter of the class from which the feature is repeatedly inherited. 

Name clashes: definition and rule

In a class obtained through multiple inheritance, a name clash occurs when 
two features inherited from different parents have the same final name.
A name clash makes the class invalid except in any of the following cases:
N1  •The two features are inherited from a common ancestor, and none has 

been redeclared from the version in that ancestor.
N2  •Both features have compatible signatures, and at least one of them is 

inherited in deferred form.
N3  •Both features have compatible signatures, and they are both redefined 

in the class.
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Case N1 is the sharing case under repeated inheritance.

In case N2, a feature is “inherited in deferred form” if it was deferred in the parent, 
or if it was effective but the class undefines it.

Cases N2 and N3 have been separated but can be merged into a single case, the join
case. Considering n features (n >= 2) rather than just two, these cases arise when the class 
gets n features with the same name, and compatible signatures, from its various parents. 
The name clash is valid if we can let the inheritance join all of these features into one, 
without any ambiguity. This means that:

• You can have any number of deferred features among the lot since they will not cause 
any conflicting definitions. (As noted, a deferred feature is either one that was 
already deferred, or one that the class undefines.)

• If exactly one of the features is effective, it imposes its implementation to the others.

• If two or more features are effective, the class must provide a common redefinition 
for all of them. (An example was the joining in WINDOW_WITH_BORDER_AND_
MENU of the display procedures of the three parents.) The redefinition will also, of 
course, serve as effecting for any deferred feature participating in the clash.

Here then is the precise rule on the Precursor construct. If a redefinition uses a 
precursor version, case N3 is the only one causing ambiguity as to whose version is 
intended. Then you must resolve the ambiguity by writing the precursor call as 
Precursor {PARENT} (…) where PARENT is the name of the desired class. In all other 
cases (simple inheritance, or multiple outside of N3) naming the parent is optional.

15.5  DISCUSSION 
Let us probe further the consequences of some of the decisions made in this chapter.

Renaming 

Any language that has multiple inheritance must deal with the problem of name clashes. 
Since we cannot and should not require developers to change the original classes, only two 
conventions are possible besides the solution described in this chapter: 

• Require clients to remove any ambiguity. 

• Choose a default interpretation. 

With the first convention, a class C inheriting two features called f, one from A and 
one from B, would be accepted by the compiler, possibly with a warning message. Nothing 
bad would happen unless a client of C contained something like 

x: C
… x  f …

which would be invalid. The client would have to qualify the reference to f, with a notation 
such as x    f   | A or x    f   | B, to specify one of the variants. 
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“Syntactic over-
loading”, page 93.
This solution, however, runs contrary to one of the principles emphasized in this 
chapter: that the inheritance structure leading to a class is a private affair between the class 
and its ancestors, not relevant for clients except through its influence on polymorphic uses. 
When I use service f from C, I should not need to know whether C introduced it itself or 
got it from A or B. 

With the second convention, x  f  is valid; the underlying language mechanisms select 
one of the variants, based on some criterion such as the order in which C lists its parents; 
a notation may be available for requesting another variant explicitly.

This approach has been implemented in several Lisp-based languages supporting 
multiple inheritance. But it is dangerous to let some underlying system choose a default 
semantics. The solution is also incompatible with static typing: there is no reason why two 
features with the same name in different parents should be typewise compatible. 

The renaming mechanism solves these problems; it brings other benefits, such as the 
ability to rename inherited features with names that are meaningful to clients. 

O-O development and overloading

This chapter’s discussion of the role of names brings the final perspective on the question 
of in-class name overloading, complementing the preliminary observations made in 
earlier chapters.

Recall that in languages such as Ada (83 and 95) you can give the same name to 
different features within the same syntactical unit, as in

infix "+" (a, b: VECTOR) …
infix "+" (a, b: MATRIX) …

which could both appear in the same Ada package. C++ and Java have made the same 
possibility available within a single class.

An earlier presentation called this facility syntactic overloading. It is a static 
mechanism: to disambiguate a given call, such as x + y, it suffices to look at the types of 
the arguments x and y, which are apparent from the program text.

Object technology introduces a more powerful of overloading: semantic (or 
dynamic) overloading. If classes VECTOR and MATRIX both inherit a feature

infix "+" (a: T ) …
from a common ancestor NUMERIC, and each redeclares it in the appropriate way, then a 
call x + y will have a different effect depending on the dynamic type of x. (Infix features 
are just a notational convenience: with a non-infix feature the call x + y would be written 
something like x  plus (y).) Only at run time will the ambiguity be resolved. As we know, 
this property is key to the flexibility of O-O development.

Semantic overloading is the truly interesting mechanism. It allows us to use the same 
name, in different classes, for variants of what is essentially the same operation — such 
as addition from NUMERIC. The next chapter’s rules on assertions will make it even more 
clear that a feature redeclaration must keep the same fundamental semantics.
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Does this leave a role for syntactic overloading in object technology? It is hard to 
find any. One can understand why Ada 83, which does not have classes, should use 
syntactic overloading. But in an object-oriented language, to let developers choose the 
same name for two different operations is to create the possibility of confusion.

The problem is that the syntactic form of overloading clashes with the semantic form 
provided by polymorphism and dynamic binding. Consider a call x  f (a). If it follows the 
possibly polymorphic assignments x := y and a := b, the result is exactly the same, in the 
absence of renaming, as that of y  f (b), even if y and b have other types than x and a. But 
with overloading this property is not true any more! f may be the overloaded name of two 
features, one for the type of a and one for the type of b. Which rule takes precedence, 
syntactic overloading or the O-O concept of dynamic binding? (Probably the former, but 
not until it has fooled a few developers, novice or not.) To make things worse, the base 
class of y’s type may redefine either or both of the overloaded features. The combinations 
are endless; so are the sources of confusion and error.

What we are witnessing here is the unpleasant consequences of the interaction 
between two separate language traits. (A language addition, as noted earlier in this chapter 
on another topic, should whenever possible solve new problems beyond its original 
purpose — not create new problems through its interaction with other mechanisms.) A 
prudent language designer, having toyed with a possible new facility, and encountering 
such incompatibilities with more important properties of the design, quickly retreats.

What, against these risks, is the potential benefit of syntactic overloading? On 
careful examination it seems dubious to start with. A simple principle of readability holds 
that within the same module a reader should have absolutely no hesitation making the 
connection between a name and the meaning of that name; with in-class overloading, this 
property collapses.

A typical example — sometimes mentioned in favor of overloading — is that of 
features of a STRING class. To append another string or a single character you will, in 
the absence of overloading, use different feature names, as in s1  add_string (s2) and 
s1  add_character ('A'), or perhaps, using infix operators, s := s1 ++ s2 and s   :=    s1   +   'A'. 
With overloading, you can use a single name for both operations. But is this really 
desirable? Objects of types CHARACTER and STRING have quite different properties; for 
example appending a character will always increase the length by 1; appending a string 
may leave the length unchanged (if the appended string was empty) or increase it by any 
amount. It seems not only reasonable but desirable to use different names — especially 
since the confusions cited above are definitely possible (assume that CHARACTER
inherits from STRING and that another descendant redefines add_string but not add_
character.)

Finally, we have already encountered the observation that even if we wanted 
overloading we would in general need a different disambiguating criterion. Syntactic 
overloading distinguishes competing routines by looking at their signatures (numbers and 
types of arguments); but this is often not significant. The typical example was the creation 
procedures for points, or complex numbers: make_cartesian and make_polar both take 
two arguments of type REAL — to mean completely different things. You cannot use 
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overloading here! The routines’ signatures are irrelevant. To express that two features are 
different, we should use the obvious technique, the same that we apply in everyday life to 
express that two things or concepts are different: give them different names.

For creation operations (“constructors”) such as make_cartesian and make_polar the 
Java and C++ solution is particularly ironic: you may not give them different names but 
are forced to rely on overloading, using the class name. I have been unable to find a good 
solution to this problem other than adding an artificial third argument.

In summary: syntactic (in-class) overloading appears in an object-oriented context 
to create many problems for no visible benefit. (Some methodological advice to users of 
languages such as C++, Java and Ada 95: do not use this facility at all, except for cases 
such as multiple constructor functions in which the language leaves no other choice.) In a 
consistent and productive application of object technology we should stick to the rule — 
simple, easy to teach, easy to apply and easy to remember — that, within a class, every 
feature has a name and every feature name denotes one feature.

15.6  KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• The construction-box approach to software construction favored by object 
technology requires the ability to combine several abstractions into one. This is 
achieved by multiple inheritance.

• In the simplest and most common cases of multiple inheritance, the two parents 
represent disjoint abstractions.

• Multiple inheritance is frequently needed, both for system modeling and for 
everyday software development, in particular the construction of reusable libraries.

• Name clashes under multiple inheritance should be removed through renaming.

• Renaming also serves to provide classes with locally adapted terminology for 
inherited features.

• Features should be distinguished from feature names. The same feature can be 
known under different names in different classes. A class defines a mapping from 
feature names to features.

• Repeated inheritance, an advanced technique, arises as a result of multiple 
inheritance when a class is a descendant of another through two or more paths.

• Under repeated inheritance, a feature from the common ancestor yields a single 
feature if it is inherited under a single name, separate features otherwise.

• Competing versions from a common ancestor must be disambiguated, for dynamic 
binding, through a select subclause.

• The replication mechanism of repeated inheritance should not replicate any feature 
involving generic parameters.

• In an object-oriented framework, the semantic form of overloading provided by 
dynamic binding is more useful than syntactic overloading.
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15.7  BIBLIOGRAPHICAL NOTES 

The renaming mechanism and the repeated inheritance rules originated with the notation 
of this book. The undefinition mechanism is an invention of Michael Schweitzer, and the 
selection mechanism an invention of John Potter, both in unpublished correspondence.

The walking menu example comes from [M 1988c].

EXERCISES

E15.1  Windows as trees

Class WINDOW inherits from TREE [WINDOW]. Explain the generic parameter. Show 
that it yields an interesting clause in the class invariant. 

E15.2  Is a window a string?

A window has an associated text, described by an attribute text of type STRING. Rather 
than having this attribute, should WINDOW be declared as an heir to STRING? 

E15.3  Doing windows fully

Complete the design of the WINDOW class, showing exactly what is needed from the 
underlying terminal handling mechanism. 

E15.4  Figure iterators

The presentation of class COMPOSITE_FIGURE mentioned the possibility of using 
iterator classes for all operations that perform a certain operation on a composite figure. 
Develop the corresponding iterator classes. (Hint: [M 1994a] presents library iterator 
classes which provide the basic pattern.)

E15.5  Linked stacks

Write the class LINKED_STACK which describes a linked list implementation of stacks, 
as an heir to both STACK and LINKED_LIST. 

E15.6  Circular lists and chains

Explain why the LIST class may not be used for circular lists. (Hint: a look at the 
assertions, benefiting from the discussion at the beginning of the next chapter, may help.). 
Define a class CHAIN that can be used as parent both to LIST and to a new class 
CIRCULAR describing circular lists. Update LIST and if necessary its descendants 
accordingly. Complete the class structure to provide for various implementations of 
circular lists. 
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Walking 
menus

(The last entry of the 
submenu, Demos, 
denotes in turn a 
submenu.)
E15.7  Trees

One way to look at a tree is to see it as a recursive structure: a list of trees. Instead of the 
technique described in this chapter, where TREE is defined as heir to both LINKED_LIST
and LINKABLE, it seems possible to define 

class TREE [G] inherit
LIST [TREE [G]]

feature … end
Can you expand this definition into a usable class? Compare it with the method used in 
the discussion of this chapter.

E15.8  Walking menus

Window systems offer a notion of menu, which we can cover through a class MENU, with 
a query giving the list of entries and commands to display the menu, move to the next entry 
etc. Since menus are made of entries we also need a class MENU_ENTRY with queries 
such as parent_menu and operation (the operation to execute when a user selects the 
entry), and commands such as execute (which executes operation).
Many systems offer cascading menus, also called “walking menus”, where selecting an 
entry causes the display of a submenu. The figure illustrates a walking menu under Sun’s 
Open Windows manager, where selecting the entry Programs brings up a submenu:

Show how to define the class SUBMENU. (Hint: a submenu is a menu and a menu entry, 
whose operation must display the submenu.)
Could this notion be described elegantly in a language with no multiple inheritance?

E15.9  The flat precursor
What should the flat form of a class show for an instruction using the Precursor construct?

E15.10  Repeated inheritance for replication

Write the WINDOW_WITH_BORDER_AND_MENU class without recourse to the 
Precursor construct, using replication under repeated inheritance to gain access to the 
parent version of a redefined feature. Make sure to use the proper select subclauses and to 
give each feature its proper export status.



16  
Inheritance techniques
From the last two chapters we have learned to appreciate inheritance as a key ingredient 
in the object-oriented approach to reusability and extendibility. To complete its study we 
must explore a few more facilities — something of a mixed bag, but all showing striking 
consequences of the beauty of the basic ideas:

• How the inheritance mechanism relates to assertions and Design by Contract.

• The global inheritance structure, where all classes fit.

• Frozen features: when the Open-Closed principle does not apply.

• Constrained genericity: how to put requirements on generic parameters.

• Assignment attempt: how to force a type — safely.

• When and how to change type properties in a redeclaration.

• The mechanism of anchored declaration, avoiding redeclaration avalanche.

• The tumultuous relationship between inheritance and information hiding.

Two later chapters will pursue inheritance-related topics: the review of typing issues 
in chapter 17, and a detailed methodological discussion of how to use inheritance (and 
how not to misuse it) in chapter 24.

Most of the following sections proceed in the same way: examining a consequence 
of the inheritance ideas of the last two chapters; discovering that it raises a challenge or an 
apparent dilemma; analyzing the problem in more depth; and deducing the solution. The 
key step is usually the next-to-last one: by taking the time to pose the problem carefully, 
we will often be led directly to the answer.

16.1  INHERITANCE AND ASSERTIONS 
Because of its very power, inheritance could be dangerous. Were it not for the assertion 
mechanism, class developers could use redeclaration and dynamic binding to change the 
semantics of operations treacherously, without much possibility of client control. But 
assertions will do more: they will give us deeper insights into the nature of inheritance. It 
is in fact not an exaggeration to state that only through the principles of Design by 
Contract can one finally understand what inheritance is really about.
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The routine, 
the client and 
the contract
The basic rules governing the rapport between inheritance and assertions have already 
been sketched: in a descendant class, all ancestors’ assertions (routine preconditions and 
postconditions, class invariants) still apply. This section gives the rules more precisely and 
uses the results obtained to take a new look at inheritance, viewed as subcontracting. 

Invariants 

We already encountered the rule for class invariants:

The parents’ invariants are added to the class’s own, “addition” being here a logical 
and then. (If no invariant is given in a class, it is considered to have True as invariant.) 
By induction the invariants of all ancestors, direct or indirect, apply. 

As a consequence, you should not repeat the parents’ invariant clauses in the 
invariant of a class (although such redundancy would be semantically harmless since 
a and then a is the same thing as a).

The flat and flat-short forms of the class will show the complete reconstructed 
invariant, all ancestors’ clauses concatenated.

Preconditions and postconditions in the presence of dynamic binding

The case of routine preconditions and postconditions is slightly more delicate. The general 
idea, as noted, is that any redeclaration must satisfy the assertions on the original routine. 
This is particularly important if that routine was deferred: without such a constraint on 
possible effectings, attaching a precondition and a postcondition to a deferred routine 
would be useless or, worse, misleading. But the need is just as bad with redefinitions of 
effective routines.

The exact rule will follow directly from a careful analysis of the consequences of 
redeclaration, polymorphism and dynamic binding. Let us construct a typical case and 
deduce the rule from that analysis.

Consider a class and one of its routines with a precondition and a postcondition:

The figure also shows a client C of A. The typical way for C to be a client is to 
include, in one of its routines, a declaration and call of the form

Parents’ Invariant rule
The invariants of all the parents of a class apply to the class itself. 

A

r
require

α
…
ensure

β
end

C



§16.1   INHERITANCE AND ASSERTIONS 571

The routine, 
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the descendant
a1: A
…
a1  r
For simplicity, we ignore any arguments that r may require, and we assume that r is 

a procedure, although the discussion applies to a function just as well.
Of course the call will only be correct if it satisfies the precondition. One way for C

to make sure that it observes its part of the contract is to protect the call by a precondition 
test, writing it (instead of just a1  r) as

if a1  α then
a1  r

check a1  β end -- i.e. the postcondition holds
… Instructions that may assume a1  β …

end
(As noted in the discussion of assertions, this is not required: it suffices to guarantee, with 
or without an if instruction, that α holds before the call. We will assume the if form for 
simplicity, and ignore any else clause.)

Having guaranteed the precondition, the client C is entitled to the postcondition on 
return: after the call, it may expect that a1  β will hold.

All this is the basics of Design by Contract: the client must ensure the precondition 
on calling the routine and, as a recompense, may count on the postcondition being satisfied 
when the routine exits.

What happens when inheritance enters the picture?

Assume that a new class A' inherits from A and redeclares r. How, if at all, can it 
change the precondition α into a new one γ and the postcondition β into a new one δ?

To decide the answer, consider the plight of the client. In the call a1  r the target a1
may now, out of polymorphism, be of type A' rather than just A. But C does not know about 
this! The only declaration for a1 may still be the original one:

a1: A

A

r
require

α
…
ensure

β
end

C

A'

r++
require

γ
…
ensure

δ
end
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which names A, not A'. In fact C may well use A' without its author ever knowing about 
the existence of such a class; the call to r may for example be in a routine of C of the form

some_routine_of_C (a1: A)
do

…; a1  r; …
end

Then a call to some_routine_of_C from another class may use an actual argument of 
type A', even though the text of C contains no mention of class A'. Dynamic binding means 
that the call to r will in that case use the redefined A' version.

So we can have a situation where C is only a client of A but in fact will at run time 
use the A' version of some features. (We could say that C is a “dynamic client” of A' even 
though its text does not show it.)

What does this mean for C? The answer, unless we do something, is: trouble. C can 
be an honest client, observing its part of the deal, and still be cheated on the result. In

if a1  α then a1  r end

if a1 is polymorphically attached to an object of type A', the instruction calls a routine that 
expects γ and guarantees δ, whereas the client has been told to satisfy α and expect β. So 
we have a potential discrepancy between the client’s and supplier’s views of the contract.

How to cheat clients

To understand how to satisfy the clients’ expectations, we have to play devil’s advocate 
and imagine for a second how we could fool them. It is all for a good cause, of course (as 
with a crime unit that tries to emulate criminals’ thinking the better to fight it, or a 
computer security expert who studies the techniques of computer intruders).

If we, the supplier, wanted to cheat our poor, honest C client, who guarantees α and 
expects β, how would we proceed? There are actually two ways to evil:

• We could require more than the original precondition α. With a stronger precondition, 
we allow ourselves to exclude (that is to say, not to guarantee any specific result) for 
cases that, according to the original specification, were perfectly acceptable.

Remember the point emphasized repeatedly in the discussion of Design by 
Contract: making a precondition stronger facilitates the task of the supplier 
(“the client is more often wrong”), as illustrated by the extreme case of 
precondition false (“the client is always wrong”).

• We could ensure less than the original postcondition β. With a weaker postcondition, 
we allow ourselves to produce less than what the original specification promised.

As we saw, an assertion is said to be stronger than another if it logically implies it, 
and is different; for example, x >= 5 is stronger than x >= 0. If A is stronger than B, B is 
said to be weaker than A.
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How to be honest

From understanding how to cheat we deduce how to be honest. When redeclaring a 
routine, we may keep the original assertions, but we may also:

• Replace the precondition by a weaker one.

• Replace the postcondition by a stronger one.

The first case means being more generous than the original — accepting more cases. 
This can cause no harm to a client that satisfies the original precondition before the call. 
The second case means producing more than what was promised; this can cause no harm 
to a client call that relies on the original postcondition being satisfied after the call.

Hence the basic rule:

The rule expresses that the new version must accept all calls that were acceptable to 
the original, and must guarantee at least as much as was guaranteed by the original. It may 
— but does not have to — accept more cases, or provide stronger guarantees.

As its name indicates, this rule applies to both forms of redeclaration: redefinitions 
and effectings. The second case is particularly important, since it allows you to take 
seriously the assertions that may be attached to a deferred feature; these assertions will be 
binding on all effective versions in descendants.

The assertions of a routine, deferred or effective, specify the essential semantics of 
the routine, applicable not only to the routine itself but to any redeclaration in descendants. 
More precisely, they specify a range of acceptable behaviors for the routine and its 
eventual redeclarations. A redeclaration may specialize this range, but not violate it.

A consequence for the class author is the need to be careful, when writing the 
assertions of an effective routine, not to overspecify. The assertions must characterize the 
intent of the routine — its abstract semantics —, not the properties of the original 
implementation. If you overspecify, you may be closing off the possibility for a future 
descendant to provide a different implementation.

An example

Assume I write a class MATRIX implementing linear algebra operations. Among the 
features I offer to my clients is a matrix inversion routine. It is actually a combination of a 
command and two queries: procedure invert inverts the matrix, and sets attribute inverse to 
the value of the inverse matrix, as well as a boolean attribute inverse_valid. The value of 
inverse is meaningful if and only if inverse_valid is true; otherwise the inversion has failed 
because the matrix was singular. For this discussion we can ignore the singularity case. 

Assertion Redeclaration rule (1)
A routine redeclaration may only replace the original precondition by one 
equal or weaker, and the original postcondition by one equal or stronger.
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Warning: syntacti-
cally not valid as a 
redefinition. See 
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Of course I can only compute an approximation of the inverse of a matrix. I am 
prepared to guarantee a certain precision of the result, but since I am not very good at 
numerical analysis, I shall only accept requests for a precision not better than 10–6. The 
resulting routine will look like this: 

invert (epsilon: REAL)
-- Inverse of current matrix, with precision epsilon

require
epsilon >= 10 ^ (–6)

do
“Computation of inverse”

ensure
((Current ∗ inverse) |–| One) <= epsilon

end
The postcondition assumes that the class has a function infix "|–|" such that m1 |–|  m2 

is |m1 — m2|, the norm of the matrix difference of m1 and m2, and a function infix "∗"
which yields the product of two matrices; One is assumed to denote the identity matrix. 

I am not too proud of myself, so for the summer I hire a bright young programmer-
numerician who rewrites my invert routine using a much better algorithm, which 
approximates the result more closely and accepts a smaller epsilon: 

require
epsilon >= 10 ^ (–20)

…
ensure

((Current ∗ inverse) |–| One) <= (epsilon / 2)
The author of this new version is far too clever to rewrite a full MATRIX class; only 

a few routines need adaptation. They will be included in a descendant of MATRIX, say 
NEW_MATRIX.

If the new assertions are in a redefinition, they must use a different syntax than shown 
above. The rule will be given shortly.

The change of assertions satisfies the Assertion Redeclaration rule: the new 
precondition epsilon >= 10 ^ (–20) is weaker than (that is to say, implied by) the original 
epsilon >= 10 ^ (–6); and the new postcondition is stronger than the original.

This is how it should be. A client of the original MATRIX may be requesting a matrix 
inversion but, through dynamic binding, actually calling the NEW_MATRIX variant. The 
client could contain a routine

some_client_routine (m1: MATRIX; precision: REAL)
do

… ; m1  invert (precision); … 
-- May use either the MATRIX or the NEW_MATRIX version

end
to which one of its own clients passes a first argument of type NEW_MATRIX.
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The routine, 
the client and 
the sub-
contractor
NEW_MATRIX must be able to accept and handle correctly any call that MATRIX 
would accept. If we made the precondition of the new invert stronger than the original (as 
in epsilon >= ^ (–5)), calls which are correct for MATRIX would now be incorrect; if we 
made the postcondition weaker, the result returned would not be as good as guaranteed by 
MATRIX. By using a weaker precondition and a stronger postcondition we correctly treat 
all calls from clients of MATRIX, while offering a better deal to our own clients.

Cutting out the middleman

The last comment points to an interesting consequence of the Assertion Redeclaration 
rule. In our general scheme

the assertions of the redeclared version, γ and δ, if different from α and β, are more 
favorable to the clients, in the sense explained earlier (weaker precondition, stronger 
postcondition). But a client of A which uses A' through polymorphism and dynamic 
binding cannot make good use of this improved contract, since its only contract is with A.

Only by becoming a direct client of A' (the shaded link with a question mark on the last 
figure) can you take advantage of the new contract, as in

a1: A'
…
if a1  γ then a1  r end

check a1  δ end -- i.e. the postcondition holds

But then of course you have specialized a1 to be of type A', not the general A; you 
have lost the polymorphic generality of going through A.

The tradeoff is clear. A client of MATRIX must satisfy the original (stronger) 
precondition, and may only expect the original (weaker) postcondition; even if its 
request gets served dynamically by NEW_MATRIX it has no way of benefiting from the 
broader tolerance of inputs and tighter precision of results. To get this improved 
specification it must declare the matrix to be of type NEW_MATRIX, thereby losing 
access to other implementations represented by descendants of MATRIX that are not also 
descendants of NEW_MATRIX.

A
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α
…
ensure

β
end

C

A'

r++
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γ
…
ensure

δ
end

?
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Subcontracting 
The Assertion Redeclaration rule fits nicely in the Design by Contract theory introduced 
in the chapter bearing that title.

We saw that the assertions of a routine describe the contract associated with that 
routine: the client is bound by the precondition and entitled to the postcondition, and 
conversely for the class implementer.

Inheritance, with redeclaration and dynamic binding, means subcontracting. When 
you have accepted a contract, you do not necessarily want to carry it out yourself. 
Sometimes you know of somebody else who can do it cheaper and perhaps better. This is 
exactly what happens when a client requests a routine from MATRIX but, through dynamic 
binding, may actually call at run time a version redefined in a proper descendant. Here 
“cheaper” refers to routine redefinition for more efficiency, as in the rectangle perimeter 
example of an earlier chapter, and “better” to improved assertions in the sense just seen. 

The Assertion Redeclaration rule simply states that if you are an honest 
subcontractor and accept a contract, you must be willing to do the job originally requested, 
or better than the requested job, but not less.

The scheme described in the last section — declaring a1 of type A' to benefit from the 
improved contract — is similar to the behavior of a customer who tries to get a better deal 
by bypassing his contractor to work directly with the contractor’s own subcontractor
In the Design by Contract view, class invariants are general constraints applying to 

both contractors and clients. The parents’ invariant rule expresses that all such constraints 
are transmitted to subcontractors. 

It is only with assertions, and with the two rules just seen, that inheritance takes on 
its full meaning for object-oriented design. The contracting-subcontracting metaphor is a 
powerful analogy to guide the development of correct object-oriented software; certainly 
one of the central deas.

Abstract preconditions
The rule on weakening preconditions may appear too restrictive in the case of an heir that 
restricts the abstraction provided by its parent. Fortunately, there is an easy workaround, 
consistent with the theory.

A typical example arises if you want to make a class BOUNDED_STACK inherit 
from a general STACK class. In BOUNDED_STACK the procedure for pushing an element 
onto the stack, put, has a precondition, which requires count <= capacity, where count is 
the current number of stack elements and capacity is the physically available size.

For the general notion of STACK, however, there is no notion of capacity. So it seems 
we need to strengthen the precondition when we move down to BOUNDED_STACK. How 
do we build this inheritance structure without violating the Assertion Redeclaration rule?

The answer is straightforward if we take a closer look at client needs. What needs to 
be kept or weakened is not necessarily the concrete precondition as implemented by the 
supplier (which is the supplier’s business), but the precondition as seen by the client. 
Assume that we write put in STACK as
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put (x: G)
-- Push x on top.

require
not full

deferred
ensure

…
end

with a function full defined always to return false, so that by default stacks are never full:
full: BOOLEAN

-- Is representation full?
-- (Default: no)

do Result := False end
Then it suffices in BOUNDED_STACK to redefine full:

full: BOOLEAN
-- Is representation full?
-- (Answer: if and only if number of items is capacity)

do Result := (count = capacity) end
A precondition such as not full, based on a property that is redefinable in 

descendants, is called an abstract precondition.
This use of abstract preconditions to satisfy the Assertion Redeclaration rule may 

appear to be cheating, but it is not: although the concrete precondition is in fact being 
strengthened, the abstract precondition remains the same. What counts is not how the 
assertion is implemented, but how it is presented to the clients as part of the class interface 
(the short or flat-short form). A protected call of the form

if not s  full then s  put (a) end
will be valid regardless of the kind of STACK attached to s.

There is, however, a valid criticism of this approach: it goes against the Open-Closed 
principle. We must foresee, at the STACK level, that some stacks will have a bounded 
capacity; if we have not exerted such foresight, we must go back to STACK and change its 
interface. But this is inevitable. Of the following two properties

• A bounded stack is a stack.
• It is always possible to add an element to a stack.

one must go. If we want the first property, permitting BOUNDED_STACK to inherit from 
STACK, we must accept that the general notion of stack includes the provision that a put
operation is not always possible, expressed abstractly by the presence of the query full.

It would clearly be a mistake, in class STACK, to include Result = False as a 
postcondition for full or (equivalently but following the recommended style) an invariant 
clause not full. This would be a case of overspecification as mentioned earlier, hampering 
the descendants’ freedom to adapt the feature.
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See “Non-strict 
boolean operators”, 
page 454
The language rule

The Assertion Redeclaration rule as given so far is a conceptual guideline. How do we 
transform it into a safe, checkable language rule?

We should in principle rely on a logical analysis of the old and new assertions, to 
verify that the old precondition logically implies the new one, and that the new 
postcondition implies the old one. Unfortunately, such a goal would require a 
sophisticated theorem prover which, if at all feasible, is still far too difficult (in spite of 
decades of research in artificial intelligence) to be integrated routinely among the checks 
performed by a compiler.

Fortunately a low-tech solution is available. We can enforce the rule through a 
simple language convention, based on the observation that for any assertions α and β:

• α implies α or γ, regardless of what γ is.

• β and δ implies β, regardless of what δ is.

So to be sure that a new precondition is weaker than or equal to an original α, it 
suffices to accept it only if it is of the form α or γ; and to be sure that a new 
postcondition is stronger than or equal to an original β, it suffices to accept it only if it 
is of the form β and δ. Hence the language rule implementing the original 
methodological rule:

Note that the operators used for or-ing and for and-ing are the non-strict boolean 
operators or else and and then rather than plain or and and, although in most cases the 
difference is irrelevant.

Sometimes the resulting assertions will be more complicated than strictly necessary. 
For example in our matrix routine, where the original read

Assertion Redeclaration rule (2)

In the redeclared version of a routine, it is not permitted to use a require 
or ensure clause. Instead you may:

• Use a clause introduced by require else, to be or-ed with the original 
precondition.

• Use a clause introduced by ensure then, to be and-ed with the 
original postcondition.

In the absence of such a clause, the original assertion is retained.
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See “Redeclaring a 
function into an attri-
bute”, page 491.
invert (epsilon: REAL)
-- Inverse of current matrix, with precision epsilon

require
epsilon >= 10 ^ (–6)

…
ensure

((Current ∗ inverse) |–| One) <= epsilon
the redefined version may not use require and ensure but will appear as

…
require else

epsilon >= 10 ^ (–20)
…
ensure then

((Current ∗ inverse) |–| One) <= (epsilon / 2)

so that formally the precondition is (epsilon >= 10 ^ (–20)) or else (epsilon >= 10 ^ (–6)), 
and similarly for the postcondition. But this does not really matter, since a weaker 
precondition or a stronger postcondition takes over: if α implies γ, then α or else γ has the 
same value as γ; and if δ implies β, then β and then δ has the same value as δ. So 
mathematically the precondition of the redefined version is epsilon >= 10 ^ (–20) and its 
postcondition is ((Current ∗ inverse) |–| One) <= (epsilon / 2), even though the software 
assertions (and probably, in the absence of a symbolic expression simplifier, their 
evaluation at run time if assertion checking is enabled) are more complicated.

Redeclaring into attributes

The Assertion Redeclaration rule needs a small complement because of the possibility of 
redeclaring a function into an attribute. What happens to the original’s precondition and 
postcondition, if any?

An attribute is always accessible, and so may be considered to have precondition 
True. This means that we may consider the precondition to have been weakened, in line 
with the Assertion Redeclaration rule.

An attribute, however, does not have a postcondition. Since it is necessary to 
guarantee that the attribute satisfy any property ensured by the original function, the 
proper convention (an addition to the Assertion Redeclaration rule) is to consider that the 
postcondition is automatically added to the class invariant. The flat form of the class will 
include the condition in its invariant.

When expressing a property of the value of a function without arguments, you always 
have the choice between including it in the postcondition or in the invariant. As a matter 
of style it is considered preferable to use the invariant. If you follow this rule there will 
not be any change of assertions if you later redeclare the function as an attribute.
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Page 573.
A mathematical note
An informal comment on the Assertion Redeclaration rule stated: “A redeclaration may 
specialize the range of acceptable behaviors, but not violate it”. Here, to conclude this 
discussion, is a rigorous form of that property (for mathematically inclined readers only).

Consider that a routine implements a partial function r from the set of possible input 
states I to the set of possible output states O. The routine’s assertions define rules as to 
what r and its possible redeclarations may and may not do:

• The precondition specifies the domain DOM of r (the subset of I in which r is 
guaranteed to yield a result).

• The postcondition specifies, for each element x of DOM, a subset RESULTS (x) of O 
such that r (x) ∈ RESULTS (x). This subset may have more than one element, since 
a postcondition does not have to define the result uniquely.

The Assertion Redeclaration rule means that a redeclaration may broaden the domain 
and restrict the result sets; writing the new sets in primed form, the rule requires that

DOM' ⊇ DOM
RESULTS' (x) ⊆ RESULTS (x) for any x in DOM

A routine’s precondition specifies that the routine and its eventual redeclarations 
must at least accept certain inputs (DOM), although redeclarations may accept more. The 
postcondition specifies that the outputs produced by the routine and its eventual 
redeclarations may at most include certain values (RESULTS (x)), although redeclarations’ 
postconditions may include fewer.

In this description a state of a system’s execution is defined by the contents of all 
reachable objects; in addition, input states (elements of I) also include the values of the 
arguments. For a more detailed introduction to the mathematical description of programs 
and programming languages see [M 1990].

16.2  THE GLOBAL INHERITANCE STRUCTURE
A few references have been made in earlier discussions to the universal classes GENERAL
and ANY and to the objectless class NONE. It is time to clarify their role and present the 
global inheritance structure.

Universal classes
It is convenient to use the following convention.

Universal Class rule
Any class that does not include an inheritance clause is considered to 
include an implicit clause of the form

inherit ANY
referring to a Kernel library class ANY.
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The global 
inheritance 
structure
This makes it possible to define a certain number of features that will be inherited by 
all classes. These features provide operations of universal interest: copy, clone, 
comparison, basic input and output.

For more flexibility, we will not put these features in ANY but in a class GENERAL
of which ANY itself is an heir. ANY, in its default form, will have no features (being simply 
of the form class ANY inherit GENERAL end); but then a project leader or corporate reuse 
manager who wants to make a certain number of features available across the board can 
adapt ANY for local purposes without touching GENERAL, which should be the same in 
Versailles, Vanuatu, Venice and Veracruz.

To build a non-trivial ANY, you may want to use inheritance. You can indeed make ANY
inherit from some class HOUSE_STYLE, or several such classes, without introducing any 
cycles in the inheritance hierarchy or violating the universal class rule: just make 
HOUSE_STYLE and its consorts explicit heirs of GENERAL. In the following figure, “All 
developer-written classes” means more precisely: all developer-written classes that do 
not explicitly inherit from GENERAL.

Here then is a picture of the general structure:

GENERAL

ANY

NONE

… All developer-written classes… 
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The bottom of the pit
Also included in the figure is a class NONE, the nemesis of ANY : it inherits from any class 
that does not have any other heir and makes the global inheritance class a lattice. You 
probably do not want to see the rename subclauses of NONE and, be relieved, you will 
not. (It changes anyway each time someone writes a new class.) NONE is just a convenient 
fiction. But its theoretical existence serves two practical purposes:

• The type of Void, the void reference used among other things to terminate linked 
structures, is by convention NONE. (Void is in fact one of the features of GENERAL.)

• To hide a feature from all clients, export it to NONE only (in a feature clause of the 
form feature {NONE}, equivalent in practice to feature {  } but more explicit, or in 
an inheritance subclause export {NONE}, also with the same practical effect as 
export {  }). This will make it unavailable to any developer class, since NONE has 
no proper descendants. Note that NONE hides all its features.
On the first property, note that you may assign the value Void to an entity of any 

reference type; so until now the status of Void was a little mysterious, since it had 
somehow to be compatible to all types. Making NONE the type of Void makes this status 
clear, official, and consistent with the type system: by construction, NONE is a descendant 
of all classes, so that we can use Void as a valid value of any reference type without any 
need to tamper with the type rules.

On the second property note that, symmetrically, a feature clause beginning with just 
feature, which exports its features to all developer classes, is considered a shorthand for 
feature {ANY}. To reexport to all classes a parent feature which had tighter availability, 
you may use export {ANY}, or the less explicit shorthand export.

ANY and NONE ensure that our type system is closed and our inheritance structure 
complete: the lattice has a top and it has a bottom.

Universal features
Here is a small sampling of the features found in GENERAL and hence available to all 
classes. Several of them were introduced and used in earlier chapters:

• clone for duplicating an object, and its deep variant deep_clone for recursively 
duplicating an entire object structure.

• copy for copying the contents of an object into another.
• equal for field-by-field object comparison, and its deep variant deep_equal.

Other features include:
• print and print_line to print a simple default representation of any object.
• tagged_out, a string containing a default representation of any object, each field 

accompanied by its tag (the corresponding attribute name).
• same_type and conforms_to, boolean functions that compare the type of the current 

object to the type of another.
• generator, which yields the name of an object’s generating class — the class of 

which it is a direct instance.
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16.3  FROZEN FEATURES
The presentation of inheritance has repeatedly emphasized the Open-Closed principle: the 
ability to take any feature from an ancestor class and redefine it to do it something different. 
Can there be any reason for shutting off this possibility?

Prohibiting redefinition

The discussion of assertions at the beginning of this chapter has provided us with the 
theoretical understanding of redefinition: the “open” part of the Open-Closed principle — 
the ability to change features in descendants — is kept in check by the original assertions. 
The only permitted redefinitions change the implementation while remaining consistent 
with the specification given by the precondition and postcondition of the original.

In some rare cases, you may want to guarantee to your clients, and to the clients of 
your descendants, not only that a feature will satisfy the official specification, but also that 
it will use the exact original implementation. The only way to achieve this goal is to forbid 
redeclarations altogether. A simple language construct provides this possibility:

frozen feature_name … The rest of the feature declaration as usual …

With this declaration, no descendant’s redefine or undefine subclause may list the 
feature, whether under its original name or (since renaming remains of course permitted) 
another. A deferred feature — meant, by definition, for redeclaration — may not be frozen.

Fixed semantics for copy, clone and equality features

The most common use of frozen features is for general-purpose operations of the kind just 
reviewed for GENERAL. For example there are two versions of the basic copy procedure:

copy, frozen standard_copy (other: …)
-- Copy fields of other onto fields of current object.

require
other_not_void: other /= Void

do
…

ensure
equal (Current, other)

end
This declares two features as synonyms. (A general convention allows us to declare 

two features together so that they can share the same declaration; just separate their names 
with commas as here. The effect is as if there had been two separate declarations with 
identical declaration bodies.) But only one of the features is redefinable. So a descendant 
class can redefine copy; this is necessary for example for classes ARRAY and STRING, 
which redefine copy so as to compare actual array and string contents, not the array or 
string descriptors. It is convenient in such cases to have a frozen version as well, so that 
we can use the default operation, standard_copy, guaranteed to be the original.
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If other is void the 
default initializations 
yield Void for Result.

The matter was dis-
cussed in “The form 
of clone and equality 
operations”, page 
274.
In class GENERAL, feature clone also has a similar doppelgänger standard_clone, 
but here both versions are frozen. Why should clone be frozen? The reason is not to 
prevent the definition of a different cloning operation, but to ensure that clone and copy 
semantics remain compatible, and as a side benefit to facilitate the redefiner’s task. The 
declaration of clone is of the general form

frozen clone (other: …): …
-- Void if other is void; otherwise new object with contents copied from other.

do
if other /= Void then

Result := “New object of the same type as other”
Result  copy (other)

end
ensure

equal (Result, other)
end

“New object of the same type as other” informally denotes a call to some function 
that creates and returns such an object, as provided by the implementation.

So even though clone is frozen, it will follow any redefinition of copy, for example 
in ARRAY and STRING. This is good for safety, as it would be a mistake to have different 
semantics for these operations, and convenience, as you will only need to redefine copy to 
change the copy-clone semantics in a descendant.

Although you need not (and cannot) redefine clone, you will still need, in step with 
a redefinition of copy, to redefine the semantics of equality. As indicated by the 
postconditions given for copy and clone, a copy must yield equal objects. Function equal
itself is in fact frozen in the same way that clone is — to ensure its dependency on another, 
redefinable feature:

frozen equal (some, other: …): BOOLEAN
-- Are some and other either both void
-- or attached to objects considered equal?

do
Result := ((some = Void) and (other = Void)) or else some  is_equal (other)

ensure
Result = ((some = Void) and (other = Void)) or else some  is_equal (other)

end
Function equal is called under the form equal (a, b), which does not quite enjoy the 

official O-O look of a  is_equal (b) but has the important practical advantage of being 
applicable when a or b is void. The basic feature, however, is is_equal, not frozen, which 
you should redefine in any class that redefines copy, to keep equality semantics compatible 
with copy and clone semantics — so that the postconditions of copy and clone remain correct. 

Besides equal there is a function standard_equal whose semantics is not affected by 
redefinitions of is_equal. (It uses the above algorithm but using standard_is_equal, 
frozen, rather than is_equal.)
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Freeze only when needed
The examples of freezing that have just been given are typical of the use of this 
mechanism: guaranteeing the exact semantics of the original.

It is never appropriate to freeze a feature out of efficiency concerns. (This is a 
mistake sometimes made by developers with a C++ or Smalltalk background, who have 
been told that dynamic binding is expensive and that they must manually avoid it if 
possible.) Clearly, a call to a frozen feature will never need dynamic binding; but this is a 
side effect of the frozen mechanism rather than its purpose. As discussed in detail in an 
earlier chapter, applying static binding safely is a compiler optimization, not a concern for 
software developers. In a well-designed language the compiler will have all it needs to 
perform this optimization when appropriate, along with even more far-reaching 
optimizations such as routine inlining. Determining the appropriate cases is a job for 
machines, not humans. Use frozen in the rare although important cases in which you need 
it for conceptual purposes — to guarantee the exact semantics of the original 
implementation — and let the language and the compiler do their job.

16.4  CONSTRAINED GENERICITY
Inheritance and genericity have been presented as the two partners in the task of extending 
the basic notion of class. We have already studied how to combine them through the notion 
of polymorphic data structure: into a container object described by an entity of type 
SOME_CONTAINER_TYPE [T] for some T, we can insert objects whose type is not just T
but any descendant of T. But there is another interesting combination, in which inheritance 
serves to define what is and is not acceptable as actual generic parameter to a certain class.

Addable vectors
A simple and typical example will allow us to see the need for constrained genericity — 
and, as everywhere else in this book, to deduce the method and language construct as a 
logical consequence of the problem’s statement.

Assume we want to declare a class VECTOR to describe vectors of elements, with 
an addition operation. There are vectors of elements of many different types, so we clearly 
need a generic class. A first sketch may look like

note
description: "Addable vectors"

class
VECTOR [G]

feature -- Access
count: INTEGER

-- Number of items
item, infix "@" (i: INTEGER): G

-- Vector element of index i (numbering starts at 1)
require … do

…
end
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feature -- Basic operations
infix "+" (other: VECTOR [G]): VECTOR

-- The sum, element by element, of current vector and other
require … do

…
end

… Other features …
invariant

non_negative_count: count >= 0
end

The use of an infix feature is convenient for this class, but does not otherwise affect 
the discussion. Also for convenience, we have two synonyms for the basic access feature, 
so that we can denote the i-th element of a vector (as in the ARRAY class, which could be 
used to provide an implementation) as either v  item (i) or just v @ i.

Now let us see how we could write the "+" function. At first it seems 
straightforward: to add two vectors, we just add one by one their elements at 
corresponding positions. The general scheme is

infix "+" (other: VECTOR [G]): VECTOR
-- The sum, element by element, of current vector and other

require
count = other  count

local
i: INTEGER

do
“Create Result as an array of count items”
from i := 1 until i > count loop

Result  put ( , i)
i := i + 1

end
end

The boxed expression is the sum of the items at index i in the current vector and 
other, as illustrated by the figure on the facing page. The enclosing call to put assigns its 
value to the i-th item of Result. (Procedure put has not been shown in class VECTOR, but 
must obviously appear there, like its counterpart in ARRAY.)

But this does not work! The + operation in the boxed expression is an addition of 
vector elements (not vectors); it is intended to add values of type G, the generic parameter. 
By definition a generic parameter represents an unknown type — the actual generic 
parameter, to be provided only when we decide to use the generic class for good, through 
what has been called a generic derivation. If the generic derivation uses, as actual generic 

item (i) + other  item (i)
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Adding two 
vectors, item 
by item

The hurried reader 
may skip directly to 
the O-O solution in 
the next section, 
“Constraining the 
generic parameter”,
page 588.
parameter, a type such as INTEGER, or some other class which includes a function infix
"+" with the right signature, everything will work fine. But what if the actual generic 
parameter is ELLIPSE, or STACK [SOME_TYPE], or EMPLOYEE, or any other type that 
does not have an addition operation?

We did not have such a problem with the generic classes encountered previously — 
general container classes such as STACK, LIST and ARRAY — since the only operations they 
needed to apply to container elements (represented by entities of type G, the formal generic 
parameter) were universal, type-independent operations: assignment, comparison, use as 
argument in feature calls. But for an abstraction such as addable vectors we need to restrict 
the permissible actual generic parameters to make sure certain operations are available.

This is by no means an exceptional example. Here are two other typical ones:

• Assume you want to describe sortable structures, with a procedure sort that will 
order the elements according to some criterion. You need to ensure the availability 
of a comparison operation infix "<=", representing a total order, on the 
corresponding objects.

• In building basic data structures such as dictionaries, you may want to use a hash-
table, where the position of each element is determined by a key derived from the 
value of the element. This assumes the availability of a “hashing function” which 
computes the key (also known as the “hash value”) of any element.

A non-O-O approach

Although there have been enough hints in the preceding paragraphs to suggest the almost 
inevitable solution to our problem, it is useful to pause for a moment and examine how 
another approach, not object-oriented, has addressed the same problem. 

Ada does not have classes, but has packages which serve to group related operations 
and types. A package may be generic, with generic parameters representing types. So the 
same problem arises: a package VECTOR_PROCESSING might include a declaration of 
type VECTOR and the equivalent of our infix "+" function.

other  item (i)item (i)

1

count

i

Current other

1

count
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The solution in Ada is to treat the needed operations, such as infix "+", as generic 
parameters themselves. The parameters of a package may include not only types, as in the 
object-oriented approach, but also routines (called subprograms). For example:

generic
type G is private;
with function "+" (a, b: G) return G is <>;
with function "∗" (a, b: G) return G is <>;
zero: G; unity: G;

package VECTOR_HANDLING
… Package interface …

end VECTOR_HANDLING

Note that along with the type G and the subprograms the package also uses, as 
generic parameter, a value zero representing the zero element of addition. A typical use of 
the package will be

package BOOLEAN_VECTOR_HANDLING
new VECTOR_HANDLING (BOOLEAN, "or", "and", false, true);

which uses boolean “or” as the addition and boolean “and” as the multiplication, with 
corresponding values for zero and unity. We will study a more complete solution to this 
example in a later chapter, as part of a systematic discussion of genericity vs. inheritance.

Although appropriate for Ada, this technique is not acceptable in an O-O context. 
The basic idea of object technology is the primacy of data types over operations in 
software decomposition, implying that there is no such thing as a stand-alone operation. 
Every operation belongs to some data type, based on a class. So it would be inconsistent 
with the rest of the approach to let a function such as infix "+", coming out of nowhere, 
serve as actual generic parameter along with types such as INTEGER and BOOLEAN. The 
same holds for values such as zero and unity, which will have to find their place as features 
of some class — respectable members of object-oriented society.

Constraining the generic parameter

These observations yield the solution. We must work entirely in terms of classes and types.
What we are requiring is that any actual parameter used for VECTOR (and similarly 

for the other examples) be a type equipped with a set of operations: infix "+", perhaps zero
to initialize sums, and possibly a few others. But since we studied inheritance we know 
how to equip a type with certain operations: just make it a descendant of a class, deferred 
or effective, that has these operations.

A simple syntax is
class C [G –> CONSTRAINING_TYPE] … The rest as for any other class …

where CONSTRAINING_TYPE is an arbitrary type. The –> symbol, made of a hyphen and 
a “greater than”, evokes the arrow of inheritance diagrams. CONSTRAINING_TYPE is 
called the generic constraint. The consequences of such a declaration are two-fold:
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• Only types that conform to CONSTRAINING_TYPE will be acceptable as actual 
generic parameters; remember that a type conforms to another if, roughly speaking, 
it is based on a descendant.

• Within the text of class C, the operations permitted on an entity of type G are those 
which would be permitted on an entity of CONSTRAINING_TYPE, that is to say 
features of the base class of that type.

In the VECTOR case, what should we use as a generic constraint? A class introduced 
in the discussion of multiple inheritance, NUMERIC, describes the notion of objects to 
which basic arithmetic operations are applicable: addition and multiplication with zero 
and unity. (The underlying mathematical structure, as you may recall, is the ring.) This 
seems appropriate even though for our immediate purposes we only need addition. So the 
class will be declared as

note

description: "Addable vectors"

class

VECTOR [G –> NUMERIC]

… The rest as before (but now valid!) …

Then within the class text, the loop instruction that was previously invalid

Result  put ( , i)

has become valid since item (i) and other  item (i) are both of type G, so that all NUMERIC 
operations such as infix "+" are applicable to them.

Generic derivations such as the following are all correct, assuming the classes given 
as actual generic parameters are all descendants of NUMERIC:

VECTOR [NUMERIC]

VECTOR [REAL]

VECTOR [COMPLEX]

If, however, you try to use the type VECTOR [EMPLOYEE] you will get a compile-
time error, assuming class EMPLOYEE is not a descendant of NUMERIC.

NUMERIC is a deferred class; this causes no particular problem. A generic 
derivation can use an effective actual parameter, as in the preceding examples, or a 
deferred one, as in VECTOR [NUMERIC_COMPARABLE], assuming the class given is a 
deferred heir of NUMERIC.

 

item (i) + other  item (i)
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Similarly, a dictionary class could be declared as

class DICTIONARY [G, H –> HASHABLE] …

where the first parameter represents the type of the elements and the second represents the 
type of their keys. A class supporting sorting may be declared as 

class SORTABLE [G –> COMPARABLE] …

Playing it recursively

A nice twist of the VECTOR example appears if we ask whether it is possible to have a 
vector of vectors. Is the type VECTOR [VECTOR [INTEGER]] valid?

The answer follows from the preceding rules: only if the actual generic parameter 
conforms to NUMERIC. Easy — just make VECTOR itself inherit from NUMERIC:

note
description: "Addable vectors"

class
VECTOR [G –> NUMERIC]

inherit
NUMERIC

… The rest as before …

It is indeed justified to consider vectors “numeric”, since addition and multiplication 
operations give them a ring structure, with zero being a vector of G zeroes and unity a 
vector of G ones. The addition operation is precisely the vector infix "+" discussed earlier.

We can go further and use VECTOR [VECTOR [VECTOR [INTEGER]]] and so on 
— a pleasant recursive application of constrained genericity.

Unconstrained genericity revisited

Not all cases of genericity are constrained, of course. The original form of genericity, as 
in STACK [G] or ARRAY [G], is still available and is called unconstrained genericity. As 
the example of DICTIONARY [G, H –> HASHABLE] shows, a class can have both 
constrained and unconstrained generic parameters.

The discussion of constrained genericity enables us to understand the unconstrained 
case better. You have certainly come up with the rule by yourself as you were reading the 
above: from now on, class C [G] will be understood as a shorthand for class C [G –> ANY]. 
So if G is an unconstrained generic parameter (say in STACK) and x is an entity of type G, 
we know exactly what we can do with x: assign to or from it, compare it through = and /=, 
pass it as argument, and apply to it any of the universal features clone, equal, deep_clone 
and the like.
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16.5  ASSIGNMENT ATTEMPT

Our next technique addresses regions of Object Land in which, for fear of tyrannical 
behavior, we cannot let simplistic type rules reign without opposition.

When type rules become obnoxious

The aim of the type rules introduced with inheritance is to yield statically verifiable 
dynamic behavior, so that a system that passes the compiler’s checks will not end up 
applying inadequate operations to objects at run time.

The two basic rules were introduced in the first inheritance chapter:

• The Feature Call rule: x  f  is only valid if the base class of x’s type includes and 
exports a feature f.

• The Type Conformance rule: to pass a as argument to a routine, or to assign it to a 
certain entity, requires that a’s type conform to the expected type, that is to say, be 
based on a descendant class.

The Feature Call rule will not cause any problem; it is the fundamental condition for 
doing business with objects. Certainly, if we call a feature on an object, we need the 
reassurance that the corresponding class offers and exports such a feature.

The Type Conformance rule requires more attention. It assumes that we have all the 
type information that we need about the objects that we manipulate. Usually that is the 
case; after all, we create the objects, so we know who they are. But sometimes part of the 
information may be missing. In particular:

• In a polymorphic data structure we are only supposed to know the information that 
is common to all objects in the structure; but we may need to take advantage of some 
specific information that applies only to a particular object.

• If an object comes to our software from the outside world — a file, a network — we 
usually cannot trust that it has a certain type.

Let us explore examples of these two cases. First consider a polymorphic data 
structure such as a list of figures:

figlist: LIST [FIGURE]

This refers to the figure inheritance hierarchy of earlier chapters. What if someone 
asks us to find out what is the longest diagonal of all rectangles in the list (with some 
convention, say –1, if there are no rectangles)? We have no easy way of answering the 
request, since the expression item (i)  diagonal, where item (i) is the i-th list element for 
some integer i, violates the Feature Call rule; item (i) is of type FIGURE, and there is no 
feature diagonal in class FIGURE — only in its proper descendant RECTANGLE.

The only solution with what we have seen so far is to change the class definitions so 
as to associate with each FIGURE class a code, different for each class, indicating the 
figure type. This is not an attractive approach.
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Now for an example of the second kind. Assume a mechanism to store objects into 
a file, or transmit them over a network, such as the general-purpose STORABLE facility 
described in an earlier chapter. To retrieve an object or object structure you would use

my_last_book: BOOK
…
my_last_book := retrieved (my_book_file)
The result of function retrieved is of the Kernel library type STORABLE, but it might 

just as well be of type ANY ; in either case it is only an ancestor of the object’s generating 
type (that is to say, the type of which it is a direct instance), presumably BOOK or a 
descendant. But you are not expecting an ANY or a STORABLE: you are expecting a 
BOOK. The assignment to my_last_book violates the Type Conformance rule.

Even if instead of a general-purpose mechanism retrieved were a retrieval function 
specific to your application and declared with the intended type, you could still not trust 
its result blindly. Unlike an object that the software creates and then uses during the same 
session, guaranteeing type consistency thanks to the type rules, this one comes from the 
outside world. You may have chosen the wrong file name and retrieved an EMPLOYEE
object rather than a BOOK object; or someone may have tampered with the file; or, if this 
is a network access, the transmission may have corrupted the data.

The challenge
It is clear from such examples that we may need a way to ascertain the type of an object.

The challenge is to satisfy this need — which arises only in specific cases, but in 
those cases is crucial — without sacrificing the benefits of the object-oriented style of 
development. In particular, we do not want to go back to the decried scheme

if “f is of type RECTANGLE” then
…

elseif “f is of type CIRCLE” then
…

etc.
the exact antithesis of such principles of modularity as Single Choice and Open-Closed. 
Two insights will help us avoid this risk:

• We do not need a general mechanism to determine the type of an object, at least not 
for the purposes described. In the cases under discussion we know the expected type
of the object. So all we require is a way to test our expectation. We will check an 
object against a designated type; this is much more specific than asking for the 
object’s type. It also means that we do not need to introduce into our language any 
operations on types, such as type comparisons — a frightening thought.

• As already noted, we should not tamper with the Feature Call rule. Under no 
circumstances is there any justification for applying a feature (“sending a message”) 
to an object unless we have statically ascertained that the corresponding class is 
equipped to deal with it. All that we will need is a looser version of the other rule, 
type conformance, allowing us to “try a type” and check the result.
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The mechanism

Once again the notational mechanism follows directly from the analysis of the issue. We 
will use a new form of assignment, called assignment attempt, and written

target ?= source

to be compared with the usual assignment, target := source. The question mark indicates 
the tentative nature of the assignment. The effect of the assignment attempt, assuming that 
the entity target has been declared with type T, is the following:

• If source is attached to an object of a type conforming to T, attach that object to target
exactly as a normal assignment would do.

• Otherwise (that is to say if the value of source is void, or is a reference to an object 
of a non-conforming type), make target void.

There is no type constraint on the instruction, except that the type T of the target must 
be a reference type. (Assignment attempt is polymorphic by nature, so an expanded target 
would not make sense.)

This instruction immediately and elegantly solves problems of the kind mentioned 
above. First, type-specific access to objects of a polymorphic structure:

maxdiag ( figlist: LIST [FIGURE]): REAL
-- Maximum value of diagonals of rectangles in list; –1 if none

require
list_exists: figlist /= Void

local
r: RECTANGLE

do
from

figlist  start; Result := –1.0
until

figlist  after
loop

r ?= figlist  item
if r /= Void then

Result := Result  max (r  diagonal)
end
figlist  forth

end
end

This routine uses the usual iteration mechanisms on sequential structures: start to 
position the traversal on the first element if any, after to determine whether there is any 
element left to examine, forth to advance by one position, item (defined if not after) to 
yield the element at the current cursor position.

The assignment attempt
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The assignment attempt uses a local entity r of the appropriate type RECTANGLE. 
We know whether it succeeded by testing r against Void. Only if r is not void do we have 
a rectangle; then we can safely access r  diagonal. This scheme of testing for Void right 
after an assignment attempt is typical.

Note again that we never violate the Feature Call rule: any call of the form r  diagonal 
is guarded, statically, by a compiler check that diagonal is a feature of class RECTANGLE, 
and, dynamically, by a guarantee that r is not void — has an attached object. 

A list element of type SQUARE, or some other descendant of RECTANGLE, will 
make r non-void, so that its diagonal will, rightly, participate in the computation.

The other example, using a general-purpose object retrieval function, is immediate:

my_last_book: BOOK
…
my_last_book ?= retrieved (my_book_file)
if my_last_book /= Void then

… “Proceed normally with operations on my_last_book ” …
else

… “What we expected is not what we got”…
end

Using assignment attempt properly

Assignment attempt is an indispensable tool for those cases — typically of the two kinds 
shown: elements of polymorphic data structures, and objects coming from the outside 
world — in which you cannot trust the statically declared type of an entity but need to 
ascertain at run time the type of the object actually attached to it.

Note how carefully the mechanism has been designed to discourage developers from 
using it to go back to the old case-by-case style. If you really want to circumvent dynamic 
binding, and test separately for each type variant, you can — but you have to work really 
hard at it; for example instead of the normal f  display, using the O-O mechanisms of 
polymorphism and dynamic binding, you would write

display ( f: FIGURE)
-- Display f, using the algorithm adapted to its exact nature.

local
r: RECTANGLE; t: TRIANGLE; p: POLYGON; s: SQUARE
sg: SEGMENT; e: ELLIPSE; c: CIRCLE; …

do
r ?= f; if r /= Void then “Apply the rectangle display algorithm” end
t ?= f; if t /= Void then “Apply the triangle display algorithm” end
c ?= f; if c /= Void then “Apply the circle display algorithm” end
… etc …

end

Compare with := in the first try (page 592)
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This scheme will in practice be even worse than it seems because the inheritance 
structure has several levels; for example an object of type SQUARE will make an 
assignment attempt x ?= f succeed for x of type POLYGON and RECTANGLE as well as 
SQUARE. So you must complicate the control structure to avoid multiple matches.

Because of the difficulty of writing such contorted uses of the assignment attempt, 
there is little risk that novice developers will mistakenly use it instead of the normal O-O 
scheme. But even advanced developers must remain alert to the possibility for misuse.

Java offers a mechanism called “narrowing” similar in some respects to assignment 
attempt. But in case of a type mismatch, instead of yielding a void value, it produces an 
exception. This looks like overkill, since an unsuccessful assignment is not an abnormal 
case, simply one of several possible and expected cases; it does not justify adding 
exception-handling code and setting in motion the exception machinery. Java also offers 
the instanceof operator to test for type conformance.
These mechanisms are used particularly extensively in Java because of the absence of 
genericity: you may have to rely on them, when retrieving elements from container data 
structures (even single-type), to check the elements’ type against an expected type. Part 
of the reason may be that, in the absence of multiple inheritance, Java has no NONE class 
and hence no easy way to give the equivalent of Void a stable place in the type system.

16.6  TYPING AND REDECLARATION
When you redeclare a feature, you are not constrained to keep exactly the same signature. 
The precise rule will give us a further degree of flexibility.

So far we have seen redeclaration as a mechanism for substituting an algorithm for 
another — or, in the case of effecting a previously deferred routine, providing an algorithm 
where only a specification was originally given.

But we may also need to change the types involved, to support the general idea that 
a class may offer a more specialized version of an element declared in an ancestor. Let us 
study two typical examples, which will suggest the precise Type Redeclaration rule.

Devices and printers

Here is a simple example of type redefinition. Consider a notion of device including the 
provision that for every device there is an alternate, to be used if for some reason the first 
one is not available:

class DEVICE feature
alternate: DEVICE

set_alternate (a: DEVICE)
-- Designate a as alternate.

do
alternate := a

end
… Other features …

end
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Printers are a special kind of device, justifying the use of inheritance. But the 
alternate of a printer can only be a printer — not a CD-ROM reader or a network 
transceiver! — so we must redefine the types:

class PRINTER inherit
DEVICE

redefine alternate, set_alternate
feature

alternate: PRINTER
set_alternate (a: PRINTER)

-- Designate a as alternate.
… Body as in DEVICE …

… Other features …
end

These redefinitions reflect the specializing nature of inheritance.

Linkable and bi-linkable elements

Here is another example, involving fundamental data structures. Consider the library class 
LINKABLE describing the linked list elements used in LINKED_LIST, one of the 
implementations of lists. A partial view of the class is: 

note
description: "Cells to be linked in a list"

class LINKABLE [G] feature
item: G
right: LINKABLE [G]
put_right (other: LINKABLE [G])

-- Put other to the right of current cell.
do right := other end

… Other features …
end

Some applications need lists chained both ways (each element linked to its 
successor and its predecessor). The corresponding class, TWO_WAY_LIST, is an heir of 
LINKED_LIST, and will need an heir BI_LINKABLE of LINKABLE:

DEVICE

PRINTER

alternate

alternate

item right
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A bi-linkable 
cell

Parallel 
hierarchies
A bi-linkable element is like a linkable but with one more field:

In a two-way list, bi-linkables should only be chained to bi-linkables (although it is 
harmless to introduce bi-linkables in a one-way list: this is polymorphism). So we should 
redefine right and put_right to guarantee that two-way lists remain homogeneous. 

note
description: "Cells to be linked both ways in a list"

class BI_LINKABLE [G] inherit
LINKABLE [G]

redefine right, put_right end
feature

left, right: BI_LINKABLE [G]
put_right (other: BI_LINKABLE [G])

-- Put other to the right of current element.
do

right := other
if other /= Void then other  put_left (Current) end

end
put_left (other: BI_LINKABLE [G])

-- Put other to the left of current element
… Left to the reader …

… Other features …
invariant

right = Void or else right  left = Current
left = Void or else left  right = Current

end
(Try writing put_left. There is a pitfall! See appendix A.)

LINKED_
LIST

LINKABLE

BI_
LINKABLETWO_WAY_

LIST

item rightleft
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The Type Redeclaration rule

Although addressing abstractions of widely different kinds, the two examples show the 
same need for type redeclaration. Going down an inheritance hierarchy means 
specializing, and some types will follow that change pattern: types of routine arguments, 
such as a in set_alternate and other in put_right; types of queries, such as the attributes 
alternate and right, as well as functions.

The following rule captures this type aspect of redeclaration:

Here “conforms to” refers to the notion of type conformance, as defined on the basis 
of the descendant relation. The rule uses “or” non-exclusively: a function redeclaration 
may change both the type of the function’s result and the type of one or more arguments. 

The permitted forms of redeclaration all go in the same direction: the direction of 
specialization. As illustrated by the last inheritance diagram, when you go down from 
LINKED_LIST to TWO_WAY_LIST, arguments and results will concomitantly go down 
from LINKABLE to BI_LINKABLE. In the first example, when you go from DEVICE to 
PRINTER, the attribute alternate and the argument of set_alternate follow. This explains 
the name often use to characterize this type redeclaration policy: covariant typing, where 
the “co” indicates that as we descend the inheritance diagram all the types go down in step.

Covariant typing, as we will see in the next chapter, creates for the compiler writer a 
few headaches which, fortunately, he can often avoid passing on to the software developer.

16.7  ANCHORED DECLARATION

The Type Redeclaration rule could make life quite unpleasant in some cases, and even 
cancel some of the benefits of inheritance. Let us see how and discover the solution — 
anchored declaration. 

Type inconsistencies 

As an example of the problems that may arise with the Type Redeclaration rule, consider 
the following example from LINKED_LIST. Here is the procedure for inserting a new 
element with a given value to the right of the current cursor position. Although there is 
nothing mysterious with the details, all you need to note at this stage is the need for a local 
entity new of type LINKABLE, representing the list cell to be created and added to the list.

Type Redeclaration rule
A redeclaration of a feature may replace the type of the feature (if an 
attribute or function), or the type of a formal argument (if a routine), by 
any type that conforms to the original.
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BI_LINKABLE’s put_
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put_right (v: G)
-- Insert an element of value v to the right of cursor position.
-- Do not move cursor.

require
not after

local
new: LINKABLE [T]

do
create new  make (v)
put_linkable_right (new)
… 

ensure
… See appendix A …

end

To insert a new item of value v, we must create a cell of type LINKABLE [G]; the 
actual insertion is carried out by the secret procedure put_linkable_right, which takes a 
LINKABLE as argument (and chains it to the cursor item using the put_right procedure of 
class LINKABLE.) This procedure performs the appropriate reference manipulations. 

In proper descendants of LINKED_LIST, such as TWO_WAY_LIST or LINKED_
TREE, procedure put_right should still be applicable. Unfortunately, it will not work as 
given: although the algorithm is still correct, the entity new should be declared and created 
as a BI_LINKABLE or a LINKED_TREE rather than a LINKABLE. So we must redefine 
and rewrite the whole procedure for each descendant — a particularly wasteful task since 
the new body will be identical to the original except for a single declaration (for new). For 
an approach meant to solve the reusability issue, this is a serious deficiency.

Application-oriented examples

It would be a mistake to believe that the spurious redefinition problem only arises for 
implementation-oriented structures such as LINKED_LIST. With any scheme of the form

some_attribute: SOME_TYPE
set_attribute (a: SOME_TYPE) do … end

a redefinition of some_attribute will imply the corresponding redefinition of set_attribute. 
In the case of put_right for BI_LINKABLE, the redefinition actually changed the algorithm 
(because of the necessity, if you chain O1 right to O2, also to chain O2 left to O1), but in 
many other cases, such as set_alternate, the new algorithm is identical to the original. This 
pattern is so common that we may expect to have to write many redundant routine bodies.

Here is one more example, showing how general the problem is (and not just tied to 
set_xxx procedures, themselves a result of information hiding principles). Assume we add 
to class POINT a function yielding the conjugate of a point, that is to say its mirror image 
across the horizontal axis: 

newCursor
element

v
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A point and its 
conjugate
The function may appear as follows in POINT: 
conjugate: POINT

-- Conjugate of current point
do

Result := clone (Current) -- Get a copy of current point
Result  move (0, –2∗y) -- Translate result vertically

end
Now consider a descendant of POINT, perhaps PARTICLE, where particles have 

attributes other than x and y: perhaps a mass and a speed. Conceptually, conjugate is still 
applicable to particles; it should yield a particle result when applied to a particle argument. 
The conjugate of a particle is identical to that particle except for the y coordinate. But if 
we leave the function as it stands, it will not work for particles, since instructions such as 
the following violate the conformance rule: 

p1, p2: PARTICLE; create p1  make (…); … 

In the underlined assignment, the source (right-hand side) is of type POINT, but the 
target is of type PARTICLE; the Type Conformance rule would require the reverse. So we 
must redefine conjugate in PARTICLE, for no purposes but type conformance.

Assignment attempt is not the solution here: although valid, it will result in a void p2, 
since the source object’s type will, at execution time, be of type POINT, not PARTICLE.

A serious problem 

If you look more closely at class LINKED_LIST in appendix A you will realize that the 
problem is of even greater scope. LINKED_LIST contains more than a few declarations 
referring to type LINKABLE [G], and most will need to be redefined for two-way lists. For 
example a possible representation of a list keeps four references to linkable elements: 

first_element, previous, active, next: LINKABLE [G]
All of these must be redefined in TWO_WAY_LIST, and similarly for other 

descendants. Many routines such as put_right take linkables as arguments, and must also 
be redefined. It seems that we will end up repeating in TWO_WAY_LIST, for purposes of 
declaration only, most of the features written for LINKED_LIST. 

x

y

p

The conjugate of p

p2 := p1 conjugate
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put_right from 
LINKED_LIST is on
page 599.
The notion of anchor

Unlike other type-related problems solved earlier in this chapter — such as the problems 
whose analysis led to constrained genericity and assignment attempt — the Case of the 
Useless Code Duplication is not that the type system prevents us from doing something 
that we need: thanks to the covariant Type Redeclaration rule we can redefine types to our 
heart’s content, but this forces us to perform tedious code duplication.

To obtain a solution, we may note that the examples do require a type redefinition, 
but only one: all others ensue from it. The answer follows: provide a mechanism to declare 
an entity’s type not absolutely, but relative to another entity.

This will be called an anchored declaration. An anchored type has the form
like anchor

where anchor, called the anchor of the declaration, is either a query (attribute or function) 
of the current class or the predefined expression Current. To declare my_entity: like anchor 
in a class A, where anchor is a query, means to declare it as being of the same type as 
anchor, but with the provision that any redefinition of anchor in a proper descendant will 
implicitly cause the same redefinition for my_entity.

So, assuming that anchor has been declared of some type T, the anchored declaration 
will cause my_entity to be treated within the text of class A as if it too had been declared 
of type T. If you only consider A there is no difference between the two declarations 

• my_entity: like anchor 
• my_entity: X 

The difference only comes up in descendant classes of A. Being declared “like” 
anchor, my_entity will automatically follow any redefinition of the type of anchor, 
without the need for explicit redefinition by the author of the descendant class. 

So if you find that a class includes a group of entities — attributes, function results, 
formal routine arguments, local entities — which descendants will have to redefine 
identically, you can dispense with all but one of the redefinitions: just declare all elements 
like the first one, and redefine only that first one. All others will automatically follow. 

Let us apply this technique to LINKED_LIST. We can choose first_element as anchor 
for the other entities of type LINKABLE [G]. The attribute declarations become: 

first_element: LINKABLE [G]
previous, active, next: like first_element
In the put_right procedure of LINKED_LIST, the local entity new should also be 

declared of type like first_element; this is the only change to the procedure. With these 
declarations, it suffices to redefine first_element as a BI_LINKABLE in class TWO_WAY_
LIST, as a LINKED_TREE in class LINKED_TREE etc.; all entities declared like it follow 
automatically and need not be listed in the redefine clause. Neither is redefinition 
necessary any more for procedure put_right. 

Anchored declarations are an essential tool to preserve reusability in a statically 
typed object-oriented context.
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Current as anchor 

Instead of the name of a query you can use Current as anchor. The expression Current, as 
you know, denotes the current instance. An entity declared like Current in a class A will 
be treated within the class as being of type A and, in any descendant B of A, as being of 
type B — without any need for redefinition. 

This form of anchored declaration addresses the remaining examples. To get the 
correct type for function conjugate in class POINT, amend its declaration to read

conjugate: like Current
… The rest exactly as before …

Then the result type of conjugate gets automatically redefined, in every descendant, 
to the associated type, for example type PARTICLE in class PARTICLE.

In class LINKABLE, you should similarly, in the earlier declarations

right: LINKABLE [G]
put_right (other: LINKABLE [G]) is…

replace LINKABLE [G] by like Current. Feature left in BI_LINKABLE should also be 
declared as like Current. 

This scheme applies to many set_attribute procedures. In the DEVICE case we get:

class DEVICE feature
alternate: like Current

set_alternate (a: like Current)
-- Designate a as alternate.

do
alternate := a

end
… Other features …

end

No redefinition is then necessary in a descendant such as PRINTER.

Base classes revisited

With the introduction of anchored types, we need to extend the notion of base class of a type.

You will remember the idea. At the beginning, classes and types were a single 
concept. That property, the starting point of the object-oriented method, remains 
essentially true, but we have had to extend the type system a little by adding generic 
parameters to classes. Every type is still fundamentally based on a class; for a generically 
derived type such as LIST [INTEGER] you obtain the base class by removing the actual 
generic parameters, giving LIST in this example. We also added expanded types, again 
based on classes; the base type of expanded SOME_CLASS […] is SOME_CLASS.
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WARNING: invalid 
assignment.
With anchored types we have another extension of the type system which, like the 
previous two, leaves intact the property that each type directly follows from a class. The 
base class of like anchor is the base class of the type of anchor in the current class; if 
anchor is Current, the base class is the enclosing class.

Rules on anchored types

There is no theoretical obstacle to accepting like anchor for an anchor that is itself of an 
anchored type; we must simply add a rule that prohibits cycles in declaration chains. 

Initially the notation disallowed anchored anchors; although this rule is acceptable, the 
more liberal one that only prohibits anchor cycles allows more flexibility.

Let T  be the type of anchor (given by the current class if anchor is Current). The 
type like anchor conforms to itself, and to T.

In the other direction, the only type that conforms to like anchor is itself. In 
particular T does not conform to like anchor. If we allowed

anchor, other: T; x: like anchor
…
create other
x := other

then in a descendant class where anchor is redefined to be of type U (conforming to T but 
based on a proper descendant) the assignment would attach x to an object of type T, 
whereas we should only accept objects of type U or conforming to U.

Of course you may assign to and from the anchor, as in x := anchor and anchor := x, 
and more generally between anchor-equivalent elements, defining x to be anchor-
equivalent to y if it is y or declared as like z where z is (recursively) anchor-equivalent to y.

In the case of anchoring a formal argument or result of a routine, as in

r (other: like Current)

the actual argument in a call, such as b in  a  r (b), must be anchor-equivalent to the target a.

The discussion of typing issues in chapter 17 will further explore the conformance 
properties of anchored types.

When not to use anchored declaration

Not every declaration of the form x: A within a class A should be replaced by x: like Current, 
and not every pair of features with the same type should be declared like one another.

An anchored declaration is a commitment: it indicates that whenever the anchor 
changes types in the future, the anchored entity must change too. As we just saw with the 
type rules, this commitment is not reversible: once you have declared an entity of type 
like anchor you cannot redefine its type any further (since the new type would have to 
conform to the original, and no type conforms to an anchored type but itself). As long as 
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you have not chosen an anchored type, everything is still possible: if x is of type T, you 
can redeclare x as being of a conforming type U in a descendant; and you can in fact 
redeclare it as like anchor for some compatible anchor to close off further variations.

The pros and cons are clear. Anchoring an entity guarantees that you will never have 
to redeclare it for type purposes; but it binds it irrevocably to the type of the anchor. It is 
a typical case of trading freedom for convenience — like signing up with the military, or 
taking vows. (In a certain sense Faust declared himself like Mephistopheles.)

As an example of when anchoring may not be desirable, consider a feature first_
child of trees, describing the first child of a given tree node. (In the construction of trees 
explained in the last chapter it comes from first_element of lists, originally of type 
CELL [G] or LINKABLE [G].) In a tree class it must be declared or redeclared to denote a 
tree. It may seem appropriate to use an anchored declaration: 

first_child: like Current

This may, however, be too restrictive in practice. The tree class may have 
descendants, representing various kinds of tree (or tree node). Examples may include 
UNARY_TREE (nodes with just one child), BINARY_TREE (nodes with two children) and 
BOUNDED_ARITY_TREE (nodes with a bounded number of children). If first_child is 
anchored to Current, every node must have children of the same type: unary if it is unary, 
and so on. 

This is probably not the desired effect, since you may want more flexible structures, 
permitting for example a binary node to have a unary child. This is obtained by declaring 
the feature not by an anchored declaration but simply as 

first_child: TREE [G]

This solution is not restrictive: if you later need trees with nodes guaranteed to be all 
of the same type, you may leave TREE as it is and give it a new descendant 
HOMOGENEOUS_TREE which redefines first_child as 

first_child: like Current

ensuring consistency of all the nodes in a tree.

To facilitate such a redefinition the other features of TREE representing nodes, such 
as parent and current_child, may and probably should be declared as like first_child; but 
first_child itself is not anchored in TREE. 

A static mechanism 

One last comment on anchored declaration, to dispel any possible misunderstanding that 
might remain about this mechanism: it is a purely static rule, not implying any change of 
object forms at run-time. The constraints may be checked at compile time. 

Anchored declaration may be viewed as a syntactic device, avoiding many spurious 
redeclarations by having the compiler insert them. As it stands, it is an essential tool for 
reconciling reusability and type checking. 
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16.8  INHERITANCE AND INFORMATION HIDING 

One last question needs to be answered to complete this panorama of inheritance issues: 
how inheritance interacts with the principle of information hiding.

For the other intermodule relation, client, the answer is clear: the author of each class 
is responsible for granting access privileges to the clients of the class. He specifies a policy 
for every feature: exported (generally available); selectively available; secret.

The policies

What happens to the export status of a feature when it is passed on to a descendant? 
Whatever you want to happen. Information hiding and inheritance are orthogonal 
mechanisms. A class B is free to export or hide any feature f that it inherits from an 
ancestor A. All possible combinations are indeed open: 

• f exported in both A and B (although not necessarily to the same clients).

• f secret in both A and B. 

• f secret in A, but exported, generally or selectively, in B. 

• f exported in A, but secret in B. 

The language rule is the following. By default — reflecting the most common case 
— f will keep the export status it had in A. But you may change this by adding an export
subclause to the inheritance clause for A, as in

class B inherit
A

export {NONE} f end -- Makes f secret (it may have been exported in A)
…

or

class B inherit
A

export {ANY} f end -- Makes f exported (it may have been secret in A)
…

or

class B inherit
A

export {X, Y, Z} f end -- Makes f selectively available to certain classes
…

Applications

A typical application of this flexibility is to provide several views of a certain basic notion.
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Views of a 
basic 
abstraction

See “Facility inheri-
tance”, page 832.

“Trees are lists and list 
elements”, page 525.
Imagine a class GENERAL_ACCOUNT containing all the necessary tools for 
dealing with bank accounts, with procedures such as open, withdraw, deposit, code (for 
withdrawal from automatic teller machines), change_code etc.; but this class is not meant 
to be used directly by clients and so does not export anything. Descendants provide 
various views: they do not add any features, but simply differ in their export clauses. One 
will export open and deposit only, another will also include withdraw and code, and so on. 

This scheme belongs to what the discussion of inheritance methodology will call 
“facility inheritance”.

The notion of view is a classical one in databases, where it is often necessary to 
provide different users with different abstract notions of an underlying set of data. 

Classes sketched the discussion of multiple inheritance provide another application. 
Feature right of class CELL is secret in this class or, more precisely, is exported only to 
LIST; this is in fact true of all the features of CELL, since this class was initially designed 
only for the purpose of lists. But in class TREE, implemented as heir to CELL as well as 
LIST, right now denotes access to the right sibling of a node, a respectable public feature 
which should be exported.

Why the flexibility?

The policy of letting each descendant choose its own export policy (only by overriding the 
default, which keeps the parent’s policy) makes type checking more difficult, as discussed 
in the next chapter, but provides the necessary flexibility to the class developer. Anything 
more restrictive hinders the goals of object-oriented software development.

Other solutions have been tried. Some O-O languages, beginning with a revision of 
Simula, let a class specify not only whether a feature will be exported to its clients, but 
whether it will be available to its descendants. The benefits are not clear. In particular:

• I am not aware of any published methodological advice on how to use this facility: 
when to bequeath a feature to descendants, when to hide it from them. A notational 
mechanism with no accompanying theory is of dubious value. (In comparison, the 

GENERAL_
ACCOUNT

MANAGER_
ACC_VIEW

CLERK_
ACC_VIEW

CUSTOMER_
ACC_VIEW
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See the figure on page
144.
methodological rule governing information hiding policy for clients is limpid: what 
belongs to the underlying ADT should be exported; the rest should be secret.)

• More pragmatically, it seems that few developers in Simula and languages offering 
similar descendant restriction mechanisms bother to use them.

On closer examination, the lack of clear methodological guidelines is not surprising. 
Inheritance is the embodiment of the Open-Closed principle: a mechanism that enables 
you to pick an existing class, written yesterday or twenty years ago by you or by someone 
else, and discover that you can do something useful with it, far beyond what had been 
foreseen by the original design. Letting a class author define what eventual descendants 
may or may not use would eliminate this basic property of inheritance.

The example of CELL and TREE is typical: in the design of CELL, the only goal was 
to satisfy the needs of LIST classes, so right and put_right served only internal purposes. 
Only later did these features suddenly find a new application for a descendant, TREE. 
Without such openness, inheritance would lose much of its appeal.

If a class designer has no basis for deciding which features the class should pass on 
to its descendants, it would be even more preposterous for him to predict what they may 
or may not export to their own clients. Any such attempt is guesswork, with the knowledge 
that a wrong guess will make the descendant developers’ task impossible.

These descendant developers have only one task: to provide their clients with the 
best possible class. In such an effort, inheritance is only a tool, enabling the developers to 
get a good result faster and better. The only rules of the game are the typing constraints 
and the assertions. Beyond that, anything goes. A useful ancestor feature is a godsend; 
whether the ancestor exported it or not is a matter between the ancestor and its own clients: 
the descendant developer could not care less.

In summary, the only policy compatible with the fundamental openness of 
inheritance seems to be the one described: let every descendant developer take its pick of 
ancestor features, and decide on its own export policy in the interest of its own clients.

Interface and implementation reuse

If you have read some of the more superficial O-O presentations, or follow newsgroup 
discussions, you may have been subjected to warnings against “inheriting 
implementation”. But (as we shall see in more detail in the inheritance methodology 
chapter) there is nothing wrong about using inheritance for implementation.

There are two forms of reuse: reuse through interface, and reuse of implementation. 
We can understand them as follows from the theoretical picture. Any class is an 
implementation (possibly partial) of an abstract data type. It contains both the interface, 
as expressed by the ADT specification — the tip of the iceberg, if you remember the 
pictures that accompanied the presentation of information hiding and ADTs — and a set 
of implementation choices. Interface reuse means that you are content to rely on the 
specification; implementation reuse, that you need to rely on properties that belong to the 
class but not to the ADT.
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You will not use these two possibilities for the same purposes. If you can reuse a 
certain set of facilities through their abstract properties only, and want to be protected 
against future changes in the reused elements, go for interface reuse. But in some cases 
you will just fall in love with a certain implementation because it provides the right basis 
for what you are building.

These forms of reuse are complementary, and are both perfectly legitimate.

The two inter-module relations of object-oriented software construction cover them: 
client provides interface reuse, inheritance supports implementation reuse.

Reusing an implementation is, of course, a more committing decision than just 
reusing an interface: you cannot reasonably expect, as in the other case, to be protected 
against changes in implementation! For that reason, inheriting is a more committing 
decision than just being a client. But in some cases it is what you need.

It is not always easy in practice to determine which one of the client and inheritance 
relations is appropriate in a certain case. A later chapter contains a detailed discussion of 
how to choose between them.

Rehabilitating implementation

Why the distrust of implementation inheritance? I have come to think that the answer is 
less technical than psychological. A thirty-year legacy of less-than-pristine programming 
has left us with a distrust of the very idea of implementation. The word itself has in some 
circles come to take on an almost indecent character, as if it were an insult to abstraction. 
(H.L. Mencken, in The American Language, similarly tells of how words such as leg came 
to be banished from late-nineteenth-century polite conversation for fear of the immodest 
connotations they evoke, even when the matter was limbs of a piano or of a chicken.) So 
we talk of analysis and design, and when we mention implementation at all we make sure 
to precede it by “but”, “just” or “only”, as in “this is just an implementation issue”.

Object technology, of course, is the reverse of all that: producing implementations 
that are so elegant, useful and clearly correct that we do not have to watch our language. 
What for us is a program is often more abstract, more high-level, more understandable 
than much of what the analysis and design view presents as the highest of the high.

The two styles

In the picture that comes out of this discussion, we merge a set of originally 
separate distinctions.

We have two relations, client and inheritance; two forms of reuse, interface and 
implementation; information hiding, or not; protection against internal changes in 
provider modules, or not.

In each case the existence of a choice is not controversial, and both of the opposing 
options are defensible depending on the context. The slightly bolder step is to treat all 
these oppositions as just one:
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Merging four 
oppositions
Other approaches may be possible. But I do not know of any that is as simple, easy 
to teach and practical.

Selective exports
As a consequence of the information hiding properties of inheritance we must clarify the 
effects of selective exports. A class A which exports f selectively to B, as in 

class A feature {B, …}
f …
…

makes f available to B for the implementation of B’s own features. What about the 
descendants of B? As we have just seen, they have access to B’s implementation; so they 
should be able to access whatever is accessible to B — for example f.

Experimental observation confirms this theoretical reasoning: what a class needs, its 
descendants tend to need too. But we do not want to have to come back and modify A (to 
extend its export clause) whenever a new descendant is added to B. 

Here the principle of information hiding should be combined with the Open-Closed 
principle. The designer of A is entitled to decide whether or not to make f available to B; 
but he has no right to limit the freedom of the designer of the B line of classes to provide 
new extensions and implementation variants. In fact, what descendants B has, if any, is 
none his business. Hence the rule: 

16.9  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• Invariants of parents are automatically added to a class’s invariant. 
• In the Design by Contract approach, inheritance, redefinition and dynamic binding 

introduce the concept of subcontracting.
• A routine redeclaration (redefinition or effecting) may keep or weaken the 

precondition; it may keep or strengthen the postcondition. 
• An assertion redeclaration may only use require else (for or-ing of preconditions) 

and and then (for and-ing of postconditions). It may not use just require or ensure. 
In the absence of these clauses the routine keeps the original assertions.

Client :: Inheritance

Reuse through interface :: Reuse of implementation

Information hiding :: No information hiding

Protection against changes in 
original implementation

:: No protection against original’s 
changes

Selective Export Inheritance rule
A feature selectively exported to a class is available to all its descendants.
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“A tolerant mod-
ule”, page 359.
• The universal class GENERAL and its customizable heir ANY provide redefinable 
features of interest to all developer-defined classes. NONE closes down the lattice.

• It is possible to freeze a feature to guarantee eternal semantic uniqueness.
• To entrust generic parameters with specific features, use constrained genericity.
• Assignment attempt makes it possible to verify dynamically that an object has the 

expected type. It should not be used as a substitute for dynamic binding.
• A descendant may redefine the type of any entity (attribute, function result, formal 

routine argument). The redefinition must be covariant, that is to say replace the 
original type with a conforming one, based on a descendant.

• Anchored declaration (like anchor) is an important part of the type system. 
facilitating the application of covariant typing and avoiding redundant redeclarations. 

• Inheritance and information hiding are orthogonal mechanisms. Descendants may hide 
features that were exported by their ancestors, and export features that were secret.

• A feature available to a class is available to its descendants.

16.10  BIBLIOGRAPHICAL NOTE 
See [Snyder 1986] for a different viewpoint on the relationship between inheritance and 
information hiding. 

EXERCISES

E16.1  Inheriting for simplicity and efficiency

Rewrite and simplify the protected stack example of an earlier chapter, making class 
STACK3 a descendant rather than a client of STACK to avoid unneeded indirections. (Hint: 
see the rules governing the relationship between inheritance and information hiding.) 

E16.2  Vectors

Write a class VECTOR describing vectors of a numeric type (ring), with the usual 
mathematical operations, and itself treated recursively as a numeric type. You may have 
to complete class NUMERIC for yourself (or get a version from [M 1994a]).

E16.3  Extract?

The assignment y1 := x1 is not permitted if x1 is of a type X, y1 of type Y, and X is a proper 
ancestor of Y. It might seem useful, however, to include a universal feature extract such that 
the instruction y1  extract (x1) copies the values of the fields of the object attached to x1 to 
the corresponding fields in the object attached to y1, assuming neither reference is void.

Explain why the notation does not include such an extract feature. (Hint: examine 
correctness issues, in particular the notion of invariant.) Examine whether it is possible to 
design a satisfactory mechanism that achieves the same general goal in a different way.



17  
Typing

E  ffective use of object technology requires that we clearly specify, in the texts of our 

systems, the types of all objects that they will manipulate at run time. This rule, known as 
static typing — a notion defined precisely in the next sections — makes our software:

• More reliable, by enabling compilers and other tools to suppress discrepancies 
before they have had time to cause damage.

• More readable, by providing precious information to authors of client systems, 
future maintainers of our own software, and other readers.

• More efficient, since this information helps a good compiler generate better code.
Although the typing issue has been extensively discussed in non-O-O contexts, and 

static typing applied to many non-O-O languages, the concepts are particularly clear and 
relevant in object technology since the approach as a whole is largely based on the idea of 
type, merged with the idea of module to yield the basic O-O construct, the class.

The desire to provide static typing has been a major influence on the mechanisms 
discussed in earlier chapters. Here we need to take a comprehensive look at typing and 
devise solutions to the remaining difficulties raised by this concept.

17.1  THE TYPING PROBLEM
One nice thing can be said about the typing issue in object-oriented software construction: 
it may not be an easy problem, but it is a simple problem — simple, that is, to state.

The Basic Construct
The problem’s simplicity comes from the simplicity of the object-oriented model of 
computation. If we put aside some of the details, only one kind of event ever occurs during 
the execution of an object-oriented system: feature call, of the general form

x    f (arg)
which executes on the object attached to x the operation f, using the argument arg, with 
the understanding that in some cases arg stands for several arguments, or no argument at 
all. Smalltalk programmers would say “pass to the object x the message f  with argument 
arg”, and use another syntax, but those are differences of style, not substance.

That everything relies on this Basic Construct accounts in part for the general feeling 
of beauty that object-oriented ideas arouse in many people.
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From the Basic Construct follows the basic kind of abnormal event that might occur 
at execution time:

The typing problem is the need to avoid such events:

The key word is when. If the feature or arguments do not match, you will find out 
sooner or later: applying the feature “raise salary” to an instance of SUBMARINE or “fire 
the torpedoes” to an instance of EMPLOYEE will not work; somehow the execution will 
fail. But you may prefer to find out sooner rather than later.

Static and dynamic typing
Although intermediate variants are possible, two main approaches present themselves:

• Dynamic typing: wait until the last possible moment, the execution of each call.
• Static typing: rely on a set of rules that determine, from the text of a system, whether 

its executions may cause type violations. Only execute systems for which the rules 
guarantee that no violation will ever occur.
The names are easy to explain: with dynamic typing, type verification occurs at 

execution time (dynamically); with static typing, it is performed on the text of the software 
(statically, that is to say before any execution).

The terms “typed” and “untyped” are sometimes used for “statically typed” and 
“dynamically typed”. To avoid any confusion we will stick to the full names.

Static typing is only interesting if the rules can be checked automatically. Since 
software texts are usually processed by a compiler before being executed, it is convenient 
to have the compiler, rather than a separate tool, take care of these checks. The rest of the 
discussion will indeed assume for simplicity that the compiler and the type checker are the 
same tool. This assumption yields a simple definition:

Definition: type violation
A run-time type violation (or just type violation for short) occurs in the 
execution of a call x    f (arg), where x is attached to an object OBJ, if either:
V1 • There is no feature corresponding to f and applicable to OBJ.
V2 • There is such a feature, but arg is not an acceptable argument for it.

Object-oriented typing problem
When do we know whether the execution of an object-oriented system may 
produce a type violation?

Definition: statically typed language
An object-oriented language is statically typed if it is equipped with a set of 
consistency rules, enforceable by compilers, whose observance by a system 
text guarantees that no execution of the system can cause a type violation.
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In the literature you will encounter the term “strong typing”. It corresponds to the 
all-or-nothing nature of this definition, which demands rules that guarantee the absence of 
type violations. Weak forms of static typing, whose rules eliminate certain type violations 
but not all, are also possible, and some O-O languages are indeed weakly-statically-typed 
in this sense. We shall strive, however, for the strongest possible form.

Some authors also talk about strong forms of dynamic typing. But this is a contradiction.

In a dynamically typed language (also known as an “untyped” language), there are 
no type declarations; entities simply become associated with whatever values the 
execution of the software attaches to them. No static type checking is possible.

Typing rules

Our object-oriented notation is statically typed. Its type rules have been introduced in 
earlier chapters; they boil down to three simple constraints:

• Every entity or function must be declared as being of a certain type, as in 
acc: ACCOUNT; every routine declares zero or more formal arguments, with a type 
for each, as in put (x: G; i: INTEGER).

• In any assignment x := y, and in any routine call using y as the actual argument for 
the formal argument x, the type of the source y must conform to the type of the target 
x. The definition of conformance is based on inheritance — B conforms to A if it is 
a descendant of A — complemented by rules for generic parameters.

• In a call of the form x    f (arg), f must be a feature of the base class of x’s type, and 
must be available to the class in which the call appears.

Realism

Although the definition of “statically typed language” is precise, it also highlights the need 
for informal criteria in devising type rules. Consider the following two extreme cases:

• An all-valid language in which every syntactically correct system is also typewise-
valid, with no need for type rules. Such languages are possible (imagine for example 
a small notation for Polish-style additions and subtractions with integers); 
unfortunately, as readers familiar with the theory of computation will know, no 
useful general-purpose language can meet that criterion.

• An all-invalid language, easy to devise: just take any existing language and add a 
type rule that makes any system invalid! This makes the language typed according 
to the definition: since no system passes the rules, no system that passes the rules can 
cause a type violation.

We may say that an all-valid language is usable, but not useful for general-purpose 
development; an all-invalid language may be useful, but it is not usable.

What we need in practice is a type system that makes the language both useful and 
usable: powerful enough to express the computations we need; convenient enough not to 
force us into undue complications to satisfy the type rules.
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We will say that a language is realistic if it is both useful and usable. Unlike the 
definition of static typing, which always yields an indisputable answer to the question “Is 
language X statically typed?”, the definition of realism is partly subjective; reasonable 
people may disagree on whether a language, equipped with certain type rules, is still useful 
and usable.

In this chapter we will check that the typed notation defined in the preceding chapters 
is realistic.

Pessimism

In discussing approaches to O-O typing we should keep in mind another general property 
of static typing: it is always, by nature, a pessimistic policy. Trying to guarantee that no 
computation shall ever fail, you disallow some computations that might succeed.

To see this, consider a trivial non-O-O language, Pascal-like, with distinct types 
INTEGER and REAL. With the declaration n: INTEGER, the assignment n := r will be 
rejected as violating the type rules. So all the following will be considered type-invalid 
and rejected by the compiler:

n := 0.0 [A]
n := 1.0 [B]
n := —3.67 [C]
n := 3.67 — 3.67 [D]

Of these invalid operations, [A], if permitted to execute, would always work since 
any number system will provide an exact representation for the floating-point number 0.0, 
which can be transformed unambiguously to the integer 0. [B] would almost certainly 
work too. [C] is ambiguous (do we want the rounded version, the truncated version of the 
number?) But [D] would work. So would

if n ^ 2 < 0 then n := 3.67 end [E]

because the assignment will never be executed (n ^ 2 denotes the square of n). If we 
replace n ̂  2 by just n, where n is read from user input just before the test, some executions 
would work (those for which n is non-negative), others would not. Assigning to n a very 
large real number, not representable as an integer, would not work. 

In a typed language, all these examples — those which would always work, those 
which would never work, and those which would work some of the time — are equally 
and mercilessly considered violations of the type rules, and any compiler will reject them.

The question then is not whether to be pessimistic but how pessimistic we can afford 
to be. We are back to the realism requirement: if the type rules are so pessimistic as to bar 
us from expressing in a simple way the computations that we need, we will reject them. But 
if they achieve type safety with little loss of expressive power, we will accept them and 
enjoy the benefits. For example making n := r invalid turns out to be good news if the 
environment provides functions such as round and truncate, enabling you to convert a real 
into an integer in exactly the way you want, without the ambiguity of an implicit conversion.
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17.2  STATIC TYPING: WHY AND HOW
Although the advantages of static typing seem obvious, it is necessary to review the terms 
of the debate.

The benefits
The reasons for using a statically typed form of object technology were listed at the very 
beginning of this chapter: reliability, readability and efficiency.

The reliability value comes from the use of static typing to detect errors that would 
otherwise manifest themselves only at run time, and only in certain runs. The rule that 
forces you to declare entities and functions — the first of our three type rules above — 
introduces redundancy into the software text; this enables the compiler, through the other 
two rules, to detect inconsistencies between the purpose and actual use of an entity, feature 
or expression.

Catching errors early is essential, as correction cost grows quickly with the detection 
delay. This property, intuitively clear to all software professionals, is confirmed 
quantitatively, for specification errors, by Boehm’s well-known studies, plotting the cost 
of correcting an error against the time at which it is found (base 1 if found at requirements 
time), for both a set of large industrial projects and a controlled small project experiment:

The readability benefit is also appreciable. As the examples appearing throughout 
this book should show convincingly, declaring every entity and function with a certain 
type is a powerful way of conveying to the software reader some information about its 
intended uses. This is particularly precious for maintainers of the software.

If readability were not part of the goal we might be able to obtain some of the other 
benefits of typing without explicit declarations. It is possible indeed, under certain 
conditions, to use an implicit form of typing in which the compiler, instead of requiring 
software authors to declare entity types, attempts to determine the type of each entity 
automatically from its uses. This is known as type inference. But from a software 
engineering perspective explicit declarations are a help, not a penalty; types should be 
clear not just to the compiler but to the human reader.
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Finally, the efficiency benefit can make the difference between success and failure of 
object technology in practice. Without static typing, the execution of x    f (arg) can take an 
arbitrary long time: as we saw in the discussion of inheritance, the basic algorithm looks for 
a feature f in the base class C of x’s type; if it does not find it, it looks in C’s parents, and so 
on. This is a fatal source of inefficiency. It can be mitigated by improvements to the basic 
algorithm, and the authors of the Self language have done extensive work to enable better 
code generation for a dynamically typed language. But it is through static typing that O-O 
software has been able to approach or equal the efficiency of traditional software.

The key idea was explained in the earlier discussion. When the compiler generates 
the code for x    f (arg), it knows the type of x. Because of polymorphism, this is not 
necessarily the type of the attached run-time object OBJ, and so does not uniquely 
determine the proper version of f. But the declaration restricts the set of possible types, 
enabling the compiler to generate tables providing run-time access to the right f at 
minimum — and constant-bounded — expense. Further optimizations of static binding
and inlining, also facilitated by typing, eliminate the expense altogether in applicable cases.

Arguments for dynamic typing
In spite of these benefits of static typing, dynamic typing keeps its supporters, found in 
particular in the Smalltalk community. Their argument mainly follows from the realism 
issue cited above: they contend that static typing is too constraining, preventing the 
unfettered expression of software ideas. Terms such as “stranglehold” and “chastity belt” 
are often heard in such discussions.

This argument can be correct, but only for a statically typed language that misses 
some important facilities. It is indeed remarkable that all the type-related concepts 
introduced in preceding chapters are necessary; remove any of them, and the straitjacket 
comment becomes valid in at least some cases. But by including them all we obtain 
enough flexibility to make static typing both practical and pleasurable.

The ingredients of successful typing
Let us review the mechanisms which permit realistic static typing. They have all been 
introduced in earlier chapters, so that we only need a brief reminder for each; listing them 
all together shows the consistency and power of their combination.

Our type system is entirely based on the notion of class. Even basic types such as 
INTEGER are defined by classes. So we do not need special rules for predefined types. 
(Here the notation departs from “hybrid” languages such as Object Pascal, Java and C++, 
which retain the type system of an older language along with the class-based system of 
object technology.)

Expanded types give us more flexibility by allowing types whose values denote 
objects along with types whose values denote object references.

Crucial flexibility is afforded by inheritance and the associated notion of 
conformance. This addresses the major limitation of traditional typed languages such as 
Pascal and Ada, where an assignment x := y requires the types of x and y to be identical. 
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This rule is too strict: it prevents you from using an entity that may denote objects of 
various related types, such as a SAVINGS_ACCOUNT and a CHECKING_ACCOUNT. 
With inheritance, all we require is that the type of y conform to the type of x; this is the 
case if x is of type ACCOUNT, y of type SAVINGS_ACCOUNT, and the latter class is a 
descendant of the former.

To be practical, a statically typed language requires its inheritance scheme to support 
multiple inheritance. A principal part of common objections against static typing is that 
it prevents you from looking at objects in different ways. For example an object of type 
DOCUMENT might need to be transmitted over a network, and so will need the features 
associated with objects of type MESSAGE. But this is only a problem with a language that 
is restricted to single inheritance; with multiple inheritance you can introduce as many 
viewpoints as you need.

We also need genericity, to define flexible yet type-safe container data structures. 
For example a list class will be defined as class LIST [G] … Without this mechanism, 
static typing would force us to declare a different class for each type of list element — an 
obviously unsustainable solution.

Genericity needs in some cases to be constrained, allowing us to apply certain 
operations to entities of a generic type. For example if a generic class SORTABLE_LIST 
has a sort operation, it requires a comparison operation on entities of type G, the generic 
parameter. This is achieved by associating with G a generic constraint COMPARABLE:

class SORTABLE_LIST [G –> COMPARABLE] …

meaning that any actual generic parameter used for SORTABLE_LIST must be a 
descendant of class COMPARABLE, which has the required comparison features.

Another indispensable mechanism is assignment attempt, to access objects whose 
type the software does not control. If y denotes an object obtained from a database or a 
network, you cannot be sure it has the expected type; the assignment attempt x ?= y will 
assign to x the value of y if it is of a compatible type, but otherwise will make x void. 
Without assignment attempt we could not abide by the type rules in such cases.

Assertions — associated, as part of the idea of Design by Contract, with classes and 
features in the form of preconditions, postconditions and class invariants — allow you to 
describe semantic constraints which cannot be captured by type specifications. Although 
with the “interval types” of such languages as Pascal and Ada you can declare, for 
example, that a certain entity takes its values between 10 and 20, no type mechanism will 

MESSAGE

MAILABLE_DOCUMENT

DOCUMENT
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enable you to state that i must be either in that interval or negative, and always twice as 
much as j. Here class invariants come to the rescue, by letting you specify exactly what 
you need, however sophisticated the constraint.

Anchored declarations are essential in practice to avoid redeclaration avalanche. 
By declaring y: like x you make sure that y will follow any redeclaration of the type of x
in a descendant. Without this mechanism developers would be endlessly redeclaring 
routines for type purposes only.

Anchored declarations are a specific case of our last required language mechanism: 
covariance, which will be discussed in more detail later in this chapter.

A practical property of the environment is also essential: fast incremental 
recompilation. When you write a system or (more commonly) modify an existing system, 
you will want to see the effect soon. With static typing you must first let the compiler re-
typecheck the system. Traditional compiling techniques require recompiling the whole 
system (and going through a linking process); the time may be painfully long, especially 
for a proportionally small change to a large system. This phenomenon has been a major a 
contrario argument for interpreted approaches, such as those of early Lisp and Smalltalk 
environments, which execute systems with no or little processing, hence no type checking. 
But modern compiler technology removes this argument. A good compiler will detect 
what has changed since the last compilation, and reprocess only that part, keeping the 
recompilation time small — and proportional to the size of the change, not of the system.

The Melting Ice Technology described in the last chapter of this book achieves this goal, 
typically permitting recompilation in a matter of seconds after a small change even to a 
large system.

“A little bit typed”?

It was noted above that we should aim for a strong form of static typing. This means that 
we should avoid any loopholes in the static requirements — or, if any such loopholes 
remain, identify them clearly, if possible providing tools to flag any software using them.

The most common loophole, in languages that are otherwise statically typed, is the 
presence of conversions that disguise the type of an entity. In C and its derivatives, 
conversions are called “casts” and follow a simple syntax: (OTHER_TYPE) x denotes the 
value of x presented to the compiler as if it were of type OTHER_TYPE; there are few 
limitations on what that type may be, regardless of x’s actual type.

Such mechanisms evade the constraints of type checking; casting is indeed a 
pervasive feature of C programming, including in the ANSI C variant (which is “more” 
typed than its precursor, the so-called Kernighan and Ritchie version). Even in C++, 
examination of published software shows that casts, although less frequent, remain an 
accepted and possibly indispensable occasional practice.

It seems difficult to accept claims of static typing if at any stage the developer can 
eschew the type rules through casts. Accordingly, the rest of this chapter will assume that 
the type system is strict and allows no casts.
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You may have noted that assignment attempts, mentioned above as an essential 
component of a realistic type system, superficially resemble casts. But there is a 
fundamental difference: an assignment attempt does not blindly force a different type; it 
tries a candidate type, and enables the software to check whether the object actually 
matches that type. This is safe, and indispensable in some circumstances. The C++ 
literature sometimes includes assignment attempts (“downcasts”) in its definition of 
casts; clearly, the above prohibition of casts only covers the harmful variant, and does not 
extend to assignment attempts.

Typing and binding: avoiding the confusion

Although as a reader of this book you will have no difficulty distinguishing static typing 
from static binding, you may meet people who confuse the two notions. This may be due 
in part to the influence of Smalltalk, whose advocacy of a dynamic approach to both 
typing and binding may leave the inattentive observer with the incorrect impression that 
the answer to both questions must be the same. (The analysis developed in this book 
suggests that to achieve reliability and flexibility it is preferable to combine dynamic 
binding with static typing.) Let us carefully compare the two concepts.

Both have to do with the semantics of the Basic Construct x    f (arg); they cover the 
two separate questions that it raises:

Typing addresses the existence of at least one operation; binding addresses the 
choice of the right one among these operations, if there is more than one candidate. 

In object technology:

• The typing question follows from polymorphism: since x may denote run-time 
objects of several possible types, we must make sure that an operation representing 
f  is available in all cases.

• The binding question follows from redeclaration: since a class can change an 
inherited feature — as with RECTANGLE redefining perimeter inherited from 
POLYGON — there may be two or more operations all vying to be the one 
representing f for a particular call.

Both answers can be dynamic, meaning at execution time, or static, meaning before 
execution. All four possibilities appear in actual languages:

• Some non-O-O languages, such as Pascal and Ada, have both static typing and static 
binding. In these languages each entity represents objects of only one type, specified 
statically; the approach yields reliability at the expense of flexibility.

Typing and binding
• Typing question: When do we know for sure that at run time there will be 

an operation corresponding to f and applicable to the object attached to x 
(with the argument arg)? 

• Binding question: Which operation will the call execute? 
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• Smalltalk and other O-O languages influenced by it have dynamic binding and 
dynamic typing. This is the reverse choice: favoring flexibility at the expense of 
reliability enforcement.

• Some non-O-O languages are untyped (really meaning, as we have seen, 
dynamically typed) and statically bound. They include assembly languages and 
some scripting languages.

• The notation developed in this book supports static typing and dynamic binding.
Note the peculiarity of C++ which supports static typing (although in a non-strong 

form because of the presence of casts) and, for binding, a static policy by default, while 
permitting dynamic binding at the price of explicit virtual declarations.

The reason choosing static typing and dynamic binding is clear. To the first question, 
“when do we know we have a feature?”, the most attractive answer for reliable software 
engineering is the static one: “at the earliest possible time” — compilation time, to catch 
errors before they catch you. To the second question, “what feature do we use?”, the most 
attractive answer is the dynamic one: “the right feature” — the feature directly adapted to 
the object’s type. As discussed in detail in the presentation of inheritance, this is the only 
acceptable solution unless static and dynamic binding have the same effect.

The following fictitious inheritance hierarchy helps make these notions more vivid.

For a call of the form
my_aircraft   lower_  landing_ gear

the typing question is when to ascertain that there will be a feature lower_  landing_ gear
applicable to the object (for a COPTER there would not be any); the binding question is 
which version to choose (since we have several versions, as shown).

Static binding would mean that we disregard the object type and believe the entity 
declaration, leading us for example to apply to a Boeing 747-400 the version of a feature, 

AIRCRAFT

PLANE
COPTER

BOEING AIRBUS

B_737
B_747

B_747_400

A_320

*

*

*

lower_landing_gear+

lower_landing_gear*

lower_landing_gear++

* deferred
+ effected
++ redefined

*
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such as lower_landing_gear, that has been defined for the standard Boeing 747 planes, 
instead of the version specially redefined for the 747-400 variant; this is clearly wrong if 
the object is of the latter type. Dynamic binding will apply the operation that the object 
demands, based on its type; this is the right approach.

With static typing we will refuse the call at compile time unless we can guarantee 
that whatever happens to my_aircraft at run time the type of the attached object will be 
equipped with a feature corresponding to lower_landing_gear. The basic technique for 
obtaining this guarantee is simple: since we must declare my_aircraft, we require that its 
type’s base class include such a feature. This means that the declared type cannot be 
AIRCRAFT since there is no lower_landing_gear at that level; helicopters, for example, 
have no landing gears, for the purpose of this example at least. With such a declaration the 
compiler would reject our software with no possibility of appeal. But if we declare the 
entity as being of type PLANE, which has the required feature, all is well.

Smalltalk-style dynamic typing would mean waiting until execution to find out if there 
is an applicable feature; acceptable perhaps for prototypes and experimental software, but 
not for production systems. Run time is a little late to ask whether you have a landing gear.

17.3  COVARIANCE AND DESCENDANT HIDING

In a simple world a discussion of typing would stop here: we have defined the goals and 
advantages of static typing; examined the constraints that a realistic type system must 
meet; and reviewed the typing techniques of the object-oriented framework developed in 
the preceding chapters, checking that they satisfy the stated criteria.

The world is not simple. The combination of static typing with some of the software 
engineering requirements of object technology makes the issues more difficult than they 
appear at first. Two techniques raise difficulties: covariance, the change of argument types 
in redefinitions; and descendant hiding, the ability for a class to restrict the export status 
of an inherited feature.

Covariance

The principal problem is what happens to arguments when we redefine a feature’s type. 
We have encountered several cases already: devices and printers, linkable and bi-linkable 
elements, points and their conjugates.

To understand the general nature of the issue let us use a fresh example. Being non-
technical, it carries the usual risks of metaphors; but the closeness to software schemes is 
obvious, and we will frequently come back to actual software examples.

The example involves a high-school ski team preparing for a trip to a minor-league 
championship, and the team members’ concerned parents. For brevity and simplicity it 
uses the class names GIRL as an abbreviation for “member of the girls’ ski team” and BOY 
as an abbreviation for “member of the boys’ ski team”. Some skiers on each team are 
ranked, that is to say have already recorded good results in earlier championships. This is 
an important notion: ranked skiers will start first in a slalom, thus gaining a considerable 
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Kinds of skier
advantage over the others since a slalom run is much harder to negotiate after too many 
competitors have already worked it. (This rule that ranked skiers go first is a way to 
privilege the already privileged, and may be the reason why skiing exerts such a 
fascination over many people: that it serves as an apt metaphor for life itself.) We get two 
new classes, RANKED_GIRL and RANKED_BOY.

Some rooms are reserved for boys only, girls only, ranked girls only; we may use a class 
hierarchy parallel to the one above: ROOM, GIRL_ROOM, RANKED_GIRL_ROOM etc. 
The discussion will omit RANKED_BOY which is parallel to RANKED_GIRL.

Here is an outline of class SKIER:

class SKIER feature
roommate: SKIER

-- This skier’s roommate
share (other: SKIER)

-- Choose other as roommate.
require

other /= Void
do

roommate := other
end

… Other possible features omitted in this class and the following ones …
end
We have two features of interest: the attribute roommate; and the procedure share, 

which assigns a certain skier as roommate to the current skier, as in

s1, s2: SKIER
…
s1   share (s2)
Rather than SKIER, you may have thought of using for other the anchored type 

like roommate (or like Current for both roommate and other). If so, you are most likely 
right, but let us forget for a while that we know about anchored types: this will enable us 
to understand the covariance problem in its bare form; anchored types will soon come back. 

BOY

SKIER

GIRL

RANKED_BOYRANKED_GIRL
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How does type redefinition get into the picture? Assume the rules require girls to 
share rooms only with girls, and ranked girls only with other ranked girls. We will redefine 
the type of feature roommate, as shown below (in this class text and the next, the redefined 
elements appear underlined).

class GIRL inherit
SKIER

redefine roommate end
feature

roommate: GIRL
-- This skier’s roommate.

end
We should correspondingly redefine the argument to procedure share, so that a more 

complete version of the class text is:
class GIRL inherit

SKIER
redefine roommate, share end

feature
roommate: GIRL

-- This skier’s roommate.
share (other: GIRL)

-- Choose other as roommate.
require

other /= Void
do

roommate := other
end

end
All proper descendants must be adapted in this way (remember, we are depriving 

ourselves from anchored types for the moment). The general picture is this:

roommate: SKIER
share (other: SKIER)

roommate++

share++

roommate++

share++

roommate++

share++

BOY

SKIER

GIRL

RANKED_GIRL ++ Redefined
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Since inheritance is specialization, the type rules require that if we redefine the result 
of a feature, here roommate, the new type must always be a descendant of the original one. 
This also applies to the redefined type for the argument other of routine share. This policy, 
as we know, is called covariance, where the “co” indicates that the argument and result 
vary together; the reverse policy is termed contravariance.

Covariance is, according to all available evidence, what we need in practice. Our 
earlier software examples illustrate this clearly:

• A LINKABLE list element may be chained to any other linkable; a BI_LINKABLE
must be chained to another BI_LINKABLE. So the argument of procedure put_right
should be redefined covariantly.

• In the same example, any routine of LINKED_LIST that uses an argument of type 
LINKABLE will most likely need it to be of type BI_LINKABLE in TWO_WAY_LIST.

• Procedure set_alternate takes a DEVICE argument in class DEVICE, a PRINTER 
argument in class PRINTER.
Covariant redefinition is particularly common because of the O-O method’s 

emphasis on information hiding, which leads to procedures of the form
set_attrib (v: SOME_TYPE)

-- Set attrib to v.
…

with attrib of type SOME_TYPE; such procedures are naturally covariant (and in practice, 
as we know, will usually rely on anchored types) since any class that changes the type of 
attrib will need to redefine set_attrib’s argument in the same way. The preceding examples 
mostly belonged to this scheme, but it is by no means the only one requiring covariance. 
Think for example of a procedure or function for concatenating a LINKED_LIST to another: 
its argument will have to be redefined as a two-way-list in TWO_WAY_LIST. The general 
addition operation, infix "+", takes a NUMERIC argument in NUMERIC, a REAL argument 
in REAL, an INTEGER argument in INTEGER. In the parallel hierarchies

procedure start, which starts a phone service, may need an argument of type ADDRESS 
representing the billing address; for a corporate account you will need a corporate address.

What about a contravariant solution? In the skier example, contravariance would 
mean that if we go to class RANKED_GIRL, where the result of roommate is redefined to 
be of type RANKED_GIRL, we may for the argument of routine share use type GIRL, or 
SKIER of the most general kind. One type that is not permitted under contravariance is 
RANKED_GIRL! Enough to justify the parents’ worst fears.

PHONE_
SERVICE ADDRESS

CORPORATE_
ADDRESS

CORPORATE_
SERVICE

start
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Parallel hierarchies

To leave no stone unturned, it is useful to consider a variant of the SKIER example with 
two parallel hierarchies, rather than just one. This will model the situation evidenced in 
software  examples  already  cited:  TWO_WAY_LIST  →  LINKED_LIST parallel  to 
BI_LINKABLE → LINKABLE, or the PHONE_SERVICE hierarchy. Just assume that we 
have a ROOM hierarchy with descendants such as GIRL_ROOM (BOY variants omitted):

Then instead of roommate and share, the skier classes will have features 
accommodation and accommodate:

note
description: "New variant with parallel hierarchies"

class SKIER1 feature
accommodation: ROOM
accommodate (r: ROOM) require … do

roommate := other
end

end
Here too we need covariant redefinition: in class GIRL1 both accommodation and 

the argument of accommodate should be redeclared of type GIRL_ROOM, in BOY1 they 
should be of type BOY_ROOM, and so on. (Remember again that for the time being we 
are working without anchored types.) A contravariant policy would be as useless as in the 
preceding form of the example.

Polymorphic perversity

Enough covariant examples. Why would anyone consider contravariance, which goes 
against what we need in practice (not to mention proper behavior for young people)? To 
understand, we have to consider the problems that polymorphism may cause under a 
covariant policy. A harmful scheme is easy to make up, and you may have thought of it 
yourself already:

SKIER1 ROOM

GIRL_ROOMGIRL1

RANKED_
GIRL_ROOM

RANKED_
GIRL1

accommodate++

accommodate++

accommodate accommodation

accommodation++

accommodation++
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s: SKIER; b: BOY; g: GIRL
…
create b; create g;-- Creation of a BOY and GIRL objects.
s := b; -- Polymorphic assignment.
s   share (g)

The effect of the last call, although possibly to the boys’ liking, is exactly what the 
type definitions were attempting to exclude. A room assignment makes a boy object, 
known as b but also disguising itself polymorphically under the SKIER pseudonym s, the 
roommate of the GIRL object attached to g. Yet the call appears type-correct, since share
is an exported feature of class SKIER, and GIRL, the type of argument g, conforms to 
SKIER, the type declared for the formal argument of share in SKIER.

The corresponding scheme with the parallel hierarchy variant is just as simple: just 
replace SKIER by SKIER1 etc., and the call to share by a a call s   accommodate (gr), where 
gr is of type GIRL_ROOM: at run time this will assign a boy to a girl room.

With contravariance one would not have these problems: as you specialize the target 
of a call (s in the example), you would generalize the argument. Contravariance, as a 
result, leads to simpler mathematical models of the inheritance-redefinition-
polymorphism mechanism. For that reason a number of theoretical articles have advocated 
contravariance. But the argument is not very convincing, since, as we have seen and as the 
literature readily admits, contravariance is of essentially no practical use.

An argument often encountered in the programming literature is that one should strive for 
techniques that have simple mathematical models. Mathematical elegance, however, is 
only one of several design criteria; we should not forget to make our designs realistic and 
useful too. In computing science as in other disciplines, it is after all much easier to devise 
dramatically simple theories if we neglect to make them agree with reality.

So rather than trying to force a covariant body into a contravariant suit, we should 
accept the reality for what it is, covariant, and study ways to remove the unpleasant effects.

Descendant hiding

Before looking for solutions to the covariance problem, let us examine the other 
mechanism that can cause type violations through polymorphism. Descendant hiding is 
the ability for a class not to export a feature that was exported by one of its parents.

POLYGON

RECTANGLE

add_vertex
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A typical example is a feature add_vertex, which class POLYGON exports but its 
descendant RECTANGLE hides, because it would violate the invariant of the class:

class RECTANGLE inherit
POLYGON

export {NONE} add_vertex end
feature

…
invariant

vertex_count = 4
end
A non-software counterpart is the well-known example of OSTRICH inheriting from 

a class BIRD equipped with a feature fly, which OSTRICH should not export.
Let us for the moment accept this scheme at face value, setting aside the question, 

discussed in detail later, of whether such forms of inheritance are methodologically 
legitimate. The modeling power of descendant hiding, like that of covariance, clashes with 
the tricks made possible by polymorphism. An example is trivial to build:

p: POLYGON; r: RECTANGLE
…
create r ; -- Creation of a RECTANGLE object.
p := r; -- Polymorphic assignment.
p   add_vertex (…)
Since add_vertex is an exported feature of POLYGON, the call appears type-correct; if 

accepted, it would on execution add a vertex to a rectangle, producing an inconsistent object.

Class and system validity

Some terminology will be useful to discuss the issues raised by covariance and descendant 
hiding. A system is class-valid if it satisfies the type rules summarized at the beginning of 
this chapter: every entity declared with a type; every assignment and actual-formal 
argument association satisfies conformance; and every call uses a feature of the target’s 
type, exported to the caller.

The system is system-valid if no type violation can occur at run time.
Ideally these two notions (whose names will be justified later in this chapter) should 

be equivalent. What we have seen through the preceding examples is that with covariance 
and descendant hiding a system can be class-valid without being system-valid. Such an 
error — making a system invalid although it is class-valid — will be called a system 
validity error.

Practical scope

The simplicity of the examples of system validity error, resulting from covariance or 
descendant hiding, makes up what we may call the static typing paradox. On being 
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introduced to object-oriented typing, an inquisitive newcomer can make up such a 
counter-example in a few minutes; yet in actual development, while violations of class-
level validity rules are common (and, caught by the compiler, provide tremendous help in 
getting the software right), system validity errors are exceedingly rare, even in large, 
multi-year projects.

This is not an excuse for ignoring them. The rest of this chapter investigates three 
possible solutions.

An important note: because the problems discussed next are both delicate and 
infrequent, it is reasonable and indeed suggested, if this is your first reading, that you skip 
the rest of this chapter unless you are already well-versed in the practical and theoretical 
aspects of object technology. If you are relatively new to the approach, you will 
understand the discussion much better after reading the methodological chapters of part 
D, in particular chapter 24 on the methodology of inheritance.

17.4  FIRST APPROACHES TO SYSTEM VALIDITY
Let us concentrate first on the covariance issue, the more challenging of the two. There is 
an abundant literature on the subject and we can take a look at various proposed solutions.

Contravariance and novariance

Adopting a contravariant policy removes the theoretical problem of system validity errors. 
But this approach makes the type system unrealistic, so we need not examine it further.

C++ is original in using a novariant policy: when you redefine a routine, you cannot 
change the types of its arguments! If C++ were a strongly typed language, this would make 
the type system quite unusable. The easiest solution, as with other such limitations of C++ 
(such as the absence of constrained genericity), is to use casts, and so to bypass the typing 
mechanism altogether. This solution is not particularly attractive. Note, however, that 
some of the proposals discussed next rely on a form of novariance, made meaningful by 
the introduction of new type mechanisms to replace covariant redefinition.

Using generic parameters

An interesting idea, originally introduced by Franz Weber, relies on genericity. We can 
declare our class SKIER1 with a generic parameter representing the room: 
class SKIER1 [G] or rather, using constrained genericity,

class SKIER1 [G –> ROOM] feature
accommodation: G
accommodate (r: G) require… do accommodation := r end

end
Then class GIRL1 will inherit from SKIER1 [GIRL_ROOM] and so on. The same 

technique may be applied to the variant without parallel hierarchies, although it seems 
stranger at first: class SKIER [G –> SKIER].
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This approach solves the covariance problem. In any use of the class you need to 
specify an actual generic parameter — such as ROOM or GIRL_ROOM —, so the invalid 
combinations become impossible. The language would become novariant, and systems 
would satisfy their covariance needs entirely through generic parameters.

Unfortunately, the generic parameter technique is not really acceptable as a general 
solution. It will lead to inflated generic parameter lists, with one parameter for each type 
of a possibly covariant argument. To use the class, a developer will have to provide as 
many types as there are parameters; this will make classes hard to understand.

Worse, adding a covariant routine with an argument of a type not yet covered would 
require adding a generic parameter to the class, and hence changing its interface, thereby 
invalidating all client classes. This is not acceptable.

Type variables

Several authors (including Kim Bruce, David Shang, Tony Simons) have proposed 
solutions based on the introduction of type variables. Although it is impossible to 
summarize these sophisticated proposals without being unfair, the basic idea is simple: 
instead of covariant redefinition, permit type declarations to use type variables rather than 
actual types; extend the conformance rules to handle type variables; make the language 
otherwise novariant; provide a facility to assign a type value to a type variable. 

Instead of ROOM, the declarations for attribute accommodation and for the 
argument of accommodate would use a type variable, to which an actual type value can be 
assigned separately.

These proposals are worth considering, and the interested reader should consult the 
corresponding articles, as well as complementary publications by Cardelli, Castagna, 
Weber and others, starting from the paper and Web references cited in the bibliographical 
notes to this chapter. We will not, however, pursue this line, for two reasons:

• The type variable mechanism, if designed properly, should subsume genericity and 
anchored declarations, the two existing mechanisms for using a type without fully 
specifying it. At first this can be construed as an argument in favor of type variables, 
as they might enable us to replace two language constructs by one, and solve other 
problems at the same time. But the result may not be satisfactory in practice since 
both genericity and anchored types are simple, widely accepted and easy to explain; 
it is not clear that an all-encompassing type variable mechanism can do as well.

• Assuming we can indeed devise a type variable mechanism that solves the technical 
difficulties of combining covariance and polymorphism (still ignoring descendant 
hiding for the moment), it will require perfect foresight from the class designer: 
knowing in advance which features are subject to type redefinition in descendants, 
and which are not. The following section will further discuss this problem, which 
arises from a practical software engineering concern and, unfortunately, hampers the 
credibility of many theoretically satisfying schemes.



TYPING  §17.5 630

nderlining indi-
ates the change from 
arlier versions.
These considerations suggest trying a different approach: examining the 
mechanisms that we already have at our disposal — constrained and unconstrained 
genericity, anchored types, and of course inheritance — to see how they can be further 
constrained to remove the possibility of system validity errors.

17.5  RELYING ON ANCHORED TYPES

We can actually find an almost satisfactory solution to the covariance problem by taking 
a closer look at a mechanism that we already know well: anchored declarations.

You must indeed have been itching, in the SKIER and SKIER1 examples, to use 
anchored declarations, removing most of the need for type redefinitions. Anchoring is 
the covariant mechanism par excellence: by declaring y: like x, you make y vary with x
whenever x gets redefined to descendant-based types in descendant classes. Our 
examples become:

class SKIER feature
roommate: like Current

share (other: like  Current) require … do
roommate := other

end
…

end

class SKIER1 feature
accommodation: ROOM

accommodate (r: like accommodation) require … do
accommodation := r

end
end

Then descendants need no redefinition in the SKIER version, and in the SKIER1
version they only need to redefine attribute accommodation. The anchored entities — 
roommate and the arguments of share and accommodate — will automatically follow the 
anchors’ redefinitions. This tremendous simplification, in line with what we saw in the 
original examples of anchored declaration, confirms that without anchoring (or some 
alternate mechanism such as type variables) it would be impossible to write realistic typed 
object-oriented software.

But does this eliminate system validity violations? No! At least not without a further 
restriction. We can still cheat the type checker into letting pass polymorphic assignments 
that will cause run-time type violations.

True, the original examples will be rejected. In

U
c
e
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s: SKIER; b: BOY; g: GIRL
º
create b;create g;-- Creation of a BOY and GIRL objects.
s := b; -- Polymorphic assignment.
s   share (g)

the argument g to share is not valid, since we need something of type like s, and GIRL 
does not conform to like s. The conformance rule for anchored types stated that no type 
conforms to like s other than this type itself.

The relief is short-lived, however, The same rule stated that, in the other direction of 
conformance, like s conforms to the type of s. So we can fool the type checker, although 
we have to be pretty devious, by using polymorphism not just on the target s of the call but 
on its argument g:

s: SKIER; b: BOY; g: like s;

º
create b; -- Creation of a BOY and GIRL objects.

-- Go through s to attach g to the GIRL object.
s := b -- Polymorphic assignment.
s   share (g)

The effect is exactly the same as before.

There is a way out. If we are serious about using anchored declarations as the sole 
covariance mechanism, then we can get rid of system validity errors by prohibiting 
polymorphism altogether on anchored entities. This requires a language change: we would 
introduce a new keyword anchor, used in such declarations as

anchor s: SKIER

Then we would permit a declaration of the form like s only if s is declared in this form, 
and adapt the conformance rule to make sure that s as well as elements of type like s can 
be attached (assigned or argument-passed) only to each other.

In the original rule there was a notion of anchor-equivalent elements: with x declared of 
some non-anchored type T and y declared like x, then x and y are anchor-equivalent to 
each other and to any other entity anchor-equivalent to either of them. An attachment to 
an anchored target was valid only if the source was anchor-equivalent to the target (which 
makes the assignment g:= s valid even though g is anchored and s is not); but there was 
no such restriction the other way around: z := y was valid for any z of type T. With the new 
approach this would not be permitted any more; in any attachment involving an entity that 
is either anchor or anchored, the source and the target must be anchor-equivalent.

With this approach, we would remove from the language the possibility of redefining 
the type of any routine argument. (We could also prohibit redefining the result type, but 
this is not necessary. We must retain, of course, the possibility of redefining an attribute 
type.) All such redefinitions will now be obtained indirectly, through the anchoring 

actual_g: GIRL;

create actual_g

s := actual_g; g := s
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mechanism, which enforces covariance. Where with the earlier approach a class D 
redefined an inherited feature as

r (u: Y) …

from an original version, in a proper ancestor C of D, that read

r (u: X) …

with Y conforming to X, you should now define the original in C as

r (u: like your_anchor) …

and only redefine in D the type of your_anchor.

This solution to the covariance-polymorphism issue will be called the Anchoring 
approach (short for the more accurate “Covariance through anchoring only”). Its 
properties make it particularly attractive:

• It is based on a clear concept: strictly separating the covariant elements from the 
potentially polymorphic ones (just “polymorphic” for short). Any entity declared as 
anchor or as like some_anchor is covariant; any other is polymorphic. You can have 
attachments within each category; but no entity or expression will cross the 
boundary. For example you cannot assign a polymorphic source to a covariant target.

• The solution is simple, elegant, easy to explain even to relative beginners.

• It appears completely tight, removing any possibility of covariance-related system 
validity violation.

• It retains the framework defined in the preceding chapters, in particular the notions 
of genericity, constrained or not. (As a result it is, in my opinion, preferable to the 
introduction of type variables covering both covariance and genericity, since these 
two mechanisms address clearly distinct practical needs.)

• It entails a small language change — adding one keyword, reinforcing a 
conformance rule — and no foreseeable implementation difficulty.

• It is, at least in a theoretical sense, realistic: any system that was previously possible 
can be rewritten using the transformation just outlined, replacing covariant 
redefinitions by anchored redeclarations in the original. True, some attachments will 
become invalid as a result; but they correspond to cases that could have led to type 
violations, and can be replaced by assignment attempts, whose result the software 
can then check to ascertain at run time that everything is fine.

With such arguments we would seem to be at the end of the discussion. Why then is 
the Anchoring solution not fully satisfactory? First, it still leaves us with the descendant 
hiding issue. But the fundamental reason is the software engineering concern already voiced 
during our brief encounter with the notion of type variables. The Yalta-like division of the 
world into a polymorphic part and a covariant part assumes that the designer of a class 
always has perfect foresight: for every entity that he introduces, in particular every routine 
argument, he must decide once and for all between one of two possibilities:
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• The entity is potentially polymorphic: now or later, it may become attached (through 
argument passing if it is a formal argument of a routine, through assignment 
otherwise) to objects of types other than its declared type. Then no descendant will 
be permitted to redefine that type.

• The entity is subject to type redefinition: then it is either anchored or an anchor itself.

But how can the designer be sure in each case? Much of the attraction of the object-
oriented method, captured at the beginning of this book by the Open-Closed principle, 
comes from its support for late adaptation of original choices; from the way it accepts that 
designers of general-purpose modules need not have infinite wisdom, since authors of 
descendants can adapt some of their decisions.

In this imperfection-tolerant approach, both type redefinition and descendant hiding 
are a safety valve, which enables us to reuse an existing, almost-suitable class:

• With type redefinition, you can adapt the type declaration in the descendant without 
touching the original (to which, of course, you may lack source access or 
modification privileges). With the covariance-only solution you would need to 
change the original, using the transformation outlined earlier.

• Descendant hiding similarly preserves you from suffering too much from the bumps 
of the design process. True, one may criticize a design which has RECTANGLE
inherit from POLYGON and still want add_vertex in POLYGON; instead, you may 
devise an inheritance structure that removes this problem, separating fixed polygons 
from variable ones. It is indeed preferable to stay away from taxonomy exceptions in 
designing inheritance structures. But can we eliminate them altogether? The 
discussion of descendant hiding in a later chapter (where we will encounter 
examples that cannot be restructured as easily as polygons and rectangles) suggests 
that we cannot, for two reasons. First, various classification criteria may compete: 
for example we may prefer to classify our polygons into regular and irregular ones. 
Second, we have to accept that even where an ideal solution is possible some 
designers will not have seen it, although we may still try to inherit from their classes.

If we want to preserve the flexibility of descendant adaptation, we will need to 
permit covariant type redefinition — not just through anchoring — and descendant hiding. 
The next sections describe how.

17.6  GLOBAL ANALYSIS

(This section describes an intermediate approach; readers interested in an overview of the 
main practical solutions may skip to the next section.)

In studying the Anchoring solution we noted that the basic idea was to separate the 
covariant part from the polymorphic part. Indeed, if you consider the two instructions in

s := b …
s   share (g)
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each is a legitimate application of an important O-O mechanism: the first applies 
polymorphism; the second uses type redefinition. Things start to go wrong when you 
combine these operations for the same s. Similarly, in 

p := r …
p  add_vertex (…)

the problem arises from the combination of two individually blameless operations. Here too 
you can use either instruction by itself without a hitch; include both and you are in trouble.

The type violations follow from erroneous calls. In the first example, the 
polymorphic assignment attaches s to a BOY object, making g an illegal argument to share 
since g is attached to a GIRL object. In the second example the assignment attaches r to a 
RECTANGLE object, making add_vertex a non-exported feature.

Hence an idea for a new solution: determine in advance — statically, as part of the 
type checking performed by the compiler or set of tools — the typeset of each entity, short 
for “dynamic type set”, comprising the types of all objects to which the entity might 
become attached at run time. Then verify, still statically, that each call is valid for each 
element of the typesets of the target and arguments.

In our examples, the assignment s := b indicates that BOY is in the typeset of s
(because BOY is in the typeset of b as a result of the creation instruction create b); GIRL
is in the typeset of g because of the instruction create g; but then the call to share would 
not be valid for a target s of type BOY and an argument g of type GIRL. Similarly, 
RECTANGLE is in the typeset of p because of the polymorphic assignment, but the call to 
add_vertex would not be valid for p of type RECTANGLE.

These observations lead to what we may call the Global approach, based on a new 
typing rule:

In this definition a call is “class-valid” if it is valid according to the Feature Call rule 
recalled at the beginning of this chapter: if C is the base class of x’s type, f  must be an 
exported feature of C, and the type of arg must conform to the type of the formal argument 
of f. (Remember that for simplicity we assume that each routine has exactly one argument; 
the rule is trivially transposed to an arbitrary number of arguments.)

System validity is the same thing as ordinary class validity, except that we do not just 
consider the type declared for the target x and the arguments arg: we apply class validity 
to every possible type in their typesets.

Here is the basic rule for determining the typeset of all entities:

System Validity rule
A call x    f (arg) is system-valid if and only if it is class-valid for x having any 
type in its own typeset, and arg having any type in its own typeset.
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T1  • Start out with an empty typeset for every entity.
T2  • For every creation instruction of the form create {SOME_TYPE} a, add SOME_

TYPE to the typeset of a. (For simplicity, assume that any instruction create a has 
been replaced by create {ATYPE} a, where ATYPE is the type declared for a.)

T3  • For every assignment of the form a := b, add all the elements of the typeset of b
to the typeset of a.

T4  • If a is a formal argument of a routine, for every corresponding actual argument b 
in a call, add all the elements of the typeset of b to the typeset of a.

T5  • Repeat steps T3 and T4 until no typeset changes.
This description does not take genericity into account, but the extension is not hard. 

The repetition (T5) is necessary because of the possibility of attachment chains (an 
attachment of b to a, of c to b and so on). It is easy to see, however, that the process will 
terminate after a finite number of steps.

The number of steps is bounded by the maximum length of attachment chains, that is to 
say the maximum n such that the system contains attachments of xi+1 to xi for i = 1, 2, …
n–1. The repetition of T3 and T4 is known as a “fixpoint” technique.

As you may have noted, the rule does not consider instruction sequencing. For 
example, in

create {TYPE1} t;    s := t;    create {TYPE2} t
we will include both TYPE1 and TYPE2 into the typeset of s, even though s can only, with 
the instructions given, become attached to an object of type TYPE1. Taking instruction 
sequencing into account would force the compiler to perform extensive flow analysis, 
leading to undue complexity. Instead, the rules are more pessimistic: they will flag any 
occurrence of all three operations

create b
s := b
s   share (g)

as system-invalid, even if their possible run-time sequencing cannot possibly lead to a type 
violation.

The global analysis approach was presented (with more details) in chapter 22 of 
[M 1992]. It solves both the covariance problem and the descendant hiding problem. It 
suffers, however, from an annoying practical deficiency: although it does not require flow 
analysis, it assumes that you are checking an entire system at once, rather than each class 
incrementally. The killer rule is T4, which for any call x    f (b) corresponding to a routine 
f (a: ARG_TYPE), adds the typeset of b to that of a. If  f  is a routine from a library class, 
this means that adding a call to f in a new client can affect the typesets of f  ’s formal 
arguments, and ripple over to existing calls in other clients.

Although there have been proposals for incremental algorithms [M 1989b], their 
practicality has not been established. This means that in a development environment 
supporting incremental compilation the global analysis technique would need to be 
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implemented as a check on an entire system, rather than as part of the local (and fast) 
operations that the compiler performs each time a user changes a few classes. Even though 
there are precedents for such an approach — C developers, for example, sometimes rely 
on a tool called lint, separate from the compilation process, to look for inconsistencies — 
it is not really attractive, especially in today’s sophisticated environments whose users 
expect the tools to provide fast and complete responses.

As a result, the global validity approach has not to my knowledge been implemented. 
(Another reason is probably that the rule may appear difficult to teach, especially when 
given with all the details of genericity etc.)

In passing we have seen the reason for some terminology used since the beginning 
of this discussion. A system was said to be class-valid if it satisfied the basic type rules 
according to each entity’s type declaration; the name indicates that, as we just saw, this can 
be checked (and checked fast) by an incremental compiler working class-by-class. A 
system may be class-valid but not yet system-valid if its execution can still cause type 
violations. With the techniques seen so far, detecting this possibility seems to require a 
global (system-wide) analysis.

In spite of the name, however, it is in fact possible to avoid system validity errors 
through completely incremental checking. This will be our final tack on the issue.

17.7  BEWARE OF POLYMORPHIC CATCALLS!

The System Validity rule of global analysis, it was noted, is pessimistic: to simplify type 
rules and their enforcement, it may reject harmless combinations. Paradoxical as this may 
seem, we will obtain our last solution by turning to an even more pessimistic rule. This 
will of course raise the question of how realistic the result is.

Back to Yalta

The gist of the Catcall solution — the name, to be explained shortly, for the new 
approach — is to come back to the Yalta-like character of the Anchoring solution, 
dividing the world into a polymorphic part and a covariant part (the latter also having, as 
its satellite, a descendant hiding part), but to remove the need for perfect foresight.

As before we narrow down the covariance issue to two operations: in our main 
example, the polymorphic assignment, s := b, and the call to a covariant routine, 
s   share (g). Analyzing what is truly wrong, we note that the argument g is not an issue in 
itself; any other argument, which has to be of type SKIER or a descendant, would be just 
as bad since s is polymorphic and share covariantly redefines its argument. So with other
statically declared of type SKIER and dynamically attached to a SKIER object, the call 
s   share (other), which would seem to be ideally valid on its static face, will cause a type 
violation if s has been polymorphically assigned the value of b.

The fundamental problem, then, is that we are trying to use s in two incompatible 
ways: as a polymorphic entity; and as the target of a call to a covariant routine. (In the 
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other working example, the problem is that we use p as both polymorphic entity and target 
of a call to a descendant-hidden routine add_vertex.)

The Catcall solution is drastic, in line with the Anchoring solution: it prohibits using 
an entity both polymorphically and covariantly. Like the Global solution, it will determine 
statically which entities can be polymorphic, but it will not try to be smart: instead of 
finding out the typeset, it just treats any polymorphic entity as suspect enough to warrant 
lifetime exclusion from any covariance or descendant hiding establishment.

Rule and definitions

The type rule of the Catcall approach is simple:

This is based on equally simple definitions. First, polymorphic entity:

The aim of the definition is to capture as polymorphic (“potentially polymorphic” 
would be more accurate) any entity that may at run time become attached to objects of 
more than one type. The definition only applies to reference types, since expanded entities 
cannot by nature be polymorphic.

In our examples, the skier s and the polygon p are both polymorphic from rule P1, 
since they appear in assignments, the first with a boy b and the second with a rectangle r.

If you have read the definition of the typeset concept in the Global approach, note 
how much more pessimistic the notion of polymorphic entity is, and simpler to check. 
Instead of trying to find out all the possible dynamic types of an entity, we settle for a 
binary property: can it be polymorphic, or can it not? Most strikingly (rule P3), we 
consider that any formal argument of a routine is polymorphic (unless it is expanded, 
as with integers and the like). We do not even bother to consider the calls to a routine: if 
you are an argument, you are at the beck and call of any client, so we cannot trust your 

Catcall type rule
Polymorphic catcalls are invalid.

Definition: Polymorphic entity
An entity x of reference (non-expanded) type is polymorphic if it satisfies 
any of the following properties:
P1 • It appears in an assignment x := y where y is of a different type or 

(recursively) polymorphic.
P2 • It appears in a creation instruction create {OTHER_TYPE} x where 

OTHER_TYPE is not the type declared for x.
P3 • It is a formal routine argument.
P4 • It is an external function.
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type. This rule is closely tied to the reusability goal of object technology, where any class 
has the potential, ultimately, to become part of a reusable library where any client software 
will be able to call it.

The distinctive feature of this rule is that it does not require any global check. To 
determine whether an entity is polymorphic, it suffices to examine the text of a class. 
There is not even any need to examine proper ancestors’ texts, provided we record, for 
each query (attribute or function) of each class, whether it is polymorphic. (We need this 
information since under P1 the assignment x := f will make x polymorphic if f is 
polymorphic, whether or not it comes from the same class.) Unlike the computation of 
typesets in the Global approach, the detection of polymorphic entities can proceed class 
by class, as part of the checks performed by an incremental compiler.

As discussed in the presentation of inheritance, this analysis can also be precious for 
optimization purposes

Calls, as well as entities, may be polymorphic:

The calls of both examples are polymorphic: s   share (g) since s is polymorphic, and 
p   add_vertex (…) since p is polymorphic. The definition implies that only qualified calls 
a   f (…) can be polymorphic. (Writing an unqualified call f (…) as Current   f (…) changes 
nothing since Current, to which no assignment is possible, cannot be polymorphic.)

Next we need the notion of catcall, based on the notion of CAT. A routine is a CAT 
(short for Changing Availability or Type) if some redefinition of the routine, in a 
descendant, makes a change of one of the two kinds we have seen as potentially 
troublesome: retyping an argument (covariantly), or hiding a previously exported feature.

This property is again incrementally checkable: any argument type redefinition or 
change of export status makes a routine a CAT. It yields the notion of catcall: any call that 
a CAT change could make invalid. This completes the set of definitions used by the Catcall 
type rule:

The Catcall type rule promotes our Yalta view by separating calls into two disjoint 
categories: polymorphic calls and catcalls. Polymorphic calls yield some of the expressive 

Definition: Polymorphic call
A call is polymorphic if its target is polymorphic.

Definition: CAT (Changing Availability or Type)
A routine is a CAT if some redefinition changes its export status or the type 
of any of its arguments.

Definition: Catcall
A call is a catcall if some redefinition of the routine would make it invalid 
because of a change of export status or argument type.
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power of the O-O method; catcalls yield the ability to redefine types and hide features. 
Using terminology introduced at the beginning of this chapter: polymorphism enhances 
the usefulness of the approach; type redefinition enhances its usability.

The calls of our examples are catcalls since share redefines its argument covariantly, 
and add_vertex, exported in RECTANGLE, is hidden in POLYGON. Since they are also 
polymorphic, they are prime examples of polymorphic catcalls and hence made invalid by 
the Catcall type rule.

17.8  AN ASSESSMENT

Before trying to summarize what we have learned on the covariance and descendant 
hiding issues, we should recall once more that system validity violations arise extremely 
rarely. The most important properties of static O-O typing are the ones summarized at the 
beginning of this chapter: the impressive array of type-related mechanisms which, with 
class-level validity, open the way to a safe and flexible method of software construction.

We have seen three solutions to the covariance problem, two of them also addressing 
descendant hiding. Which one is right?

The answer may not be final. The consequences of subtle interactions between O-O 
typing and polymorphism are not as well understood as the topics of the preceding 
chapters. The past few years have seen the appearance of numerous publications on the 
question, to which the bibliographical notes give the basic pointers. I hope that the present 
chapter has provided the elements for a definitive solution or something close to it.

The Global solution seems impractical because of the implied need for system-wide 
checking. But it helps understand the issue.

The Anchoring solution is extremely tempting. It is simple, intuitive, easy to 
implement. We must all the more regret its failure to support some of the key software 
engineering requirements of the object-oriented method, as summarized by the Open-
Closed principle. If you have perfect foresight, then the Anchoring solution is great; but 
what designer can promise to have perfect foresight, or assume perfect foresight from the 
authors of the library classes he reuses through inheritance?

This assumption limits the usefulness of many of the published approaches, such as those 
relying on type variables. If we can be assured that the developer always knows in advance 
which types may change, the theoretical problem becomes much easier, but it does not 
accurately model the practical problem of typed object-oriented software construction.

If we must give up the Anchoring approach, the Catcall type rule seems to be the 
appropriate one, easy enough to explain and enforce. Its pessimism should not exclude 
useful combinations. If a case that appears legitimate yields a polymorphic catcall, it is 
always possible to let it through safely by introducing an assignment attempt; this is a way 
to transfer some of the checks to run time. This should only happen in a marginal number 
of cases.

As a caveat, I should note that at the time of writing the Catcall solution has not yet 
been implemented. Until a compiler has been adapted to enforce the Catcall type rule and 
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applied successfully to many representative systems, small and large, where success 
means evidence that the rule is realistic (that all useful systems will pass muster, possibly 
at the expense of a few easily justifiable changes) and that checking it imposes no 
significant penalty on incremental recompilation times, we must refrain from proclaiming 
that on the problem of reconciling static typing and polymorphism with covariance and 
descendant hiding we have heard the last word.

17.9  THE PERFECT FIT

As a complement to the discussion of covariance it is useful to study a general technique 
addressing a common problem. This technique was devised as a result of the Catcall 
theory, but it can be used in the basic language framework without any new rule.

Assume that we have two lists of skiers, where the second list includes the roommate 
choice of each skier at the corresponding position in the first list. We want to perform the 
corresponding share operations, but only if they are permitted by the type rules, that is to 
say girls with girls, ranked girls with ranked girls and so on. Problems of this kind are 
presumably frequent.

A simple solution is possible, based on the preceding discussion and on assignment 
attempt. Consider the following general-purpose function:

fitted (other: GENERAL): like other

-- Current object if its type conforms to that of object attached to 
-- other; void otherwise.

do
if other /= Void and then conforms_to (other) then

 Result ?= Current

end
end

Function fitted returns the current object, but known through an entity of a type 
anchored to the argument; if this is not possible, that is to say if the type of the current 
object does not conform to that of the object attached to the argument, it returns void. Note 
the role of assignment attempt. The function relies on conforms_to, a feature of class 
GENERAL that determines whether the type of an object conforms to that of another.

Replacing conforms_to by same_type, another GENERAL feature, yields a function 
perfect_  fitted that returns void unless the types are exactly the same. 

Function fitted gives us a simple solution to the problem of matching skiers without 
violating type rules. We can for example add the following procedure to class SKIER and 
use it in lieu of share (perhaps making share a secret procedure for more control):
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safe_share (other: SKIER)
-- Choose other as roommate if permissible.

local
gender_ascertained_other: like Current

do
gender_ascertained_other :=   other    fitted (Current)
if gender_ascertained_other /= Void then

share (gender_ascertained_other)
else

“Report that matching is impossible for other”
end

end
For other of arbitrary SKIER type — not just like Current — we define a version 

gender_ascertained_other which has a type anchored to Current. To enforce identical 
types — so that a RANKED_GIRL goes only with another RANKED_GIRL, not with a 
mere GIRL — use perfect_  fitted instead of fitted.

If you have two parallel lists of skiers, representing planned roommate assignments:

occupant1, occupant2: LIST [SKIER]

you can iterate over the lists, applying at each stage 

occupant1    item    safe_share (occupant2    item)

to match elements at corresponding positions if and only if their types are compatible.

I find this technique elegant; I hope you will too. And of course parents anxious 
about what really happens during the ski trip should breathe a sigh of relief.

17.10  KEY CONCEPTS STUDIED IN THIS CHAPTER

• Static typing is essential for reliability, readability and efficiency.

• Static typing, to be realistic, requires a combination of mechanisms, including 
assertions, multiple inheritance, assignment attempt, constrained and unconstrained 
genericity, anchored declarations. The type system must not allow loopholes (“casts”).

• Practical rules for routine redeclarations should permit covariant redeclaration: both 
results and arguments may be redefined to types conforming to the originals.

• Covariance, as well as the ability to hide in a descendant a feature that was exported 
in an ancestor, raise the rare but serious possibility of type violations when combined 
with polymorphism. 

• Such type violations can be avoided through global analysis (impractical), limiting 
covariance to anchored types (conflicting with the Open-Closed principle), or the 
“catcall” technique which bars any covariance or descendant hiding for any routine 
used with a polymorphic target.
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18  
Global objects and constants
L ocal knowledge is not always enough; components of a software system may need to 
access global information. It is easy to think of examples: a shared value, such as the size 
of available memory; an error window, to which all the components of an interactive 
system must be able to output messages; the gateway to a database or network.

In classical approaches, it is not difficult to provide for global objects; you just 
declare them as global variables, owned by the main program. In the modular style of 
design made possible by object-oriented techniques, there is neither a main program nor 
global variables. But even if our software texts do not include global variables our 
software executions may still need to share objects. 

Such global objects pose a challenge to the method. Object technology is all about 
decentralization, all about modularity, all about autonomy. It has developed from the 
beginning of this presentation as a war of independence for the modules, each fighting for 
its freedom from the excesses of central authority. In fact, there is no central authority any 
more. How then do we satisfy the need for common institutions? In other words, how do 
we allow components to share data in a simple way, without jeopardizing their autonomy, 
flexibility and reusability?

It will not work, of course, to pass shared objects as arguments to the modules that 
need them. This would soon become clumsy if too many components need them. Besides, 
argument passing assumes that one module owns the value and then passes it on to others; 
in the case of a truly shared value no one module can claim ownership.

To find a better answer we will start from a well-known notion, which we need in 
object-oriented software construction just as much as we did in more traditional 
approaches: constants. What is, after all, a constant such as Pi if not a simple object shared 
by many modules? Generalizing this notion to more complex objects will provide a first 
step towards fully general constant and shared objects.

18.1  CONSTANTS OF BASIC TYPES

Let us start with a simple notation to denote constant values.
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Using symbolic constants

A rule of software style, the Symbolic Constant principle, states that when an algorithm 
refers to a certain value — a number, a character, a string… — it should almost never use 
it directly. Instead, a declaration should associate a name with the value, so that the 
algorithm can use the name (known as a symbolic constant) rather than the value (known 
as a manifest constant). Two reasons justify this principle:

• Readability: someone who reads your software may not understand what the value 50 
is doing in a certain algorithm; if instead you use the symbolic constant US_states_
count everything is clear.

• Extendibility: in practice, with a few exceptions (such as the value of π, unlikely to 
change soon), the only constant thing about constants is change. To update the value 
of a constant it suffices, if you have been using symbolic constants, to change one 
declaration. This is much nicer than having to chase throughout the software for all 
the places that may have relied on the earlier value.

The principle permits using manifest constants (hence the word “almost” above) for 
zero elements of various operations, as in a loop from i := 1 until i > n … iterating over 
the elements of an array whose numbering follows the default convention of starting at 1. 
(But n should be symbolic, not manifest.)

Although few software developers apply the Symbolic Constant principle as 
systematically as they should, the benefits of declaring a symbolic constant are well worth 
the small extra effort. So we need a clear and simple way of defining symbolic constants 
in an O-O framework.

Constant attributes

A symbolic constant, like everything else, will be defined in a class.We will simply treat 
a constant value as an attribute which happens to have a fixed value, the same for all 
instances of the class.

For the syntax, we use the “=” symbol, followed by a value of the appropriate type. 
The following examples include one for each of the basic types INTEGER, BOOLEAN, 
REAL and CHARACTER: 

Zero: INTEGER = 0
Ok: BOOLEAN =True
Pi: REAL = 3.1415926524
Backslash: CHARACTER = ' \ '
Backslash is of type CHARACTER, its value a single character. Constants of string type, 
denoting character strings of arbitrary length, will be discussed below. 

As these examples illustrate, the recommended style convention for names of 
constant attributes is to start with a capital letter, with the rest in lower case.

A descendant may not redefine the value of a constant attribute.
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Like other attributes, constant attributes are either exported or secret; if they are 
exported, clients of the class may access them through feature calls. So if C is the class 
containing the above declarations and x, declared of type C, has a non-void value, then 
x   Backslash denotes the backslash character. 

Unlike variable attributes, constant attributes do not occupy any space at run time in 
instances of the class. So there is no run-time penalty for adding as many constant 
attributes as you need. 

18.2  USE OF CONSTANTS 
Here is an example showing how clients may use constant attributes defined in a class: 

class FILE feature
error_code: INTEGER; -- Variable attribute

Ok: INTEGER = 0

Open_error: INTEGER = 1
…
open (file_name: STRING)

-- Open file of name file_name
-- and associate it with current file object

do
error_code := Ok
…
if “Something went wrong” then

error_code := Open_error
end

end
… Other features …

end
A client may call open and compare the resulting error code to any of the constants 

to test how the operation went: 

f: FILE; …
f   open
if f   error_code = f   Open_error then

“Appropriate action”
else

…
end
Often, however, a group of constants is needed without being attached to any 

particular object. For example, a system performing physics computations may use some 
numerical constants; or a text editor may need character constants describing the character 
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keys associated with various commands. In such a case, the constants will still be grouped 
in a class (where else could they be?), but there will not be any instances of that class; it 
is simply used as parent for the classes that need to access the constants, as in 

class EDITOR_CONSTANTS feature
Insert: CHARACTER is 'i'
Delete: CHARACTER is 'd'; -- etc.
…

end

class SOME_CLASS_FOR_THE_EDITOR inherit
EDITOR_CONSTANTS
… Other possible parents …

feature …
… Routines of the class have access to the constants
     declared in EDITOR_CONSTANTS …

end

A class such as EDITOR_CONSTANTS is used only to host a group of related 
constants, and its role as an “abstract data type implementation” (our working definition 
of the notion of class) is less obvious than in earlier examples. But it definitely serves a 
useful purpose. We will examine its theoretical justification in a later chapter.

The scheme shown would not work without multiple inheritance, since SOME_
CLASS_FOR_THE_EDITOR may need other parents, either for access to other constants 
or for more standard uses of inheritance.

18.3  CONSTANTS OF CLASS TYPES

Symbolic constants, allowing you to use identifiers to denote certain constant values, are 
not just useful for predefined types such as INTEGER; the need also arises for types that 
developers have defined, through classes. Here the solution is less obvious. 

Manifest constants are inappropriate for class types 

A typical example in which you may need to define a constant for a non-basic types is that 
of a class describing complex numbers:

class COMPLEX creation
make_cartesian, make_ polar

feature
x, y: REAL

-- Real and imaginary parts
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make_cartesian (a, b: REAL)
-- Initialize with real part a, imaginary part b.

do
x := a; y := b

end
… Other routines (x and y are the only attributes) …

end

You may want to define the complex number i, with real part 0 and imaginary part 
1. The first idea that comes to mind is a manifest constant notation such as

i: COMPLEX is “Expression specifying the complex number (0, 1)”

How can you write the expression after is? For simple types, the manifest constants 
were self-evident: 345 is a constant of type integer, 'A' of type character. But no such 
predefined notation is available for developer-defined class types. 

One could imagine a notation based on the attributes of the class; something like

i: COMPLEX is COMPLEX (0, 1)

But such an approach (although present in some O-O languages) is incompatible 
with the principles of modularity which serve as the basis for object technology. It would 
mean requiring clients of COMPLEX to describe constants in terms of the implementation. 
This breaks information hiding. You could not add an attribute, even a secret one, without 
invalidating client code; neither could you re-implement an attribute such as x as a 
function (to switch internally to a polar representation). 

Besides, how could you make sure that such manifest constants will satisfy the class 
invariant if there is one? 

This last remark opens the way to a correct solution. An earlier chapter noted that it 
is the responsibility of the creation procedures to make sure that every object satisfies 
the invariant immediately upon creation. Creating objects in any other way (apart from the 
safe companion mechanism, clone) would lead to error situations. So we should look for 
a mechanism that, rather than manifest objects in the above style, will rely on the usual 
technique for object creation.

Once functions 

We may view a constant object as a function. For example i could be defined within class 
COMPLEX itself as 

i: COMPLEX
-- Complex number with real part 0 and imaginary part 1

do
create Result   make_cartesian (0, 1)

end
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This almost does the job, since the function will always return a reference to an 
object of the desired form. Since we rely on normal creation procedures, the invariant will 
be satisfied, so we will only produce consistent objects.

The result, however, is not exactly what we need: each client use of i in the client 
produces a new object, identical to all the others. This is a waste of time and space: 

To get the proper behavior, we need a special kind of function: one which executes 
its body only the first time it is called. We can call this a once function. A once function 
is otherwise similar to a normal function; syntactically, it will be distinguished by the 
keyword once, replacing the usual do, to introduce the body:

i: COMPLEX
-- Complex number with real part 0 and imaginary part 1

once 
create Result   make_cartesian (0, 1)

end
The first time a once function is called during a system’s execution, it executes its 

body. In the example this creates an object representing the desired complex number, and 
returns a reference to that object. Every subsequent call executes no instruction at all, but 
terminates immediately, returning the result computed the first time around. 

Regarding efficiency: a call to i other than the first should take only marginally 
longer than an attribute access. 

The result computed by the first call to a once function is applicable to all instances 
of a class, in the general sense of the word “instance” covering instances of descendants 
as well, except of course for any descendant that redefines the function. As a consequence 
you can freely redefine functions from once to non-once and conversely. Here if a 
descendant COMPLEX1 of COMPLEX redefines i, a call to i on an instance of 
COMPLEX1 will use the redefined version (whether once or non-once); a call on a direct 
instance of COMPLEX or a descendant other than COMPLEX1 will use the once function, 
that is to say the value computed by the first such call.

18.4  APPLICATIONS OF ONCE ROUTINES
The notion of once routine extends beyond examples such as i to more general applications: 
shared objects, global system parameters, initialization of common properties.

Shared objects 

For reference types such as COMPLEX, as you may have noted, the “once” mechanism 
actually offers constant references, not necessarily constant objects. It guarantees that the 
body of the function is executed only once, to compute a result, which later calls will also 
return without further computation.

If the function returns a value of a reference type, its body will usually contain a 
creation instruction, as in the example of i. All calls will return a reference to the object 

The only change
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created by the first. Although the creation will never be executed again, nothing prevents 
callers from modifying the object through the reference. Therefore the mechanism 
provides shared objects rather than constant ones. 

An example of a shared object, cited at the beginning of this chapter, is a window 
showing error messages in an interactive system. Assume we have decided that any 
component of the system that detects a user error may output a message to that window, 
through a call of the form 

Message_window   put_text ("Appropriate error message")

Here message_window is of type WINDOW, with class WINDOW declared as

class WINDOW creation
make

feature
make (…)

-- Create window at size and position indicated by arguments.
do … end

text: STRING
-- Text to be displayed in window

put_text (s: STRING)
-- Make s the text to be displayed in window.

do
text := s

end
… Other features …

end

Obviously Message_window must be the same for all components of the system. 
This is achieved by declaring the corresponding feature as a once function: 

Message_window: WINDOW
-- Window where error messages will be output

once
create Result   make ("…Size and position arguments…")

end

In this case the message window object must be shared by all its users, but it is not a 
constant object: each call to put_text changes the object by putting its own chosen text in 
it. The best place to declare Message_window is a class from which all system components 
needing access to the message window will inherit.

In the case of a shared object that denotes a constant, such as i, you may want to disallow 
calls of the form i   some_ procedure that might change the fields. To achieve this, simply 
include clauses i   x = 0 and i   y = 1 in the class invariant.
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Once functions returning results of basic types 

Another application of once functions is to represent global values — “system 
parameters” — used by several classes in a system. Such values will usually be constant 
over a given system execution; they are initially computed from user input, or from some 
information obtained from the environment. For example: 

• The components of a low-level system may need to know the available memory 
space, obtained from the environment at initialization time. 

• A terminal handler may start by querying the environment about the number of 
terminal ports: once obtained, these data elements are then used by several modules 
of the application. 

Such global values are similar to shared objects such as Message_window; but in 
general they are values of basic types rather than class instances. You may represent them 
through once functions. The scheme is: 

Const_value: T
-- A system parameter computed only once

local
envir_ param: T  ' -- Any type (T or another)

once
“Get the value of envir_ param from the environment”
Result := “Some value computed from envir_ param”

end

Such once functions of basic types describe dynamically computed constants. 

Assume the above declaration is in a class ENVIR. A class needing to use Const_value 
will get it simply by listing ENVIR among its parents. There is no need here for an 
initialization routine as might be used in classical approaches to compute Const_value, 
along with all other global parameters, at the beginning of system execution. As was seen 
in an earlier chapter, such a routine would have to access the internal details of many other 
modules, and hence would violate the criteria and principles of modularity: 
decomposability, few interfaces, information hiding etc. In contrast, classes such as 
ENVIR may be designed as coherent modules, each describing a set of logically related 
global values. The first component that requests the value of a global parameter such as 
Const_value at execution time will trigger its computation from the environment. 

Although Const_value is a function, components that use it may treat it as if it were 
a constant attribute. 

The introduction to this chapter mentioned that none of the modules that use a shared 
value has more claim to own it than any of the others. This is especially true in the cases 
just seen: if, depending on the order of events in each execution of the system, any one 
among a set of modules may trigger the computation of the value, it would be improper to 
designate any single one among them as the owner. The modular structure reflects this.
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Once procedures 

The function close should only be called once. We recommend using a global 
variable in your application to check that close is not called more than once.

(From the manual for a commercial C library.)

The “once” mechanism is interesting not just for functions but for procedures as well. 

A once procedure is appropriate when some facility used on a system-wide basis 
must be initialized, but it is not known in advance which system component will be the 
first to use the facility. It is like having a rule that whoever comes in first in the morning 
should turn on the heating. 

A simple example is a graphics library providing a number of display routines, 
where the first display routine called in any system execution must set up the terminal. The 
library author could of course require every client to perform a setup call before the first 
display call. This is a nuisance for clients and does not really solve the problem anyway: 
to deal properly with errors, any routine should be able to detect that it has been called 
without proper setup; but if it is smart enough to detect this case, the routine might just as 
well do the setup and avoid bothering the client!

Once procedures provide a better solution:

check_setup
-- Perform terminal setup if not done yet.

once
terminal_setup -- Actual setup action

end

Then every display routine in the library should begin with a call to check_setup. The 
first call will do the setup; subsequent ones will do nothing. Note that check_setup does 
not have to be exported; client authors do not need to know about it. 

This is an important technique to improve the usability of any library or other 
software package. Any time you can remove a usage rule — such as “Always call 
procedure xyz before the first operation” — and instead take care of the needed operations 
automatically and silently, you have made the software better.

Arguments 

Like other routines, once routines — procedures and functions — can have arguments. But 
because of the definition of the mechanism, these arguments are only useful in the call that 
gets executed first.

In the earlier analogy, imagine a thermostat dial which anyone coming into the 
building may turn to any marking, but such that only the first person to do so will set the 
temperature: subsequent attempts have no effect. 
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Once functions, anchoring and genericity

(This section addresses a specific technical point and may be skipped on first reading.)

Once functions of class types carry a potential incompatibility with anchored types 
and genericity. 

Let us start with genericity. In a generic class EXAMPLE [G] assume a once function 
returning a value whose type is the formal generic parameter:

f: G once … end
and consider a possible use:

character_example: EXAMPLE [CHARACTER]
… 
print (character_example  f )

So far so good. But you also try to do something with another generic derivation:

integer_example: EXAMPLE [INTEGER]
… 
print (integer_example  f + 1)
The last instruction adds two integer values. Unfortunately, the first of them, the 

result of calling f, has already been computed since f is a once function; and it is a 
character, not an integer. The addition is not valid.

The problem is that we are sharing a value between different generic derivations 
which expect the type of that value to depend on the actual generic parameter.

A similar issue arises with anchored types. Assume a class B which adds an attribute 
to the features of its parent A: 

class B inherit A feature
attribute_of_B: INTEGER

end
Assume that A had a once function f, returning a result of anchored type: 

f: like Current once create Result   make end
and that the first evaluation of f  is in

a2 := a1   f

with a1 and a2 of type A. The evaluation of f creates a direct instance of A, and attaches it 
to entity a2, also of type A. Fine. But assume now that a subsequent use of f is 

b2 := b1   f

where b1 and b2 are of type B. If f were a non-once function, this would not cause any 
problem, since the call would now produce and return a direct instance of B. Since here 
we have a once function, the result has already been computed through the first call; and 
that result is a direct instance of A, not B. So an instruction such as

print (b2   attribute_of_B)
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will try to access a non-existent field in an object of type A.

The problem is that anchoring causes an implicit redefinition. Had f  been explicitly 
redefined, through a declaration appearing in B under the form

f: B once create Result   make end

assuming that the original in class A similarly returned a result of type A (rather than 
like Current), then we would not have any trouble: direct instances of A use the A version, 
direct instances of B use the B version. Anchoring, of course, was introduced precisely to 
rid us of such explicit redefinitions serving type needs only.

These two cases are evidence of incompatibilities between the semantics of once 
functions (procedures are fine) and the results of either anchored or formal generic types.

One way out, suggested by the last observation on implicit vs. explicit redefinition, 
would be to treat such cases as we would explicit redefinitions: to specify that the result 
of a once function will be shared only within each generic derivation of a generic class, 
and, if the result is anchored, only within the direct instances of the class. The 
disadvantage of this solution, however, is that it goes against the expected semantics of 
once functions, which from a client’s viewpoint should be the conceptual equivalent of a 
shared attribute. To avoid confusion and possible errors it seems preferable to take a more 
draconian attitude by banning such cases altogether:

18.5  CONSTANTS OF STRING TYPE 

The beginning of this chapter introduced character constants, whose value is a single 
character. The example was

Backslash: CHARACTER is ' \ '

Often, classes will also need symbolic constants representing multi-character 
strings.The notation for manifest string constants will use double quotes: 

[S1]
Message: STRING = "Syntax error"

Recall that STRING is a class of the library, not a simple type. So the value associated 
at run time with an entity such as Message is an object (an instance of STRING). As you 
may have guessed, the above declaration is a shorthand for the declaration of a once 
function, here of the form: 

Once Function rule

The result type of a once function may not be anchored, and may not involve 
any formal generic parameter.
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See “Multi-branch”, 
page 449.
Message: STRING
-- String of length 12, with successive characters
-- S, y, n, t, a, x, , e, r, r, o, r

once
create Result   make (12)
Result   put ('S', 1)
Result   put ('y', 2)
…
Result   put ('r', 12)

end
The creation procedure for strings takes as argument the initial expected length of the 
string; put (c, i) replaces the i-th character with c. 

Such string values are therefore not constants but references to shared objects. Any 
class that has access to Message may change the value of one or more of its characters. 

You can also use string constants as expressions, for argument passing or assignment:

Message_window   display ("CLICK LEFT BUTTON TO CONFIRM EXIT")
greeting := "Hello!"

18.6  UNIQUE VALUES
It is sometimes necessary to define an entity that has several possible values denoting 
possible cases. For example a read operation may produce a status code whose possible 
values are codes meaning “successful”, “error on opening” and “error on reading”.

A simple solution is to use a variable integer attribute

code: INTEGER

with a set of associated integer constants, such as

[U1]
Successful: INTEGER = 1
Open_error: INTEGER = 2
Read_error: INTEGER = 3

so that you can write conditional instructions of the form

[U2]
if code = Successful then …

or multi-branch instructions of the form

[U3]
inspect

code
when Successful then

…
when …
end
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It is tedious, however, to have to come up with the individual constant values. The 
following notation has the same practical effect as [U1]:

[U4]
Successful, Open_error, Read_error: INTEGER unique

A unique value specification, coming in lieu of a manifest integer value in the 
declaration of a constant integer attribute, indicates that the value is chosen by the 
compiler rather than the developer. So the conditional instruction [U2] and the multi-
branch [U3] are still applicable.

All unique values within a class are guaranteed to be positive and different; if they 
are declared together, as the three in [U4], they are also guaranteed to be consecutive. So 
if you want to express that code will only receive one of their values, you can include the 
invariant clause

code >= Successful; code <= Read_error

With this invariant, a descendant — which, as we know, may change the invariant 
only by strengthening it — may constrain the possible values of code further, for example 
to just two possibilities; it may not extend the set of possibilities.

You should only use Unique values to represent a fixed set of possible values. As 
soon as this set is open to variation, or the instructions in a structure such as [U3] are non-
trivial, it is preferable to devise a set of classes which variously redefine some features, 
and then to rely on dynamic binding, satisfying the Open-Closed principle. More 
generally, do not use unique values for classification since the object-oriented method has 
better techniques. The preceding example is typical of good uses of the mechanism; others 
would be traffic light states (green, yellow, red: INTEGER unique) or, as seen earlier, 
notes on the scale (do, re, mi, …: INTEGER unique). But a declaration savings, checking,
money_market: INTEGER unique is probably a misuse if the various kinds of account 
have different features or different implementations of a common feature; here inheritance 
and redefinition will most likely provide a better solution.

These observations can be summed up as a methodological rule:

Although similar in some respects to the “enumerated types” of Pascal and Ada, 
unique declarations do not introduce new types, only integer values. The discussion 
section will explore the difference further.

Discrimination principle

Use unique values to describe a fixed number of possible cases. For 
classification of data abstractions with varying features, use inheritance.
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18.7  DISCUSSION
In this discussion, the term “global object” refers both to global constants of basic types and 
to shared complex objects; their “initialization” includes object creation in the latter case. 

Initializing globals and shared objects: language approaches 
The principal problem addressed by this chapter is an instance of a general software issue: 
how to deal with global constant and shared objects, and particularly their initialization in 
libraries of software components. 

Since the initialization of a global object should be done just once, the more general 
issue is how to enable a library component to determine whether it is the first to request a 
certain service. 

This boils down to an apparently simple question: how to share a boolean variable 
and initialize it consistently. We can associate with a global object p, or any group of 
global objects that need to be initialized at the same time, a boolean indicator, say ready, 
which has value true if and only if initialization has been performed. Then we may include 
before any access to p the instruction

if not ready then
“Create or compute p”
ready := True

end
The initialization problem still applies to ready, itself a global object that must 

somehow be initialized to false before the first attempt to access it. 
This problem has not changed much since the dawn of programming languages, and 

the early solutions are still with us. A common technique in block-structured languages 
such as Algol or Pascal is to use for ready a global variable, declared at the highest 
syntactical level. The main program will do the initialization. But this does not work for a 
library of autonomous modules which, by definition, is not connected to any main program. 

In Fortran, a language designed to allow routines to be compiled separately (and hence 
to enjoy a certain degree of autonomy), the solution is to include all global objects, and in 
particular ready indicators, in a shared data area called a common block, identified by its 
name; every subroutine accessing a common block must include a directive of the form 

COMMON /common_block_name/ data_item_names
There are two problems with this approach: 

• Two sets of routines may use a common block of the same name, triggering a conflict 
if an application needs them both. Changing one of the names to remove the conflict 
may cause trouble since common blocks, by nature, are shared by many routines.

• How do we initialize the entities of a common block, such as our ready indicators? 
Because there is no default initialization rule, any data in a common block must be 
initialized in a special module called a “block data” unit. Fortran 77 allows named 
block data units, so that developers can combine global data from various contexts 
— provided they do not forget to include all the relevant block data units. A serious 
risk of accidental inconsistency exists. 
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On the ARRAY case 
see “Efficiency con-
siderations”, page 
327
The C solution is conceptually the same as in Fortran 77. The ready indicator should 
be declared in C as an “external” variable, common to more than one “file” (the C 
compilation unit). Only one file may contain the declaration of the variable with its initial 
value (false in our case); others will use an extern declaration, corresponding to Fortran’s 
COMMON directive, to state that they need the variable. The usual practice is to group such 
definitions in special “header” files, with names conventionally ending with    h; they 
correspond to the block data units of Fortran. The same problems arise, partially alleviated 
by “Make” utilities which help programmers keep track of dependencies. 

A solution would appear to be at hand with modular languages such as Ada or 
Modula 2 where routines may be gathered in a higher-level module, a “package” in Ada 
terms: if all the routines using a group of related global objects are in the same package, 
the associated ready indicators may be declared as boolean variables in that package, 
which will also contain the initialization. But this approach (also applicable in Fortran 77 
and C using techniques described in chapter 18) does not solve the problem of initialization 
in autonomous library components. The more delicate question discussed in this chapter is 
what to do for global objects that must be shared between routines in different and 
independent modules. Ada and Modula provide no simple answer in this case.

In contrast, the “once” mechanism preserves the independence of classes, but allows 
context-dependent initializations. 

Manifest string constants
The notation allows string constants (or more properly, as we have seen, shared objects) 
to be declared in manifest form, using double quotes: "…". A consequence of this policy 
is that the language definition, and any compiler, must rely on the presence of class 
STRING in the library. This is a compromise between two extreme solutions: 

• STRING could have been a predefined basic type, as is the case in many languages. 
This, however, would have meant adding all string operations (concatenation, 
substring extraction, comparison etc.) as language constructs, making the language 
considerably more complex, even though only few applications require all these 
operations; some do not even need strings at all. Among the advantage of using a 
class is the ability to equip its operations with precise specifications through 
assertions, and to allow other classes to inherit from it.

• Treating STRING as just any other class would preclude manifest constants of the 
"…" form [S1], requiring developers always to enter the characters individually as 
in form [S2]. It might also prevent the compiler from applying optimizations for 
time-sensitive operations such as character access. 
So STRING, like its companion ARRAY, leads a double life: predefined type when 

you need manifest constants and optimization, class when you need flexibility and 
generality. All this, of course, is part of the general effort to have a single, universal, 
consistent type system entirely based on the notion of class.

Unique values and enumerated types 
Pascal and derivatives allow declaring a variable as

code: ERROR
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where ERROR is declared as an “enumerated type”:
type ERROR = (Normal, Open_error, Read_error)
Being declared of type ERROR, variable code may only take the values of this type: 

the three symbolic codes given. 
We have seen how to obtain the equivalent effect in the O-O notation: define the 

symbolic codes as unique integer constants, and code as an integer attribute, possibly with 
an invariant clause stating that its value must lie between Normal and Read_error. The 
result at execution time is almost identical, since Pascal compilers typically implement 
values of an enumerated type by integers. (A good compiler may take advantage of the 
small number of possible values to represent entities such as code by short integers.)

The unique technique involves no new type. It seems indeed hard to reconcile the 
notion of enumerated type with object technology. All our types are based on classes, that 
is to say abstractly characterized by the applicable operations and their properties. No such 
characterization exists for enumerated types, which are mere sets of values. Enumerated 
types actually raise problems even in non-O-O languages:

• The status of the symbolic names is not clear. Can two enumerated types share one 
or more symbolic names (as Orange both in type FRUIT and in type yy-unknown)? 
Are they exportable and subject to the same visibility rules as variables?

• It is difficult to pass values of an enumeration type to and from routines written in 
other languages, such as C or Fortran, which do not support this notion. Since 
unique values are plain integers they cause no such problem.

• Enumerated values may require special operators. For example you will expect a 
next operator yielding the next value, but it will not be defined for the last 
enumeration element. You will also need an operator to associate an integer with 
every enumerated value (its index in the enumeration). To go the other way around 
requires more operators since we must know the bounds of the enumeration to 
restrict applicable integer values. The resulting syntactic and semantic complexity 
seems out of proportion with the mechanism’s contribution to the language.

Uses of enumeration types in Pascal and Ada tend to be of the form
type FIGURE_SORT = (Circle, Rectangle, Square, …)

to be used in connection with variant record types of the form 
FIGURE =

record
perimeter: INTEGER;
… Other attributes common to figures of all types …
case fs: FIGURE_SORT of

Circle: (radius: REAL; center: POINT);
Rectangle: … Attributes specific to rectangles …;
…

end
end

themselves used in case discrimination instructions:
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procedure rotate (f: FIGURE)
begin case f of

Circle: … Appropriate actions to rotate a circle …;
Rectangle: …;

…

which we have learned to handle in a better way to preserve extendibility: by defining a 
different version of procedures such as rotate for each new variant, represented by a class.

When this most important application of enumerated types disappears, all that 
remains is the need, in some cases, to select integer codes having a fixed number of 
possible values. Defining them as integers avoids many of the semantic ambiguities 
associated with enumerated types; for example there is nothing mysterious about the 
expression Circle + 1 if Circle is officially an integer. The only unpleasantness of integers 
would be to have to assign the values yourself; unique values solve that problem.

18.8  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 
• A challenging problem in any approach to software construction is how to allow for 

global data: objects that must be shared by various modular components, and 
initialized at run time by whatever component happens to need them first. 

• A constant can be manifest (expressed as a self-describing representation of its 
value) or symbolic (expressed by a name).

• You can declare manifest constants of basic types as constant attributes, occupying 
no space in objects. 

• Except for strings, developer-defined types have no manifest constants, which would 
damage information hiding and extendibility.

• A once routine, which differs from a normal function by one keyword, once instead 
of do, is evaluated only once during a system’s execution: the first time any 
component of the system calls it. For a function, subsequent calls return the same 
value as the first; for a procedure, subsequent calls have no effect. 

• Shared objects may be implemented as once functions. You can use the invariant to 
specify that they are constant.

• Use once procedures for operations to be performed only once over the execution of 
a system, such as initializations of global parameters.

• The type of a once function may not be anchored or generic.

• Constants of string types are treated internally as once functions, although they look 
like manifest constants written in double quotes.

• Enumerated types à la Pascal do not go well with the object-oriented method, but to 
represent codes with several possible values there is a need for “unique” attributes: 
symbolic constants of type INTEGER, whose value is chosen by the compiler rather 
than by the software writer.



GLOBAL OBJECTS AND CONSTANTS  §18.9 660

See “Once functions, 
anchoring and 
genericity”, page 652.
18.9  BIBLIOGRAPHICAL NOTES
[Welsh 1977] and [Moffat 1981] study the difficulties raised by enumerated types.

Some of the techniques of this chapter were introduced in [M 1988b].

EXERCISES

E18.1  Emulating enumerated types with once functions
Show that in the absence of Unique types a Pascal enumerated type of the form 

type ERROR = (Normal, Open_error, Read_error)
could be represented by a class with a once function for each value of the type.

E18.2  Emulating unique values with once functions
Show that in a language that does not support the notion of unique declaration it is 
possible to obtain the effect of

value: INTEGER unique
by a declaration of the form

value: INTEGER once … end
where you are requested to fill in the body of the once function and anything else that may 
be needed.

E18.3  Once functions in generic classes
Give an example of a once function whose result involves a generic parameter and, if not 
corrected, would yield a run-time error. 

E18.4  Once attributes?

Examine the usefulness of a notion of “once attribute”, patterned after once routines. A 
once attribute would be common to all instances of the class. Issues to be considered 
include: how does a once attribute get initialized? Is the facility redundant with once 
functions without arguments and, if not, can you explain clearly under what conditions 
each facility is appropriate? Can you think of a good syntax for declaring once attributes? 



Part D: 
Object-oriented methodology: 
applying the method well



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part D will cover the methodology of object orientation: how to apply, for the benefit 
of our projects and the success of our organizations, the powerful set of concepts and 
techniques reviewed in the preceding chapters.



19  
On methodology
E ntirely devoted to methodology, the next few chapters — making up part D of this 
book — examine how to address the issues facing object-oriented projects: how to find 
the classes; how not to misuse inheritance; the place of object-oriented analysis; 
fundamental design ideas (“patterns”); how to teach the method; the new software 
lifecycle. The result will, I hope, help you understand how best to take advantage of the 
techniques that we have now finished exploring.

It is appropriate, before going into the study of the rules, to reflect on the role of 
methodology in software. This will be an opportunity to define meta-rules — rules on how 
to make rules — which will help us devise sound methodological advice and separate the 
best from the rest in the methodological literature. In passing we will devise a taxonomy 
of rules, finding out that certain kinds are more desirable than others. Finally we will reflect 
on the attractive and dangerous role of metaphors, and take a short lesson in modesty.

19.1  SOFTWARE METHODOLOGY: WHY AND WHAT
People want guidance. The quest for Principles of Truth, which one only has to follow to 
succeed, is neither new nor specific to software.

The software literature, including for the past few years its object-oriented branch, 
has capitalized on this eagerness and attempted to offer recipes. This has resulted in much 
useful advice being made available (along with some more questionable ideas). 

We must remember, however, that there is no easy path to quality software. Earlier 
chapters have pointed out several times that software construction is a challenging task. In 
the past few years our grasp of the issues has vastly improved, as illustrated in particular by 
the techniques presented in this book, but at the same time the size and ambition of what we 
are trying to do has been growing even faster, so the problem remains as difficult as it ever was.

It is important, then, to know the benefits and limitations of software methodology. 
From the following chapters and from the rest of the object-oriented literature, you are 
entitled to expect good advice, and the benefit of other people’s experience. But neither 
here nor there will you find a sure-fire way to produce good software.

A comparison made in an earlier chapter helps set the limits of what you can expect. 
In many respect, building a software system is similar to developing a mathematical theory. 
Mathematics, as software construction, can be taught, including the general principles that 
help talented students produce brilliant results; but no teaching can guarantee success.
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[Dijkstra 1968].
Not all recipe-style approaches are doomed. If you sufficiently restrict the 
application domain until you are left with a basic set of problem patterns, then it may be 
possible to define a teachable step-by-step process; this has occurred in some areas of 
business data processing, where methodologists have identified a small number of widely 
applicable solution schemes. The eventual fate of such schemes, of course, is to be 
subsumed by software packages or reusable libraries. But as soon as you open up the 
problem domain, no simplistic approach will work; the designer must exert his best powers 
of invention. A method will help through general guidelines, through the example of 
previous successful designs — also the example of what does not work — but not much 
more.

Keep these observations in mind both when reading part D and when going on to the 
methodology literature, where some methods make exaggerated claims. That is not 
necessarily a reason for rejecting them wholesale, as they may still include some useful 
advice; but they should be taken with a grain of salt.

A point of terminology: it has become customary in some of the literature to talk about 
specific “methodologies”, really meaning methods (actually even less: variants of a 
single general method, the object-oriented method). This practice may be viewed as just 
another mildly irritating example of verbal inflation — such as talking of repairmen as 
maintenance engineers — but is damaging since it leads readers to suspect that if the label 
is inflated the contents must be oversold. This book only uses the word methodology in 
the singular and sticks to the meanings that common dictionaries give for it: the study of 
methods; the “application of the principles of reasoning to scientific and philosophical 
inquiry”; and a system of methods.

19.2  DEVISING GOOD RULES: ADVICE TO THE ADVISORS

Before going into specific rules for using object-oriented techniques, it is necessary to ask 
ourselves what we should be looking for. The methodologist is entrusted with a serious 
responsibility: telling software developers how to write their software, and how not to write 
it. In a field where religious metaphors come up so often, it is hard to avoid the comparison 
with preachers or directors of conscience. Such a position, as is well known, is subject to 
abuse; it is appropriate, then, to define a few rules on rules: advice for the advisors.

The need for methodology guidelines

The field of software development methodology is not new. Its origins may be traced to 
Dijkstra’s famous Go To Statement Considered Harmful letter and subsequent 
publications by the same author and his colleagues on structured programming. But not 
all subsequent methodological work has upheld their standards.

It is relatively easy indeed to legislate about software construction, but the danger is 
great of producing rules that are useless, poorly thought out, or even harmful. The 
following guidelines, based on an analysis of the role of methodology in software, may 
help us avoid such pitfalls.
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Theory

The first duty of an advisor is to base his advice on a consistent view of the target area:

Dijkstra’s example is still a good guide here. He did not just attack the Goto 
instruction for reasons of taste or opinion, but supported his suggested ban by a carefully 
woven chain of reasoning. One may disagree with some of that argument, but not deny 
that the conclusion is backed by a well thought-out view of the software development 
process. To counter Dijkstra’s view you must find a flaw in his theory and provide your 
own replacement for that theory.

Practice

The theory is the deductive part of software methodology. But rules that would only be 
rooted in theory could be dangerous. The empirical component is just as important:

Perhaps one day someone will disprove this principle by devising a brilliant and 
applicable method of software construction through the sole power of abstract reasoning. 
In physics, after all, some of the most directly practical advances originated with 
theoreticians who never came close an experiment. But in software engineering the case 
has not occurred — all the great methodologists have also been programmers and project 
leaders on large developments — and seems unlikely to occur. Object technology in 
particular is among other things, an intellectual tool to build large and complex systems; 
the only approach, in fact, that has attempted consistently and comprehensively to reach 
this goal. One can master the essential concepts through taking classes, reading the 
literature, performing small-scale experiments and thinking further, but that is not 
preparation enough to give good methodological advice. The experience of playing a key 
role in the building of large systems — thousands of classes, hundreds of thousands of 
lines — is indispensable.

Such an experience must include all activities of the software lifecycle: analysis, 
design, implementation, and of course maintenance (the final reckoning, at which one 
recognizes whether the solution adopted at earlier stages stands the test of time and 
change, or collapses miserably).

Analysis experience, or even analysis and design experience, is not enough. More 
than once I have seen analysis consultants who do their job, charge their fees, and leave 
the company with no more than “yy-bubbles and arrows” — an analysis document. The 

Theoretical Basis methodology principle
Software methodology rules must be based on a theory of the underlying 
subject.

Practical Basis methodology principle
Software methodology rules should backed by extensive practical experience.
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company then has to pick up the pieces and do the hard work; sometimes the analyst’s 
work turns out to be totally useless as it has missed some of the most important practical 
constraints. An “analysis only” approach belies the fundamental ideas of seamlessness and 
reversibility, the integrated lifecycle that characterizes object technology, where analysis 
and design are interwoven with implementation and maintenance. Someone who misses 
part of this picture is not equipped to give methodological advice.

Reuse
Having played a key part in some large projects is necessary but not sufficient. In the 
object-oriented field the Practical Basis precept yields a corollary: the need for practical 
reusability experience. 

Among the distinctive properties of the method is its ability to yield reusable 
components. No one can claim to be an expert who has not produced a reused O-O library; 
not just components claimed to be reusable, but a library that has actually been reused by 
a substantial number of people outside of the original group. Hence the next precept:

A typology of rules
Next we should turn to the form of methodology rules. What kind of advice is effective in 
software development methodology?

A rule may be advisory (inviting you to follow a certain style) or absolute (enjoining 
you to work in a certain way); and it may be phrased in a positive form (telling you what you 
should do) or in negative form (telling you what you should not do). This gives four kinds:

The requirements are slightly different in each case.

Absolute positives

Rules of the absolute positive kind are the most useful for software developers, since they 
provide precise and unambiguous guidance.

Reuse Experience methodology principle

To claim expert status in the object-oriented field, one must have played a 
key role in the development of a class library that has successfully been 
reused by widely different projects in widely different contexts.

Classification of methodological rules

• Absolute positive: “Always do a”.
• Absolute negative: “Never use b”.
• Advisory positive: “Use c whenever possible”.
• Advisory negative: “Avoid d whenever possible”.



§19.2   DEVISING GOOD RULES: ADVICE TO THE ADVISORS 667
Unfortunately, they are also the least common in the methodological literature, partly 
for a good reason (for such precise advice, it is sometimes possible to write tools that carry 
out the desired tasks automatically, removing the need for methodological intervention), 
but mostly because advisors are too cautious to commit themselves, like a lawyer who 
never quite answers “yes” or “no” to a question for fear of being blamed for the 
consequences if his client does act on the basis of the answer.

Yet such rules are badly needed:

Absolute negatives

Absolute negatives are a sensitive area. One wishes that every methodologist who 
followed in Dijkstra’s footsteps had taken the same care to justify his negatives as Dijkstra 
did with the Goto. The following precept applies to such rules:

Advisories

Advisory rules, positive or negative, are fraught with the risk of uselessness.

It is said that to distinguish between a principle and a platitude you must consider 
the negation of the property: only if it is a principle does the negation still make sense, 
whether or not you agree with it. For example the often quoted software methodology 
advice “Use variable names that are meaningful” is a platitude, not a principle, since no 
one in his right mind would suggest using meaningless variable names. To turn this rule 
into a principle, you must define precise standards for naming variables. Of course in so 
doing you may find that some readers will disagree with those standards, which is why 
platitudes are so much more comfortable; but it is the role of a methodological advisor to 
take such risks.

Advisory rules, by avoiding absolute injunctions, are particularly prone to becoming 
platitudes, as especially reflected in qualifications of the form “whenever possible” or, for 
advisory negatives, “unless you absolutely need to”, the most dishonest formula in 
software methodology.

The next precept helps avoid this risk by keeping us honest:

Absolute Positives methodology principle

In devising methodological rules, favor absolute positives, and for each such 
rule examine whether it is possible to enforce the rule automatically through 
tools or language constructs.

Absolute Negatives methodology principle

Any absolute negative must be backed by a precise explanation of why the 
author considers the rejected mechanism bad practice, and accompanied by 
a precise description of how to substitute other mechanisms for it.
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From [Ellis 1990].

From 
[Lieberherr 1989].
Here is an example of advisory negative, extracted from the discussion of type 
conversions (casts) in the C++ reference book:

Explicit type conversion is best avoided. Using a cast suppresses the type checking 
provided by the compiler and will therefore lead to surprises unless the programmer 
really was right.

This is accompanied by no explanation of how the programmer can find out whether 
he “really was right ”. So the reader is introduced to a certain language mechanism (type 
casts); warned, rightly, that it is dangerous and will “lead to surprises”; advised implicitly 
that the mechanism may sometimes be needed; but given no clue as to how to spot the 
legitimate uses.

Such advice is essentially useless; more precisely, it has a negative effect — 
impressing on the reader that the tool being described, in this case a programming 
language, is marred by areas of insecurity and uncertainty, and should not be trusted at all.

Exceptions

Many rules have exceptions. But if you present a software methodology rule and wish to 
indicate that it may not always apply, you should say precisely what cases justify 
exceptions. Otherwise the rule will be ineffective: each time a developer runs into a 
delicate case (that is to say, each time he truly needs your advice), he will be entitled to 
think that the rule does not apply.

Consider the following paragraph from an article about software methodology, 
coming after the presentation of a rather strict set of rules:

The strict version of the class form of the Law of Demeter is intended to be a 
guideline, not an absolute restriction. The minimization version of the law’s 
class form gives you a choice of how strongly you want to follow the strict 
version of the law: the more nonpreferred acquaintance classes you use, the 
less strongly you adhere to the strict version. In some situations, the cost of 
obeying the strict version may be greater than the benefits.

It is difficult, after reading this extract, to decide how serious the authors are about 
their own rule; when should you apply it, and when is it OK to violate it?

What is wrong in not the presence of exceptions in a general guideline. Because 
software design is a complex task, it is sometimes inevitable (although always 
undesirable) to add to an absolute positive “Always do X in situation A” or an absolute 
negative “Never do Y in situation A” the qualification “except in cases B, C and D”. Such 
a qualified rule remains an absolute positive or negative: simply, its domain of application 

Advisory Rules methodology principle
In devising advisory rules (positive or negative), use principles, not 
platitudes.
To help make the distinction, examine the rules’ negation.
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is not the whole of A, but A deprived of B, C and D. What is unacceptable, however, is the 
contrast between a precise, prescriptive rule, and a vague provision for exceptions (“in 
some situations, the cost may be greater than the benefits” — what situations?). Later in 
the cited article, an example is shown that violates the rule, but the exception is justified 
in terms of ad hoc arguments. It should have been part of the rule:

If exceptions to a rule are included in the rule, they cease to be exceptions to the rule! This 
is why the principle talks about the “guideline” associated with a rule. There may be 
exceptions to the guideline, but they are not exceptions to the rule if the rule observes the 
above principle. In “Cross the street only when the traffic lights are red, except if the 
lights are out of order”, the guideline “cross only on red” has an exception, but the rule 
as a whole does not.

This principle turns every rule of the form “Do this...” into an absolute positive, and 
every rule of the form “Do not do that...” into an absolute negative.

Self-doubt is an admirable quality in many circumstances of life, but not one that we 
expect to find in software methodology rules. One could almost argue that a wishy-washy 
methodologist is worse than a brilliant one who is occasionally wrong. The wishy-washy 
advice is largely useless, as it comes with so many blanket qualifications that you are 
never sure if it applies to your case of the moment; whereas if you study a methodological 
precept and decide that you disagree with it, you must try to refute the author’s arguments 
with your own, and regardless of the outcome you will have learned something: either you 
fail, and gain a deeper, more personal appreciation of the rule and its relevance to your 
problem; or you succeed, and discover the rule’s limitations, gaining some insights that 
the rule’s author may have missed.

Abstraction and precision

A common theme of the last few principles is that methodological advice should be 
precise and directive.

This is of course more fully applicable for precise rules than for general design 
guidelines. When looking for advice on how to discover the right classes or how to devise 
the best inheritance hierarchy, you cannot expect step-1-step-2-step-3 recipes. 

But even then generality and abstraction do not necessarily mean vagueness. Many 
of the principles of object-oriented design cover high-level issues; they will not do your 
work for you. Yet they are precise enough to be directly applicable, and to allow deciding 
without ambiguity whether they apply in any particular case.

Exceptions Included methodology principle

If a methodological rule presents a generally applicable guideline which may 
suffer exceptions, the exceptions must be stated as part of the rule.
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Advice from [Bright 
1995]. See page 515.

(Imaginary media 
report.)

“A simple notion of 
book”, page 221.

“Exceptions”, page 
668.
If it is baroque, fix it

The advice on C++ type casts quoted earlier illustrates a general problem of advisory 
negatives: recommendations of this kind owe their existence to limitations of the 
underlying tool or language. For a perfect tool we would never have to give advisory 
negatives; every facility would be accompanied by a clear definition of when it is 
appropriate and when it is not — a criterion of the absolute kind, not advisory. No tool is 
perfect, but for a decent one the number of advisory negatives should remain very small. 
If in teaching the proper use of the tool you find yourself frequently resorting to comments 
of the form “Try to stay away from this mechanism unless you absolutely need it”, then 
most likely the problem is what you are teaching about, not your teaching of it.

In such a case one should abandon trying to give advice, and improve the tool 
instead, or build a better one.

Typical phrases that signal this situation are

... unless you know what you are doing.

... unless you absolutely have to.
Avoid ... if you can.
Try not to ...
It is generally preferable not to ...
Better stay away from ...
The C/C++/Java literature has a particular fondness for such formulae. Typical is this 

advice: “Don’t write to your data structure unless you have to”, from the same C++ expert 
who in an earlier chapter was warning us against too much use of O-O mechanisms.

This advice is puzzling. Why would developers write to a data structure for no reason?
Rampant Problem of Programmers Writing to Data Structures When They Don’t Have 
To Worries US Software Industry. Why do they do it? Says Jill Kindsoul (not her real 
name), a Senior Software Engineer in Santa Barbara, California: “My heart goes out to 
the poor things. It can feel so lonely out there in swap space! I consider it my duty to write 
to each one of my objects’ fields at least once a day, even if it’s just with its own previous 
value. Sometimes I come back during the week-end just for it.” The actions of 
programmers like Jill are a growing concern for the principal software vendors, all 
rumored to have set up special task forces to deal with the issue.

Another case of trying to address language flaws through methodological advice — 
making language users responsible for someone else’s errors — was cited in an earlier 
chapter: the Java designers’ recommendation (“a programmer could still mess up the 
object…”) against using direct field assignments a  x := y, in violation of basic information 
hiding principles. It is a surprising approach, if you think a construct is bad, and just 
happen to be designing a programming language, to include the construct anyway and then 
write a book enjoining the language’s future users to avoid it.

The “Law of Demeter” cited earlier also provides an example. It restricts the type of x, 
in a call x    f (...) appearing in a routine r of a class C, to: types of arguments of r; types of 
attributes of C; creation types (types of u in create u …) for creation instructions appearing 



§19.3   ON USING METAPHORS 671

“SELECTIVE EX-
PORTS AND INFOR-
MATION HIDING”, 
7.8, page 191.
in r. Such a rule, if justified, should be made part of the language. But as the authors 
themselves imply in the quoted excerpt this would be too harsh. The rule would make it 
impossible, for example, to write a call my_stack  item  some_routine applying some_routine 
to the topmost element of my_stack; yet any alternative phrasing is heavier and less clear.

For the first few weeks after the initial design of the notation of this book, years ago, 
multi-dot calls of the form a  b  c were not supported. This limitation proved insufferable 
and we did not rest until it was removed.

Examination of the rationale for the Law, and for its exceptions, suggests that the 
authors may not have considered the notion of selective export, through which one can 
export a feature of a class C to specific clients having a close relation to C, while keeping 
it away from all other clients. With this mechanism, there may be no need for a Demeter-
like law.

These observations yield our last precept:

19.3  ON USING METAPHORS
ANDROMAQUE: 

I do not understand abstractions.
CASSANDRA: 

As you like. Let us resort to metaphors.

Jean Giraudoux, The Trojan 
War Will Not Happen, Act I.

In this meta-methodological discussion it is useful to reflect briefly on the scope and limits 
of a powerful expository tool: metaphors.

Everyone uses metaphors — analogies — to discuss and teach technical topics. This 
book is no exception, with such central metaphors as inheritance and Design by Contract. 
The name of our entire subject, indeed, is a metaphor: when we use the word “object” to 
talk about some computing concept, we rely on a term loaded with everyday connections, 
which we hijack for a very specific purpose.

In scientific discourse metaphors are powerful, but they are dangerous. This is 
particularly applicable to software, and even more to software methodology.

Fixing What Is Broken methodology principle
If you encounter the need for many advisory negatives:

• Examine the supporting tool or language to determine if this reflects 
deficiencies in the underlying design.

• If so, consider the possibility of shifting over some of the effort from 
documenting that design to correcting it.

• Also consider the possibility of eliminating the problem altogether by 
switching to a better tool.
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[Hadamard 1945].

Swift, Gulliver’s 
Travels, Part 3, “A 
Voyage to Laputa, 
etc.”, chapter 5.

[Bachelard 1960].
A colleague with whom I used to attend software engineering conferences once swore 
that he would walk out the next time he heard an automotive comparison (“if programs 
were like cars…”). Had he kept the pledge, he would not have attended many talks.

Are metaphors good or bad? They can be very good, or very bad, depending on the 
purposes for which they are used.

Scientists use metaphors to guide their research; many have reported how they rely 
on concrete, visual images to explore the most abstract concepts. The great mathematician 
Hadamard, for example, describes the vivid images — clouds, red balls colliding, “a kind 
of ribbon, which is thicker or darker at the place corresponding to the possibly important 
terms” of a mathematical series — to which he and his peers have resorted to solve 
difficult problems in the most abstract realms of analysis and algebra.

Metaphors can be excellent teaching tools. The great scientist-expositors — the 
Einsteins, Feynmans, Sagans — are peerless in conveying difficult ideas by appealing to 
analogies with concepts from everyday’s experience. This is the best.

But the worst also exists. If we start taking metaphors at their face value, and 
deducing properties of the domain under study from properties of the metaphor, we are in 
serious trouble. A pseudo-syllogism (“Proof by analogy”) of the form

A resembles B
B has property p

Ergo: A has property p
is usually fallacious because the conclusion (A has property p) is precise whereas the first 
premise (A resembles B) is not. What matters is how exactly A is like B, and, even more, 
how A is unlike B; clearly some properties of B must be different from those of A, 
otherwise A and B would be the same thing (as in those stories by Borges or Pérec in which 
a novel or painting is about itself, or in the language that the academicians of Laputa in 
Gulliver’s Travels devised from the observation that “since words are only names for 
things, it would be more convenient for all men to carry about them such things as were 
necessary to express the particular business they are to discourse on”). A metaphor is 
defined by what differs as much as by what is common. But then to justify the conclusion 
we have to check that p only involves the common part. Once Hadamard had intuited his 
result, he knew he had to prove it step by step using the austere rites of mathematics; and 
many a student of a Feynman or Laurent Schwartz has realized, when faced with the 
week’s homework, that brilliant images are only the beginning of the process.

The more alluring the metaphor, the greater the danger of falling into twisted 
reasoning of the above form. Think for example of the analogy so commonly used in the 
reusability literature, this book included, between software components and the “chips” of 
our hardware colleagues, through such terms as “software IC” (coined and trademarked 
by Brad Cox). Up to where do we use the metaphor to help us gain insights, and where do 
we start confusing the real thing A with the metaphor B?

Bachelard’s fascinating book on the Formation of the Scientific Mind, which shows 
some of the best minds of the eighteenth century struggling with the transition from 
magical modes of reasoning to the scientific method, tells a story that anyone who is ever 
tempted to use a metaphor in scientific discourse should keep in mind. In trying to 
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understand the nature of air, the great physicist-philosopher Réaumur used the then 
common metaphor of a sponge — which, as Bachelard shows, goes back at least to 
Descartes. Why not? Many good physics teachers occasionally resort to such gimmicks to 
capture students’ attention and convey a point, supported or not by a bit of clowning in the 
classroom or the TV studio. But then things start to go wrong: the sponge becomes the air!

A very common idea is to consider air as being like cotton, like wool, like a 
sponge, and much more spongious even than any other bodies or collections of 
bodies to which they may be compared. This idea is particularly adequate to 
explain why air can also become extremely rarefied, and occupy a volume 
considerably bigger than what we had seen it occupy a moment before.

Air is like a sponge, so air expands like a sponge! And now comes none other than 
Benjamin Franklin, who finds sponges so convincing as to use them to explain …
electricity. If matter is like a sponge, electric current must of course be like a liquid that 
flows through a sponge:

Common matter is a kind of sponge for the electric fluid. A sponge could not 
receive water if the parts which make up the water were bigger than the pores 
of the sponge; it would only receive it very slowly if there was no mutual 
attraction between its parts and the sponge’s parts; the sponge would fill up 
faster if the mutual attraction between the water’s parts did not create an 
obstacle, requiring that some force be applied to separate them; finally, the 
filling up would be very fast if, instead of attraction, there was mutual repulsion 
between the water’s parts, concurring with the sponge’s attraction. This is the 
precise situation with electrical matter and common matter.

Comments Bachelard: “Franklin only thinks in sponge terms. The sponge, for him,
[has become] an empirical category.” He adds, with a touch of mockery: “Perhaps, in his 
youth, [Franklin] had marveled at such a simple object [the sponge]. I have often surprised 
children being fascinated by the sight of a blotter «drinking» ink”.

The Réaumur and Franklin quotations were not culled from a Usenet posting by an 
undergraduate who has yet to be taught to pour a few drops of intellectual rigor into his 
enthusiasm. They emanate from intellectual giants of their time, each of them responsible 
for decisive scientific advances. They should serve as a sobering influence when we 
discuss software concepts, and help us keep things in perspective the next time we see an 
author getting a bit carried away by his own analogies.

19.4  THE IMPORTANCE OF BEING HUMBLE
One final word of general advice as we prepare to study specific rules of design. To produce 
great products, designers, even the best ones, should never overestimate the value of their 
experience. Every ambitious software project is a new challenge: there are no sure recipes.

The design of a large software product is an intellectual adventure. Too much self-
confidence can hurt. The more books you have read (or written), the more classes you have 
taken (or taught), the more programming languages you know (or designed), the more O-O 
software you have examined (or produced), the more requirements documents you have 
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tried to decipher (or make decipherable), the more design patterns you have learned (or 
devised), the more design meetings you have attended (or led), the more talented co-
workers you have met (or hired), the more projects you have helped (or managed), the 
better you will be equipped to deal with a new development. But do not think that your 
experience makes you infallible. In advanced software design there is no substitute for 
fresh thinking and creative insights. Every new problem calls for new ideas; everyone, from 
the seasoned project leader to the latest recruit, can have the right insight on any particular 
issue; and everyone can go wrong. What distinguishes the great designer is not necessarily 
that he has fewer bad ideas, but that he knows how to discard them, swallow his pride, and 
retain the good ideas whether or not he originated them. Incompetence and inexperience 
are obvious obstacles in the quest for the right solution; conceit can be just as bad.

No one will be surprised by these comments who has heard (although not necessarily 
believed) Luciano Pavarotti stating that he faces stage fright every night. One of the reasons 
the best people are best is that they are toughest with themselves. This rule is particularly 
relevant in software design, where there is always the risk of lapsing into intellectual 
laziness and making easy but wrong decisions, which may later be sorely regretted.

19.5  BIBLIOGRAPHICAL NOTES
The “advice to the advisors” part of this chapter is based on [M 1995b].

I first heard the definition of the difference between principles and platitudes from a 
talk by Joseph Gurvets at TOOLS EUROPE 1992. I owe to Éric Bezault the comment on 
the relevance of selective exports to the Law of Demeter.

EXERCISES
E19.1  Self-applying the rules
Perform a critique of the methodological rules of this book in the light of the precepts of 
this chapter. The list of all rules appears in Appendix C.

E19.2  Library rules
[M 1994a] contains an extensive set of rules, both design principles and style standards, 
for building library classes. Perform a critique of these rules in the light of the precepts of 
this chapter.

E19.3  Application of the rules
Examine the software methodology book of your choice, and the rules it gives, in the light 
of this chapter’s precepts.

E19.4  Metaphors on the Net
Follow for a week or two the discussions of object technology in the Usenet newsgroup 
devoted to it, comp.object. Track the use of metaphors to talk about software concepts. 
Examine whether these metaphors are valuable, and whether any of them leads its author 
to make improper “proof by analogy” inferences.
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Design pattern: multi-panel 
interactive systems
In our first example we will devise a design pattern which, in addition to illustrating some 
typical properties of the object-oriented method, provides an excellent opportunity to 
contrast it with other approaches, in particular top-down functional decomposition.

Because this example nicely captures on a small scale some of the principal 
properties of object-oriented software construction, I have often used it when requested to 
introduce an audience to the method in a few hours. By showing concretely (even to 
people who have had very little theoretical preparation) how one can proceed from a 
classical decomposition to an O-O view of things, and the benefits gained in this 
transformation, it serves as a remarkable pedagogical device. This chapter has been 
written so that it could play the same role for readers who have been directed to it by the 
reference they found in the “spoiler” chapter at the beginning of this book.

To facilitate their task, it has been made as self-contained as possible; this is why you 
will find a few repetitions with previous chapters, in particular a few short definitions of 
concepts which you already know inside out if you have been reading this book 
sequentially and carefully from the start.

20.1  MULTI-PANEL SYSTEMS

The problem is to write a system covering a general type of interactive system, common 
in business data processing, in which users are guided at each step of a session by a full-
screen panel, with predefined transitions between the available panels.

The general pattern is simple and well defined. Each session goes through a certain 
number of states. In each state, a certain panel is displayed, showing questions to the user. 
The user will fill in the required answer; this answer will be checked for consistency (and 
questions asked again until an acceptable answer is found); then the answer will be 
processed in some fashion; for example the system will update a database. A part of the 
user’s answer will be a choice for the next step to perform, which the system will interpret 
as a transition to another state, where the same process will be applied again. 

A typical example would be an airline reservation system, where the states might 
represent such steps of the processing as User Identification, Enquiry on Flights (for a 
certain itinerary on a certain date), Enquiry on Seats (for a certain flight) and Reservation.
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A panel

The figure also 
include state num-
bers, for use later in 
the discussion.
A typical panel, for the Enquiry on Flights state, might look like the following (only 
intended, however, to illustrate the ideas, and making no claim of realism or good 
ergonomic design). The screen is shown towards the end of a step; items in color italics
are the user’s answers, and items in bold color show an answer displayed by the system. 

The session begins in an initial state, and ends whenever it reaches a final state. We 
can represent the overall structure by a transition graph showing the possible states and 
the transitions between them. The edges of the graph are labeled by integers 
corresponding to the possible user choices for the next step at the end of a state. At the top 
of the facing page is a graph for a simple airline reservation system. 

The problem is to come up with a design and implementation for such applications, 
achieving as much generality and flexibility as possible. In particular:

G1  • The graph may be large. It is not uncommon to see applications with several 
hundred states and correspondingly many transitions.

G2  • The structure is subject to change. The designers are unlikely to foresee all the 
possible states and transitions. As users start exercising the system, they will come 
up with requests for changes and additions.

G3  • Nothing in the given scheme is specific to the choice of application: the airline 
reservation mini-system is just a working example. If your company needs a 
number of such systems, either for its own purposes or (in a software house) for 
various customers, it will be a big benefit to define a general design or, better yet, 
a set of modules that you can reuse from application to application.

– Enquiry on Flights –

Flight sought from: 

Departure on or after:

To:

On or before: 

Preferred airline (s):
Special requirements:

AVAILABLE FLIGHTS: 1
Flt# AA 42 Dep 8:25 Arr 7:45 Thru: Chicago

Choose next action:
0 — Exit
1 — Help
2 — Further enquiry
3 — Reserve a seat

Santa Barbara

21 Nov

Paris

22 Nov
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A transition 
diagram
20.2  A SIMPLE-MINDED ATTEMPT 

Let us begin with a straightforward, unsophisticated program scheme. This version is 
made of a number of blocks, one for each state of the system: BEnquiry , BReservation, 
BCancellation etc. A typical block (expressed in an ad hoc notation, not the object-oriented 
notation of this book although it retains some of its syntactic conventions) looks like this: 

BEnquiry:
“Display Enquiry on flights panel”
repeat

“Read user’s answers and choice C for the next step”
if “Error in answer” then “Output appropriate message” end

until not error in answer end
“Process answer”
case C in

C0: goto Exit,
C1: goto BHelp,
C2: goto BReservation,
…

end
and similarly for each state. 

Initial

Confirmation

Reservation

Enquiry_
on_flights

2

2

2

2

2
3

3

3

3

3

11 1 1

1

11

1

Enquiry_
on_seats

Help

Help

1
1

HelpHelp

Help

Help

1
1

1

2

34

5
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This structure has something to speak for it: it is not hard to devise, and it will do the 
job. But from a software engineering viewpoint it leaves much to be desired.

The most obvious criticism is the presence of goto instructions (implementing 
conditional jumps similar to the switch of C and the “Computed Goto” of Fortran), giving 
the control structure that unmistakable “spaghetti bowl” look.

But the gotos are the symptom, not the real flaw. We have taken the superficial 
structure of the problem — the current form of the transition diagram — and hardwired it 
into the algorithm; the branching structure of the program is an exact reflection of the 
structure of the transition graph. This makes the software’s design vulnerable to any of the 
simple and common changes cited above: any time someone asks us to add a state or 
change a transition, we will have to change the system’s central control structure. And we 
can forget, of course, any hope of reusability across applications (goal G3 in the above 
list), as the control structure would have to cover all applications.

This example is a sobering reminder that we should never get carried away when we hear 
about the benefits of “modeling the real world” or “deducing the system from the analysis 
of the reality”. Depending on how you describe it, the real world can be simple or messy; 
a bad model will give bad software. What counts is not how close the software is to the 
real world, but how good the description is. More on this topic at the end of this chapter.

To obtain not just a system but a good system we must think a little harder.

20.3  A FUNCTIONAL, TOP-DOWN SOLUTION

Repeating on this particular example the evolution of the programming species as a whole, 
we will go from a low-level goto-based structure to a top-down, hierarchically organized 
solution, analyze its own limitations, and only then move on to an object-oriented version. 
The hierarchical solution belongs to a general style also known as “structured”, although 
this term should be used with care.

For one thing, an O-O solution is certainly structured too, although more in the sense of 
“structured programming” as originally introduced in the seventies by Dijkstra and others 
than relative to the quite distinct notion of “structured design”.

The transition function

The first step towards improving the solution is to get rid of the central role of the traversal 
algorithm in the software’s structure. The transition diagram is just one property of the 
system and it has no reason to rule over everything else. Separating it from the rest of the 
algorithm will, if nothing else, rid us of the goto instructions. And we should also gain 
generality, since the transition diagram depends on the specific application, such as airline 
reservation, whereas its traversal may be described generically. 

What is the transition diagram? Abstractly, it is a function transition taking two 
arguments, a state and a user choice, such that transition (s, c) is the state obtained when 
the user chooses c when leaving state s. Here the word “function” is used in its 
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A transition 
table
mathematical sense; at the software level we can choose to implement transition either by 
a function in the software sense (a routine returning a value) or by a data structure such as 
an array. For the moment we can afford to postpone the choice between these solutions 
and just rely on transition as an abstract notion. 

In addition to the function transition we also need to designate one of the states, say 
state initial, as the place where all sessions start, and to designate one or more states as 
final through a boolean-valued function is_  final. Again this is a function in the 
mathematical sense, regardless of its eventual implementation.

We can picture the transition function in tabular form, with rows representing states 
and columns representing choices, as shown below.

Conventions used in this table: there is just one Help state, 0, with a special transition 
Return which goes back to the state from which Help was reached, and just one final state, 
–1. These conventions will not be necessary for the rest of the discussion but help keep 
the table simple. 

The routine architecture

Following the traditional precepts of top-down decomposition, we choose a “top” (the 
main program) for our system. This should clearly be the routine execute_session that 
describes how to execute a complete interactive session. 

Choice →

↓ State

0 1 2 3

1 (Initial) –1 0 5 2

2 (Flights) 0 1 3

3 (Seats) 0 2 4

4 (Reserv.) 0 3 5

5 (Confirm) 0 4 1

0 (Help) Return

–1 (Final)
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Top-down 
functional 
decomposition
Immediately below (level 2) we will find the operations relative to states: definition 
of the initial and final states, transition structure, and execute_state which prescribes the 
actions to be executed in each state. Then at the lowest level (1) we will find the 
constituent operations of execute_state: display a screen and so on. Note how such a 
solution may be described, as well as anything object-oriented that we may later see, to 
“reflect the real world”: the structure of the software perfectly mirrors the structure of an 
application, which involves states, which involve elementary operations. Real-
worldliness is not, in this example and many others, a significant difference between O-O 
and other approaches; what counts is how we model the world.

In writing execute_session let us try to make it as application-independent as 
possible. (The routine is again expressed in an ad hoc notation imitated from the O-O 
notation of the rest of this book. The repeat … until … loop is borrowed from Pascal.) 

execute_session
-- Execute a complete session of the interactive system

local
state, choice: INTEGER

do
state := initial
repeat

execute_state (state, →next)
-- Routine execute_state updates the value of next.

state := transition (state, next)
until is_ final (state) end

end

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2
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The → notation is a 
temporary conven-
tion, used only for this 
particular procedure 
and for read below.
This is a typical transition diagram traversal algorithm. (The reader who has written 
a lexical analyzer will recognize the pattern.) At each stage we are in a state state, 
originally set to initial; the process terminates when state satisfies is_ final. For a non-final 
state we execute execute_state, which takes the current state and returns the user’s 
transition choice through its second argument next, which the function transition uses, 
together with state, to determine the next state.

The technique using a procedure execute_state that changes the value of one of its 
arguments would never be appropriate in good O-O design, but here it is the most 
expedient. To signal it clearly, the notation flags an “out” argument such as next with an 
arrow →. Instead of a procedure which modifies an argument, C developers would make 
execute_state a side-effect-producing function called as next := execute_state (state); we 
will see that this practice is subject to criticism too.

Since execute_state does not show any information about any particular interactive 
application, you must fill in the application-specific properties appearing on level 2 in the 
figure: transition function; initial state; is_ final predicate. 

To complete the design, we must refine the execute_state routine describing the 
actions to be performed in each state. Its body is essentially an abstracted form of the 
contents of the successive blocks in the initial goto-based version: 

execute_state (in s: INTEGER; out c: INTEGER)
-- Execute the actions associated with state s,
-- returning into c the user’s choice for the next state.

local
a: ANSWER; ok: BOOLEAN

do
repeat

display (s)
read (s, →a)
ok := correct (s, a)
if not ok then message (s, a) end

until ok end
process (s, a)
c := next_choice (a)

end

This assumes level 1 routines with the following roles:

• display (s) outputs the panel associated with state s. 

• read (s, →a) reads into a the user’s answer to the display panel of state s. 

• correct (s, a) returns true if and only if a is an acceptable answer to the question 
displayed in state s; if so, process (s, a) processes answer a, for example by updating 
a database or displaying more information; if not, message (s, a) outputs the relevant 
error message. 
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The architectural 
figure is on page 
680.
The type ANSWER of the object representing the user’s answer has not been refined 
further. A value a of that type globally represents the input entered by the user in a given 
state; it is assumed to include the user’s choice for the next step, written next_choice (a). 
(ANSWER is in fact already very much like a class, even though the rest of the architecture 
is not object-oriented at all.) 

To obtain a working application, you will need to fill in the various level 1 features: 
display, read, correct, message and process.

20.4  A CRITIQUE OF THE SOLUTION

Have we now a satisfactory solution? Not quite. It is better than the first version, but still 
falls short of our goals of extendibility and reusability.

Statism

Although on the surface it seems we have been able to separate the generic from the 
application-specific, in reality the various modules are still tightly coupled with each other 
and with the choice of application. The main problem is the data transmission structure of 
the system. Consider the signatures (argument and result types) of the routines: 

execute_state ( in s: STATE ; out c: CHOICE)
display ( in s: STATE )
read ( in s: STATE ; out a: ANSWER)
correct ( in s: STATE ; a: ANSWER): BOOLEAN
message ( in s: STATE ; a: ANSWER)
process ( in s: STATE ; a: ANSWER)

The observation (which sounds like an economist’s lament) is that the role of the 
state is too pervasive. The current state appears under the name s as an argument in all the 
routines, coming from the top module execute_session, where it is known as state. So the 
hierarchical structure shown in the last figure, seemingly simple and manageable, is a lie, 
or more precisely a façade. Behind the formal elegance of the functional decomposition 
lies a jumble of data transmission. The true picture, shown at the top of the facing page, 
must involve the data.

The background for object technology, as presented at the beginning of this book, is 
the battle between the function and data (object) aspects of software systems for control 
of the architecture. In non-O-O approaches, the functions rule unopposed over the data; 
but then the data take their revenge.

The revenge comes in the form of sabotage. By attacking the very foundations of the 
architecture, the data make the system impervious to change — until, like a government 
unable to handle its perestroika, it will crumble under its own weight.

State
intervention



§20.4   A CRITIQUE OF THE SOLUTION 683

The flow of 
data
In this example the subversion of the structure comes in particular from the need to 
discriminate on states. All the level 1 routines must perform different actions depending 
on s: to display the panel for a certain state; to read and interpret a user answer (made of 
a number of input fields, different for each state); to determine whether the answer is 
correct; to output the proper error message; to process a correct answer — you must know 
the state. The routines will perform a discrimination of the form

inspect
s

when Initial then
…

when Enquiry_on_ flights then
…

…
end

This means long and complex control structures and, worse yet, a fragile system: 
any addition of a state will require changes throughout the structure. This is a typical case 
of unbridled knowledge distribution: far too many modules of the system rely on a piece 
of information — the list of all possible states — which is subject to change.

The situation is in fact even worse than it appears if we are hoping for general 
reusable solutions. There is an extra implicit argument in all the routines considered so 
far: the application — airline reservation or anything else we are building. So to make 
routines such as display truly general we would have to let them know about all states of 
all possible applications in a given computing environment! Function transition would 
similarly contain the transition graph for all applications. This is of course unrealistic. 

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2

state
state

state state

state
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20.5  AN OBJECT-ORIENTED ARCHITECTURE

The very deficiencies of top-down functional decomposition point to what we must do to 
obtain a good object-oriented version.

The law of inversion 

What went wrong? Too much data transmission in a software architecture usually signals 
a flaw in the design. The remedy, which leads directly to object-oriented design, may be 
expressed by the following design rule:

Instead of building modules around operations (such as execute_session and 
execute_state) and distributing the data structures between the resulting routines, with all 
the unpleasant consequences that we have seen, object-oriented design does the reverse: it 
uses the most important data types as the basis for modularization, attaching each routine 
to the data type to which it relates most closely. When objects take over, their former 
masters, the functions, become their vassals.

The law of inversion is the key to obtaining an object-oriented design from a 
classical functional (procedural) decomposition, as in this chapter. Such a need arises in 
cases of reverse-engineering an existing non-O-O system to make it more maintainable 
and prepare its evolution; it is also frequent in teams that are new to object-oriented design 
and think “functional” first.

It is of course best to design in an object-oriented fashion from the beginning; then 
no inversion is needed. But the law of inversion is useful beyond cases of reverse-
engineering and novice developers. Even someone who has been exposed to the 
principles of object-oriented software construction may come up with an initial design 
that has pockets of functional decomposition in an object landscape. Analyzing data 
transmission is a good way to detect and correct such design flaws. If you see — even in a 
structure intended as O-O — a data transmission pattern similar to what happens with 
states in the example of this chapter, it should catch your attention. Probing further will in 
most cases lead you to the discovery of a data abstraction that has not received its proper 
due in the software’s architecture.

State as a class

The “state” example is typical. Such a data type, appearing so pervasively in the data 
transmissions between routines, is a prime candidate for serving as one of the modular 
components of an object-oriented architecture, which must be based on classes (abstractly 
described data types).

Law of inversion

If your routines exchange too many data, put your routines in your data. 
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STATE
features
The notion of state was important in the original problem statement, but in the 
functional architecture that importance was lost: the state was just represented by a 
variable, passed from routine to routine as if it were some kind of lowlife. We have seen 
how it avenged itself. Now we are ready to give it the status it deserves. STATE should be 
a class, one of the principals in the structure of our new object-oriented system.

In that class we will find all the operations that characterize a state: displaying the 
corresponding screen (display), analyzing a user’s answer (read), checking the answer 
(correct), producing an error message for an incorrect answer (message), processing a 
correct answer (process). We must also include execute_state, expressing the sequence of 
actions to be performed whenever the session reaches a given state; since the original 
name would be over-qualifying in a class called STATE, we can replace it by just execute.

Starting from the original top-down functional decomposition picture, we can 
highlight the set of routines that should be handed over to STATE: 

The class will have the following form:

… class STATE feature
input: ANSWER
choice: INTEGER
execute do … end
display …
read …
correct: BOOLEAN …
message …
process …

end

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2

STATE
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See “SIDE 
EFFECTS IN 
FUNCTIONS”, 
23.1, page 748.
Features input and choice are attributes; the others are routines. Compared to their 
counterparts in the functional decomposition, the routines have lost their explicit state 
arguments, although the state will reappear in calls made by clients, such as s  execute.

In the previous approach, execute (formerly execute_state) returned the user’s 
choice for the next step. But such a style violates principles of good design. It is preferable 
to treat execute as a command, whose execution determines the result of the query “what 
choice did the user make in the last state?”, available through the attribute choice. 
Similarly, the ANSWER argument to the level 1 routines is now replaced by the secret 
attribute input. The reason is information hiding: client code does not need to look at 
answers except through the interface provided by the exported features. 

Inheritance and deferred classes

Class STATE does not describe a particular state, but the general notion of state. Procedure 
execute is the same for all states, but the other routines are state-specific. 

Inheritance and deferred classes ideally address such situations. At the STATE level, 
we know the procedure execute in full detail and the attributes. We also know the 
existence of the level 1 routines (display etc.) and their specifications, but not their 
implementations. These routines should be deferred; class STATE, which describes a set 
of variants, rather than a fully spelled out abstraction, is itself a deferred class. This gives: 

note
description: "States for interactive panel-driven applications"

deferred class
STATE

feature -- Access
choice: INTEGER

-- User’s choice for next step

input: ANSWER
-- User’s answer to questions asked in this state.

feature -- Status report
correct: BOOLEAN

-- Is input a correct answer?
deferred
end

feature -- Basic operations

display
-- Display panel associated with current state.

deferred
end
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It is easy to remove 
the test from within 
the loop for better 
efficiency.

State class 
hierarchy
execute
-- Execute actions associated with current state
-- and set choice to denote user’s choice for next state.

local
ok: BOOLEAN

do
from ok := False until ok loop

display; read; ok := correct
if not ok then message end

end
process

ensure
ok

end
message

-- Output error message corresponding to input.
require

not correct
deferred
end

read
-- Obtain user’s answer into input and choice into next_choice.

deferred
end

process
-- Process input.

require
correct

deferred
end

end
To describe a specific state you will introduce descendants of STATE providing 

effectings (implementations) of the deferred features:

STATE

INITIAL RESER-
VATION

CONFIR-
MATION

∗

… 
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“Don’t call us, we’ll 
call you”, page 504.

“Finding the top”, 
page 107.
An example would look like: 

class ENQUIRY_ON_FLIGHTS inherit
STATE

feature
display

do
… Specific display procedure …

end
… And similarly for read, correct, message and process …

end

This architecture separates, at the exact grain of detail required, elements common to 
all states and elements specific to individual states. The common elements, such as 
procedure execute, are concentrated in STATE and do not need to be redeclared in 
descendants such as ENQUIRY_ON_FLIGHTS. The Open-Closed principle is satisfied: 
STATE is closed in that it is a well-defined, compilable unit; but it is also open, since you 
can add any number of descendants at any time. 

STATE is typical of behavior classes — deferred classes capturing the common 
behavior of a large number of possible objects, implementing what is fully known at the 
most general level (execute) in terms of what depends on each variant. Inheritance and 
the deferred mechanism are essential to capture such behavior in a self-contained 
reusable component.

Describing a complete system

To complete the design we must still take care of managing a session. In the functional 
decomposition this was the task of procedure execute_session, the main program. But now 
we know better. As discussed in an earlier chapter, the “topmost function of a system” as 
posited in the top-down method is mythical. A large software system performs many 
equally important functions. Here again, the abstract data type approach is more 
appropriate; it considers the system, taken as a whole, as a set of abstract objects capable 
of rendering a certain number of services. 

We have captured one key abstraction: STATE (along with ANSWER). What 
abstraction is our design still missing? Central in the understanding of the problem is the 
notion of APPLICATION, describing specific interactive systems such as the airline 
reservation system. This will yield a new class.

It turns out that the remaining components of the functional decomposition, shown 
in the figure, are all features of an application and will find their true calling as features of 
class APPLICATION:

• execute_session, describing how to execute an application. Here the name will be 
simplified to execute since the enclosing class provides qualification enough (and 
there is no possible confusion with execute of STATE).
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STATE and 
APPLICATION
features
• initial and is_ final, indicating which states have special status in an application. Note 
that it is proper to have these features in APPLICATION rather than STATE since 
they describe properties of applications rather than states: a state is not initial or final 
per se, but only with respect to an application. (If we reuse states between 
applications, a state may well be final in a certain application but not in another.)

• transition to describe the transition between states in the application.

The components of the functional decomposition have all found a place as features 
of the classes in the O-O decomposition — some in STATE, some in APPLICATION. This 
should not surprise us. Object technology, as has been repeatedly emphasized in this book, 
is before anything else an architectural mechanism, primarily affecting how we organize 
software elements into coherent structures. The elements themselves may be, at the lowest 
level, the same ones that you would find in a non-O-O solution, or at least similar (data 
abstraction, information hiding, assertions, inheritance, polymorphism and dynamic 
binding help make them more simple, general and powerful).

A panel-driven system of the kind studied in this chapter will always need to have 
operations for traversing the application graph (execute_session, now execute), reading 
user input (read), detecting final states (is_ final). Deep down in the structure, then, we will 
find some of the same building blocks regardless of the method. What changes is how you 
group them to produce a modular architecture.

Of course we do not need to limit ourselves to features that come from the earlier 
solution. What for the functional decomposition was the end of the process — building 
execute for applications and all the other mechanisms that it needs — is now just a 
beginning. There are many more things we may want to do on an application: 

execute_session

initial transition execute_
state is_final

display processmessagecorrectread

Level 1

Level 3

Level 2

STATE

APPLICATION
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• Add a new state. 

• Add a new transition. 

• Build an application (by repeated application of the preceding two operations). 

• Remove a state, a transition. 

• Store the complete application, its states and transitions, into a database. 

• Simulate the application (for example on a line-oriented display, or with stubs 
replacing the routines of class STATE, to check the transitions only). 

• Monitor usage of the application. 

All these operations, and others, will yield features of class APPLICATION. They 
are no less and no more important than our former “main program”, procedure execute, 
now just one of the features of the class, inter pares but not even primus. By renouncing 
the notion of top, we make room for evolution and reuse.

The application class

To finish class APPLICATION here are a few possible implementation decisions: 

• Number states 1 to n for the application. Note that these numbers are not absolute 
properties of the states, but only relative to a certain application; so there is no “state 
number” attribute in class STATE. Instead, a one-dimensional array associated_state, 
an attribute of APPLICATION, yields the state associated with a given number.

• Represent the transition function by another attribute, a two-dimensional array of 
size n  × m, where m is the number of possible exit choices. 

• The number of the initial state is kept in the attribute initial and set by the routine 
choose_initial. For final states we can use the convention that a transition to pseudo-
state 0 denotes session termination. 

• The creation procedure of APPLICATION uses the creation procedures of the library 
classes ARRAY and ARRAY2. The latter describes two-dimensional classes and is 
patterned after ARRAY; its creation procedure make takes four arguments, as in 
create a  make (1, 25, 1, 10), and its item and put routines use two indices, as in 
a  put (x, 1, 2). The bounds of a two-dimensional array a are a  lower1 etc. 

Here is the class resulting from these decisions: 

note
description: "Interactive panel-driven applications"

class APPLICATION creation
make
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feature -- Initialization
make (n, m: INTEGER)

-- Allocate application with n states and m possible choices.
do

create transition  make (1, n, 1, m)
create associated_state  make (1, n)

end
feature -- Access

initial: INTEGER 
-- Initial state’s number

feature -- Basic operations
execute

-- Perform a user session
local

st: STATE; st_number: INTEGER
do

from
st_number := initial

invariant
0 <= st_number; st_number <= n

until st_number = 0 loop
st := associated_state  item (st_number)
st  execute

-- This refers to the execute procedure of STATE
-- (see next page for comments on this key instruction).

st_number := transition  item (st_number, st  choice)
end 

end
feature -- Element change

put_state (st: STATE; sn: INTEGER)
-- Enter state st with index sn.

require
1 <= sn; sn <= associated_state  upper

do
associated_state  put (st, sn)

end
choose_initial (sn: INTEGER)

-- Define state number sn as the initial state.
require

1 <= sn; sn <= associated_state  upper
do

initial := sn
end
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A polymorphic 
array of states
put_transition (source, target, label: INTEGER)
-- Enter transition labeled label 
-- from state number source to state number target.

require
1 <= source; source <= associated_state  upper
0 <= target; target <= associated_state  upper
1 <= label; label <= transition  upper2

do
transition  put (source, label, target)

end 
feature {NONE} -- Implementation

transition: ARRAY2 [STATE]
associated_state: ARRAY [STATE]
… Other features …

invariant
transition  upper1 = associated_state  upper

end

Note how simply and elegantly the highlighted call on the preceding page, 
st  execute, captures some of the problem’s essential semantics. The feature called is 
execute from STATE; although effective because it describes a known general behavior, 
execute relies on deferred features read, message, correct, display, process, deferred at the 
level of STATE and effected only in its proper descendants such as RESERVATION. When 
we place the call st  execute in APPLICATION’s own execute, we have no idea what kind 
of state st denotes — although we do know that it is a state (this is the benefit of static 
typing). To come to life, the instruction needs the machinery of dynamic binding: when st
becomes attached at run time to a state object of a particular kind, say RESERVATION, 
calls to read, message and consorts will automatically trigger the right version.

The value of st is obtained from associated_state, a polymorphic data structure
which may contain objects of different types, all conforming to STATE. Whatever we find 
at the current index st_number will determine the next state operations.

Instance of RESERVATION

Instance of RESERVATION

Instance of CONFIRMATION

Instance of HELP

associated_state

st_number

1
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Here is how you build an interactive application. The application will be represented 
by an entity, say air_reservation, declared of type APPLICATION. You must create the 
corresponding object:

create air_reservation  make (number_of_states, number_of_possible_choices)

You will separately define and create the application’s states as entities of descendant 
types of STATE, either new or reused from a state library. You assign to each state s a 
number i for the application: 

air_reservation  put_state (s, i).

You choose one of the states, say the state numbered i0, as initial: 

air_reservation  choose_initial (i0)

To set up a transition from state number sn to state number tn, with label l, you use

air_reservation  put_transition (sn, tn, l )

This includes exit transitions, for which tn is 0 (the default). You may now execute 
the application:

air_reservation  execute_session. 

During system evolution you may at any time use the same routines to add a new 
state or a new transition.

It is of course possible to extend class APPLICATION, either by changing it or by 
adding descendants, to accommodate more features such as deletion, simulation, or any of 
the others mentioned in the course of the presentation. 

20.6  DISCUSSION

This example provides a striking picture of the differences between object-oriented 
software construction and earlier approaches. It shows in particular the benefits of getting 
rid of the notion of main program. By focusing on the data abstractions and forgetting, for 
as long as possible, what is “the” main function of the system, we obtain a structure that 
is much more likely to lend itself gracefully to future changes and to reuse across many 
different variants.

This equalizing effect is one of the characteristic properties of the method. It takes 
some discipline to apply it consistently, since it means resisting the constant temptation to 
ask: “What does the system do?”. This is one of the skills that sets the true object-oriented 
professional from people who (although they may have been using O-O techniques and an 
O-O language for a while) have not yet digested the method, and will still produce 
functional architectures behind an object façade.

We have also seen a heuristic that is often useful to identify key abstractions in an 
object-oriented (to “find the objects”, or rather the classes, the topic of a subsequent 
chapter): analyzing data transmissions and being on the lookout for notions that show up 
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in communications between numerous components of a system. Often this is an indication 
that the structure should be turned upside down, the routines becoming attached to the data 
abstraction rather than the reverse.

A final lesson of this chapter is that you should be wary of attaching too much 
importance to the notion that object-oriented systems are directly deduced from the “real 
world”. The modeling power of the method is indeed impressive, and it is pleasant to 
produce software architectures whose principal components directly reflect the 
abstractions of the external system being modeled. But there are many ways to model the 
real world, and not all of them will lead to a good system. Our first, goto-filled version 
was as close to the real world as the other two — closer actually, since it is directly 
patterned after the structure of the transition diagram, whereas the other two require 
introducing intermediate concepts. But it is a software engineering disaster.

In contrast, the object-oriented decomposition that we finally produced is good 
because the abstractions that it uses — STATE, APPLICATION, ANSWER — are clear, 
general, manageable, change-ready, and reusable across a broad application area. 
Although once you understand them they appear as real as anything else, to a newcomer 
they may appear less “natural” (that is to say, less close to an informal perception of the 
underlying reality) than the concepts used in the inferior solutions studied first.

To produce good software, what counts is not how close you are to someone’s 
perception of the real world, but how good are the abstractions that you choose both to 
model the external systems and to structure your own software. This is indeed the very 
definition of object-oriented analysis, design and implementation, the task that you will 
have to execute well, day in and day out, to make your project succeed, and the skill that 
distinguishes object experts from object amateurs: finding the right abstractions.

20.7  BIBLIOGRAPHICAL NOTE

Variants of the example discussed in this chapter were used to illustrate object-oriented 
concepts in [M 1983] and [M 1987].



21  
Inheritance case study:  “undo” 
in an interactive system
For our second design example we examine a need that confronts the designers of almost 
any interactive system: how to provide a way to undo commands.

The discussion will show how inheritance and dynamic binding yield a simple, 
regular and general solution to an apparently intricate and many-faceted problem; and it 
will teach us a few general lessons about the issues and principles of object-oriented design.

21.1  PERSEVERARE DIABOLICUM

To err is human, it is said, but to foul things up for good takes a computer (aided, one 
should add, by humans). The faster and more powerful our interactive systems become, 
the easier it becomes to make them perform actions that we do not really want. This is why 
we all wish for a way to erase the recent past; not the “big red button” of computer jokes, 
but a Big Green Button that we can push to pretend that we did not do something that we 
did but wish we did not. 

Undoing for fun and profit

In an interactive system, the equivalent of the Big Green Button is an Undo operation, 
which the system’s designer has provided for the benefit of any user who, at some stage 
in a session, wants to cancel the effect of the last executed command.

The primary aim of an undo mechanism is to allow users to recover from potentially 
damaging input mistakes. It is all too easy to type the wrong character or click on “OK” 
instead of “Cancel”. But a good undo facility goes further. It frees users from having to 
concentrate nervously on every key they type and button they click. Beyond this, it 
encourages a “What if… ?” style of interaction in which users try out various sorts of 
input, knowing that they can back up easily if the result is not what they expect. 

Every good interactive system should provide such a mechanism. When present, it 
tends to be one of the most frequently used operations. (For that reason, the makers of the 
computer on my desk have wisely provided an Undo key on the keyboard, although it is 
neither green nor particularly big. It is only effective, of course, for those regrettably few 
software applications whose authors took notice of it.)
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Multi-level undo and redo

Offering an undo mechanism is better than not offering one, but it is not enough. Most 
systems that provide Undo limit themselves to one level: you can only cancel the effect of 
the last command. If you never make two mistakes in a row, this is enough. But if you ever 
go off in the wrong direction, and wish you could go back several steps, you are in trouble. 
(Anyone having used Microsoft Word, the Unix Vi editor or FrameMaker, in the releases 
available at the time this book was published, will know exactly what I mean.)

There is really no excuse for the restriction to one level of undoing. Once you have 
set up the undoing machinery, going from one-level to multi-level undo is a simple matter, 
as we will see in this chapter. And, please (this is a potential customer speaking) do not, 
like so many application authors, limit the number of commands that can be undone to a 
ridiculously small value; if you must limit it at all, let the user choose his own limit 
(through a “preferences” setting that will apply to all future sessions) and set default to at 
least 20. The overhead is small if you apply the techniques below, and is well justified.

With multi-level undo, you will also need a Redo operation for users who get carried 
away and undo too much. With one-level undo no special Redo is required; the universally 
applied convention is that an Undo immediately following an Undo cancels it, so that 
Redo and Undo are the same operation. But this cannot work if you can go back more than 
one step. So we will have to treat Redo as a separate operation.

Practical issues

Although undo-redo can be retrofitted with reasonable effort into a well-written O-O 
system, it is best, if you plan to support this facility, to make it part of the design from the 
start — if only because the solution encourages a certain form of software architecture (the 
use of command classes) which, although beneficial in other respects, does not necessarily 
come to mind if you do not need undoing.

To make the undo-redo mechanism practical you will have to deal with a few 
practical concerns.

First you must include the facility in the user interface. For a start, we may just 
assume that the set of operations available to users is enriched with two new requests: 
Undo (obtained for example by typing control-U, although following the Macintosh 
convention control-Z seems to have become the standard on PC tools) and Redo (for 
example control-R). Undo cancels the effect of the last command not yet undone; Redo 
re-executes the last undone command not yet redone. You will have to define some 
convention for dealing with attempts to undo more than what has been done (or more than 
what is remembered), or to redo more than what has been undone: ignore the request, or 
bring up a warning message.

This is only a first shot at user interface support for undo-redo. At the end of this 
chapter we will see that a nicer, more visual interface is possible.
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Second, not all commands are undoable. In some cases this is an impossibility of 
fact, as in the command “fire the missiles” (notwithstanding the televised comment of a 
then-in-office US president, who thought one could command a U-turn) or, less 
ominously, “print the page”. In other cases, a command is theoretically undoable but the 
overhead is not worth the trouble; text editors typically do not let you undo the effect of a 
Save command, which writes the current document state into a file. The implementation 
of undoing will need to take into account such non-undoable commands, making this 
status clear in the user interface. Be sure to restrict non-undoable commands to cases for 
which this property is easily justifiable in user terms.

As a counter-example, a document processing tool which I frequently use tells its user, 
once in a while, that in the current state of the document the command just requested is 
not undoable, with no other visible justification than the whim of the program. At least it 
says so in advance — in most cases.

Interestingly, this warning is in a sense a lie: you can undo the effect if you want, although 
not through Undo but through “Revert to last saved version of the document”. This 
observation yields a user interface rule: if there remains any case for which you feel 
justified to make a command non-undoable, do not follow the document processing 
system’s example by just displaying a warning of the form “This command will not be 
undoable” and giving the choice between Continue anyway and Cancel. Give users three
possibilities: save document, then execute command; execute without saving; cancel.

Finally, it may be tempting to offer, besides Undo and Redo, the more general 
“Undo, Skip and Redo” scheme, allowing users, after one or more Undo operations, to 
skip some of the commands before triggering Redo. The user interface shown at the end 
of this chapter could support this extension, but it raises a conceptual problem: after you 
skip some commands, the next one may not make sense any more. As a trivial example 
assume a text editor session, with a text containing just one line, and a user who executes 
the two commands

(1) Add a line at the end.
(2) Remove the second line.

Our user undoes both, then wants to skip (1) and redo (2). Unfortunately at this stage 
(2) is meaningless: there is no second line. This is less a problem in the user interface (you 
could somehow indicate to the user that the command is impossible) than in the 
implementation: the command Remove the second line was applicable to the object 
structure obtained as a result of (1), but applying it to the object structure that exists prior 
to (1) may be impossible (that is to say, cause a crash or other unpleasant results). 
Solutions are certainly possible, but they may not be worth the trouble.

Requirements on the solution

The undo-redo mechanism that we set out to provide should satisfy the following 
properties. 

U1  • The mechanism should be applicable to a wide class of interactive applications, 
regardless of the application domain.
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U2  • The mechanism should not require redesign for each new command. 

U3  • It should make reasonable use of storage. 

U4  • It should be applicable to both one-level and arbitrary-level Undo. 

The first requirement follows from the observation that there is nothing application-
specific about undoing and redoing. To facilitate the discussion, we will use as example a 
kind of tool familiar to everyone: a text editor (such as Notepad or Vi), which enables its 
users to enter texts and to perform such commands as INSERT_LINE, DELETE_LINE, 
GLOBAL_REPLACEMENT (of a word by another) and so on. But this is only an 
example and none of the concepts discussed below is specific to text editors.

The second requirement excludes treating Undo and Redo as just any other 
command in the interactive system. Were Undo a command, it would need a structure of 
the form 

if “Last command was INSERT_LINE” then
“Undo the effect of INSERT_LINE”

elseif “Last command was DELETE_LINE” then
“Undo the effect of DELETE_LINE”

etc.

We know how bad such structures, the opposite of what the Single Choice principle 
directs us to use, are for extendibility. They have to be changed every time you add a 
command; furthermore, the code in each branch will mirror the code for the corresponding 
command (the first branch, for example, has to know a lot about what INSERT_LINE
does), pointing to a flawed design. 

The third requirement directs us to be sparing in our use of storage. Supporting undo-
redo will clearly force us to store some information for every Undo; for example when we 
execute a DELETE_LINE, we will not be able to undo it later unless we put aside 
somewhere, before executing the command, a copy of the line being deleted and a record 
of its position in the text. But we should store only what is logically necessary.

The immediate effect of this third requirement is to exclude an obvious solution: 
saving the whole system state — the entire object structure — before every command 
execution; then Undo would just restore the saved image. This would work but is terribly 
wasteful of space. Too bad, since the solution would be trivial to write: just use the 
STORABLE facilities for storing and retrieving an entire object structure in a single blow. 
But we must look for something a little more sophisticated.

The final requirement, supporting an arbitrary depth of undoing, has already been 
discussed. It will turn out to be easier to consider a one-level mechanism first, and then to 
generalize it to multi-level.

These requirements complete the presentation of the problem. It may be a good idea, 
as usual, to spend a little time looking for a solution on your own before proceeding with 
the rest of this chapter.
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21.2  FINDING THE ABSTRACTIONS

The key step in an object-oriented solution is the search for the right abstraction. Here the 
fundamental notion is staring us in the eyes.

Command as a class 

The problem is characterized by a fundamental data abstraction: COMMAND, 
representing any editor operation other than Undo and Redo. Execution is only one of the 
features that may be applied to a command: the command might be stored, tested — or 
undone. So we need a class of the provisional form 

deferred class COMMAND feature
execute deferred end
undo deferred end

end
COMMAND describes the abstract notion of command and so must remain deferred. 

Actual command types are represented by effective descendants of this class, such as 

class LINE_DELETION inherit
COMMAND

feature
deleted_line_index: INTEGER
deleted_line: STRING
set_deleted_line_index (n: INTEGER)

-- Set to n the number of next line to be deleted.
do

deleted_line_index := n
end

execute
-- Delete line.

do
“Delete line number deleted_line_index”
“Record text of deleted line in deleted_line”

end
undo

-- Restore last deleted line.
do

“Put back deleted_line at position deleted_line_index”
end

end
And similarly for each command class.
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What do such classes represent? An instance of LINE_DELETION, as illustrated 
below, is a little object that carries with it all the information associated with an execution 
of the command: the line being deleted (deleted_line, a string) and its index in the text 
(deleted_line_index, an integer). This is the information needed to undo the command 
should this be required later on, or to redo it.

The exact attributes — such as deleted_line and deleted_line_index here — will 
differ for each command class, but they should always be sufficient to support the local 
variants of execute and undo. Such objects, conceptually describing the difference 
between the states that precede and follow the application of a command, will enable us 
to satisfy requirement U3 of the earlier list — storing only what is strictly necessary.

The inheritance structure of command classes may look like this:

The graph shown is flat (all proper descendants of COMMAND at the same level), 
but nothing precludes adding more structure by grouping command types into 
intermediate categories; this will be justified if such categories make sense as abstract data 
types, that is to say, have specific features.

When defining a notion, it is always important to indicate what it does not cover. 
Here the concept of command does not include Undo and Redo; for example it would not 
make sense to undo an Undo (except in the sense of doing a Redo). For this reason the 
discussion uses the term operation for Undo and Redo, reserving command for operations 
which can be undone and redone, such as line insertion. There is no need for a class 
covering the notion of operation, since non-command operations such as Undo have only 
one relevant feature, their ability to be executed.

This is a good example of the limitations of simplistic approaches to “find the objects”, 
such as the famous “Underline the nouns” idea studied in a later chapter. In the 
specification of the problem, the nouns command and operation are equally important; 
but one gives a fundamental class, the other does not give a class at all. Only the abstract 
data type perspective — studying abstractions in terms of the applicable operations and 
their properties — can help us find the classes of our object-oriented systems.

"Some text"
deleted_line_index

deleted_line
45

*

LINE_ … 

execute* 
undo*
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LINE_
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The basic interactive step

To get started we will see how to support one-level undo. The generalization to multi-level 
undo-redo will come next.

In any interactive system, there must be somewhere, in a module in charge of the 
communication with users, a passage of the form

basic_interactive_step
-- Decode and execute one user request.

do
“Find out what the user wants us to do next”
“Do it (if possible)”

end

In a traditionally structured system, such as editor, these operations will be executed 
as part of a loop, the program’s “basic loop”:

from start until quit_has_been_requested_and_confirmed loop
basic_interactive_step

end

whereas more sophisticated systems may use an event-driven scheme, in which the loop 
is external to the system proper (being managed by the underlying graphical 
environment). But in all cases there is a need for something like basic_interactive_step.

In light of the abstractions just identified, we can reformulate the body of the 
procedure as 

“Get latest user request”
“Decode request”
if “Request is a normal command (not Undo)” then

“Determine the corresponding command in our system”
“Execute that command”

elseif “Request is Undo” then
if “There is a command to be undone” then

“Undo last command”
elseif “There is a command to be redone” then

“Redo last command”
end

else
“Report erroneous request”

end
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This implements the convention suggested earlier that Undo applied just after Undo 
means Redo. A request to Undo or Redo is ignored if there is nothing to undo or redo. In 
a simple text editor with a keyboard interface, “Decode request” would analyze the user 
input, looking for such codes as control-I (for insert line), control-D (for delete line) and 
so on. With graphical interfaces you have to determine what input the user has entered, 
such as a choice in a menu, a button clicked in a menu, a key pressed.

Remembering the last command

With the notion of command object we can be more specific about the operations 
performed by basic_interactive_step. We will use an attribute

requested: COMMAND
-- Command requested by interactive user

representing the latest command that we have to execute, undo or redo. This enables us to 
refine the preceding scheme of basic_interactive_step into:

“Get and decode latest user request”
if “Request is normal command (not Undo)” then

“Create appropriate command object and attach it to requested  ”
-- requested is created as an instance of some
-- descendant of COMMAND, such as LINE_DELETION
-- (This instruction is detailed below.)

; undoing_mode := False

elseif “request is Undo” and requested /= Void then
if undoing_mode then

“This is a Redo; details left to the reader”
else

; undoing_mode := True
end

else
“Erroneous request: output warning, or do nothing”

end

The boolean entity undoing_mode determines whether the last operation was an Undo. In 
this case an immediately following Undo request would mean a Redo, although the 
straightforward details have been left to the reader; we will see the full details of Redo 
implementation in the more interesting case of a multi-level mechanism.

The information stored before each command execution is an instance of some 
descendant of COMMAND such as LINE_DELETION. This means that, as announced, the 
solution satisfies the property labeled U3 in the list of requirements: what we store for each 
command is the difference between the new state and the previous one, not the full state. 

requested execute
Dynamic
Binding

requested undo
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The key to this solution — and its refinements in the rest of this chapter — is 
polymorphism and dynamic binding. Attribute requested is polymorphic: declared of type 
COMMAND, it will become attached to objects of one of its effective descendant types 
such as LINE_INSERTION. The calls requested  execute and requested  undo only make 
sense because of dynamic binding: the feature they trigger must be the version redefined 
for the corresponding command class, executing or undoing a LINE_INSERTION, a 
LINE_DELETION or a command of any other type as determined by the object to which 
requested happens to be attached at the time of the call.

The system’s actions

No part of the structure seen so far is application-specific. The actual operations of the 
application, based on its specific object structures — for example the structures 
representing the current text in a text editor — are elsewhere; how do we make the 
connection?

The answer relies on the execute and undo procedures of the command classes, 
which must call application-specific features. For example procedure execute of class 
LINE_DELETION must have access to the editor-specific classes to call features that will 
yield the text of the current line, give its position in the text, and remove it.

As a result there is a clear separation between the user interaction parts of a system, 
largely application-independent, and the application-specific parts, closer to the model of 
each application’s conceptual model — be it text processing, CAD-CAM or anything else. 
The first component, especially when generalized to a history mechanism as explained 
next, will be widely reusable between various application domains.

How to create a command object

After decoding a request, the system must create the corresponding command object. The 
instruction appeared abstractly as “Create appropriate command object and attach it to 
requested ”; we may express it more precisely, using creation instructions, as

if “Request is LINE INSERTION” then
create {LINE_INSERTION} requested  make (input_text, cursor_ index)

elseif “Request is LINE DELETION” then
create {LINE_DELETION} requested make (current_line, line_ index)

elseif
…

This uses the create {SOME_TYPE} x … form of the creation instruction, which 
creates an object of type SOME_TYPE and attaches it to x; remember that SOME_TYPE
must conform to the type declared for x, as is the case here since requested is of type 
COMMAND and all the command classes are descendants of COMMAND.

If each command type uses a unique integer or character code, a slightly simpler 
form relies on an inspect:
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when Line_insertion then
create {LINE_INSERTION} requested  make (input_text, cursor_ position)

etc.

Both forms are multiple-branch choices, but they do not violate the Single Choice 
principle: as was pointed out in the discussion of that principle, if a system provides a 
number of alternatives some part of it must know the complete list of alternatives. The above 
extract, in either variant, is that point of single choice. What the principle precludes is 
spreading out such knowledge over many modules. Here, no other part of the system needs 
access to the list of commands; every command class deals with just one kind of command.

It is in fact possible to obtain a more elegant structure and get rid of the multi-branch 
choice totally; we will see this at the end of presentation.

21.3  MULTI-LEVEL UNDO-REDO

Supporting an arbitrary depth of undoing, with the attendant redoing, is a straightforward 
extension of the preceding scheme.

The history list

What has constrained us to a single level of undoing was the use of just one object, the last 
created instance of COMMAND available through requested, as the only record of 
previously executed commands.

In fact we create as many objects as the user executes commands. But because the 
software only has one command object reference, requested, always attached to the last 
command, every command object becomes unreachable as soon as the user executes a 
new command. It is part of the elegance and simplicity of a good O-O environment that 
we do not need to worry about such older command objects: the garbage collector will 
take care of reclaiming the memory they occupy. It would be a mistake to try to reclaim 
the command objects ourselves, since they may all be of different shapes and sizes.

To provide more depth of undoing we need to replace the single command requested
by a list of recently executed commands, the history list:

history: SOME_LIST [COMMAND]

SOME_LIST is not a real class name; in true object-oriented, abstract data type style 
we will examine what features and properties we need from SOME_LIST and draw the 
conclusion as to what list class (from the Base library) we can use. The principal 
operations we need are straightforward and well known from previous discussions:

• put to insert an element at the end (the only place where we will need insertions). By 
convention, put will position the list cursor on the element just inserted.

• empty to find out whether the list is empty.
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• before, is_ first and is_last to answer questions about the cursor position.

• back to move the cursor back one position and forth to advance it one position.

• item to access the element at cursor position, if any; this feature has the precondition 
(not empty) and (not before), which we can express as a query on_item.

In the absence of undoing, the cursor will always be (except for an empty list) on 
the last element, making is_last true. If the user starts undoing, the cursor will move 
backward in the list (all the way to before if he undoes every remembered command); if 
he starts redoing, the cursor will move forward.

The figure shows the cursor on an element other than the last; this means the user has 
just executed one or more Undo, possibly interleaved with some Redo, although the 
number of Undo must always be at least as much as the number of Redo (it is greater by 
two in the state captured in the figure). If at that stage the user selects a normal command 
— neither Undo nor Redo —, the corresponding object must be inserted immediately to 
the right of the cursor element. The remaining elements on the right are lost, since Redo 
would not make sense in that case; this is the same situation that caused us at the beginning 
of this chapter to relegate the notion of Skip operation to an exercise. As a consequence 
we need one more feature in SOME_LIST: procedure remove_all_right, which deletes all 
elements to the right of the cursor.

An Undo is possible if and only if the cursor is on an element, as stated by on_item. A 
Redo is possible if and only if there has been at least one non-overridden Undo, that is to 
say, (not empty) and (not is_last), which we may express through a query not_last.

Implementing Undo

With the history list, it is easy to implement Undo:

if on_item then
history  item  undo
history  back

else
message ("Nothing to undo")

end

Oldest
Most recent
command

remembered
command

EXECUTE, REDOUNDO

back forth

is_first is_lastbefore Cursor

item

1 count
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See once again how dynamic binding is essential. The history list is a polymorphic 
data structure:

As the cursor moves left, each successive value of history itemmay be attached to 
an object of any of the available command types; in each case, dynamic binding ensures 
that history  item  undo automatically selects the appropriate version of undo.

Implementing Redo

Redo is similar:

if not_last then
history  forth
history  item  redo

else
message ("Nothing to redo")

end

This assumes a new procedure, redo, in class COMMAND. So far we had taken for 
granted that redo is the same thing as execute, and indeed in most cases it will be; but for 
some commands re-executing after an undo might be slightly different from executing 
from scratch. The best way to handle such situations — providing enough flexibility, 
without sacrificing convenience for the common cases — is to provide the default 
behavior in class COMMAND:

redo
-- Re-execute command that has been undone
-- by default, the same thing as executing it.

do
execute

end

This makes COMMAND a behavior class: along with deferred execute and undo, it 
has an effective procedure redo which defines a behavior based, by default, on the other 
two. Most descendants will keep this default, but some of them may redefine redo to 
account for special cases.
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Executing a normal command

If a user operation is neither Undo nor Redo, it is a normal command identified by a 
reference that we may still call requested. In this case we must execute the command, but 
we must also insert it into the history list; we should also, as noted, forget any item to the 
right of the cursor. So the sequence of instructions is:

if not is_last then remove_all_right end
history  put (requested)

-- Recall that put inserts at the end of the list and moves
-- the cursor to the new element.

requested  execute

With this we have seen all the essential elements of the solution. The rest of this 
chapter discusses a few implementation-related topics and draws the methodological 
lessons from the example.

21.4  IMPLEMENTATION ASPECTS

Let us examine a few details that help obtain the best possible implementation.

Command arguments

Some commands will need arguments. For example a LINE_INSERTION needs to know 
the text of the line to be inserted.

A simple solution is to add to COMMAND an attribute and a procedure:

argument: ANY
set_argument (a: like argument)

do argument := a end

Then any command class can redefine argument to the proper type. To handle 
multiple arguments, it suffices to choose an array or list type. This was the technique 
assumed above when we passed various arguments to the creation procedures of 
command classes.

This technique is appropriate for all simple applications. Note, however, that the 
COMMAND class in ISE’s libraries uses a different technique, slightly more complicated 
but more flexible: there is no argument attribute, but procedure execute takes an argument 
(in the usual sense of argument to a routine), representing the command argument:

execute (command_argument: ANY) …

The reason is that it is often convenient, in a graphical system, to let different 
instances of the same command type share the same argument; by removing the attribute 
we can reuse the same command object in many different contexts, avoiding the creation 
of a new command object each time a user requests a command.
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The small complication is that the elements of the history list are no longer instances 
of COMMAND; they must instead be instances of a class COMMAND_INSTANCE with 
attributes

command_type: COMMAND
argument: ANY

For a significant system, the gain in space and time is worth this complication, since 
you will create one command object per command type, rather than one per command 
execution. This technique is recommended for production applications. You will only 
need to change a few details in the preceding class extracts.

Precomputing command objects

Before executing a command we must obtain, and in some cases create, the corresponding 
command object. The instruction was abstractly written as “Create appropriate command 
object and attach it to requested ” and the first implementation draft was

inspect
request_code

when Line_insertion then
create {LINE_INSERTION} requested  make (…)

etc. (one branch for each command type)

As pointed out, this instruction does not violate the Single Choice principle: it is in 
fact the point of single choice — the only place in the entire system that knows what set 
of commands is supported. But we have by now developed a healthy loathing for if or 
inspect instructions with many branches, so even if this one appears inevitable at first let 
us see if perhaps we could get rid of it anyway.

We can — and the design pattern, which may be called precomputing a 
polymorphic instance set, is of wide applicability.

The idea is simply to create once and for all a polymorphic data structure containing 
one instance of each variant; then when we need a new object we simply obtain it from the 
corresponding entry in the structure.

Although several data structures would be possible for such as a list, it is most 
convenient to use an ARRAY [COMMAND], allowing us to identify each command type 
with an integer between 1 and command_count, the number of command types. We declare

commands: ARRAY [COMMAND]

and initialize its elements in such a way that the i-th element (1 <= i <= n) refers to an 
instance of the descendant class of COMMAND corresponding to code i; for example, we 
create an instance of LINE_DELETION, associate it with the first element of the array 
(assuming line deletion has code 1), and so on. 
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A similar technique can be applied to the polymorphic array associated_state used in the 
O-O solution to the previous chapter’s problem (panel-driven applications).

The array commands is another example of the power of polymorphic data 
structures. Its initialization is trivial:

create commands  make (1, command_count) 

create  {LINE_INSERTION} requested  make; commands  put (requested, 1)
create {STRING_REPLACE} requested  make; commands  put (requested, 2)
… And so on for each command type …

Note that with this approach the creation procedures of the various command classes 
should not have any arguments; if a command class has attributes, they should be set 
separately later on through specific procedures, as in li  make (input_text, cursor_ position)
where li is of type LINE_INSERTION.

Then there is no more need for any if or inspect multi-branch instruction. The above 
initialization serves as the point of single choice; you can now write the operation “Create 
appropriate command object and attach it to requested ” as 

requested := clone (commands @ code)

where code is the code of the last command. (Since each command type now has a code, 
corresponding to its index in the array, the basic user interface operation written earlier as 
“Decode request” analyzes the user’s request and determines the corresponding code.)

The assignment to requested uses a clone of the command template from the array, 
so that you can have more than one instance of the same command type in the history list 
(as in the earlier example, where the history includes two LINE_DELETION objects).

If, however, you use the suggested technique of completely separating the command 
arguments from the command objects (so that the history list contains instances of 
COMMAND_INSTANCE rather than COMMAND), then the clone is not necessary any 
more, and you can go on using references to the original objects from the array, with just:

requested := commands @ code

In very long sessions the savings can be significant.
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A representation for the history list

For the history list a type SOME_LIST was posited, with features put, empty, before, is_ first, 
is_last, back, forth, item and remove_all_right. (There is also on_item, expressed in terms 
of empty and before, and not_last, expressed in terms of empty and is_last.)

Many of the classes in the Base libraries can be used to implement SOME_LIST; for 
example we could rely on TWO_WAY_LIST or one of the descendants of the deferred class 
CIRCULAR_LIST. To obtain a stand-alone solution let us devise an ad hoc class 
BOUNDED_LIST. Unlike a linked implementation such as TWO_WAY_LIST, this one 
will rely on an array, so it keeps only a bounded number of commands in the history. Let 
remembered be the maximum number of remembered commands. If you use this facility 
for a system to build, remember (if only to avoid receiving an angry letter from me should 
I ever become a user) to make this maximum user-settable, both during the session and in 
a permanent user profile consulted at the beginning of each session; and choose a default 
that is not too small, for example 20.

BOUNDED_LIST can use an array, managed circularly to enable reusing earlier 
positions as the number of commands goes beyond remembered. With this technique, 
common for representing bounded queues (it will show up again for bounded buffers in 
the discussion of concurrency), we can picture the array twisted into a kind of doughnut:

The size capacity of the array is remembered + 1; this convention means setting aside 
one of the positions (the last, at index capacity) and is necessary if we want to be able to 
distinguish between an empty list and a full list (see below). The occupied positions are 
marked by two integer attributes: oldest is the position of the oldest remembered 
command, and next is the first free position (the one at which the next command will be 
inserted). The integer attribute index indicates the current cursor position.

Here is the implementation of the various features. For put (c), inserting command c
at the end of the list, we execute

1

remembered

next

oldest

capacity

Occupied position

Free position

Reserved position

index
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representation  put (x, next); -- where representation is the name of the array
next := (next \\ remembered) + 1
index := next

where \\ is the integer remainder operation. The value of empty is true if and only if 
next = oldest; that of is_ first, if and only if index = oldest; and that of before if and only if 
(index \\ remembered) + 1 = oldest. The body of forth is

index := (index \\ remembered) + 1

and the body of back is

index := ((index + remembered – 2) \\ remembered) + 1
The +remembered term is mathematically redundant, but is included because of the 
lack of universal conventions as to the computer meaning of remainder operations for 
negative operands.

The query item giving the element at cursor position returns representation @ index, 
the array element at index index. Finally, the procedure remove_all_right, removing all 
elements to the right of the cursor position, is simply implemented as

next := (index \\ remembered) + 1

21.5  A USER INTERFACE FOR UNDOING AND REDOING

Here is part of a possible user interface support for the undo-redo mechanism. It is taken 
from ISE’s Case analysis and design workbench, but several of our other products use the 
same scheme.

Although keyboard shortcuts are available for Undo and Redo, the complete 
mechanism involves bringing up a history window (by clicking on a button in the interface, 
or selecting an item in the Tools menu). The history window is the exact user-visible 
equivalent of the history list as it exists inside the software. Once it is up, it will be 
regularly updated as you execute commands and other operations. In the absence of any 
undoing, it will look like this:
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This shows the list of recent commands. As you execute new commands, they will 
appear at the end of the list. The currently active command (the one at cursor position) is 
highlighted in inverse video, like change relation label on the last figure.

To undo the active command, you can click on the up arrow button  or use the 
keyboard shortcut (such as ALT-U). The cursor moves up (back) in the list; after a few 
such Undo, the window would look like this:

As you know, this internally means that the software has been performing a few calls 
to back. At this stage you have a choice between several possibilities:

• You can perform more Undo operations by clicking on the up arrow button; the 
highlighting moves to the previous line.

• You can perform one or more Redo by clicking on the down arrow  or using the 
equivalent keyboard shortcut; the highlighting goes to the next line, internally 
performing calls to forth.

• You can execute a normal command. As we have seen, this will remove from the 
history any commands that have been undone but not redone, internally performing 
a remove_all_right; in the interface, all the commands below the currently 
highlighted one disappear.

21.6  DISCUSSION

The design pattern presented in this chapter has an important practical role, as it will 
enable you to write significantly better interactive systems at little extra effort. It also 
brings an interesting theoretical contribution, by illuminating some aspects of object-
oriented methodology worth exploring further.
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The role of implementation

A striking property of the example user interface presented in the last section is that it was 
directly deduced from the implementation: we took the internal, developer-relevant notion 
of history list and translated it into an external, user-relevant history window, with the 
attendant user interaction mechanism.

One may always imagine that someone could have devised the external view first, or at 
any rate independently from the implementation. But this is not the way it happened, 
either in this presentation or in history of our products’ development.

Instituting such a relation between a system’s functionality and its implementation 
goes against all that traditional software engineering methodology has taught. We have 
been told to deduce the implementation from the specification, not the reverse! 
Techniques of “iterative development” and “spiral lifecycle” change little to this 
fundamental rule that implementation is slave to prior concept, and that the software 
developers must do what the “users” (meaning, the customers, usually non-technical) tell 
them. Here we are violating every taboo by asserting that the implementation can tell us 
what the system should be doing in the first place. In earlier times questioning such time-
honored definitions of what depends on what could have led one to the stake.

The legitimate emphasis on involving customers — meant to avoid the all too 
common horror stories of systems that do not do what their users need — has unfortunately 
led to downplaying the software developers’ contribution, whose importance extends to 
the most external and application-related aspects. It is naïve to believe, for example, that 
customers will suggest the right interface facilities. Sometimes they will, but often they 
reason on the basis of the systems they know, and they will not see all the issues involved. 
That is understandable: they have their own jobs to do, and their own areas of expertise; 
getting everything right in a software system is not their responsibility. Some of the worst 
interactive interfaces in the world were designed with too much user influence. Where 
users are truly irreplaceable is for negative comments: they will see practical flaws in an 
idea which at first seems attractive to the developers. Such criticism must always be 
heeded. Users can make brilliant positive suggestions too, but do not depend on it. And 
once in a while, a developer’s suggestion will seduce the users — possibly after a number 
of iterations taking their criticism into account — even though it draws its origin from a 
seemingly humble implementation technique, such as the history list.

This equalization of traditional relationships is one of the distinctive contributions of 
object technology. By making the development process seamless and reversible, we allow 
a great implementation idea to influence the specification. Instead of a one-way flow from 
analysis to design and “coding”, we have a continuous process with feedback loops 
throughout. This assumes, of course, that implementation is no longer viewed as the 
messy, low-level component of system construction; its results, developed with the 
techniques described throughout this book, can and should be as clear, elegant and abstract 
as anything one can produce in the most implementation-abhorrent forms of traditional 
analysis and design.
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Small classes

The design described in this chapter may, for a typical interactive system, involve a 
significant number of relatively small classes: one for each type of command. There is no 
reason, however, to be concerned about the effect on system size and complexity since the 
inheritance structure on these classes will remain simple, although it does not have to be as 
flat as the one sketched in this chapter. (You may want to group commands into categories.) 

In a systematic O-O approach, similar questions arise whenever you have to 
introduce classes representing actions. Although some object-oriented languages make it 
possible to pass routines as arguments to other routines, such a facility contradicts the 
basic idea of the method — that a function (action, routine) never exists by itself but is 
always relative to a certain data abstraction. So instead of passing an operation we should 
pass an object equipped, through a routine of its generating class, with that operation, as 
with an instance of COMMAND equipped with the execute operation.

Sometimes the need to write a wrapper class seems artificial, especially to people 
used to passing routines around as arguments. But every time I have seen such a class 
legitimately being introduced, originally for the sole purpose (it was thought) of 
encapsulating an operation, it turned out to reveal a useful data abstraction, as evidenced 
by the later addition of other features beyond the one that served as the original incentive. 
Class COMMAND does not fall into this category, since right from the start it was 
conceived as a data abstraction, and had two features (execute and undo). But it is typical 
of the process, since if you start using commands seriously you will soon realize the need 
for even more features such as:

• argument: ANY to represent the command argument (as in one of the versions that 
we have encountered).

• help: STRING, to provide on-line help associated with each command.

• Logging and statistical features, to keep track of how often each command type is used.

Another example, drawn from the domain of numerical software, is more 
representative of situations where the introduction of a class may seem artificial at first, 
because the object-oriented designer will pass an object where a traditional approach 
would have passed a routine as argument. In performing scientific computation you will 
often need integration mechanisms, to which you give a mathematical function f to 
compute its integral on a certain interval. The traditional technique is to represent f as a 
routine, but in object-oriented design we recognize that “Integrable function” is an 
important abstraction, with many possible features. For someone coming from the 
functional world of C, Fortran and top-down design, the need to provide a class may at 
first appear to be a kind of programming trick: not finding in the language manual a way 
to pass a routine as argument, he asks his colleagues how to achieve this effect, and is told 
that he must write a class with the corresponding feature, then pass objects (instances of 
that class) rather than the feature itself.
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He may at first accept this technique — perhaps grudgingly — as one of those quirks 
that programming languages impose on their users, as when you want a boolean variable in 
C and have to declare it of type integer, with 0 for false and 1 for true. But then as he 
continues his design he will realize that the technique was not a hack, simply the proper 
application of object-oriented principles: INTEGRABLE_FUNCTION is indeed one of the 
major abstractions of his problem domain, and soon new, relevant features (beyond the 
original one item (a: REAL): REAL, giving the value of the function at point a) will start 
piling up.

What was thought to be a trick turns out to yield a major component of the design.

21.7  BIBLIOGRAPHICAL NOTES

The undo-redo mechanism described in this chapter was present in the structural 
document constructor Cépage developed by Jean-Marc Nerson and the author in1982 
[M 1984], and has been integrated into many of ISE’s interactive tools (including 
ArchiText [ISE 1996], the successor to Cépage).

In a position paper for a panel at the first OOPSLA conference in 1986, Larry Tesler 
cites a mechanism based on the same ideas, part of Apple’s MacApp interactive framework.

[Dubois 1997] explains in detail how to apply object-oriented concepts to the design 
of numerical software, with abstractions such as “Integrable function” (as mentioned in 
the last section), and describes in detail a complete object-oriented numerical library.

EXERCISES

E21.1  Putting together a small interactive system (programming project)

This small programming project is an excellent way to test your understanding of the 
topics of this chapter — and more generally of how to build a small system making full 
use of object-oriented techniques.

Write a line-oriented editor supporting the following operations:

• p: Print text entered so far.

• ↓: move cursor to next line if any. (Use the code l, for low, if that is more convenient.)

• ↑: move cursor to previous line if any. (Use h, for high, if that is more convenient.)

• i: insert a new line after cursor position.

• d: delete line at cursor position.

• u: Undo last operation if not Undo; if it was Undo, redo undone command.
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You may add more commands, or choose a more attractive user interface, but in all cases 
you should produce a complete, workable system. (You may also apply right from the start 
the improvement described in the next exercise.)

E21.2  Multi-level Redo

Complete the previous exercise’s one-level scheme by redefining the meaning of u as

• u: Undo last operation other than Undo and Redo.

and adding

• r: Redo last undone command (when applicable).

E21.3  Undo-redo in Pascal

Explain how to obtain a solution imitating the undo-redo technique of this chapter in non-
O-O languages such as Pascal, Ada (using record types with variants) or C (using structure 
and union types). Compare with the object-oriented solution.

E21.4  Undo, Skip and Redo

Bearing in mind the issues raised early in the discussion, study how to extend the 
mechanism developed in this chapter so that it will support Undo, Skip and Redo, as 
well as making it possible to redo an undone command that has been followed by a 
normal command.

Discuss the effect on both the user interface and the implementation. 

E21.5  Saving on command objects

Adapt all the class extracts of this chapter to treat command arguments separately from 
commands (adding a routine argument to execute) and create only one command object 
per command type.

If you have done the preceding exercise, apply this technique to its solution.

E21.6  Composite commands

For some systems it may be useful to introduce a notion of composite command, 
describing commands whose execution involves executing a number of other commands. 
Write the corresponding class COMPOSITE_COMMAND, an heir of COMMAND, 
making sure that composite commands can be undone, and that a component of a 
composite command may itself be composite.

Hint: use the multiple inheritance scheme presented for composite figures.
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E21.7  Non-undoable commands

A system may include commands that are not undoable, either by nature (“Fire the 
missiles”) or for pragmatic reasons (when there is too much information to remember). 
Refine the solution of this chapter so that it will account for non-undoable commands. 
(Hint: introduce heirs UNDOABLE and NON_UNDOABLE to class COMMAND.) Study 
carefully the effect on the algorithms presented, and on the user interface, in particular for 
an interface using the history windows as presented at the end of the chapter.

E21.8  A command library (design and implementation project)

Write a general-purpose command library, meant to be used by an arbitrary interactive 
system and supporting an unlimited undo-redo mechanism. The library should integrate 
the facilities discussed in the last three exercises: separating commands from arguments; 
composite commands; non-undoable commands. (Integrating an “Undo, Skip and Redo” 
facility is optional.) Illustrate the applicability of your library by building three 
demonstration systems of widely different natures, such as a text editor, a graphics system 
and a training tool.

E21.9  A history mechanism

A useful feature to include in a command-oriented interactive tool is a history mechanism 
which remembers the last commands executed, and allows the user to re-execute a 
previous command, possibly modified, using simple mnemonics. Under Unix, for 
example, you may direct the C-shell (a command language) to remember the last few 
executed commands; then you may type !–2 to mean “re-execute the next-to-last 
command”, or ^yes^no^ to mean “re-execute the last command, replacing the characters 
yes in the command text by no”. Other environments offer similar facilities.

History mechanisms, when they exist, are built in an ad hoc fashion. On Unix, many 
interactive tools running under the C-shell, such as the Vi editor or various debuggers, 
would greatly benefit from such a mechanism but do not offer one. This is all the more 
regrettable that the same concept of command history and the same associated facilities 
are useful for any interactive tool independently of the functions it performs — command 
language, editor, debugger. 

Design a class implementing a general-purpose history mechanism, in such a way that any 
interactive tool needing such a mechanism will obtain it by simply inheriting from that 
class. (Note that multiple inheritance is essential here.) 

Discuss the extension of this mechanism to a general USER_INTERFACE class. 
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E21.10  Testing environment
Proper testing of a software component, for example a class, requires a number of facilities 
to prepare the test, input test data, run the test, record the results, compare them to 
expected results etc. Define a general TEST class that defines an appropriate testing 
environment and may be inherited by any class in need of being tested. (Note again the 
importance of multiple inheritance.) 

E21.11  Integrable functions
(For readers familiar with the basics of numerical analysis.) Write a set of classes for 

integrating real functions of a real variable over arbitrary intervals. They should include a 
class INTEGRABLE_FUNCTION, as well as a deferred class INTEGRATOR to describe 
integration methods, with proper descendants such as RATIONAL_FIXED_INTEGRATOR.



22  
How to find the classes 
Foremost among the goals of object-oriented methodology, since the structure of O-O 
software is based on decomposition into classes, is that it should give us some advice on 
how to find these classes. Such is the purpose of the following pages. (In some of the 
literature you will see the problem referred to as “finding the objects”, but by now we know 
better: what is at stake in our software architectures is not individual objects, but object 
types — classes.) 

At first we should not expect too much. Finding classes is the central decision in 
building an object-oriented software system; as in any creative discipline, making such 
decisions right takes talent and experience, not to mention luck. Expecting to obtain 
infallible recipes for finding the classes is as unrealistic as would be, for an aspiring 
mathematician, expecting to obtain recipes for inventing interesting theories and proving 
their theorems. Although both activities — software construction and theory construction 
— can benefit from general advice and the example of successful predecessors, both also 
require creativity of the kind that cannot fully be covered by mechanical rules. If (like 
many people in the industry) you still find it hard to compare the software developer to a 
mathematician, just think of other forms of engineering design: although it is possible to 
provide basic guidelines, no teachable step-by-step rules can guarantee good design of 
buildings or airplanes. 

In software too, no book advice can replace your know-how and ingenuity. The 
principal role of a methodological discussion is to indicate some good ideas, draw your 
attention to some illuminating precedents, and alert you to some known pitfalls. 

This would be true with any other software design method. In the case of object 
technology, the observation is tempered by some good news, coming to us in the form of 
reuse. Because much of the necessary invention may already have been done, you can 
build on others’ accomplishments.

There is more good news. By starting with humble expectations but studying 
carefully what works and also what does not, we will be able, little by little and against all 
odds, to devise what in the end deserves to be called a method for finding the classes. One 
of the key steps will be the realization that, as always in design, a selection technique is 
defined by two components: what to consider, and what to reject.
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22.1  STUDYING A REQUIREMENTS DOCUMENT 

To understand the problem of finding classes, it may be best to begin by assessing a widely 
publicized approach. 

The nouns and the verbs 

A number of publications suggest using a simple rule for obtaining the classes: start from 
the requirements document (assuming there is one, of course, but that is another story); in 
function-oriented design you would concentrate on the verbs, which correspond to actions 
(“do this”); in object-oriented design you underline the nouns, which describe objects. So 
according to this view a sentence of the form

The elevator will close its door before it moves to another floor.

would lead the function-oriented designer to detect the need for a “move” function; but as 
an object-oriented designer you should see in it three object types, ELEVATOR, DOOR
and FLOOR, which will give classes. Voilà! 

Would it that life were that simple. You would bring your requirements documents 
home at night, and play Object Pursuit around the dinner table. A good way to keep the 
children away from the TV set, and make them revise their grammar lessons while they 
help Mom and Dad in their software engineering work. 

But such a simple-minded technique cannot take us very far. Human language, used 
to express system requirements, is so open to nuance, personal variation and ambiguity 
that it is dangerous to make any important decision on the basis of a document which may 
be influenced as much by the author’s individual style as by the actual properties of the 
projected software system. 

Any useful result that the “underline the nouns” method would give us is obvious 
anyway. Any decent O-O design for an elevator control system will include an 
ELEVATOR class. Obtaining such classes is not the difficult part. To repeat an expression 
used in an earlier discussion, they are here for the picking. For the non-obvious classes a 
syntactic criterion — such as nouns versus verbs in a document that is by essence open to 
many possible stylistic variants — is close to useless.

Although by itself the “underline the nouns” idea would not deserve much more 
consideration, we can use it further, not for its own sake but as a foil; by understanding its 
limitations we can gain insights into what it truly takes to find the classes and how the 
requirements document can help us in this endeavor.

Avoiding useless classes 

The nouns of a requirements document will cover some classes of the final design, but will 
also include many “false alarms”: concepts that should not yield classes. 

In the elevator example door was a noun. Do we need a class DOOR? Maybe, maybe 
not. It is possible that the only relevant property of elevator doors for this system is that 
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Chapter 21.
they may be opened and closed. Then to express the useful properties of doors it suffices 
to include in class ELEVATOR the query and commands

door_open: BOOLEAN;
close_door

…
ensure

not door_open
end;

open_door
…
ensure

door_open
end

In another variant of the system, however, the notion of door may be important 
enough to justify a separate class. The only resource here is the theory of abstract data 
types, and the only relevant question is:

Only your intuition and experience as a designer will tell you the answer. In looking 
for it, you will be aided by the requirements document, but do not expect grammatical 
criteria to be of more than superficial help. Turn instead to the ADT theory, which will 
help you ask customers or future users the right questions.

We encountered a similar case in the undo-redo mechanism design. The discussion 
distinguished between commands, such as the line insertion command in a text editor, and 
the more general notion of operation, which includes commands but also special requests 
such as Undo. Both of these words figured prominently in the statement of the problem; 
yet only COMMAND yielded a data abstraction (one of the principal classes of the design), 
whereas no class in the solution directly reflects the notion of operation. No analysis of a 
requirements document can suggest this striking difference of treatment.

Is a new class necessary? 

Another example of a noun which may or may not give a class in the elevator example is 
floor. Here (as opposed to the door and operation cases) the question is not whether the 
concept is a relevant ADT: floors are definitely an important data abstraction for an 
elevator system. But this does not necessarily mean we should have a FLOOR class. 

The reason is simply that the properties of floors may be entirely covered, for the 
purposes of the elevator system, by those of integers. Each floor has a floor number; then 

Is “door” a separate data type with its own clearly identified operations, or 
are all the operations on doors already covered by operations on other data 
types such as ELEVATOR?
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if a floor (as seen by the elevator system) has no other features than those associated with 
its floor number, you may not need a separate FLOOR class. A typical floor feature that 
comes from a feature of integers is the distance between two floors, which is simply the 
difference of their floor numbers.

If, however, floors have properties other than those of their numbers — that is to say, 
according to the principles of abstract data types and object-oriented software 
construction, significant operations not covered by those of integers — then a FLOOR
class will be appropriate. For example, some floors may have special access rights 
defining who can visit them; then the FLOOR class could include a feature such as 

rights: SET [AUTHORIZATION]

and the associated procedures. But even that is not certain: we might get away by 
including in some other class an array

floor_rights: ARRAY [SET [AUTHORIZATION]]

which simply associates a set of AUTHORIZATION values with each floor, identified by 
its number. 

Another argument for having a specific class FLOOR would be to limit the available 
operations: it makes sense to subtract two floors and to compare them (through the 
infix  "<" function), but not to add or multiply them. Such a class may be written as an heir 
to INTEGER. The designer must ask himself, however, whether this goal really justifies 
adding a new class. 

This discussion brings us once again to the theory of abstract data types. A class 
does not just cover physical “objects” in the naïve sense. It describes an abstract data type 
— a set of software objects characterized by well-defined operations and formal 
properties of these operations. A type of real-world objects may or may not have a 
counterpart in the software in the form of a type of software objects — a class. When you 
are assessing whether a certain notion should yield a class or not, only the ADT view can 
provide the right criterion: do the objects of the system under discussion exhibit enough 
specific operations and properties of their own, relevant to the system and not covered by 
existing classes? 

The qualification “relevant to the system” is crucial. The aim of systems analysis is 
not to “model the world”. This may be a task for philosophers, but the builders of software 
systems could not care less, at least for their professional activity. The task of analysis is 
to model that part of the world which is meaningful for the software under study or 
construction. This principle is reinforced by the ADT approach (that is to say, the object-
oriented method), which holds that objects are only defined by what we can do with them 
— what the discussion of abstract data types called the Principle of Selfishness. If an 
operation or property of an object is irrelevant to the purposes of the system, then it should 
not be included in the result of your analysis — however interesting it may be for other 
purposes. For a census processing system, the notion of PERSON may have features 
mother and father; but for a payroll processing system which does not require information 
about the parents, every PERSON is an orphan. 
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If all of the operations and properties that you can identify for a type of objects are 
irrelevant in this sense, or are already covered by the operations and properties of a 
previously identified class, the conclusion is that the object type itself is irrelevant: it must 
not yield a class. 

This explains why an elevator system might not include FLOOR as a class because 
(as noted above) from the point of view of the elevator system floors have no relevant 
properties other than those of the associated integer numbers, whereas a Computer Aided 
Design system designed for architects will have a FLOOR class — since in that case the 
floor has several specific attributes and routines. 

Missing important classes 

Not only can nouns suggest notions which do not yield classes: they can also fail to 
suggest some notions which should definitely yield classes. There are at least three sources 
of such accidents. 

Do not forget that, as noted, the aim of this discussion is no longer to convince ourselves 
of the deficiencies of the “underline the nouns” approach, whose limitations are by now 
so obvious that the exercise would not be very productive. Instead, we are analyzing these 
limitations as a way to gain more insight into the process of discovering classes. 

The first cause of missed classes is simply due to the flexibility and ambiguity of 
human language — the very qualities that make it suitable for an amazingly wide range of 
applications, from speeches and novels to love letters, but not very reliable as a medium 
for accurate technical documents. Assume the requirements document for our elevator 
example contains the sentence

The presence of the noun “record” suggests a class DATABASE_RECORD; but we 
may totally miss a more important data abstraction: the notion of a move between two 
floors. With the above sentence in the requirements document, you will almost certainly 
need a MOVE class, which could be of the form 

class MOVE feature
initial, final: FLOOR; -- Or INTEGER if no FLOOR class
record (d: DATABASE) …
… Other features …

end

This will be an important class, which a grammar-based method would miss because 
of the phrasing of the above sentence. Of course if the sentence had appeared as

A database record must be created every time the elevator moves from one 
floor to another.

A database record must be created for every move of the elevator from one 
floor to another.
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then “move” would have been counted as a noun, and so would have yielded a class! We 
see once again the dangers of putting too much trust in a natural-language document, and 
the absurdity of making any serious property of a system design, especially its modular 
structure, dependent on such vagaries of style and mood.

The second reason for overlooking classes is that some crucial abstractions may not 
be directly deducible from the requirements. Cases abound in the examples of this book. 
It is quite possible that the requirements for a panel-driven system did not explicitly cite 
the notions of state and application; yet these are the key abstractions, which condition the 
entire design. It was pointed out earlier that some external-world object types may have 
no counterpart among the classes of the software; here we see the converse: classes of the 
software that do not correspond to any external-world objects. Similarly, if the author of 
the requirements for a text editor with undo-redo has written “the system must support line 
insertion and deletion”, we are in luck since we can spot the nouns insertion and deletion; 
but the need for these facilities may just as well follow from a sentence of the form

leading the naïve designer to devote his attention to the trivial notions of “cursor” and 
“position” while missing the command abstractions (line insertion and line deletion).

The third major cause of missed classes, shared by any method which uses the 
requirements document as the basis for analysis, is that such a strategy overlooks reuse. It 
is surprising to note that much of the object-oriented analysis literature takes for granted 
the traditional view of software development: starting from a requirements document and 
devising a solution to the specific problem that it describes. One of the major lessons of 
object technology is the lack of a clear-cut distinction between problem and solution. 
Existing software can and should influence new developments. 

When faced with a new software project, the object-oriented software developer 
does not accept the requirements document as the alpha and omega of wisdom about the 
problem, but combines it with knowledge about previous developments and available 
software libraries. If necessary, he will criticize the requirements document and propose 
updates and adaptations which will facilitate the construction of the system; sometimes a 
minor change, or the removal of a facility which is of limited interest to the final users, 
will produce a dramatic simplification by making it possible to reuse an entire body of 
existing software and, as a result, to decrease the development time by months. The 
corresponding abstractions are most likely to be found in the existing software, not in the 
requirements document for the new project. 

Classes COMMAND and HISTORY_LOG from the undo-redo example are typical. 
The way to find the right abstractions for this problem is not to rack one’s brain over the 
requirements document for a text editor: either you come upon them through a process of 
intellectual discovery (a “Eureka”, for which no sure recipe exists); or, if someone else has 
already found the solution, you reuse his abstractions. You may of course be able to reuse 
the corresponding implementation too if it is available as part of a library; this is even 
better, as the whole analysis-design-implementation work has already been done for you. 

The editor must allow its users to insert or delete a line at the current 
cursor position. 
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Discovery and rejection

It takes two to invent anything. One makes up combinations; the other chooses, 
recognizes what is important to him in the mass of things which the first has 
imparted to him. What we call genius is much less the work of the first than the 
readiness of the second to choose from what has been laid before him.

Paul Valéry (cited in [Hadamard 1945]).

Along with its straightforward lessons, this discussion has taught us a few more 
subtle consequences.

The simple lessons have been encountered several times: do not put too much trust 
in a requirements document; do not put any trust in grammatical criteria.

A less obvious lesson has emerged from the review of “false alarms”: just as we need 
criteria for finding classes, we need criteria for rejecting candidate classes — concepts 
which initially appear promising but end up not justifying a class of their own. The design 
discussions of this book illustrate many such cases.

To quote just one example: a discussion, yet to come, of how best to provide for pseudo-
random number generation, starts naturally enough by considering the notion of random 
number, only to dismiss it as not the appropriate data abstraction.

The O-O analysis and design books that I have read include little discussion of this 
task. This is surprising because in the practice of advising O-O projects, especially with 
relatively novice teams, I have found that eliminating bad ideas is just as important as 
finding good ones.

It may even be more important. Sit down with a group of users, developers and 
managers trying to get started with object technology with a fresh new project and 
enthusiasm fresher yet. There will be no dearth of ideas for classes (usually proposed as 
“objects”). The problem is to dam the torrent before it damns the project. Although some 
class ideas will probably have been missed, many more will have to be examined and 
rejected. As in a large-scale police investigation, many leads come in, prompted or 
spontaneous; you must sort the useful ones from the canards.

So we must adapt and extend the question that serves as the topic for this chapter. 
“How to find the classes” means two things: not just how to come up with candidate 
abstractions but also how to unmask the inadequate among them. These two tasks are not 
executed one after the other; instead, they are constantly interleaved. Like a gardener, the 
object-oriented designer must all the time nurture the good plants and weed out the bad:

The rest of this chapter studies both components of the class elicitation process.

Class Elicitation principle
Class elicitation is a dual process: class suggestion, class rejection.
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22.2  DANGER SIGNALS

To guide our search it is preferable to start with the rejection part. It will provide us with 
a checklist of typical pitfalls, alert us to the most important criteria, and help us keep our 
search for good classes focused on the most productive efforts.

Let us review a few signs that usually indicate a bad choice of class. Because design 
is not a completely formalized discipline, you should not treat these signs as proof of a bad 
design; in each case one can think of some circumstances that may make the original 
decision legitimate. So what we will see is not, in the terms of a previous chapter, 
“absolute negatives” (sure-fire rules for rejecting a design) but “advisory negatives”: 
danger signals that alert you to the presence of a suspicious pattern, and should prompt 
you to investigate further. Although in most cases they should lead you to revise the 
design, you may occasionally decide in the end that it is right as it stands.

The grand mistake

Many of the danger signals discussed below point to the most common and most 
damaging mistake, which is also the most obvious: designing a class that isn’t. 

The principle of object-oriented software construction is to build modules around 
object types, not functions. This is the key to the reusability and extendibility benefits of 
the approach. But beginners will often fall into the most obvious pitfall: calling “class” 
something which is in fact a routine. Writing a module as class… feature … end does not 
make it a true class; it may just be a routine in disguise.

This Grand Mistake is easy to avoid once you are conscious of the risk. The remedy 
is the usual one: make sure that each class corresponds to a meaningful data abstraction.

What follows is a set of typical traits alerting you to the risk that a module which 
presents itself as a candidate class, and has the syntactical trappings of a class, may be an 
illegal immigrant not deserving to be granted citizenship in the O-O society of modules.

My class performs…

In a design meeting, an architecture review, or simply an informal discussion with a 
developer, you ask about the role of a certain class. The answer: “This class prints the 
results” or “this class parses the input”, or some other variant of “This class does…”.

The answer usually points to a design flaw. A class is not supposed to do one thing 
but to offer a number of services (features) on objects of a certain type. If it really does 
just one thing, it is probably a case of the Grand Mistake: devising a class for what should 
just be a routine of some other class.

Perhaps the mistake is not in the class itself but in the way it is being described, using 
phraseology that is too operational. But you had better check.

In recent years the “my class does…” style has become widespread. A NeXT document 
describes classes as follows: “The NSTextView class declares the programmatic interface 
to objects that display text laid out…”; “An NSLayoutManager coordinates the layout 
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and display of characters…”; “NSTextStorage is a semi-concrete subclass of 
NSMutableAttributedString that manages a set of client NSLayoutManagers, notifying 
them of any changes…”. Even if (as is most likely the case here) the classes discussed 
represent valuable data abstractions, it would be preferable to describe them less 
operationally by emphasizing these abstractions.

Imperative names

Assume that in a tentative design you find a class name such as PARSE or PRINT — a verb 
in the imperative or infinitive. It should catch your attention, as signaling again a probable 
case of a class that “does one thing”, and should not be a class.

Occasionally you may find that the class is right. Then its name is wrong. This is an 
“absolute positive” rule:

Although like any other one pertaining to style this rule is partly a matter of 
convention, it helps enforce the principle that every class represents a data abstraction

The first form, nouns, covers the vast majority of cases. A noun may be used by 
itself, as in TREE, or with some qualifying words, as in LINKED_LIST, qualified by an 
adjective, and LINE_DELETION, qualified by another noun.

The second case, adjectives, arises only for a specific case: structural property
classes describing an abstract structural property, as with the Kernel Library class 
COMPARABLE describing objects on which a certain order relation is available. Such 
classes should be deferred; their names (in English or French) will often end with ABLE. 
They are meant to be used through inheritance to indicate that all instances of a class have 
a certain property; for example in a system for keeping track of tennis rankings class 
PLAYER might inherit from COMPARABLE. In the taxonomy of inheritance kinds, this 
scheme will be classified as structure inheritance.

The only case that may seem to suggest an exception to the rule is command classes, 
as introduced in the undo-redo design pattern to cover action abstractions. But even then 
you should stick to the rule: call a text editor’s command classes LINE_DELETION and 
WORD_CHANGE, not DELETE_LINE and REPLACE_WORD.

English leaves you more flexibility in the application of this rule than many other 
languages, since its grammatical categories are more an article of faith than an observation 
of fact, and almost every verb can be nouned. If you use English as the basis for the names 
in your software it is fair to take advantage of this flexibility to devise shorter and simpler 
names: you may call a class IMPORT where other languages might treat the equivalent as 
a verb only, forcing you to use nouns such as IMPORTATION. But do not cheat: class 

Class Name rule
A class name must always be either:
• A noun, possibly qualified.
• (Only for a deferred class describing a structural property) an adjective.
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IMPORT should cover the abstraction “objects being imported” (nominal), not, except for 
a command class, the act of importing (verbal).

It is interesting to contrast the Class Name rule with the discussion of the “underline the 
nouns” advice at the beginning of this chapter. “Underline the nouns” applied a formal 
grammatical criterion to an informal natural-language text, the requirements document; 
this is bound to be of dubious value. The Class Name rule, on the other hand, applies the 
same criterion to a formal text — the software.

Single-routine classes

A typical symptom of the Grand Mistake is an effective class that contains only one 
exported routine, possibly calling a few non-exported ones. The class is probably just a 
glorified subroutine — a unit of functional rather than object-oriented decomposition.

A possible exception arises for objects that legitimately represent abstracted actions, 
for example a command in an interactive system, or what in a non-O-O approach would 
have been represented by a routine passed as argument to another routine. But the examples 
given in an earlier discussion show clearly enough that even in such cases there will usually 
be several applicable features. We noted that a mathematical software object representing 
a function to be integrated will not just have the feature item (a: REAL): REAL, giving the 
value of the function at point a: others may include domain of definition, minimum and 
maximum over a certain interval, derivative. Even if a class does not yet have all these 
features, checking that it would make sense to add them later will reinforce your conviction 
that you are dealing with a genuine object abstraction.

In applying the single-routine rule, you should consider all the features of a class: 
those introduced in the class itself, and those which it inherits from its parents. It is not 
necessarily wrong for a class text to declare only one exported routine, if this is simply an 
addition to a meaningful abstraction defined by its ancestors. It may, however, point to a 
case of taxomania, an inheritance-related disease which will be studied as part of the 
methodology of inheritance.

Premature classification

The mention of taxomania suggests a warning about another common mistake of novices: 
starting to worry about the inheritance hierarchy too early in the process.

As inheritance is central in the object-oriented method, so is a good inheritance 
structure — more accurately, a good modular structure, including both inheritance and 
client relations — essential to the quality of a design. But inheritance is only relevant as a 
relation among well-understood abstractions. When you are still looking for the 
abstractions, it is too early to devise the inheritance hierarchy.

The only clear exception arises when you are dealing with an application domain for 
which a pre-existing taxonomy is widely accepted, as in some branches of science. Then 
the corresponding abstractions will emerge together with their inheritance structure. 
(Before accepting the taxonomy as the basis for your software’s structure, do check that it 
is indeed well recognized and stable, not just someone’s view of things.)
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In other cases, you should only design the inheritance hierarchy once you have at 
least a first grasp of the abstractions. (The classification effort may of course lead you to 
revise your choice of abstractions, prompting an iterative process in which the tasks of 
class elicitation and inheritance structure design feed each other.) If, early in a design 
process, you find the participants focusing on classification issues even though the classes 
are not yet well understood, they are probably putting the cart before the horse.

With novices, this may be a variant of the object-class confusion. I have seen people 
start off with inheritance hierarchies of the “SAN_FRANCISCO and HOUSTON inherit 
from CITY  ” kind — simply to model a situation where a single class, CITY, will have 
several instances at run time.

No-command classes

Sometimes you will find a class that has no routine at all, or only provides queries (ways 
to access objects) but no commands (procedures to modify objects). Such a class is the 
equivalent of a record in Pascal or a structure in Cobol or C. It may indicate a design 
mistake, but the mistake may be of two kinds and you will need to probe further.

First, let us examine three cases in which the class does not indicate improper design:

• It may represent objects obtained from the outside world, which the object-oriented 
software cannot change. They could be data coming from a sensor in a process-
control system, packets from a packet-switching network, or C structures that the O-
O system is not supposed to touch.

• Some classes are meant not for direct instantiation, but for encapsulating facilities 
such as constants, used by other classes through inheritance. Such facility 
inheritance will be studied in the discussion of inheritance methodology.

• Finally, a class may be applicative, that is to say describe non-modifiable objects; 
instead of commands to modify an object it will provide functions that produce new 
objects, usually of the same type. For example the addition operation in classes 
INTEGER, REAL and DOUBLE follows the lead of mathematics: it does not modify 
any value but, given two values x and y, produces a third one x + y. In the abstract 
data type specification such functions will, like others that yield commands, be 
characterized as command functions.

In all these cases the abstractions are easy to recognize, so you should have no 
difficulty identifying the two cases that may indeed point to a design deficiency.

Now for these suspicious cases. In the first one, the class is justified and would need 
commands; the designer has simply forgotten to provide mechanisms to modify the 
corresponding objects. A simple checklist technique presented in the discussion of class 
design will help avoid such mistakes.

In the second case, most directly relevant to this discussion, the class was not 
justified. It is not a real data abstraction, simply some piece of passive information which 
might have been represented by a structure such as a list or array, or just by adding more 
attributes to another class. This case sometimes happens when developers write a class for 

-
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what would have been a simple record (structure) type in Pascal, Ada or C. Not all record 
types cover separate data abstractions.

You should investigate such a case carefully to try to understand whether there is 
room for a legitimate class, now or in the future. If the answer is unclear, you may be better 
off keeping the class anyway even if it risks being overkill. Having a class may imply 
some performance overhead if it means dealing with many small objects, dynamically 
created one by one and occupying more space than simple array elements; but if you do 
need a class and have not introduced it early enough, the adaptation may take some effort.

We had such a false start in the history of ISE’s compiler. A compiler for an O-O language 
needs some internal way to identify each class of a system it processes; the identification 
used to be an integer. This worked fine for several years, but at some point we needed a 
more elaborate class identification scheme, allowing us in particular to renumber classes 
when merging several systems. The solution was to introduce a class CLASS_
IDENTIFIER, and to replace the earlier integers by instances of that class. The conversion 
effort was more than we would have liked, as usually happens when you have missed an 
important abstraction. Initially INTEGER was a sufficient abstraction because no 
commands were applicable to class identifiers; the need for more advanced features, in 
particular renumbering commands, led to the recognition of a separate abstraction.

Mixed abstractions

Another sign of an imperfect design is a class whose features relate to more than 
one abstraction.

In an early release of the NeXT library, the text class also provided full visual text editing 
capabilities. Users complained that the class, although useful, was too big. Large class size 
was the symptom; the true problem was the merging of two abstractions (character string, 
and interactively editable text); the solution was to separate the two abstractions, with a 
class NSAttributedString defining the basic string handling mechanism and various others, 
such as NSTextView, taking care of the user interface aspects.

Meilir Page-Jones uses the term connascence (defined in dictionaries as the property 
of being born and having grown together) to describe the relation that exists between two 
features when they are closely connected, based on a criterion of simultaneous change: a 
change to one will imply a change to the other. As he points out, you should minimize 
connascence across class libraries; but features that appear within a given class should all 
be related to the same clearly identified abstraction.

This universal guideline deserves to be expressed as a methodological rule 
(presented in “positive” form although it follows a discussion of possible mistakes):

The ideal class

This review of possible mistakes highlights, by contrast, what the ideal class will look like. 
Here are some of the typical properties:

Class Consistency principle
All the features of a class must pertain to a single, well-identified abstraction.



§22.3   GENERAL HEURISTICS FOR FINDING CLASSES 731
• There is a clearly associated abstraction, which can be described as a data abstraction 
(or as an abstract machine).

• The class name is a noun or adjective, adequately characterizing the abstraction.

• The class represents a set of possible run-time objects, its instances. (Some classes 
are meant to have only one instance during an execution; that is acceptable too.)

• Several queries are available to find out properties of an instance.

• Several commands are available to change the state of an instance. (In some cases, 
there are no commands but instead functions producing other objects of the same 
type, as with the operations on integers; that is acceptable too.)

• Abstract properties can be stated, informally or (preferably) formally, describing: 
how the results of the various queries relate to each other (this will yield the 
invariant); under what conditions features are applicable (preconditions); how 
command execution affects query results (postconditions).

This list describes a set of informal goals, not a strict rule. A legitimate class may 
have only some of the properties listed. Most of the examples that play an important role 
in this book — from LIST and QUEUE to BUFFER, ACCOUNT, COMMAND, STATE, 
INTEGER, FIGURE, POLYGON and many others — have them all.

22.3  GENERAL HEURISTICS FOR FINDING CLASSES

Let us now turn to the positive part of our discussion: practical heuristics for finding classes.

Class categories

We may first note that there are three broad categories of classes: analysis classes, design 
classes and implementation classes. The division is neither absolute nor rigorous (for 
example one could find arguments to support attaching a deferred class LIST to any one 
of the three categories), but it is convenient as a general guideline.

An analysis class describes a data abstraction directly drawn from the model of the 
external system. PLANE in a traffic control system, PARAGRAPH in a document 
processing system, PART in an inventory control system are typical examples.

An implementation class describes a data abstraction introduced for the internal 
needs of the algorithms in the software, such as LINKED_LIST or ARRAY.

In-between, a design class describes an architectural choice. Examples included 
COMMAND in the solution to the undo-redo problem, and STATE in the solution to the 
problem of panel-driven systems. Like implementation classes, design classes belong to 
the solution space, whereas analysis classes belong to the problem space. But like analysis 
classes and unlike implementation classes they describe high-level concepts.

As we study how to obtain classes in these three categories, we will find that design 
classes are the most difficult to identify, because they require the kind of architectural 



HOW TO FIND THE CLASSES  §22.3 732

See “Reality: a 
cousin twice 
removed”, page 230.

 See “SIMULA”, 
35.1, page 1113.
insight that sets the gifted designer apart. (That they are the most difficult to find does not 
mean they are the most difficult to build, a distinction that usually belongs to the 
implementation classes, unless of course you come across a ready-to-be-reused 
implementation library.)

External objects: finding the analysis classes

Let us start with the analysis classes, modeled after external objects.

We use software to obtain answers to certain questions about the world (as in a 
program that computes the solution to a specific problem), to interact with the world (as 
in a process control system), or to add things to the world (as in a text processing system). 
In every case, the software must be based on some model of the aspects of the world that 
are relevant to the application, such as laws of physics or biology in a scientific program, 
the syntax and semantics of a computer language in a compiler, salary scales in a payroll 
system, and income tax regulations in tax processing software.

To talk about the world being modeled we should avoid the term “real world”, which is 
misleading, both because software is no less “real” than anything else and because many 
of the non-software “worlds” of interest are artificial, as in the case of a mathematical 
program dealing with equations and graphs. (An earlier chapter discussed this question 
in detail.) We should talk about the external world, as distinct from the internal world of 
the software that deals with it.

Any software system is based on an operational model of some aspect of the 
external world. Operational because it is used to generate practical results and sometimes 
to feed these results back into the world; model because any useful system must follow 
from a certain interpretation of some world phenomena.

Nowhere perhaps is this view of software as inescapable as in the area of simulation. 
It is no accident that the first object-oriented language, Simula 67, evolved from Simula 1, 
a language for writing discrete-event simulations. Although Simula 67 itself is a general-
purpose programming language, it retained the name of its predecessor and includes a set 
of powerful simulation primitives. Well into the nineteen-seventies, simulation remained 
the principal application area of object technology (as a look into the proceedings of the 
annual Association of Simula Users conferences suffices to show). This attraction of O-O 
ideas for simulation is easy to understand: to devise the structure of a software system 
simulating the behavior of a set of external objects, what could be better than using 
software components which directly represent those objects?

In a broad sense, of course, all software is simulation. Capitalizing on this view of 
software as operational modeling, object-oriented software construction uses as its first 
abstractions some types deduced from analyzing the principal types of objects, in the non-
software sense of the term, in the external world: sensors, devices, airplanes, employees, 
paychecks, tax returns, paragraphs, integrable functions.

These examples, by the way, suggest only part of the picture. As Waldén and Nerson note 
in their presentation of the B.O.N. method:
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A class representing a car is no more tangible than one that models the job 
satisfaction of employees. What counts is how important the concepts are to 
the enterprise, and what you can do with them.

Keep this comment in mind when looking for external classes: they can be quite abstract. 
SENIORITY_RULE for a parliament voting system and MARKET_TENDENCY for a 
trading system may be just as real as SENATOR and STOCK_EXCHANGE. The smile of 
the Cheshire Cat has as much claim to objectness as the Cheshire Cat.

Whether material or abstract, external classes represent the abstractions that 
specialists of the external world, be they aerospace engineers, accountants or 
mathematicians, constantly use to think and talk about their domain. There is always a 
good chance — although not a certainty — that such an object type will yield a useful 
class, because typically the domain experts will have associated significant operations and 
properties with it.

The key word, as usual, is abstraction. Although it is desirable that analysis classes 
closely match concepts from the problem domain, this is not what makes a candidate class 
good. The first version of our panel-driven system dramatically showed why: there we had 
a model directly patterned after some properties of the external system, but terrible from 
a software engineering viewpoint because the selected properties were low-level and 
subject to change. A good external class will be based on abstract concepts of the problem 
domain, characterized (in the ADT way) through external features chosen because of their 
lasting value.

For the object-oriented developer such pre-existing abstractions are precious: they 
provide some of the system’s fundamental classes; and, as we may note once more, the 
objects are here for the picking.

Finding the implementation classes

Implementation classes describe the structures that software developers use to make their 
systems run on a computer. Although the fashion in the software engineering literature has 
been, for the past fifteen years, to downplay the role of implementation, developers know 
the obvious — that implementation consumes a large part of the effort in building a 
system, and much of the intelligence that goes into it.

The bad news is that implementation is difficult. The good news is that 
implementation classes, although often hard to build in the absence of good reusable 
libraries, are not the most difficult to elicit, thanks to the ample body of literature on the 
topic. Since “Data Structures and Algorithms”, sometimes known as “CS 2”, is a required 
component of computing science education, many textbooks survey the rich catalog of 
useful data structures that have been identified over the years. Better yet, although most 
existing textbooks do not explicitly use an object-oriented approach, many naturally 
follow an abstract data type style, even if they do not use the phrase, to present data 
structures; for example to introduce various forms of table such as binary search trees and 
hash tables you have first to state the various operations (insert an element with its key, 
search for an element through its key and so on) with their properties. The transition to 
classes is fairly straightforward.
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Recently, some textbooks have started to go further by applying a thoroughly object-
oriented approach to the traditional CS 2 topics.

Whether or not he has gone through a Data Structures and Algorithms Course at 
school, every software engineer should keep a good textbook on the topic within reach of 
hand, and go back to it often. It is all too easy to waste time reinventing concepts that are 
well known, implement a less-than-optimal algorithm, or choose a representation that is 
not appropriate for the software’s use of a data structure — for example a one-way linked 
list for a sequential structure that the algorithms must regularly traverse back and forth, or 
an array for a structure that constantly grows and shrinks in unpredictable ways. Note that 
here too the ADT approach reigns: the data structure and its representation follow from 
the services offered to clients.

Beyond textbooks and experience, the best hope for implementation classes is 
reusable libraries, as we will see at the end of this chapter.

Deferred implementation classes

Traditional data structures textbooks naturally emphasize effective (fully implemented) 
classes. In practice, much of the value of a set of implementation classes, especially if they 
are meant to be reusable, lies in the underlying taxonomy, as defined by an inheritance 
structure that will include deferred classes. For example, various queue implementations 
will be descendants of a deferred class QUEUE describing the abstract concept of 
sequential list.

“Deferred implementation class”, then, is not an oxymoron. Classes such as 
QUEUE, although quite abstract, help build the taxonomies thanks to which we can keep 
the many varieties of implementation structures coherent and organized, assigning to 
every class a precise place in the overall scheme.

In another book [M 1994a] I have described a “Linnaean” taxonomy of the 
fundamental structures of computing science, which relies on deferred classes to classify 
the principal kinds of data structure used in software development.

Finding the design classes

Design classes represent architectural abstractions that help produce elegant, extendible 
software structures. STATE, APPLICATION, COMMAND, HISTORY_LIST, iterator 
classes, “controller” classes as in the Smalltalk MVC model are good examples of design 
classes. We will see other seminal ideas in subsequent chapters, such as active data 
structures and “handles” for platform-adaptable portable libraries.

Although, as noted, there is no sure way to find design classes, a few guidelines are 
worth noting:

• Many design classes have been devised by others before. By reading books and 
articles that describe precise solutions to design problems, you will gain many 
fruitful ideas. For example the book Object-Oriented Applications contains chapters 
written by the lead designers of various industrial projects who describe their 
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architectural solutions in detail, providing precious guidance to others faced with 
similar problems in telecommunications, Computer-Aided Design, artificial 
intelligence and other application areas.

• The book on “design patterns” by Gamma et al. has started an effort of capturing 
proven design solutions and is now being followed by several others.

• Many useful design classes describe abstractions that are better understood as 
machines than as “objects” in the common (non-software) sense.

• As with implementation classes, reuse is preferable to invention. One can hope that 
many of the “patterns” currently being studied will soon cease to be mere ideas, 
yielding instead directly usable library classes.

22.4  OTHER SOURCES OF CLASSES

A number of heuristics have proved useful in the quest for the right abstractions.

Previous developments 

The advice of looking first at what is available does not just apply to library classes. As 
you write applications, you will accumulate classes which, if properly designed, should 
facilitate later developments. 

Not all reusable software was born reusable. Often, the first version of a class is 
produced to meet some immediate requirement rather than for posterity. If reusability is a 
concern, however, it pays to devote some time, after the development, to making the class 
more general and robust, improving its documentation, adding assertions. This is different 
from the construction of software meant from the start to be reusable, but no less fruitful. 
Having evolved from components of actual systems, the resulting classes have passed the 
first test of reusability, namely usability: they serve at least one useful purpose. 

Adaptation through inheritance 

When you discover the existence of a potentially useful class, you will sometimes find that 
it does not exactly suit your present need: some adaptation may be necessary. 

Unless the adaptation addresses a deficiency which should be corrected in the 
original as well, it is generally preferable to leave the class undisturbed, preserving its 
clients according to the Open-Closed principle. Instead, you may use inheritance and 
redefinition to tune the class to your new need. 

This technique, which our later taxonomy of uses of inheritance will study in detail 
under the name variation inheritance, assumes that the new class describes a variant of the 
same abstraction as the original. If used properly (according to the guidelines of the later 
discussion) it is one of the most remarkable contributions of the method, enabling you to 
resolve the reuse-redo dilemma: combining reusability with extendibility.
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Evaluating candidate decompositions

Criticism is said to be easier than art; a good way to learn design is to learn to analyze 
existing designs. In particular, when a certain set of classes has been proposed to solve a 
certain problem, you should study them from the criteria and principles of modularity 
given in chapter 3: do they constitute autonomous, coherent modules, with strictly 
controlled communication channels? Often, the discovery that two modules are too tightly 
coupled, that a module communicates with too many others, that an argument list is too 
long, will pinpoint design errors and lead to a better solution.

An important criterion was explored in the panel-driven system example: data flow. 
We saw then how important it is to study, in a candidate class structure, the flow of objects 
passed as arguments in successive calls. If, as with the notion of State in that example, you 
detect that a certain item of information is transmitted over many modules, it is almost 
certainly a sign that you have missed an important data abstraction. Such an analysis, 
which we applied to obtain the class STATE, is an important source of abstractions. 

It is of course preferable to find the classes right from the start; but better late than 
never. After such an a posteriori class discovery, you should take the time to analyze why 
the abstraction was initially missed, and to reflect on how to do better next time.

Hints from other approaches

The example of analyzing data flow in a top-down structure illustrates the general idea of 
deriving class insights from concepts of non-O-O decompositions. This will be useful in 
two non-disjoint cases:

• There may already exist a non-O-O software system which does part of the job; it 
may be interesting to examine it for class ideas. The same would apply if, instead of 
a working system, you can use the result of an analysis or design produced with 
another, older method.

• Some of the people doing the development may have had extensive experience with 
other methods, and as a consequence may initially think in terms of different 
concepts, some of which may be turned into class ideas.

Here are examples of this process, starting with programming languages and 
continuing with analysis and design techniques.

Fortran programs usually include one or more common blocks — data areas that can 
be shared by several routines. A common block often hides one or more valuable data 
abstractions. More precisely, good Fortran programmers know that a common block 
should only include a few variables or arrays, covering closely related concepts; there is a 
good chance that such a block will correspond to one class. Unfortunately, this is not 
universal practice, and even programmers who know better than to use the “garbage 
common block” mentioned at the beginning of this book tend to put too many things in 
one common block. In this case you will have to examine patterns of use of each block to 
discover the abstraction or abstractions that it covers.
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Pascal and C programs use records, known in C as structures. (Pascal only has record 
types; in C you can have structure types as well as individual structures.) A record type 
often corresponds to a class, but only if you can find operations acting specifically on 
instances of the type, usually (as we saw) including commands as well as queries. If not, 
the type may just represent some attributes of another class.

Cobol also has structures, and its Data Division helps identify important data types.

In entity-relationship (ER) modeling, analysts isolate “entities” which can often 
serve as seeds for classes. 

People with a long practice of ER modeling are among those who sometimes find it 
initially hard to apply object-oriented ideas effecively, because they are used to treating 
the entities and relationships as being different in nature, and the “dynamic” behavior of 
the system as completely separate from them. With O-O modeling both the relationships 
and the behavior yield features attached to the types of objects (entities); thinking of 
relations and operations as variants of the same notion, and attaching them to entities, 
sometimes proves to be a little hard to swallow at first.

In dataflow design (“structured analysis and design”) there is little that can be 
directly used for an object-oriented decomposition, but sometimes the “stores” (database 
or file abstractions) can suggest an abstraction.

Files

The comment about stores suggests a more general idea, useful again if you are coming from 
a non-O-O background. Sometimes much of the intelligence of a traditional system is to be 
found outside of the software’s text, in the structure of the files that it manipulates.

To anyone with Unix experience, this idea will be clear: for some of the essential 
information that you need to learn, the essential documentation is the description not of 
specific commands but of certain key files and their formats: passwd for passwords, 
printcap for printer properties, termcap or terminfo for terminal properties. One could 
characterize these files as data abstractions without the abstraction: although documented 
at a very concrete level (“Each entry in the printcap file describes a printer, and is a line 
consisting of a number of fields separated by : characters. The first entry for each printer 
gives the names which are known for the printer, separated by | characters”, etc.), they 
describe important data types accessible through well-defined primitives, with some 
associated properties and usage conditions. In the transition to an object-oriented view, 
such files would play a central role.

A similar observation applies to many programs, whose principal files embody some 
of the principal abstractions.

I once participated in a consulting session with the manager of a software system 
who was convinced that the system — a collection of Fortran programs — could not lend 
itself to object-oriented decomposition. As he was describing what the programs did, he 
casually mentioned a few files through which the programs communicated. I started 
asking questions about these files, but initially he kept dismissing these questions as 
unimportant, immediately coming back to the programs. I insisted, and from his 
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explanations realized that the files described complex data structures embodying the 
programs’ essential information. The lesson was clear: as soon as the relevance of these 
files was recognized, they conquered the central place in the object-oriented architecture; 
in an upheaval typical of object-oriented rearchitecturing, the programs, formerly the key 
elements of the architecture, became mere features of the resulting classes.

Use cases

Ivar Jacobson has advocated relying on use cases as a way to elicit classes. A use case, 
called a scenario by some other analysis and design authors (and a trace in theoretical 
computing science, especially the study of concurrency), is a description of 

a complete course of events initiated by a [user of the future system] and [of] 
the interaction between [the user] and the system.

In a telephone switching system, for example, the use case “customer-initiated call” 
has the sequence of events: customer picks handset, identification gets sent to the system, 
system sends dial tone, and so on. Other use cases for the system might include “caller-id 
service installation” and “customer disconnection”. 

Use cases are a not a good tool for finding classes. Relying on them in any significant 
way raises several risks:

• Use cases emphasize ordering (“When a customer places an order over the phone, his 
credit card number is validated. Then the database is updated and a confirmation 
number is issued ”, etc.). This is incompatible with object technology: the method 
shuns early reliance on sequentiality properties, because they are so fragile and 
subject to change. The competent O-O analyst and designer refuses to focus on 
properties of the form “The system does a, then b”; instead, he asks the question 
“What are the operations available on instances of abstraction A, and the constraints 
on these operations?”. The truly fundamental sequentiality properties will emerge in 
the form of high-level constraints on the operations; for example, instead of saying 
that a stack supports alternating sequences of push and pop operations with never 
more pop than push, we define the preconditions attached with each of these 
operations, which imply the ordering property but are more abstract. Less 
fundamental ordering requirements simply have no place in the analysis model as 
they destroy the system’s adaptability and hence its future survival. Early emphasis 
on ordering is among the worst mistakes an O-O project can make. If you rely on use 
cases for analysis, this mistake is hard to avoid.

• Relying on a scenario means that you focus on how users see the system’s operation. 
But the system does not exist yet. (A previous system might exist, but if it were fully 
satisfactory you would not be asked to change or rewrite it.) So the system picture 
that use cases will give you is based on existing processes, computerized or not. Your 
task as a system builder is to come up with new, better scenarios, not to perpetuate 
antiquated modes of operation. There are enough examples around of computer 
systems that slavishly mimic obsolete procedures.
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• Use cases favor a functional approach, based on processes (actions). This approach 
is the reverse of O-O decomposition, which focuses on data abstractions; it carries a 
serious risk of reverting, under the heading of object-oriented development, to the 
most traditional forms of functional design. True, you may rely on several scenarios 
rather than just one main program. But this is still an approach that considers what 
the system does as the starting point, whereas object technology considers what it 
does it to. The clash is irreconcilable.

The practical consequences are obvious. A number of teams that have embraced use 
cases find themselves, without realizing it, practicing top-down functional design (“the 
system must do a, then b, …”) and building systems that are obsolete on the day they are 
released, yet hard to change because they are tied to a specific view of what the system 
does. I have sat, as an outside consultant, in design reviews for such projects, trying to 
push for more abstraction. But it is difficult to help, because the designers are convinced 
that they are doing object-oriented design; they expect the consultant to make a few 
suggestions, criticize a few details and give his blessing to the overall result. The designs 
that I saw were not object-oriented at all, and were bound to yield flawed systems; but 
trying to convey this observation politely was about as effective as telling the group that 
the sun was not shining outside — we work from use cases, and doesn’t everyone know 
that use cases are O-O?

The risks are perhaps less severe with a very experienced object-oriented design 
team — experience being evidenced by the team’s previous production of large and 
successful O-O systems, in the thousands of classes and hundreds of thousands of lines. 
Such a group might find use cases useful as a complement to other analysis techniques. 
But for a novice team, or one with moderate experience only, the benefits of use cases as 
an analysis tool are so uncertain, and the risk of destroying the quality of the future system 
so great, as to recommend staying away altogether from this technique:

This principle does not mean that use cases are a worthless concept. They remain a 
potentially valuable tool but their role in object-oriented software construction has been 
misunderstood. Rather than an analysis tool they are a validation tool. If (as you should) 
you have a separate quality assurance team, it may find use cases useful as a way to inspect 
a proposed analysis model or tentative design for possibly missing features. The QA team 
can check that the system will be able to run the typical scenarios identified by the users. 
(In some cases of negative answer you may find that the model will support a different 
scenario that achieves the same or better results. This is of course satisfactory.)

Use Case principle
Except with a very experienced design team (having built several successful 
systems of several thousand classes each in a pure O-O language), do not rely 
on use cases as a tool for object-oriented analysis and design.
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Another possible application of use cases is to the final aspects of implementation, 
to make sure that the system includes routines for typical usage scenarios. Such routines 
will often be of the abstract behavior kind, describing a general effective scheme relying 
on deferred routines which various components of the system, and future additions to it, 
may redefine in different ways. ([Jacobson 1992] indeed mentions a notion of abstract use 
case that mirrors the object-oriented concept of behavior class.

In these two roles as a validation mechanism and an implementation guide, use cases 
can be beneficial. But in object technology they are not a useful analysis or design 
mechanism. The system analysts and builders should concentrate on the abstractions, not 
on particular ways of scheduling operations on these abstractions.

CRC cards

For completeness it is necessary to mention an idea that is sometimes quoted as a 
technique to find classes. CRC cards (Class, Responsibility, Collaboration) are paper 
cards, 4 inches by 6 inches (10.16 centimeters by 15.24 centimeters), on which designers 
discuss potential classes in terms of their responsibilities and how they communicate. The 
idea has the advantage of being easy on the equipment budget (a box of cards is typically 
cheaper than a workstation with CASE tools) and of fostering team interaction. Its 
technical contribution to the design process — to helping sort out and characterize 
valuable abstractions — is, however, unclear.

22.5  REUSE

The easiest and most productive way of finding classes is not to have to invent them 
yourself, but to get them from a library, pre-written by other designers and pre-validated 
by the experience of earlier reusers.

The bottom-up component

The bottom-up nature of object-oriented development should apply throughout the 
software development process, starting with analysis. An approach that solely focuses on 
the requirements document and user requests (as reflected for example by use cases) is 
bound to lead to a one-of-a-kind system that will be expensive to build and may miss 
important insights obtained by previous projects. It is part of the task of a development 
team, beginning at the requirements capture phase, to look at what is already available and 
see how existing classes may help with the new development — even if, in some cases, 
this means adapting the original requirements.

Too often, when we talk about finding classes, we mean devising them. With the 
development of object technology, the growth of quality libraries and the penetration of 
reusability ideas,  finding will more and more retain the dictionary’s sense of coming across.
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Class wisdom

There used to live in the province of Ood a young man who longed to know the 
secret of finding classes. He had approached all the local masters, but none of 
them knew. 

Having attended the public penance of Yu-Ton, a former abbot of the Sacred 
Order of Arrows and Bubbles, he thought that perhaps this could mean the end 
of his search. Upon entering Yu’s cell, however, he found him still trying to 
understand the difference between Classes and Objects. Realizing that no 
enlightenment would come from there, he left without asking any questions. 

On his way home he overheard two donkey-cart pushers whispering about a 
famous elder who was said to know the secret of classes. The next day he set 
out to find that great Master. Many a road he walked, many a hill he climbed, 
many a stream he crossed, until at last he reached the Master’s hideout. By then 
he had searched for so long that he was no longer a young man; but like all 
other pilgrims he had to undergo the thirty-three-month purification rite before 
being permitted to meet the object of his quest. 

Finally, one black winter day as the snow was savagely hitting all the 
surrounding mountain peaks, he was admitted into the Master’s audience room. 
With his heart beating at the pace of a boulder rolling down the bed of a dried-
up torrent, he faintly uttered his question: “Master, how can I find the 
classes?”.

The old sage lowered her head and answered in a slow, quiet tone. “Go back 
to where you came from. The classes were already there.” 

So stunned was the questioner that it took him a few moments to notice that the 
Master’s attendants were already whisking her away. He barely had time to run 
after the frail figure now disappearing forever. “Master”, he asked again 
(almost shouting this time), “Just one more question! Please! Tell me how this 
story is called!” 

The old Teacher tiredly turned back her head. “Should you not already know? 
It is the story of reuse.” 

22.6  THE METHOD FOR OBTAINING CLASSES

Touch by touch, the ideas discussed in this chapter amount to what we may not too 
pretentiously call (provided we remember that a method is a way to incubate, nurture, 
channel and develop invention, not a substitute for invention) the method for obtaining the 
classes in object-oriented software construction.

The method recognizes that class identification requires two inextricably related 
activities: coming up with class suggestions; and weeding out the less promising among 
them. The two tables which follow summarize what we have learned about these two 
activities. Only a few of the entries cover specific kinds of class, such as analysis classes; 
the rest of the advice is applicable to all cases.
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Sources of 
possible classes
First, sources of class ideas:

Source of ideas What to look for
 
Existing libraries

• Classes that address needs of the application.
• Classes that describe concepts relevant to the 

application.
 
 
Requirements 
document

• Terms that occur frequently.
• Terms to which the text devotes explicit 

definitions.
• Terms that are not defined precisely but taken 

for granted throughout the presentation.
• (Disregard grammatical categories.)

 
 
Discussions with 
customers and future 
users

• Important abstractions of the application 
domain. 

• Specific jargon of the application domain.
• Remember that classes coming from the 

“external world” can describe conceptual
objects as well as material objects.

Documentation (such 
as user manuals) for 
other systems (e.g. 
from competitors) in 
the same domain

• Important abstractions of the application 
domain. 

• Specific jargon of the application domain.
• Useful design abstractions

 
 
 
 
 
 
Non-O-O systems or 
system descriptions

• Data elements that are passed as arguments 
between various components of the software, 
especially if they travel far.

• Shared memory areas (COMMON blocks in 
Fortran).

• Important files.
• DATA DIVISION units (Cobol).
• Record types (Pascal), structures and structure 

types (C, C++), playing an important role in 
the software, in particular if they are used by 
various routines or modules (files in C).

• Entities in ER modeling.
Discussions with 
experienced designers

• Design classes having been successfully used 
in previous developments of a similar nature.

Algorithms and data 
structure literature

• Known data structures supporting efficient 
algorithms.

O-O design literature • Applicable design patterns.
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Reasons for 
rejecting a 
candidate class
Then, criteria for investigating potential classes more carefully, and possibly 

rejecting them:

22.7  KEY CONCEPTS INTRODUCED IN THIS CHAPTER

• Identifying the classes is one of the principal tasks of object-oriented software 

construction.

• To identify the classes is a dual process: class suggestion and class rejection. Just 

as important as identifying potential class candidates is the need to eliminate 

unsuitable ideas.

Danger signal Why suspicious

Class with verbal 
name (infinitive or 
imperative)

• May be a simple subroutine, not a class.

Fully effective class 
with only one 
exported routine

• May be a simple subroutine, not a class.

Class described as 
“performing” 
something

• May not be a proper data abstraction.

 
Class with no routine

• May be an opaque piece of information, not an 
ADT. Or may be an ADT, the routines having 
just been missed.

Class introducing no 
or very few features 
(but inherits features 
from parents)

• May be a case of “taxomania”.

Class covering several 
abstractions

• Should be split into several classes, one per 
abstraction
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• To identify the classes is to identify the relevant abstractions in the modeled domain 
and the solution space.

• “Underlining the nouns in the requirements document” is not a sufficient technique 
for finding the classes, since its results are too dependent on stylistic issues. It may 
cause designers both to miss useful classes and to include unnecessary ones.

• A broad characterization of classes distinguishes analysis classes, tied to concepts of 
the external world being modeled, design classes, describing architectural decisions, 
and implementation classes, describing data structures and algorithms.

• Design classes tend to be the most difficult to invent.

• In designing external classes, remember that external objects include concepts as 
well as material things.

• To decide whether a certain notion justifies defining an associated class, apply the 
criteria of data abstraction.

• Implementation classes include both effective classes and their deferred 
counterparts, describing abstract categories of implementation techniques.

• Inheritance provides a way to reuse previous designs while adapting them.

• A way to obtain classes is to evaluate candidate designs and look for any unrecognized 
abstraction, in particular by analyzing inter-module data transmission.

• Use cases, or scenarios, may be useful as a validation tool and as a guide to finalize 
an implementation, but should not be used as an analysis and design mechanism.

• The best source of classes is reusable libraries.

22.8  BIBLIOGRAPHICAL NOTES 

The advice to use nouns from the requirements as a starting point for finding object types 
was made popular by [Booch 1986], which credits the idea to an earlier article by Abbott. 
Further advice appears in [Wirfs-Brock 1990].
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An article on formal specification [M 1985a] analyzes the problems raised by 
natural-language requirements documents. Working from a short natural-language 
problem description which has been used extensively in the program verification 
literature, it identifies a large number of deficiencies and offers a taxonomy of such 
deficiencies (noise, ambiguity, contradiction, remorse, overspecification, forward 
reference); it discusses how formal specifications can remedy some of the problems.

[Waldén 1995] presents useful advice for identifying classes. 

Appendix B of [Page-Jones 1995] lists numerous “problem symptoms” in candidate 
object-oriented designs (for example “class interface supports illegal or dangerous 
behaviors”), alerting designers to danger signals such as have been pointed out in the 
present chapter. The table, as well as the rest of Page-Jones’s book, offers suggestions for 
correcting design deficiencies.

[Ong 1993] describes a tool for converting non-O-O programs (essentially Fortran) 
to an object-oriented form. The conversion is semi-automatic, that is to say relies on some 
manual effort. Relevant to the present chapter is the authors’ description of some of the 
heuristics they use for identifying potential classes through analysis of the original code, 
in particular by looking at COMMON blocks.

Simula 1 (the simulation language that led to modern versions of Simula) is 
described in [Dahl 1966]. See chapter 35 for more Simula references.

Typical data structures books, providing a precious source of implementation 
classes, include Knuth’s famous treatise [Knuth 1968] [Knuth 1981] [Knuth 1973] and 
numerous college textbooks such as [Aho 1974] [Aho 1983].

A recent text, [Gore 1996], presents fundamental data structures and algorithms in a 
thoroughly object-oriented way.

Sources of design classes include [Gamma 1995], presenting a number of “design 
patterns” for C++, and [M 1994a], a compendium of library design techniques and 
reusable classes, discussing in detail the notions of “handle class” and “iterator class”. 
[Krief 1996] presents the Smalltalk MVC model.

EXERCISES

E22.1  Floors as integers

Show how to define a class FLOOR as heir to INTEGER, restricting the applicable 
operations.
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E22.2  Inspecting objects

Daniel Halbert and Patrick O’Brien discuss the following problem, arising in the design 
of software development environments:

Consider the design of an inspector facility, used to display information about 
an object in a debugger window: the contents of its fields, and perhaps some 
computed values. Different kinds of inspector are needed for different object 
types. For instance, all the relevant information about a point can be displayed 
at once in a simple format, while a large two-dimensional array might best be 
displayed as a matrix scrollable horizontally and vertically.

You should first decide where to put the behavior of the inspector: in the 
[generating class] of the object to be inspected or in a new, separate class?

Answer this question by considering the pros and cons of various alternatives. (Note: the 
inheritance-related discussions of the following chapters may be useful.)



23  
Principles of class design
Experienced software developers know that few issues are more critical than the proper 
design of module interfaces. In a multi-person, or just multi-week software project, many 
of the decisions, discussions, disputes and confusions tend to revolve around matters of 
module interface specification: “Who takes care of making sure that…?”, “But I thought 
you only passed me normalized input…”, “Why are you processing this since I already 
took care of it?”. 

If there were just one advantage to expect from object technology, this would have 
to be it. From the outset of this presentation, object-oriented development has been 
described as an architectural technique for producing systems made of coherent, properly 
interfaced modules. We have now accumulated enough technical background to review 
the design principles through which you can take advantage of the best O-O mechanisms 
to develop modules with attractive interfaces.

In the following pages we will explore a set of class design principles which 
extensive practice has shown to yield quality and durability. Because what determines the 
success of a class is how it will look to its clients, the emphasis here is not on the internal 
implementation of a class but on how to make its interface simple, easy to learn, easy to 
remember, and able to withstand the test of time and change.

We will successively examine: whether functions should be permitted to have side 
effects; how many arguments a feature should reasonably have, and the associated notions 
of operand and option; whether you should be concerned about the size of your classes; 
making abstract structures active; the role of selective exports; how to document a class; 
how to deal with abnormal cases.

From this discussion will emerge an image of the class designer as a patient 
craftsman who chisels out and polishes each class to make it as attractive as possible to 
clients. This spirit of treating classes as carefully engineered products, aiming at 
perfection from the start and yet always perfectible, is a pervasive quality of well-applied 
object technology. For obvious reasons it is particularly visible in the construction of 
library classes, and indeed many of the design principles reviewed in this chapter 
originated in library design; in the same way that successful ideas first tried in Formula 1 
racing eventually trickle down to the engineering of cars for the rest of us, a technique that 
has shown its value by surviving the toughest possible test — being applied to the 
development of a successful library of reusable components — will eventually benefit all 
object-oriented software, whether or not initially intended for reuse.
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23.1  SIDE EFFECTS IN FUNCTIONS

The first question that we must address will have a deep effect on the style of our designs. 
Is it legitimate for functions — routines that return a result — also to produce a side effect, 
that is to say, to change something in their environment?

The gist of the answer is no, but we must first understand the role of side effects, and 
distinguish between good and potentially bad side effects. We must also discuss the 
question in light of all we now know about classes: their filiation from abstract data types, 
the notion of abstraction function, and the role of class invariants.

Commands and queries

A few reminders on terminology will be useful. The features that characterize a class are 
divided into commands and queries. A command serves to modify objects, a query to 
return information about objects. A command is implemented as a procedure. A query 
may be implemented either as an attribute, that is to say by reserving a field in each run-
time instance of the class to hold the corresponding value, or as a function, that is to say 
through an algorithm that computes the value when needed. Procedures (which also have 
an associated algorithm) and functions are together called routines.

The definition of queries does not specify whether in the course of producing its 
result a query may change objects. For commands, the answer is obviously yes, since it is 
the role of commands (procedures) to change things. Among queries, the question only 
makes sense for functions, since accessing an attribute cannot change anything. A change 
performed by a function is known as a side effect to indicate that it is ancillary to the 
function’s official purpose of answering a query. Should we permit side effects?

Forms of side effect

Let us define precisely what constructs may cause side effects. The basic operation that 
changes an object is an assignment a := b (or an assignment attempt a ?= b, or a creation 
instruction create a) where the target a is an attribute; execution of this operation will assign 
a new value to the field of the corresponding object (the target of the current routine call).

We only care about such assignments when a is an attribute: if a is a local entity, its 
value is only used during an execution of the routine and assignments to it have no 
permanent effect; if a is the entity Result denoting the result of the routine, assignments to 
it help compute that result but have no effect on objects.

Also note that as a result of information hiding principles we have been careful, in 
the design of the object-oriented notation, to avoid any indirect form of object 
modification. In particular, the syntax excludes assignments of the form obj  attr := b, 
whose aim has to be achieved through a call obj  set_attr (b), where the procedure
set_attr (x:…) performs the attribute assignment attr := x.

The attribute assignment that causes a function to produce a side effect may be in the 
function itself, or in another routine that the function calls. Hence the full definition:



§23.1   SIDE EFFECTS IN FUNCTIONS 749

“Introducing a more 
imperative view”, 
page 145.
(The term “concrete” will be explained below.) In a more fine-tuned definition we 
would replace the second clause by “A call to a routine that (recursively) produces a 
concrete side effect”, the definition of side effects being extended to arbitrary routines 
rather than just functions. But the above form is preferable in practice even though it may 
be considered both too strong and too weak:

• The definition seems too strong because any procedure call is considered to produce 
a side effect whereas it is possible to write a procedure that changes nothing. Such 
procedures, however, are rarely useful — except if their role is to change something 
in the software’s environment, for example printing a page, sending a message to the 
network or moving a robot arm; but then we do want to consider this a side effect 
even if it does not directly affect an object of the software itself.

• The definition seems too weak because it ignores the case of a function f  that calls a 
side-effect-producing function g. The convention will simply be that f can still be 
considered side-effect-free. This is acceptable because the rule at which we will 
arrive in this discussion will prohibit all side effects of a certain kind, so we will need 
to certify each function separately.

The advantage of these conventions is that to determine the side-effect status of a 
function you only need to look at the body of the function itself. It is in fact trivial, if you 
have a parser for the language, to write a simple tool that will analyze a function and tell 
you whether it produces a concrete side effect according to the definition.

Referential transparency

Why should we be concerned about side effects in functions? After all it is in the nature 
of software execution to change things.

The problem is that if we allow functions to change things as well as commands, we 
lose many of the simple mathematical properties that enable us to reason about our 
software. As noted in the discussion of abstract data types, when we first encountered the 
distinction between the applicative and the imperative, mathematics is change-free: it talks 
about abstract objects and defines operations on these objects, but the operations do not 
change the objects. (Computing  does not change the number two.) This immutability 
is the principal difference between the worlds of mathematics and computer software.

Definition: concrete side effect
A function produces a concrete side effect if its body contains any of the 
following:

• An assignment, assignment attempt or creation instruction whose 
target is an attribute.

• A procedure call.

2



DESIGNING CLASS INTERFACES  §23.1 750

Definition from 
“The Free On-Line 
Dictionary of Com-
puting”, http://wom-
bat. 

The Swift quotation 
was on page 672.

Remember that 
Result in an integer 
function is initial-
ized to zero.

See [Dijkstra 1968].
Some approaches to programming seek to retain the immutability of mathematics: Lisp 
in its so-called “pure” form, “Functional Programming” languages such as Backus’s FP, 
and other applicative languages shun change. But they have not caught on for practical 
software development, suggesting that change is a fundamental property of software.

The object immutability of mathematics has an important practical consequence 
known as referential transparency, a property defined as follows:

If x has value three, we can use x instead of 3, or conversely, in any part of a 
referentially transparent expression. (Only Swift’s Laputa academicians were willing to 
pay the true price of renouncing referential transparency: always carrying around all the 
things you will ever want to talk about.) As a consequence of the definition, if we know 
that x and y have the same value, we can use one interchangeably with the other. For that 
reason referential transparency is also called “substitutivity of equals for equals”.

With side-effect-producing functions, referential transparency disappears. Assume a 
class contains the attribute and the function

attr: INTEGER
sneaky: INTEGER do attr := attr + 1 end

Then the value of sneaky (meaning: of a call to that function) is always 0; but you 
cannot use 0 and sneaky interchangeably, since an extract of the form

attr := 0; if attr /= 0 then print ("Something bizarre!") end

will print nothing, but would print Something bizarre! if you replaced 0 by sneaky.

Maintaining referential transparency in expressions is important to enable us to 
reason about our software. One of the central issues of software construction, analyzed 
clearly by Dijkstra many years ago, is the difficulty of getting a clear picture of the 
dynamic behavior (the myriad possible executions of even a simple software element) 
from its static description (the text of the element). In this effort it is essential to be able 
to rely on the proven form of reasoning, provided by mathematics. With the demise of 
referential transparency, however, we lose basic properties of mathematics, so deeply 
rooted in our practice that we may not even be aware of them. For example, it is no longer 
true that n + n is the same thing as 2 ∗ n if n is the sneaky-like function

n: INTEGER do attr := attr + 1; Result := attr end

since, with attr initially zero, 2 ∗ n will return 2 whereas n + n will return 3.

By limiting ourselves to functions that do not produce side effects, we will ensure 
that talking about “functions” in software ceases to betray the meaning of this term in 
ordinary mathematics. We will maintain a clear distinction between commands, which 

Definition: referential transparency
An expression e is referentially transparent if it is possible to exchange any 
subexpression with its value without changing the value of e.
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change objects but do not directly return results, and queries, which provide information 
about objects but do not change them.

Another way to express this rule informally is to state that asking a question should 
not change the answer.

Objects as machines

The following principle expresses the prohibition in more precise terms:

Note that we have only defined concrete side effects so far; for the moment you can 
ignore the difference.

As a result of the principle, only commands (procedures) will be permitted to produce 
side effects. (In fact, as noted, we not only permit but expect them to change objects — 
unlike in applicative, completely side-effect-free approaches.)

The view of objects that emerges from this discussion (a metaphor, to be treated with 
care as usual) is that of a machine, with an internal state that is not directly observable, and 
two kinds of button: command buttons, rectangular on the picture, and query buttons, round.

Pressing a command button is a way to make the machine change state: it starts moving 
and clicking, then comes back to a new stable state (one of the states shown in the earlier 
picture of object lifecycle). You cannot directly see the state — open the machine — but 
you can press a query button. This does not change the state (remember: asking a question 
does not change the answer) but yields a response in the form of a message appearing in the 
display panel at the top; for boolean queries one of the two indicators in the display panel, 

Command-Query Separation principle
Functions should not produce abstract side effects.

start forth go put search

item before after index count
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representing true and false, will light up. If you press the button several times in a row, 
without touching the command buttons, you will get the same result each time. If, on the 
other hand, you push a command button and then a query button, the answer that you get 
will usually be different from what you would have obtained before the command.

Commands as well as queries may take arguments; these are figuratively entered in 
the slot at the top left.

The figure is based on the example of a list object with the kind of interface hinted 
at in earlier chapters and studied in more detail later in the present one. Commands include 
start (move the cursor to the first element), forth (advance the cursor one position), search 
(move the cursor to the next occurrence of the element entered into the top-left slot); 
queries include item (show in the display panel the value of the element at cursor position) 
and index (show the current cursor position). Note the difference between a notion such as 
“cursor”, relative to the internal state and hence not directly visible, and item or index
which provide more abstract, officially exported information about the state.

Functions that create objects

A technical point needs to be clarified before we examine further consequences of the 
Command-Query Separation principle: should we treat object creation as a side effect?

The answer is yes, as we have seen, if the target of the creation is an attribute a: in 
this case, the instruction create a changes the value of an object’s field. The answer is no 
if the target is a local entity of the routine. But what if the target is the result of the function 
itself, as in create Result or the more general form create Result  make (…)?

Such a creation instruction need not be considered a side effect. It does not change 
any existing object and so does not endanger referential transparency (at least if we 
assume that there is enough memory to allocate all the objects we need). From a 
mathematical perspective we may pretend that all of the objects of interest, for all times 
past, present and future, are already inscribed in the Great Book of Objects; a creation 
instruction is just a way to obtain one of them, but it does not by itself change anything in 
the environment. It is common, and legitimate, for a function to create, initialize and return 
such an object.

These observations assume that in the second form the creation procedure make does not 
produce side effects on any object other than the one being created.

A clean style for class interfaces

From the Command-Query Separation principle follows a style of design that yields simple 
and readable software, and tremendously helps reliability, reusability and extendibility.

As you may have realized, this style is very different from the dominant practices of 
today, as fostered in particular by the C programming language. The predilection of C for 
side effects — for ignoring the difference between an action and a value — is not just a 
feature of the common C style (it sometimes seems just psychologically impossible for a 
C programmer to resist the temptation, when accessing a value, also to modify it a little in 
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passing); it is embedded deeply into the language, with such constructs as x++, meaning: 
return the value of x, then increase it by one — saving a few keystrokes in y = x++
compared to y = x; x := x+1, and not to be confused with ++x which increments before
computing the value. A whole civilization, in fact, is built on side effects.

It would be foolish to dismiss this side-effect-full style as thoughtless; its widespread 
use shows that many people have found it convenient, and it may even be part of the 
reason for the amazing success of C and its derivatives. But what was attractive in the 
nineteen-seventies and eighties — when the software development population was 
growing by an order of magnitude every few years, and the emphasis was on getting some 
kind of job done rather than on long-term quality — may not be appropriate for the 
software technology of the twenty-first century. There we want software that will grow 
with us, software that we can understand, explain, maintain, reuse and trust. The 
Command-Query Separation principle is one of the required conditions for these goals.

Applying a strict separation between commands and queries by prohibiting abstract 
side effects in functions is particularly appropriate for the development of large systems, 
where the key to success is to exert full control on every inter-module interaction. 

If you have been used to the converse style, you may at first, like many people, find 
the new one too extreme. But after starting to practice it I think you will quickly realize its 
benefits.

Quietly, the preceding chapters have already applied Command-Query Separation to 
its full extent. You may remember for example that the interface for all our stack classes 
included a procedure remove describing the operation of popping a stack (removing the 
top element), and a function or attribute item which yields the top element. The first is a 
command, the second a query. In other approaches you might have seen a routine pop
which both removes the element and returns it — a side-effect-producing function. This 
example has, I hope, been studied in enough depth to show the gains of clarity and 
simplicity that we achieve by keeping the two aspects cleanly separated.

Other consequences of the principles may seem more alarming at first. For reading 
input, many people are used to the style of using functions such as getint — the C name, 
but its equivalent exists in many other languages — whose effect is to read a new input 
element and return its value. This is a side-effect-producing function in all its splendor: a 
call to the function, written getint () — with the empty parentheses so unmistakably 
characteristic of the C look-and-feel — does not just return a value but affects the context 
(“asking a question changes the answer”); as typical consequences, excluding the chance 
case in which the input has two identical consecutive values:

• If you call getint () twice you will get different answers.
• getint () + getint () and 2 ∗ getint () will not yield the same value. (If an overzealous 

“optimizing” compiler treats the first expression like the second, you will report a 
bug to the compiler vendor, and you will be right.)

In other words, we lose the benefits of referential transparency — of reasoning about 
software functions as if they were mathematical functions, with a crystal-clear view of 
how we can build expressions from them and what values these expressions will denote.
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The Command-Query Separation principle brings referential transparency back. Here 
this means that we will distinguish between the procedure that advances the input cursor to 
the next item and the function or attribute that yields the item last read. Assume input is of 
type FILE; the instructions to read the next integer from file input will be something like 

input  advance
n := input  last_integer

If you call last_integer ten times in a row you will, unlike with getint, get ten times 
the same result. If you are new to this style, it may take some getting used to; but the 
resulting simplicity and clarity will soon remove any temptation to go back to side effects.

In this example as in the x++ case seen earlier, the traditional form beats the object-
oriented one if the goal of the game is to minimize keystrokes. This illustrates a general 
observation: the productivity gains of object technology will not derive from trying to be 
as terse as possible on a microscopic scale (a game at which APL or modern “scripting 
languages” such as Perl will always win against a good O-O language). The achievements 
are on the global structure of a system: through reuse, through such mechanisms as 
genericity and garbage collection, through the use of assertions, you can decrease the size 
of your software by amounts far higher than anything you can achieve by skimping by a 
character here or a line there. Keystroke-wise is often system-foolish.

Pseudo-random number generators: a design exercise

An example sometimes quoted in favor of functions with side effects is that of pseudo-
random number generators, which return successive values from a sequence enjoying 
adequate statistical properties. The sequence is initialized by a call of the form 

random_seed (seed )
where seed is a seed value provided by the client. A common way to get the successive 
pseudo-random values is by calling a function: 

xx := next_random ( )
But here too there is no reason to make an exception to the command/query 

dichotomy. Before looking at the solution let us just forget that we have seen the above 
and restart from scratch by asking the question: how should we handle random generation 
in an object-oriented context? This will provide the opportunity of a little design exercise, 
and will enable us, if the need arises, to explain the results to someone whose view has not 
been unduly influenced by pre-O-O approaches.

As always in object technology, the relevant question — often the only one — is:

What are the data abstractions?

The relevant abstraction here is not “random number generation” or “random 
number generator”, both of them quite functional in nature, focusing on what the system 
does rather than what it does it to. 

Probing further, we might think “random number”, but that is not the right answer 
yet. Remember, a data abstraction is characterized by features — commands and queries; 
it is hard to think of features applicable to “random number”.
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That “random number” leads to a dead end illustrates the Class Elicitation principle 
encountered when we studied the general rules for finding the classes: a key step may be 
to reject inappropriate candidates. And once again we see that not all promising nouns 
yield classes: were a “requirements document” written for this problem, the noun random 
number would certainly figure prominently in it.

A random number does not mean much by itself; it must be understood in relation to 
its predecessors and successors in the sequence. 

Wait a minute — here we have it: sequence, more precisely pseudo-random number 
sequence. This is the abstraction we have been looking for; a perfectly legitimate data 
abstraction, similar to the cursor lists we have seen on a number of occasions, only infinite 
(do not look for an after boolean query!). Features will include:

• Commands: make — initialize with a certain seed; forth — advance to next element.

• Queries: item — return the element at cursor position.

To get a new random number sequence rand, clients will use create rand  make (seed); 
to advance to the next value, they will call rand  forth; and they will obtain the current value 
by xx := rand  item.

There is really nothing specific to random number sequences in the interface, except 
for the seed argument to the creation procedure. Adding a start procedure which brings 
the cursor to the first item (and which make may call for random number sequences), what 
we have is the framework for a deferred class COUNTABLE_SEQUENCE describing 
arbitrary infinite sequences. Think for example of how to model prime numbers in an 
object-oriented way; the answer is the same: define a class PRIMES, an heir to 
COUNTABLE_SEQUENCE, whose successive elements are the prime numbers. Other 
sequences — Fibonacci numbers and the like — will be modeled in the same way.

These examples illustrate in passing that contrary to popular belief it is quite possible, and 
even trivial, to represent infinite structures on a computer. Abstract data types provide the 
key: a structure is entirely defined by the applicable operations, of which there is of 
course a finite number, three in this case — start, forth, item — plus any auxiliary features 
we may want to add. The trick, of course, is that any execution will only try to evaluate 
a finite number of elements of an infinite structure.

COUNTABLE_SEQUENCE and its heirs such as PRIMES are part of the universal 
computing science hierarchy described in the companion guide to reusable components.

forth

item

start
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Abstract state, concrete state 

From the discussion of referential transparency it would seem desirable to bar all concrete 
side effects from functions. Such a rule would have the advantage that — in line with one 
of our methodology precepts — we could build it into the language, since a compiler can 
easily detect concrete side effects (as we saw just after the definition of this notion).

Unfortunately, this would be unacceptably restrictive, explaining why the 
Command-Query Separation principle only prohibits abstract side effects, a notion that 
will now be defined. The problem is that some concrete side effects are not only harmless 
but necessary. They are of two kinds.

The first category includes functions which, in the course of their execution, modify 
the state, sometimes drastically, and affecting very visible features; but then they restore 
the original state. Consider for example a class describing integer lists with cursor, and the 
following function for computing the maximum of a list:

max
-- The highest value of items in the list

require
not empty

local
original_index: INTEGER

do
original_index := index
from

start; Result := item
until is_last loop

forth; Result := Result  max (item)
end
go (original_index)

end

To traverse the list, the algorithm needs to move the cursor over all elements. The 
function, calling such procedures as start, forth and go, is indeed full of concrete side 
effects on the cursor position; but it begins by noting the cursor position into original_index 
and ends by returning the cursor to that position through a call to go. All is well that ends 
well: the function leaves the list in exactly the state in which it found it. But no compiler in 
the world is going to detect that the side effect is only apparent.

Side effects of the second acceptable category may change the state of the object, but 
only affecting properties that are not visible to clients. To understand the concepts in 
depth, it will be useful to make sure that you are familiar with the discussion of 
“abstraction function” and “implementation invariants” in the presentation of Design by 
Contract. (In particular, take a look at the accompanying figures to refresh your memory.)
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Figure page 751.
We saw then that an object of our software (a concrete object) is the representation 
of an abstract object, and that two concrete objects may represent the same abstract object. 
For example two different stack representations, each made of an array and a top marker 
count, represent the same stack if they have the same value for count and the same array 
elements up to index count. They may differ in other properties, such as the array sizes and 
the values stored at indices above count. In mathematical terms, every concrete object 
belongs to the domain of the abstraction function a, and we can have c1 ≠ c2 even with 
a (c1) = a (c2).

What this means for us is that a function that modifies a concrete object is harmless 
if the result of this modification still represents the same abstract object — yields the same 
a value. Assume for example that a function on stacks contains the operation

representation  put (some_value, count + 1)

(with the guarantee that the array’s capacity is at least count + 1). This side effect changes 
a value above the stack-significant section of the array; it can do no ill.

More generally, a concrete side effect which changes the concrete state of an object 
c is an abstract side effect if it also changes its abstract state, that is to say the value of 
a (c) (a more directly usable definition of abstract side effects will appear shortly). If a side 
effect is only concrete — does not affect the abstract state — it is harmless.

In the object-as-machine metaphor, functions producing concrete-only side effects 
correspond to query buttons that may produce an internal state change having 
absolutely no effect on the answers given by any query button. For example the 
machine might save energy by automatically switching off some internal circuits if 
nobody presses a button for some time, and turning them on again whenever someone 
presses any button, queries included. Such an internal state change is unnoticeable from 
the outside and hence legitimate. 

The object-oriented approach is particularly favorable to clever implementations 
which, when computing a function, may change the concrete state behind the scenes 
without producing any visible side effect. The example of a stack function that changes 
array elements above the top is somewhat academic, but we will see below a practical and 
useful design that relies on this technique.

Since not every class definition is accompanied by a full-fledged specification of the 
underlying abstract data type, we need a more directly usable definition of “abstract side 
effect”. This is not difficult. In practice, the abstract data type is defined by the interface 
offered by a class to its clients (expressed for example as the short form of the class). A 
side effect will affect the abstract object if it changes the result of any query accessible to 
these clients. Hence the definition: 

Definition: abstract side effect
An abstract side effect is a concrete side effect that can change the value of 
a non-secret query.
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This is the notion used by the Command-Query Separation principle — the principle 
that prohibits abstract side effects in functions.

The definition refers to “non-secret” rather than exported queries. The reason is that 
in-between generally exported and fully secret status, we must permit a query to be 
selectively exported to a set of clients. As soon as a query is non-secret — exported to any 
client other than NONE — we consider that changing its result is an abstract side effect, 
since the change will be visible to at least some clients.

The policy 

As announced at the beginning of this discussion, abstract side effects are (unlike concrete 
side effects) not easily detectable by a compiler. In particular it does not suffice to check 
that a function preserves the values of all non-secret attributes: the effect on other queries 
might be indirect, or (as in the max example) several concrete side effects might in the end 
cancel out. The most a compiler can do would be to issue a warning if a function modifies 
an exported attribute.

So the Command-Query Separation principle is a methodological precept, not a 
language constraint. This does not, however, diminish its importance.

Past what for some people will be an initial shock, every object-oriented developer 
should apply the principle without exception. I have followed it for years, and would never 
write a side-effect-producing function. ISE applies it in all its O-O software (for the C part 
we have of course to adapt to the dominant style, although even here we try to apply the 
principle whenever we can). It has helped us produce much better results — tools and 
libraries that we can reuse, explain to others, extend and scale up.

Objections

It is important here two deal with two common objections to the side-effect-free style.

The first has to do with error handling. Sometimes a function with side effects is 
really a procedure, which in addition to doing its job returns a status code indicating how 
things went. But there are better ways to do this; roughly speaking, the proper O-O 
technique is to enable the client, after an operation on an object, to perform a query on the 
status, represented for example by an attribute of the object, as in

target  some_operation (…)
how_did_it_go := target  status

Note that the technique of returning a status as function result is lame anyway. It 
transforms a procedure into a function by adding the status as a result; but it does not work 
if the routine was already a function, which already has a result of its own. It is also 
problematic if you need more than one status indicator. In such cases the C approach is 
either to return a “structure” (the equivalent of an object) with several components, which 
is getting close to the above scheme, or to use global variables — which raises a whole set 
of new problems, especially in a large system where many modules can trigger errors.

T
a
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The second objection is a common misconception: the impression that Command-
Query Separation, for example the list-with-cursor type of interface, is incompatible with 
concurrent access to objects. That belief is remarkably widespread (this is one of the 
places where I know that, if I am lecturing on these topics, someone in the audience will 
raise his hand, and the question will be the same whether we are in Santa Barbara, Seattle, 
Singapore, Sydney, Stockholm or Saint-Petersburg); but it is incorrect nonetheless.

The misconception is that in a concurrent context it is essential to have atomic 
access-cum-modification operations, for example get on a buffer — the concurrent 
equivalent of a first-in, first out queue. Such a get function non-interruptibly performs, in 
our terminology, both a call to item (obtain the oldest element) and remove (remove that 
element), returning the result of item as the result of get. But using such an example as an 
argument for get-style functions with side effects is confusing two notions. What we need 
in a concurrent context is a way to offer a client exclusive access to a supplier object for 
certain operations. With such a mechanism, we can protect a client extract of the form

x := buffer  item; buffer  remove

thereby guaranteeing that the buffer element returned by the call to item is indeed the same 
one removed by the following call to remove. Whether or not we permit functions to have 
side effects, we will have to provide a mechanism to ensure such exclusive access; for 
example a client may need to dequeue two elements

buffer  remove; buffer  remove

with the guarantee that the removed elements will be consecutive; this requires exclusive 
access, and is unrelated to the question of side effects in functions.

Later in this book we will have an extensive discussion of concurrency, where we 
will study a simple and elegant approach to concurrent and distributed computation, fully 
compatible with the Command-Query Separation principle — which in fact will help us
arrive at it.

Legitimate side effects: an example

To conclude this discussion of side effects let us examine a typical case of legitimate side 
effects — functions that do not change the abstract state, but can change the concrete state, 
and for good reason. The example is representative of a useful design pattern.

Consider the implementation of complex numbers. As with points, discussed in an 
earlier chapter, two representations are possible: cartesian (by axis coordinates x and y) and 
polar (by distance to the origin ρ and angle θ). Which one do we choose? There is no easy 
answer. If we take, as usual, the abstract data type approach, we will note that what counts 
is the applicable operations — addition, subtraction, multiplication and division among 
others, as well as queries to access x, y, ρ and θ — and that for each of them one of the 
representations is definitely better: cartesian for addition, subtraction and such, polar for 
multiplication and division. (Try expressing division in cartesian coordinates!)
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We could let the client decide what representation to use. But this would make our 
classes difficult to use, and violate information hiding: for the client author, the 
representation should not matter.

Alternatively, we could keep both representations up to date at all times. But this may 
cause unnecessary performance penalties. Assume for example that a client only performs 
multiplications and divisions. The operations use polar representations, but after each one 
of them we must recompute x and y, a useless but expensive computation involving 
trigonometric functions. 

A better solution is to refuse to choose between the representations a priori, but 
update each of them only when we need it. As compared to the preceding approach, we 
do not gain anything in space (since we will still need attributes for each of x, y, ρ and θ, 
plus two boolean attributes to tell us which of the representations are up to date); but we 
avoid wasting computation time.

We may assume the following public operations, among others: 

class COMPLEX feature
… Feature declarations for:

infix "+", infix "–", infix "∗", infix "/",
add, subtract, multiply, divide,
x, y, rho, theta, …

end

The queries x, y, rho and theta are exported functions returning real values. They 
are always defined (except theta for the complex number 0) since a client may request 
the x and y of a complex number even if the number is internally represented in polar, 
and its ρ and θ even if it is in cartesian. In addition to the functions "+" etc., we assume 
procedures add etc. which modify an object: z1 + z2 is a new complex number equal to 
the sum of z1 and z2, whereas the procedure call z1  add (z2) changes z1 to represent that 
sum. In practice, we might need only the functions or only the procedures.

Internally, the class includes the following secret attributes for the representation: 

cartesian_ready: BOOLEAN
polar_ready: BOOLEAN
private_ x, private_ y, private_rho, private_theta: REAL

Not all of the four real attributes are necessarily up to date at all times; in fact only two 
need be up to date. More precisely, the following implementation invariant should be 
included in the class: 

invariant
cartesian_ready or polar_ready
 polar_ready implies (0 <= private_theta and private_theta <= Two_ pi)

-- cartesian_ready implies (private_ x and private_ y are up to date)
-- polar_ready implies (private_rho and private_theta are up to date)
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The value of Two_ pi is assumed to be 2 π. The last two clauses may only be expressed 
informally, in the form of comments.

At any time at least one of the representations is up to date, although both may be. Any 
operation requested by a client will be carried out in the most appropriate representation; this 
may require computing that representation if it was not up to date. If the operation produces 
a (concrete) side effect, the other representation will cease to be up to date. 

Two secret procedures are available for carrying out representation changes: 

prepare_cartesian
-- Make cartesian representation available

do
if not cartesian_ready then

check polar_ready end
-- (Because the invariant requires at least one of the
-- two representations to be up to date)

private_ x := private_rho ∗ cos (private_theta)
private_ y := private_rho ∗ sin (private_theta)
cartesian_ready := True

-- Here both cartesian_ready and polar_ready are true:
-- Both representations are available

end
ensure

cartesian_ready
end

prepare_ polar
-- Make polar representation available

do
if not polar_ready then

check cartesian_ready end
private_rho := sqrt (private_ x ^ 2 + private_ y ^ 2)
private_theta := atan2 (private_ y, private_ x)
polar_ready := True

-- Here both cartesian_ready and polar_ready are true:
-- Both representations are available

end
ensure

polar_ready
end

Functions cos, sin, sqrt and atan2 are assumed to be taken from a standard mathematical 
library; atan2 (y, x) should compute the arc tangent of y / x. 

We will also need creation procedures make_cartesian and make_ polar:
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make_cartesian (a, b: REAL)
-- Initialize with abscissa a, ordinate b.

do
private_ x := a; private_ y := b
cartesian_ready := True; polar_ready := False

ensure
cartesian_ready; not polar_ready

end
and symmetrically for make_ polar.

The exported operations are easy to write; we can start for example with the 
procedure variants (we will see the function variants such as infix "+" next):

add (other: COMPLEX)
-- Add the value of other.

do
prepare_cartesian; polar_ready := False
private_ x := x + other  x; private_ y = y + other  y

ensure
 x = old x + other  x; y = old y + other  y
cartesian_ready; not polar_ready

end
(Note the importance in the postcondition of using x and y, not private_ x and private_ y 
which might not have been up to date before the call.)

divide (z: COMPLEX)
-- Divide by z.

require
z  rho /= 0

-- (To be replaced by a numerically more realistic precondition)
do

prepare_ polar; cartesian_ready := False
private_rho := rho / other  rho
private_ theta = (theta – other  theta) \\ Two_ pi

-- Using \\ as remainder operation
ensure

 rho = old rho / other  rho
 theta = (old theta — other  theta) \\ Two_ pi
 polar_ready; not cartesian_ready

end
and similarly for subtract and multiply. (The precondition and postcondition may need 
some adaptation to reflect the realities of floating-point computations on computers.) The 
function variants follow the same pattern:
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infix "+" (other: COMPLEX): COMPLEX
-- Sum of current complex and other

do
create Result  make_cartesian (x + other  x, y + other  y)

ensure
Result  x = x + other  x; Result  y = y + other  y
Result  cartesian_ready

end

infix "/" (z: COMPLEX): COMPLEX
-- Quotient of current complex by z.

require
z  rho /= 0

-- (To be replaced by a numerically more realistic condition)
do

create Result  make_ polar (rho / other  rho, (theta – other  theta) \\ Two_ pi)
ensure

Result  rho = rho / other  rho
Result  theta = (old theta — other  theta) \\ Two_ pi
Result  polar_ready

end

and similarly for infix "–" and infix "∗". 
Note that for the last postcondition clauses of these functions to be valid, cartesian_ready
and polar_ready must be exported to the class itself, by appearing in a clause of the form 
feature {COMPLEX}; they are not exported to any other class.

But where are the side effects? In the last two functions, they are not directly 
visible; this is because x, y, rho and theta, behind their innocent looks, are sneaky little 
side-effectors! Computing x or y will cause a secret change of representation (a call to 
prepare_cartesian) if the cartesian representation was not ready, and symmetrically for 
rho and theta. Here for example are x and theta:

x: REAL
-- Abscissa

do
prepare_cartesian; Result := private_ x

end

theta: REAL
-- Angle

do
prepare_ polar; Result := private_theta

end
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Functions y and rho are similar. All these functions call a procedure which may 
trigger a change of state. Unlike add and consorts, however, they do not invalidate the 
previous representation when a new one is computed. For example, if x is called in a state 
where cartesian_ready is false, both representations (all four real attributes) will be up to 
date afterwards. This is because the functions may produce side effects on the concrete 
objects only, not on the associated abstract objects. To express this property more 
formally: computing z  x or one of the other functions may change the concrete object 
associated with z, say from c1 to c2, but always with the guarantee that 

a (c1) = a (c2)
where a is the abstraction function. The computer objects c1 and c2 may be different, but 
they represent the same mathematical object, a complex number. 

Such side effects are harmless, as they only affect secret attributes and hence cannot 
be detected by clients. 

The object-oriented approach encourages such flexible, self-adapting schemes, 
which internally choose the best implementation according to the needs of the moment. 
As long as the resulting implementation changes affect the concrete state but not the 
abstract state, they can appear in functions without violating the Command-Query 
Separation principle or endangering referential transparency for clients.

23.2  HOW MANY ARGUMENTS FOR A FEATURE?
In trying to make classes — especially reusable classes — easy to use, you should devote 
special attention to the number of arguments of features. As we will see, well-understood 
object technology yields a style of feature interface radically different from what you 
typically get with traditional approaches; there will, in particular, be far fewer arguments.

The importance of argument counts
When your development relies on a supplier class, features are your day-to-day channel 
to it. The simplicity of the feature interfaces fundamentally determines the class’s ease of 
use. Various factors influence this, in particular the consistency of the conventions; but in 
the end a simple numerical criterion dominates everything else: how many arguments do 
features have? The more arguments, the more you have to remember.

This is particularly true of library classes. The criterion for success there is simple: 
after a potential library user has taken the (preferably short) time to understand what a 
class is about and, if he decides to use it, selected the set of features that he needs for the 
moment, he should be able to learn these features quickly and, after as few uses as 
possible, remember them without having to go back to the documentation. This will only 
work if features — aside from all other qualities of consistency, proper naming 
conventions and general quality of the design — have very short argument lists.

If you examine a typical subroutine library you will commonly encounter 
subroutines with many arguments. Here for example is an integration routine from a 
mathematical library justly renowned for the excellence of its algorithms, but constrained 
in its interface by the use of traditional subroutine techniques:
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Warning: this is not 
an object-oriented 
interface!

On the Math library 
and techniques of 
scientific object-ori-
ented computing, 
see [Dubois 1997]. 
The earlier mention 
was in “Object-ori-
ented re-architec-
turing”, page 441.
nonlinear_ode
(equation_count: in INTEGER;
 epsilon: in out DOUBLE;
func: procedure (eq_count: INTEGER; a: DOUBLE; eps: DOUBLE;

 b: ARRAY [DOUBLE]; cm: pointer Libtype)
left_count, coupled_count: in INTEGER;
…)
[And so on. Altogether 19 arguments, including:

- 4 in out values;
- 3 arrays, used both as input and output;
- 6 functions, each with 6 or 7 arguments of which 2 or 3 are arrays!]

Since the purpose of this example is not to criticize one particular numerical library but 
to emphasize the difference between O-O and traditional interfaces, the routine and 
arguments names have been changed and the syntax (in C in the original) has been 
adapted. The resulting notation resembles the notation of this book, which, however, 
would of course exclude such non-O-O mechanisms as in out arguments, explicit pointer
manipulation, and arguments (such as func and 5 others) that are themselves routines.

Several properties make this scheme particularly complex to use:

• Many arguments are in out, that is to say must be initialized by the caller to pass a 
certain value and are updated by the routine to return some information. For example 
epsilon specifies on input whether continuation is required (yes if less than 0; if 
between 0 and 1, continuation is required unless epsilon < , etc.). On 
output, it provides an estimate of the increment.

• Many arguments, both to the routine itself and to its own routine arguments, are 
arrays, which again serve to pass certain values on input and return others on output.

• Some arguments serve to specify the many possibilities for error processing (stop 
processing, write message to a file, continue anyway…).

Even though high-quality numerical libraries have been in existence for many years 
and, as mentioned in an earlier chapter, provide some of the most concrete evidence of real 
reuse, they are still not as widely used in scientific computation as they should be. The 
complexity of their interfaces, and in particular the large number of arguments illustrated 
by nonlinear_ode, are clearly a big part of the reason.

Part of the complexity comes from the problems handled by these routines. But one 
can do better. An object-oriented numerical library, Math, offers a completely different 
approach, consistent with object technology concepts and with the principles of this book. 
An earlier discussion cited the Math library as an example of using object technology to re-
architecture older software, and the library indeed uses an existing non-O-O library as its 
core engine, since it would have been absurd to duplicate the basic algorithmic work; but 
it provides a modern, O-O client interface. The basic non-linear ODE routine has the form

solve
-- Solve the problem, recording the answer in x and y.

precision
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See [M 1994a] for 
detailed library 
measurements.

Warning: this is not 
the recommended 
style!
In other words it takes no argument at all! You simply create an instance of the class 
GENERAL_BOUNDARY_VALUE_PROBLEM to represent the mathematical problem to 
be solved, set its non-default properties through calls to the appropriate procedures, attach 
it to a “problem solver” object (an instance of the class in which the above routine appears: 
GENERAL_BOUNDARY_VALUE_PROBLEM_SOLVER), and call solve on that object. 
Attributes of the class, x and y, will provide the handle to the computed answer.

More generally, the thorough application of O-O techniques has a dramatic effect on 
argument counts. Measures on the ISE libraries, published in more detailed elsewhere, 
show an average number of arguments ranging from 0.4 for the Base libraries to 0.7 for 
the Vision graphical library. For the purposes of comparison with non-O-O libraries we 
should add 1 to all these figures, since we count two arguments for x  f (a, b) versus three 
for its non-O-O counterpart f (x, a, b); but even so these averages are strikingly low when 
compared with the counts for non-O-O routines which, even when not reaching 19 as in 
the above numerical example, often have 5, 10 or 15 arguments.

These numbers are not a goal by themselves — and of course not by themselves an 
indicator of quality. Instead, they are largely the result of a deeper design principle that we 
will now examine.

Operands and options

An argument to a routine may be of two different kinds: operands and options.

To understand the difference, consider the example of a class DOCUMENT and a 
procedure print. Assume — just to make the example more concrete — that printing will 
rely on Postscript. A typical call illustrating a possible interface (not compatible with the 
principle stated below) would be

my_document  print  ( printer_name, paper_size, color_or_not, 
 postscript_level, print_resolution)

Of the five arguments, which ones are truly indispensable? If you do not provide a 
Postscript level, the routine can use as a default the most commonly available option. The 
same applies to paper size: you can use LTR (8.5 by 11 inches) in the US, A4 (21 by 29.7 
centimeters) elsewhere. 600 dots per square inch may be a reasonable default for the print 
resolution, and most printers are non-color. In all these cases, you might have a 
mechanism supporting installation-level or user-level defaults to override the universal 
ones (for example if your site has standardized on 1200 dpi resolution). The only argument 
that remains is the printer name; but here too you might have defined a default printer.

This example illustrates the difference between operands and options:

Definition: operand and option arguments
An operand argument to a routine represents an object on which the routine 
will operate.
An option argument represents a mode of operation.
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This definition is too general to tell us unambiguously whether a proposed argument 
is an operand or an option, but here are two directly applicable criteria:

According to the first criterion, all the arguments to print are options (with the 
possible exception of printer_name if you have not defined a default printer). Note, 
however, that the target of the call, an implicit argument (my_document in the example) 
is, as all targets should be, an operand: if you do not say what document you want to print, 
no one is going to choose a default for you.

The second criterion is less obvious since it requires some foresight, but it reflects 
the software engineering concerns that underlie all our discussions since the first chapters 
of this book. We know that a class is not an immutable product; like all software, it may 
change over its lifetime. Some properties of a class, however, change more often than 
others. Operands are there for the long term: adding or removing a operand is a major, 
incompatible change. Options, on the other hand, may come and go. For example one may 
imagine that support for colors was not part of the first version of the print procedure, a 
few years back, and was only added later. This is typical of an option.

The principle

The definition of operands and options yields the rule on arguments:

Two cases for loosening the rule, not quite qualifying as exceptions, are mentioned below.

In the style that this principle promotes, options to an operation are set not in calls to 
the operation but in calls to specific option-setting procedures:

my_document  set_ printing_size ("A4")
my_document  set_color
my_document  print -- No argument at all.
Once set, each option remains in force for the target object until reset by a new call. 

In the absence of any call to the corresponding procedures, and of any explicit setting at the 
time of object creation, options will have the default values.

For any type other than boolean, the option-setting procedure will take one argument 
of the appropriate type, as illustrated by set_ printing_size; the standard name is of the 

How to distinguish options from operands
• An argument is an option if, assuming the client had not supplied its value, 

it would have been possible to find a reasonable default.
• In the evolution of a class, arguments tend to remain the same, but options 

may be added and removed.

Operand principle
The arguments of a routine should only include operands (no options).
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See exercise E23.3, 
page 807.
form set_property_name. Note that the argument to a procedure such as set_ printing_size
itself satisfies the Operand principle: the page size, which was an option for the original 
print, is an operand for set_ printing_size which by definition operates on page sizes.

For a boolean procedure, the same technique would yield a procedure taking either 
True or False as argument; since this is confusing (as users of the procedure may forget 
which ones of the two possibilities True represents), it is better to use a pair of procedures, 
with conventional names of the form set_property_name and set_no_property_name, for 
example set_color and set_no_color, although in this case it is probably just as well to call 
the second variant set_black_and_white.

Application of the Operand principle yields several benefits:

• You only specify what differs from the defaults. Any property for which you do not 
need any special setting will be handled with the settings that have proved to be most 
commonly appropriate.

• Novices need only learn the essentials and can ignore any advanced properties.

• As you get to know the class better and move on to sophisticated uses, you learn 
more properties; but you only have to remember what you use.

• Perhaps most importantly, the technique preserves extendibility and the Open-
Closed principle: as you add more options to a certain facility, you do not need to 
change the interface of a routine and hence invalidate all existing callers. If the 
default value corresponds to the previous implicit setting, existing clients will not 
need to be changed.

Against the Operand principle, a possible objection comes to mind: does it not just 
trade argument complexity for call complexity (calls will be much simpler, but we will 
have more of them since we must include calls to option-setting procedures)? This is, 
however, not accurate. The only new calls will be for options that you want to set to values 
other than the default. Here the complexity is the same as with option arguments. (You 
may have a few more keystrokes to type, but what counts is the number of pieces of 
information you have to provide, and it is the same with both approaches.) The big 
difference is that you need only pay attention to the options that are relevant for your own 
use, whereas option arguments force you to specify all options explicitly.

Also note that frequently a certain option will apply to many successive calls. In that 
case, using option arguments forces you to specify it each time. With the style 
recommended here, you gain even if the value is not the default: you set it the first time 
around, and it stays in place until explicitly changed. The gain is particularly significant 
in cases such as the numerical library mentioned above where every call must include 
arguments indicating the desired error processing mode, the name of the file for error 
output and other general properties, which tend to remain applicable through many calls.

Some languages support the notion of optional argument, achieving some of the benefits of the 
Operand principle but not all. The comparison has been left as an exercise, but you may already note 
that the last point mentioned would not apply: any non-default argument must be specified each time.
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Benefiting from the Operand principle

Comments made about the Command-Query Separation principle apply to the Operand 
principle too: it goes against today’s dominant practices, and some readers will 
undoubtedly balk at it initially; but I can recommend it without any reservation, having 
applied it for many years and greatly benefited from it. It yields a simple, clear and elegant 
style, fostering clarity and extendibility. 

That style soon becomes a natural one for developers who try it. (Predictably, we have 
made it part of our standard at ISE.) You create the required objects; set up any of their 
properties that differ from the defaults; then apply the operations that you need. This is the 
scheme sketched above for solve in the Math library. It certainly beats passing 19 arguments.

Exceptions to the Operand principle?

The Operand principle is of universal applicability. Rather than true exceptions, it requires 
adaptation in two specific cases.

First, we can take advantage of the flexibility of multiple creation procedures. Since 
a class can provide more than one way to initialize an object, through creation calls of the 
form create x  make_specific (argument, …) where make_specific is any of the creation 
procedures, we can relax the Operand principle for such creation procedures, facilitating 
the client’s task by offering various ways to set up objects with values other than the 
default. Two constraints, however:

• Remember that, as always, every creation procedure must ensure the class invariant.

• The set of creation procedures must include a minimal procedure (called make in the 
recommended style) which includes no option arguments and sets all option values 
to their defaults.

The other case for loosening the Operand principle follows from the last observation. 
If you have applied the principle, you may find that some operations (other than creation 
procedures) are often used with option-setting procedures according to a standard pattern; 
for example

my_document  set_ printing_size ("…")
my_document  set_ printer_name ("…")
my_document  print
In such a case, it may be convenient, in the name of encapsulation and reusability, 

and in conformity to the Shopping List principle studied next, to provide an extra routine 
as a convenience for clients:

print_with_size_and_ printer (printer_name: STRING; size: SIZE_SPECIFICATION)
This assumes, of course, that the basic minimal routine ( print in the example) 

remains available, and that the new routine is just a supplementary facility meant to 
simplify client text in cases that have been recognized as truly frequent.

This is not really a violation of the principle, since the very nature of the new routine requires 
the arguments (printer and size in the example) to be present, making them operands.
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A checklist

The Operand principle and its recognition of the need to pay attention to options suggest 
a technique that helps get a class right. For each class, list the supported options and 
produce a table with one row for each option, illustrated here by one of the rows for the 
DOCUMENT class:

The successive columns list: the role of the option; how it is initialized by the various 
creation procedures; how it can be accessed by clients; how it can be set to various values. 
This provides a useful checklist for frequent deficiencies:

• Initialized entries help spot a wrong initialization, especially when you rely on the 
defaults. (A boolean option, for example, is initialized to false; you should choose 
the corresponding attribute accordingly, so that the option for color support is 
Black_and_white_only if you wish the default, false, to represent full color support.)

• The Queried entries help spot the mistake of providing clients ways to set an option 
but not to access it. Note in particular that a routine that takes an object in a certain 
state may need to change some options for its own purposes, but then restore the 
initial state; this is only possible if the routine can query the initial value.

• The Set entries help spot missing option-setting procedures. For example if the 
default value for a boolean option is the usual false, and you provide a procedure to 
change it to true, you should not forget to provide another to reset it to false.

None of the rules suggested here is absolute; for example some options may never 
need to be returned to false. But they do apply in most cases, so it is important to check 
that the table’s entries indicate the behavior that you expect from the class. The table, or 
extracts from it, can also help document the class.

23.3  CLASS SIZE: THE SHOPPING LIST APPROACH

We have learned to be paranoid about limiting the external size of features, as measured 
by the number of arguments, because it fundamentally affects the features’ ease of use and 
hence the quality of a class interface. (We care less about the internal size of a feature, 
measured for example by the number of its instructions, since it simply reflects the 
complexity of the algorithm. But as you will certainly have noted most routine bodies in 
good O-O design will remain small anyway.)

Should we be similarly concerned about the size of each class as a whole? Here the 
answer will be much less drastic.

Option Initialized Queried Set
Paper size default:A4 (international)

make_LTR: LTR (US)
size set_size 

set_A4 
set_LTR
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[Johnson 1995].
Class size definition

We must define how to measure the size of a class. It is possible to count the number of 
lines (or, preferably, the number of declarations and instructions, which is less subject to 
individual variations of textual layout, and just requires a simple parser). Although 
interesting for some applications, this is a supplier-side measure. If we are more interested 
in how much functionality a class provides to its clients, the appropriate criterion is the 
number of features.

This still leaves two questions:

• Information hiding: do we count all features (internal size) or only exported ones 
(external) size?

• Inheritance: do we count only the immediate features, that is to say those introduced 
in the class itself (immediate size), all the features of the class including those 
inherited from any proper ancestor ( flat size, so called in reference to the notion of 
flat form of a class), or the immediate features plus those which the class inherits but 
somehow modifies through redefinition or effecting, although renaming does not 
count (incremental size)?

Various combinations may be interesting. For the present discussion the most 
interesting measure will be external and incremental: external size means that we take the 
client’s view of the class, regardless of anything that is useful for internal purposes only; 
and incremental size means that we focus on the class’s added value. With immediate size 
we would ignore the often important part of the functionality that is inherited; but with flat 
size we would be counting the same features again in every class and its descendants.

Maintaining consistency

Some authors, such as Paul Johnson, have argued for strong restraints on class size:

Class designers are often tempted to include lots of features (in both the 
language sense and system design sense of the word). The result is an interface 
where the few commonly used features are lost in a long list of strange routines.
Worse yet, the list of possible features is infinite.

ISE’s experience suggests a different view. We have found that class size is not by 
itself a problem. Although most classes remain relatively small (a few features to a couple 
dozen), there is occasionally a need for bigger classes (up to 60 or even 80 features), and 
they do not raise any particular problem if they are otherwise well designed.

This experience leads to the shopping list approach: the realization that it does not 
hurt to add features to a class if they are conceptually relevant to it. If you hesitate to 
include an exported feature because you are not sure it is absolutely necessary, you should 
not worry about its effect on class size. The only criteria that matter involve whether the 
class fits in with the rest. These criteria can be expressed as a general guideline:
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Page 730.

[Waldén 1995], 
page 187.

“Don’t call us, we’ll 
call you”, page 504.
The first two requirements are related to the Class Consistency principle, which 
stated that all the features of a class must pertain to a single, well-identified abstraction 
The counter-example given there was that of a string class (from the original NEXTSTEP 
library) which actually covered several abstractions and, as a result, was eventually split 
into several classes. What is at issue here, however, is not size per se but design quality.

It is interesting to note that the same example, string, is also one of the larger classes 
in ISE’s libraries and has been criticized by Paul Johnson. But in fact the reaction from 
library users over the years has been the reverse: asking for more features. The class, 
although rich, is not particularly difficult to use because all the features clearly apply to 
the same abstraction, character string, and it is in the nature of that abstraction that many 
operations are applicable, from substring extraction and replacement to concatenation and 
global character substitution.

Class STRING shows that big does not mean complex. Some abstractions are just 
naturally endowed with many features. Quoting Waldén and Nerson:

A document handling class that contains 100 separate operations to set various 
font operations … may in fact only be dealing with one or a few underlying 
concepts which are quite familiar and easy to grasp. Ease of selecting the right 
operation is then reduced to having nicely organized manual pages.

In such a case splitting the class would probably decrease rather than improve its 
ease of use.

An extreme “minimalist” view holds that a class should only include atomic features 
— those which cannot be expressed in terms of others. This would preclude some of the 
fundamental schemes of successful object-oriented software construction, in particular 
behavior classes in which an effective feature, for example a routine describing an 
iteration on a data structure, relies on other lower-level features of the class, often 
including some deferred ones.

Minimalism would also prohibit including two theoretically redundant but 
practically complementary features. Consider a class COMPLEX to describe complex 
numbers, as developed earlier in this chapter. For arithmetic operations, some clients may 
need the function versions:

infix "+", infix "–", infix "∗", infix "/"

Shopping List advice
When considering the addition of a new exported feature to a class, observe 
the following rules:
S1 • The feature must be relevant to the data abstraction represented by 

the class.
S2 • It must be compatible with the other features of the class.
S3 • It must not address exactly the same goal as another feature of the class.
S4 • It must maintain the invariant of the class.
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“CLASS EVOLU-
TION: THE OBSO-
LETE CLAUSE”, 
23.7, page 802.
so that evaluating the expression z1 + z2 will create a new object representing the sum of 
z1 and z2, and similarly for the other functions. Other clients, or the same client in other 
contexts, may prefer the procedure versions, where the call z1   add (z2) will update the z1
object to represent the result of the addition, and similarly for subtract, multiply and 
divide. In theory, it is redundant to include both the functions and the procedures, and 
either set can in fact be expressed in terms of the other. In practice, it is convenient to have 
both, for at least three reasons: client convenience; efficiency; and reusability.

Laxity and restrictiveness

In the last example the two sets of features, although theoretically redundant, are 
practically different. You should not, of course, introduce a feature if another already fills 
exactly the same need; this is covered by clause S3 of the Shopping List advice. That 
clause is more restrictive than it may seem at first. In particular:

• Assume that you want to change the order of arguments of a routine, for 
compatibility with others in the same class or different ones. But you are concerned 
about compatibility with existing software. The solution in this case is not to keep 
both features with the same status; this would violate the advice. Instead, use the 
obsolete library evolution mechanism described later in this chapter.

• The same applies if you want to provide a default for an argument that used to be 
required for a certain routine. Do not provide two versions, one with the extra 
argument for compatibility, the other relying on a default along the lines discussed 
earlier in this chapter. Make one interface the official one; the other will be covered 
by the obsolete mechanism.

• If you hesitate between two possible names for a feature, you should almost always 
resist the temptation to provide both as synonyms. The only exceptions in ISE’s 
libraries concern a handful of fundamental features for which it is convenient to have 
both an infix name and an identifier, for example array access which can be used as 
my_array  item (some_index) as well as my_array @ some_index, each form being 
preferable in some contexts. But this is a rare situation. As a general rule the class 
designer should choose a name, rather than passing the buck to client authors — 
penalizing them with the consequences of his indecision.

As you will have noted, the policy resulting from this discussion is a mix of laxity 
and restrictiveness. The policy seems lax because it explicitly encourages you to include 
acceptable features even if they have not yet proved to be essential. But it is in fact 
systematic and restrictive because it defines strong conditions for a feature to be considered 
acceptable. The features of a class should cover as many needs as possible; but they should 
only cover relevant needs and, for each distinct need, there should be just one feature.

The Shopping List policy is only possible because we follow a systematic policy of 
keeping the language small. A minimalist attitude to language design — ensuring that we 
stick to a small number of extremely powerful constructs, and avoid redundancies — 
enables us to let class designers be non-minimalists. Every developer needs to learn the 
language and, if the language is minimalist enough, will know all of it. Classes, however, 
are only used by client authors, and they can skip what they do not use.
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A linkable
You should also relate the Shopping List advice to the preceding discussion of feature 
size. What might make a class difficult to use is not the number of its features but their 
individual complexity of use. More precisely, class size can only be a significant problem 
initially, by facilitating or hampering quick comprehension of the purpose and scope of a 
potentially reusable class which an application developer approaches for the first time. 
Even there, we have seen that size per se is less relevant than coherence (the Class 
Consistency principle). Past that stage, the reuser will, day in and day out, deal with the 
features of the class, or more commonly with a subset of these features. Feature size issues 
take precedence: a feature with many arguments to remember will make the task difficult. 
But class size has by then ceased to be relevant. Were you to rely on some arbitrary 
numerical criterion (“no class shall have more than m lines or n features”), the result could 
have been to split the class into several, in some cases making it more difficult to use.

The lesson for class developers, embodied in the Shopping List advice, is to worry 
about the quality of a class, in particular its conceptual integrity and the size of its features, 
but not about its size.

23.4  ACTIVE DATA STRUCTURES
Examples of this chapter and preceding ones have frequently relied on a notion of list or 
sequence characterized at any time by a “cursor position” indicating where accesses, 
insertions and deletions take place. This view of data structures, although different from 
most presentation in “algorithms and data structures” textbooks, is of broad applicability 
and deserves a more detailed explanation.

To understand the merits of this approach it will be useful to start with the more 
common one and assess its limitations.

Linked list representation

The discussion will be based on the example of lists. Although its results are independent 
of the choice of implementation, we need a specific representation to express the 
algorithms and illustrate the issues. Let us use a popular choice: linked lists. Our general-
purpose library must have list classes and, among them, a class LINKED_LIST.

Here are a few basics about linked lists, applicable to all the interface styles 
discussed next — with and without cursors.

Linked lists are a useful representation of sequential structures because they 
facilitate operations of insertion and deletion. The successive elements will be housed in 
individual cells, or linkables, each containing a value and a reference to another linkable:

item right
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A linked list

Deletion in a 
linked list

See “Uniform 
Access”, page 55.
The corresponding class, LINKABLE, should be generic, since we want the structure 
to be applicable to linked lists of any type. The cell value will be given by feature item, of 
type G, the generic parameter; this will be an in-place value if the actual generic parameter 
is expanded, for example for lists of integers or reals, and a reference otherwise. The other 
attribute, right, of type LINKABLE [G], always represents a reference.

The list itself is represented by a separate cell, the header, containing a reference 
first_element to the first linkable, and possibly some bookkeeping information such as the 
number of items, count. The figure shows the representation of a list of characters.

This representation makes insertion or deletion fast if you have a reference to the 
linkable immediately to the left of the operation’s target: a few reference manipulations 
will do, as shown here for the deletion of the third element.

On the other hand, linked representation is not very good for finding an element 
known by its value or its position: these operations require sequential list traversal. Array 
representations, in contrast, are good for accessing by position, but poor for insertions and 
deletions. Many other representations exist, some of which manage to combine some of 
the best of both worlds. The basic linked list remains one of the most commonly used 
implementations, and is indeed an effective technique for applications that require many 
local insertions and deletions but few random accesses.

A technical point: the figure does not detail attributes of LINKED_LIST other than 
first_element, showing simply a shaded area. Although we could do with just first_element, 
the classes below will include an attribute count to record the number of elements of the 
list. This query could also be a function, but it would then be inefficient, requiring a traversal 
of the list to count its items each time a client asks us how many we have. Of course if you 
use an attribute you must make sure that every insertion or deletion updates it. The Uniform 
Access principle applies here: you can change the implementation without disturbing 
clients, which will in all cases use the same notation, l  count, to obtain the item count.

first_element

Instance of
LINKED_LIST [G]

Instances of LINKABLE [G]

B C D EA

B C D EA

first_element
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Passive classes 

We clearly need two classes: LINKED_LIST for lists (more precisely, list headers), 
LINKABLE for list elements (linkables). Both are generic. 

The notion of LINKABLE is essential for the implementation, but not relevant to 
most clients. We should strive for an interface that provides client modules with list 
primitives but does not bother them with such implementation details as the presence of 
linkable elements. The attributes, corresponding to the earlier figure, will appear as:

note
description: "Linkable cells, for use in connection with linked lists"
note: "Partial version, attributes only"

class
LINKABLE1 [G]

feature {LINKED_LIST}
item: G -- The cell value
right: LINKABLE [G]

-- The right neighbor
end
For the type of right we might consider like Current, but it is preferable at this stage 

to keep more redefinition freedom as we do not know yet what may need to be changed 
by the possible descendants of LINKABLE.

To have a true class we need to add routines. What should clients be allowed to do 
on a linkable? They will need the ability to change the item and right fields. Also, we may 
expect that most clients creating a linkable will specify its initial value, requiring a 
creation procedure. This yields a proper version of the class: 

note
description: "Linkable cells, for use in connection with linked lists”

class LINKABLE [G] creation
make

feature {LINKED_LIST}
item: G

-- The cell value
right: LINKABLE [G]

-- The right neighbor
make (initial: G)

-- Initialize with item value initial.
do put (initial) end

put (new: G)
-- Replace value with new.

do item := new end
put_right (other: LINKABLE [G])

-- Put other to the right of current cell.
do right := other end

end
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For brevity the class omits the obvious procedure postconditions (such as ensure 
item = initial for make). There are no preconditions.

So much for LINKABLE. Now consider the linked lists themselves, to be accessed 
internally through their headers. Among others we need exported features to: obtain the 
number of elements (count); find out whether the list is empty (empty); obtain the value 
of the i-th element, for any legal index i (item); insert a new element at a certain position 
(put); change the value of the i-th element (replace); search for an element having a certain 
value (occurrence). We will also need a query returning a reference to the first element 
(void if the list is empty); it does not need to be exported.

Here is a sketch of a first version. Some of the routine bodies have been omitted.
note

description: "One-way linked lists"
note: "First version, passive"

class
LINKED_LIST1 [G]

feature -- Access
count: INTEGER
empty: BOOLEAN

-- Is list empty?
do

Result := (count = 0)
ensure

empty_if_no_element: Result = (count = 0)
end

item (i: INTEGER): G
-- Value of i-th list element

require
1 <= i; i <= count

local
elem: LINKABLE [G]; j: INTEGER

do
from

j := 1; elem := first_element
invariant j <= i; elem /= Void variant i — j until

j = i
loop

j := j + 1; elem := elem  right
end
Result := elem  item

end
occurrence (v: G): INTEGER

-- Position of first element of value v in list (0 if none)
do … end
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feature -- Element change
put (v: G; i: INTEGER)

-- Insert a new element of value v
-- so that it becomes the i-th element

require
1 <= i; i <= count + 1

local
previous, new: LINKABLE [G]; j: INTEGER

do
-- Create new cell

create new  make (v)
if i = 1 then

-- Insert at head of list
new  put (first_element); first_element := new

else
from

j := 1; previous := first_element
invariant

j >= 1; j <= i — 1; previous /= Void
-- previous is the j-th list element

variant
i — j — 1

until j = i — 1 loop
j := j + 1; previous := previous  right

end
-- Insert after previous

previous  put_right (new)
new  put_right (previous  right)

end
count := count + 1

ensure
one_more: count = old count + 1
not_empty: not empty
inserted: item (i) = v
-- For 1 <= j < i, the element of index j has not changed its value
-- For i < j <= count,

-- the element of index j has the value
-- that the element of index j — 1 had before the call

end

previous

new
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replace (i: INTEGER; v: G)
-- Replace by v the value of i-th list element.

require
1 <= i; i <= count

do
…

ensure
replaced: item (i) = v

end
feature -- Removal

prune (i: INTEGER)
-- Remove i-th list element

require
1 <= i; i <= count

do
…

ensure
one_less: count = old count — 1

end
… Other features …

feature {LINKED_LIST} -- Implementation
first_element: LINKABLE [G]

invariant
empty_definition: empty = (count = 0)
empty_iff_no_ first_element: empty = ( first_element = Void)

end

It is a good idea to try to complete occurrence, replace and prune for yourself in this 
first version. (Make sure to maintain the class invariant.) 

Encapsulation and assertions 

Before we consider better versions, a few comments are in order on this first attempt. 

Class LINKED_LIST1 shows that even on fairly simple structures reference 
manipulations are tricky, especially when combined with loops. The use of assertions 
helps get them right (see procedure put and the invariant); but the sheer difficulty of this 
type of operations is a strong argument for encapsulating them once and for all in reusable 
modules, as promoted by the object-oriented approach. 

Also note the application of the Uniform Access principle: although count is an 
attribute and empty a function, clients do not need to know these details. They are 
protected against any later reversal of these implementation decisions. 
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The assertions for put are complete, but, because of the limitations of the assertion 
language, not completely formal. Similarly extensive preconditions should be added to the 
other routines.

A critique of the class interface 

How usable is LINKED_LIST1? Let us evaluate its design. 

A worrying aspect is the presence of significant redundancies: item and put contain 
almost identical loops, and similar ones will need to be included in the routines whose 
code has been left to the reader (occurrence, replace, remove). Yet it does not seem 
possible to factor out the common part. Not a promising start. 

This is an implementation problem, internal to the class: lack of reusability of the 
internal code. But it points to a more serious flaw — a poorly designed class interface. 

Consider routine occurrence. It returns the index at which a given element has been 
found in the list, or zero if the element is not present. One drawback is that this only gives 
the first occurrence; what if the client wants to obtain the successive occurrences of a 
value? But there is a more serious difficulty. A client that has performed a successful 
search may, among other typical needs, want to change the value of the element found, to 
delete that element, or to insert a new one next to it. But any one of these operations 
requires traversing the list again! For example, put (v, i) goes through the first i elements, 
even if i is the result of occurrence — obtained by a similar traversal.

In the design of a general-purpose library component that will get used over and over, 
one cannot treat such inefficiencies lightly. Any performance overhead due to the 
increased generality of a reusable solution must remain negligible; otherwise developers 
will not accept paying the price, dooming any reuse policy. Here the price is not 
acceptable. 

Simple-minded solutions 

How can we remove the inefficiency? Two possible solutions come to mind: 

• We could make occurrence return, instead of an integer, the LINKABLE reference to 
the cell where the requested value appears, or void for an unsuccessful search. Then 
the client has a direct handle on the actual linkable cell and may perform the needed 
operations without retraversal; it can for example use LINKABLE’s put procedure to 
change the value, and its put_right procedure to insert a new element. (Deletion is 
more delicate since the client would need the previous element too.)

• We could try to provide enough primitives to deal with various combinations of 
operations: search and replace, search and insert, search and delete and so on. 

The first solution, however, defeats the whole idea of encapsulating data structures 
in classes: clients would directly manipulate the representations, with all the dangers 
involved. The notion of linkable is internal; we want client programmers to think in terms 
of lists and list values, not of list cells and pointers. Otherwise we lose data abstraction.
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Evolution of a 
library class
The second solution was attempted in an early version of ISE’s libraries, which made 
an effort to provide routines covering common combinations of operations. To insert an 
element just before the occurrence of a known value, a client would use, rather than a call 
to search followed by a call to put, a single call to 

insert_before_by_value (v: G; v1: G)
-- Insert a new element of value v in front of first occurrence
-- of v1 in list, or at end of list if no such occurrence

do
…

end
This solution keeps the internal representation hidden from clients, while avoiding 

the inefficiencies of the initial version. 
But we soon realized we were in for a long journey. Consider all the potentially 

useful variants: search_and_replace, insert_before_by_value, insert_after_by_value, 
insert_after_by_ position, insert_after_by_ position, delete_before_by_value, insert_at_
end_if_absent, and more.

This raises troubling questions about the viability of the approach, forcing a 
reflection on library design. Writing general-purpose reusable software is a difficult task, 
and there is no guarantee that you will get everything right the first time — with a design 
that would follow the horizontal line in the figure below. You should be prepared to extend 
classes with new features as the library’s usage reaches new users and new application 
domains. As represented by the colored line of the picture, however, the process must 
converge: after an initial tune-up period, the design should reach a stable state.

If not — that is to say, if almost every new use brings in the need for extension or 
modification, as represented by the dotted line in the figure — the approach to reusability 
is obviously flawed. This appeared to be the case with the list class we had at that point: 
it looked as if every time we put the list class to a new use the need would arise for yet 
another routine, representing a new combination of the basic operations.

To make matters worse, all such routines are rather complex, with loops similar to 
the one for put; they have much in common but all differ from each other by small details. 
The prospect of a robust, reusable linked list class seems to be receding. 

Number of (re)uses

Number

Desirable
Perfect

of features
Failure
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List with 
cursor
Introducing a state 

Fortunately, there is a way out. To find it requires taking a different view of the underlying 
abstract data type. 

So far a list has been treated as a passive repository of information. To provide its 
clients with a better service, the list should become more active by “remembering” where 
the last operation was performed. 

As noted earlier in this chapter, we should not hesitate to look at objects as machines 
with an internal state, and introduce both commands that change the state and queries on 
the state. In the first solution a list object already had a state, defined by its contents and 
modifiable by commands such as put and remove; but by adding more components to the 
state we will obtain a better interface, making the class both simpler and more efficient.

Besides the list contents, the state will include the notion of currently active position, 
or cursor; the interface will allow clients to move the cursor explicitly.

We permit the cursor to be on a list element (if any), or one position to the left of the 
first, in which case the boolean query before will return true, or one position to the right 
of the last, making after true.

An example of a command that may move the cursor is the procedure search, 
replacing the function occurrence. A call to l  search (v) will move the cursor to the first 
element of value v to the right of the current cursor position, or move it after if there is 
none. Note that in passing this solves the problem of finding multiple occurrences of v: 
just call search as many times as needed. (For symmetry we could also have search_back.)

The basic commands to manipulate the cursor are:

• start and finish to move the cursor to the first and last position if any.

• forth and back to move the cursor to the next and previous position. 

• go (i) to move it to a stated position i.

Besides before and after, queries on the cursor position include index, its integer 
index (starting at 1 for the first element) as well as the booleans is_  first and is_last.

first_element

Instance of
LINKED_LIST [G]

Instances of LINKABLE [G]

B C D EA
Cursor

before after
forthback
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See “Implementation 
invariants”, page 376.
The procedures to build and modify a list — insertion, deletion, replacement — 
become simpler because they do not have to worry about positions: they will simply act 
on elements at the current cursor position. All the loops disappear! For example, remove 
will not be called as l  remove (i) any more, but simply as l  remove, to delete the element 
at the current cursor position. We need to establish precise and consistent conventions 
about what happens to the cursor after each operation: 

• remove, with no argument, deletes the element at cursor position and puts the cursor 
under its right neighbor (so that the value of index does not change in the end). 

• put_right (v: G) inserts an element of value v to the right of the cursor and does not 
move the cursor (index is unchanged). 

• put_left (v: G) inserts an element of value v to the left of the cursor and does not move 
the cursor (increasing the value of index by 1). 

• replace (v: G) changes the value of the element at cursor position. The value of this 
element is given by the query function item, which now has no argument (and so 
could be implemented as an attribute). 

Maintaining consistency: the implementation invariant 

In building the class for such a fundamental data structure we must be careful to get 
everything right. Here assertions are indispensable. Without them we would be almost 
sure to miss some details. For example:

• Is a call to start permitted if the list is empty and, if so, what is its effect?

• What happens to the cursor after a remove if the cursor was on the last element? In 
other cases the cursor should go to the element immediately to the right of the 
deleted one, but here there is none. This is one of the reasons for the convention that 
was stated informally — allowing the cursor to move one position off to the right or 
to the left — but we need a more precise statement of this property, addressing all 
cases unambiguously.

Answers to questions of the first kind will be described by preconditions and 
postconditions.

For such properties as the permitted cursor positions, we should use the invariant, 
more precisely the clauses constituting the implementation invariant. Remember that an 
implementation invariant expresses the consistency of a representation, given by a class, 
vis-à-vis the underlying abstract data type. Here it will include the property 

0 <= index; index <= count + 1

What about an empty list? We need to respect the symmetry between left and right. 
One solution, adopted in an earlier version of the library, is to consider that an empty list 
is both before and after, and constitutes the only case in which both of these properties may 
be true together. This works but leads, in the routines’ algorithms, to frequent tests of the 
form if after and not empty… to distinguish between true cases of after and accidental 
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List with 
sentinels
ones resulting from empty. It turns out to be preferable to take the view that, conceptually, 
a list always has two extra sentinel elements, shown as  and  in the figure:

The sentinel elements help us reason about the structure, but we will not necessarily 
store them in the representation. The implementation discussed next stores the left sentinel 
but not the right one; it is also possible to use an implementation that stores neither but 
still conforms to the conceptual model represented by the above figure.

Since we often want to state, for example as the precondition for an operation on an 
element given by its index, that the index indeed marks a position where the list has an 
element, we need a query to express this condition:

on_item (i: INTEGER): BOOLEAN

-- Is there an element at position i?

do

Result := ((index >= 1) and (index <= count))

ensure

within_bounds: Result = ((index >= 1) and (index <= count))

no_elements_if_empty: Result implies (not empty)

end

To state that there is an element at the cursor position, we may define query 
readable, whose value is that of on_item (index). This is a good example of the 
Shopping List principle: because readable is conceptually redundant, a minimalist 
policy would get rid of it; by including it we provide our clients with a better abstraction, 
freeing them from having to remember what exactly constitutes a valid item index at the 
implementation level.

The invariant will state that not (after and before). In the boundary case of an empty 
list, the picture becomes:

B C D EA

afterbefore
not after; not before

1 <= index; index <= count

0 1 count count+1

Valid cursor positions
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Empty list with 
sentinels

For more clauses 
see page 791.

Exercise E23.6, 
page 807.
So an empty list will have two possible states: empty and before and empty and after, 
corresponding to the two cursor positions in the figure. This seems strange at first but has 
no unpleasant consequence, and is in practice preferable to the earlier convention that 
empty = (before and after), now replaced by empty implies (before or after).

Note two general lessons here: the usefulness, as in many mathematics or physics 
problems, of checking boundary cases to verify that a general solution is sound; and the 
importance of relying on assertions to express the precise properties of a design. Here are 
some of the principal clauses of the invariant:

0 <= index; index <= count
before = (index = 0); after = (index = count + 1)
is_ first = ((not empty) and (index = 1)); is_last = ((not empty) and (index = count+1))
empty = (count = 0)

-- The next three clauses are theorems (deducible from the previous ones):
empty implies (before or after)
not (before and after)
empty implies ((not is_ first) and (not is_last))
This example illustrates the general observation that writing the invariant is the best 

way to get a real understanding of what a class is about. The clauses seen so far apply 
equally to all implementations of sequential lists; they will shortly be complemented by a 
few others which are specific to the choice of a linked representation.

The last three clauses, as noted, are deducible from the others (prove them!). 
Invariants are not required to be minimal; it is often useful to list additional clauses such 
as these if they state important, non-trivial properties of the class. As we saw in the study 
of abstract data types, an ADT, and hence its implementation as a class, is a theory — here 
the theory of linked lists. The basic invariant clauses express the axioms of the theory; but 
any useful theory has interesting theorems too.

Of course if you intend to monitor invariants at run time — meaning that you are not quite 
sure yet that the theory is sound! — you should also consider the effect of added clauses 
on execution time. But this only matters for development and debugging. In a usual 
production context there is no reason for monitoring the invariants.

The client’s view 

This design provides a simple and elegant interface to the implementation of linked lists. 
Operations such as “search and then insert” use two successive calls, although with no 
significant loss of efficiency: 

afterbefore

0 count+1 = 1

Valid cursor positions
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Cursor list 
representation 
(first variant)
l: LINKED_LIST [INTEGER]; m, n: INTEGER
…
l  search (m)
if not after then l  put_right (n) end

The call search (m) moves the cursor to the next occurrence of m after the current 
cursor position, or after if there is none. (The extract assumes that the cursor is initially 
known to be on the first element; if not, the client should execute l  start first.)

To delete the third occurrence of a certain value, a client will execute: 

l  start; l  search (m); l  search (m); l  search (m)
if not after then l  remove end

To insert a value at position i: 

l  go (i); l  put_left (i)

and so on. We have obtained a clear and easy to use interface by making the internal state 
explicit, and providing clients with the appropriate commands and queries on this state. 

The internal view

The new solution simplifies the implementation just as it improves the interface. Most 
importantly, by giving each routine a simpler specification, concentrated on just one task, 
it removes unjustified redundancies, in particular all the unneeded loops. Insertion and 
deletion procedures no longer have to traverse the list; they just carry out a local 
modification. The responsibility of positioning the cursor now lies with other routines 
(back, forth, go, search), only some of which (go and search) need loops.

Along with first_element it will be useful to keep two references in the list header, 
enabling us to perform insertions and deletions efficiently: active, attached to the cursor 
item at cursor position, and previous attached to the previous one.

first_element

Instance of LINKED_LIST [G]

Instances of LINKABLE [G]

B C D EA

Cursor
before after

previous

index
active

3

item

count 5
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You should complete 
before and is_last 
based on this model.

See “Routine header 
comments: an exercise 
in corporate downsiz-
ing”, page 886.
Clients may know the state of the list by accessing public integer attributes count and 
index and boolean queries before, after, is_  first, is_last, item. Here are two typical 
functions:

after: BOOLEAN
-- Is there no valid position to right of cursor?

do Result := (index = count + 1) end
is_ first: BOOLEAN

-- Is cursor on first item?
do Result := (index = 1) end

Note the phrasing of the header comments. For after, “Is cursor to the right of last 
element?” would not be quite correct, since after may be true even if there is no element 
at all. Writing header comments so that they are clear, terse and accurate is an art form.

The query item returns the element at cursor position, if any:

item: G
-- Element at cursor position

require
readable: readable

do
Result := active  item

end

Remember that readable indicates whether the cursor is on an element (index
between 1 and count). Also note that item in active  item refers to the attribute in 
LINKABLE, not to the function of LINKED_LIST itself.

Here now are the basic cursor manipulation commands; they are fairly delicate to get 
right but, as a consolation, you may note that only a handful of routines, such as start, forth, 
put_right, put_left and remove, must perform non-trivial operations on references. Let us 
try start and forth. Procedure start must work for an empty list as well as a non-empty one; 
for an empty list the convention is that start brings the cursor to the second sentinel. 

start1
-- Move cursor to first position.
-- (Provisional version; see next.)

do
index := 1
previous := Void
active := first_element

ensure
moved_to_ first: index = 1
empty_convention: empty implies after

end

previous active

first_element
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Cursor list 
representation 
(revised variant)
forth1
-- Move cursor to next position.
-- (Provisional version; see next.)

require
not_after: not after

do
index := index + 1
if before then

active := first_element; previous := Void
else

check active /= Void end
previous := active; active := active  right

end
ensure

moved_by_one: index = old index + 1
end

Here we stop! This is becoming too complicated and too inefficient. The 
performance of procedure forth is crucial, since a typical use of a list by a client is 
from start until after loop …; forth end. Can we get rid of the test?

We can, by taking the left sentinel seriously and always creating it when we create 
a list; the creation procedure make of LINKED_LIST is left as an exercise. We replace 
first_element by a reference zeroth_element to the sentinel:

The properties zeroth_element /= Void and previous /= Void will be part of the 
invariant (you must of course make sure that the creation procedure ensures them). They 
are precious since they will save many repeated tests.

Procedure forth, given here after the new start, is simpler and faster (no test!):

previous

right

zeroth_element

B C D EA

before after

previous

index
active

3

item

count 5
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start
-- Move cursor to first position.

do
index := 1
previous := zeroth_element
active := previous  right

ensure
moved_to_ first: index = 1
empty_convention: empty implies after
previous_is_zeroth: previous = zeroth_element

end

forth
-- Move cursor to next position.
-- (Version revised for efficiency; no test!)

require
not_after: not after

do
index := index + 1
previous := active
active := active  right

ensure
moved_by_one: index = old index + 1

end

It is convenient to define go_before which positions the cursor on the left sentinel:

go_before
-- Move cursor before.

do
index := 0
previous := zeroth_element
active := zeroth_element

ensure
before: before
previous_is_zeroth: previous = zeroth_element
previous_is_active: active = previous

end

Procedure go is entirely defined in terms of go_before and forth:

previous active

zeroth_element

right

previous active

right

previous

active
zeroth_element,

right
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go (i: INTEGER)
-- Move cursor to i-th position.

require
not_offleft: i >= 0
not_offright: i <= count + 1

do
from

if i < index then go_before end
invariant index <= i variant i – index until index = i loop

forth
end

ensure
moved_there: index = i

end
Note the care exercised in avoiding useless traversal steps in go, the only one of 

procedures seen so far that needs a loop. For symmetry we should add finish, which brings 
the cursor to the last position and can be implemented as just go (count + 1).

Although not really indispensable, it is convenient (Shopping List principle!) to 
export go_before. Then for symmetry we should also include and export go_after, which 
does go (count + 1), and export it.

Also for symmetry is back, using go’s loop:
back

-- Move cursor to previous position.
require

not_before: not before
do

check index – 1 >= 0 end
go (index – 1)

ensure
index = old index – 1

end
However pleasing, the symmetry between back and forth is not without danger, since 

it may lead client authors to use both procedures freely even though back, which has to 
restart from the beginning of the list and perform index – 1 iterations of forth, is much 
more expensive. If you perform anything more than a few occasional back, the one-way 
linked list is inappropriate; you can for example use two-way linked lists. The 
corresponding class may be built as an heir to LINKED_LIST (a valid use of inheritance, 
since a list linked both ways is also linked one way) and is left as an exercise. Make sure 
to do this exercise at some stage if you want to reach a full mastery of the concepts.

The earlier invariant clauses, as noted, were implementation-independent. Here are 
a few more clauses capturing some of what we have learned about our implementation:
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empty = (zeroth_element  right = Void)

zeroth_element /= Void; previous /= Void

(active = Void) = after; (active = previous) = before
(not before) implies (previous  right = active)

(previous = zeroth_element) = (before or is_ first)
is_last = ((active /= Void) and then (active  right = Void))

Most of the queries are straightforward. before should return the boolean value of 
(index = 0) and after that of (index = count + 1). The element at cursor position is given by

item: G
-- Value of element at cursor position

require
readable: readable

do
Result := active  item

end
Procedure search is similar to go and left to the reader. You should also write the 

procedure i_th (i: INTEGER) which returns the value of the element at position i; although 
concrete side effects are acceptable, be sure not to introduce any abstract side effect.

The last category of features includes procedures for insertion and deletion. The 
basic deletion operation is: 

remove
-- Delete element at cursor position and move cursor to its right neighbor.
-- (If no right neighbor, list becomes after).

require
readable: readable

do
active := active  right
previous  put_right (active)
count := count — 1

ensure
same_index: index = old index
one_less_element: count = old count – 1
empty_implies_after: empty implies after

end
The routine looks trivial; but this is only thanks to the technique of keeping the left 
sentinel around as a physical object, avoiding constant tests of the form previous /= Void 
and first_element /= Void. It is worth considering the more complicated and less efficient 
routine body that we would have obtained without this simplification:

previous active
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active := active  right
if previous /= Void then previous  put_right (active) end
count := count — 1
if count = 0 then

first_element := Void 
elseif index = 1 then

first_element := active
-- else first_element does not change
end

In either case, the more you can express in assertions, the better you will understand 
what is going on and avoid mistakes.

You should exercise your understanding of these techniques by writing the insertion 
procedures put_left and put_right.

Abstract data types and abstract machines

The notion of active data structure is widely applicable and in line with earlier principles 
of this chapter, Command-Query Separation in particular. Giving data structures an 
explicit state often yields simple, easy to document interfaces. 

One might fear that the resulting structures would become less abstract, but this is 
not the case. Abstract does not mean passive. What the theory of abstract data types tells 
us is that our objects should be known through abstract descriptions of the applicable 
operations and their properties; but this does not imply treating them as mere repositories 
of data. By introducing a state and operations on that state, we actually make the abstract 
data type specification richer as it has more functions and more properties. The state itself 
is a pure abstraction, always accessed indirectly through commands and queries.

The view of objects as state machines reflects abstract data types which are more 
imperative, not less abstract.

Separating the state

It is possible to take the preceding techniques further. So far the cursor was just a concept, 
implemented indirectly through attributes previous, active and index rather than directly 
through one of the classes of the software. We can define a class CURSOR with 
descendants for various kinds of cursor structure. Then we can separate, for a structure 
such as a list, the attributes that describe the list contents (zeroth_element, count) from the 
traversal-related attributes, which will be stored in cursor objects.

Although we do not need to pursue this idea here, it is useful to note its possible 
application to a concurrent context. If a number of clients need to access a shared structure, 
they can each have their own cursors.

Merging the list and the sentinels

(This section describes an advanced optimization and may be skipped on first reading.)
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The example of linked lists with the sentinels can benefit from one more 
optimization, which has indeed been applied to the latest versions of the ISE libraries. We 
will only take a peek at it because it is of a specialized nature and not relevant to normal 
application development. Such delicate optimizations should only be considered for 
widely used reusable components. (In other words: do not try this at home.)

Can we get the benefit of sentinels without wasting the corresponding space? As 
noted upon the introduction of the sentinel concept, we could treat the sentinels as 
fictitious; but then we would lose the crucial optimization which has enabled us to write 
the body of forth as just

index := index + 1
previous := active
active := active  right

without the expensive tests of the earlier versions. We avoid these tests by making sure 
that, for a list in non-after state, active is never void (the corresponding invariant clause is 
(active = Void) = after); this is because we always have a real cell, the sentinel, available 
to serve as initialization for active, even for an empty list.

For a routine other than forth, the optimization would not be such a big deal. But 
forth, as noted, is the bread and butter of list processing by clients, resulting from the 
sequential nature of the lists; typical usage is of the form

from your_list  start until your_list  after loop …; your_list  forth end

and it is not uncommon, if you use a profiler tool to measure what happens during 
execution, to discover that the computation spends a good part of its time in forth. So it 
pays to optimize it, and the test-free form above indeed provides a dramatic improvement 
over the test-full one.

To get this time improvement, however, we pay a space penalty: each list now has 
an extra element, with no actual information. This would seem to cause a problem only if 
we have many short lists. But the problem can become more serious:

• In many cases, as hinted earlier, you will need two-way linked lists, fully symmetric, 
with BI_LINKABLE elements chained both ways. Class TWO_WAY_LIST (which, by 
the way, may be written as inheriting twice from LINKED_LIST, relying on repeated 
inheritance techniques) will need both a left and a right sentinel elements.

• Linked trees present an even more serious problem. An important practical class is 
TWO_WAY_TREE, providing a convenient doubly-linked representation of trees. 
Building on ideas developed in the presentation of multiple inheritance, this class 
merges the notion of node and tree; it inherits from both TWO_WAY_LIST and BI_
LINKABLE. But then every node is a list, a two-way one at that, and may have to 
carry both sentinels.

Although there are other ways to solve the second case — such as renouncing the 
inheritance structure — let us see if we can get the best of all worlds.
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To find a solution let us ask an impertinent question. In the structure

do we really need two bookkeeping-only objects? The truly useful information is in the 
part not shown on the figure, the actual list elements; to manage them we have added both 
a list header and a sentinel — two sentinels in the case of a two-way list. For long lists we 
are able to ignore this bloated bookkeeping structure, like a large company that has 
accumulated many layers of middle management in times of economic prosperity; but 
when the going gets tough it is time to take a closer look and see if we cannot merge a few 
of these management functions.

Can we indeed make the list header itself play the role of sentinel? It turns out we 
can. All that a LINKABLE needs is an item field and a right field. For a sentinel, in fact, 
only the right field. That field denotes the first of the list elements; so if we put it in the 
list header it will play the same role as what used to be called first_element in the first 
variant of the sentinel implementation. The problem, of course, was that first_element
could be void, for an empty list, polluting all our algorithms with tests of the form if before 
then… We certainly do not want to go back to that situation. But we can keep the 
representation of the figure at the top of this page as the conceptual model, while getting 
rid of the sentinel object in the implementation. The concrete picture becomes

The key to understanding this solution and getting things right is to remember that 
this solution is exactly the same conceptually as the last one, but replaces zeroth_element 
by a reference to the list header itself (Current in class LINKED_LIST), using first_element
to represent what used to be zeroth_element  right (possibly void, but always defined since 
zeroth_element was never void). We still need a convention for the empty list, with no 
“Useful list elements”; in that case the last figure becomes

zeroth_element
(Instance of LINKED_LIST)

… Useful list elements …

List header

(Instance of
LINKABLE)

Sentinel
right

(Instance of LINKED_LIST and LINKABLE)

… Useful list elements …

List header and sentinel
first_element

(also plays the role of right)

(No useful list elements)
first_element
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with a simple convention: attaching first_element back to the list header itself. This 
way first_element will never be void — our crucial goal for keeping everything simple; 
we must just remember to replace, everywhere in class LINKED_LIST, any test of the 
form zeroth_element  right by first_element = Current.

We keep all the desirable invariant clauses of the previous sentinel versions:

previous /= Void
(active = Void) = after; (active = previous) = before
(not before) implies (previous  right = active)
is_last = ((active /= Void) and then (active  right = Void))

The clauses involving zeroth_element, which used to be

zeroth_element /= Void
empty = (zeroth_element  right = Void)
(previous = zeroth_element) = (before or is_ first)

now yield:

first_element /= Void
empty = ( first_element = Current)
(previous = Current) = (before or is_ first)

All this is obtained simply (fasten your seat belts) by making LINKED_LIST inherit 
from LINKABLE:

class LINKED_LIST [G] inherit
LINKABLE [G]

rename right as first_element, put_right as set_first_element end
… Rest of class as before, with the removal of zeroth_element as shown above … 

Is it a kludge to let LINKED_LIST inherit from LINKABLE? Not at all! The whole 
idea was to merge the notions of list header and sentinel, that is to say, to consider a list 
header (an instance of LINKED_LIST) as a linkable too; so we have a perfect example of 
the “is-a” relation of inheritance. We have decided to treat every LINKED_LIST as a 
LINKABLE, so inheritance is the proper way to go. Here the client relation is not even in 
the race: not only would it not yield what we want, the removal of extra fat from our 
structures; it would add even more fields to our objects!

Make sure your seat belts are still securely fastened as we start considering what 
happens lower in the inheritance structure. BI_LINKABLE inherits twice from 
LINKABLE. Class TWO_WAY_LIST inherits from LINKED_LIST (once, or possibly twice 
depending on the implementation technique that we choose) and, in line with the 
technique just seen, from BI_LINKABLE. With all the repeated inheritance involved one 
might think that things would get out of hand and that our structures would start getting 
all kinds of unnecessary fields; but no, the rules on sharing and replication in repeated 
inheritance enable us to get exactly what we want.
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The last step is TWO_WAY_TREE which, for good measure, inherits from both 
TWO_WAY_LIST and BI_LINKABLE. Enough, one might think, for a few heart attacks, 
but no; everything falls nicely into place. We get all the features we want, none of the 
features we do not want; all the sentinels are in place — conceptually — so that forth, back
and all the consequent loops can be as fast as they need to be; and the sentinels do not take 
up any space at all.

This is indeed the scheme now applied to the affected classes in the Base libraries. 
Before we recover from the flight, a few observations are in order:

• Under no circumstance should this kind of work, involving tricky data structure 
manipulation, be undertaken without the full benefit of assertions. It is simply 
impossible to get them right without stating the invariant precisely, and checking that 
everything remains compatible with it.

• The machinery of repeated inheritance is essential. Without the techniques 
introduced by the notation of this book to enable a repeated descendant to obtain 
sharing or replication on a feature-by-feature basis, based on the simple criterion of 
feature names, it is impossible to handle effectively any situation involving serious 
use of repeated inheritance.

• To repeat the most important comment: such delicate optimizations are only worth 
considering in heavily used libraries of general-purpose reusable components. In 
normal application development, they are just too hairy to be worthwhile. The 
discussion has been included here to give the reader a glimpse of what it takes to craft 
professional components all the way to the end; but most developments will, happily, 
never have to undertake such efforts.

23.5  SELECTIVE EXPORTS 
The relationship between classes LINKABLE and LINKED_LIST illustrates the 
importance, for a satisfactory application of the rule of Information Hiding, of supporting 
more than just two export modes, secret and generally available, for a feature.

Class LINKABLE should not make its features — item, right, make, put, put_right — 
generally available, since most clients have no business peeking into linkables, and should 
only use linked lists. But it cannot make them secret, for that would hide them from 
LINKED_LIST, their intended beneficiary. Such calls as active  right, essential to the 
operation of forth and other LINKED_LIST routines, would not be possible.

Selective exports provide the solution by enabling LINKABLE to select a set of 
classes to which, and to which only, it will export its features:

class
LINKABLE [G]

feature {LINKED_LIST}
item: G
right: LINKABLE [G]
etc.

end
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Remember that this makes the features available to all descendants of LINKED_LIST, 
as is indispensable if they need to redefine some inherited routines or add their own.

Sometimes, as we saw in an earlier chapter, a class must export a feature selectively 
to itself. For example the heir BI_LINKABLE of LINKABLE, describing two-way linked 
lists with a field left, includes an invariant clause of the form

(left /= Void) implies (left  right = Current)

requiring right to be declared in a clause feature {… Other classes …, BI_LINKABLE}; 
otherwise the call left  right would be invalid.

Selective export clauses are essential when a group of related classes, as LINKABLE
and LINKED_LIST here, need some of each other’s features for their implementations, 
although these features remain private to the group and should not be made available to 
other classes. 

A reminder: in a discussion of an earlier chapter we saw that selective exports are a key 
requirement for the decentralized architectures of object-oriented software construction.

23.6  DEALING WITH ABNORMAL CASES

Our next interface design topic is a problem that affects every software development: how 
to handle cases that deviate from the normal, desired schemes.

Whether due to errors made by the system’s users, to abnormal conditions in the 
operating environment, to irregular input data, to hardware malfunction, to operating 
system bugs or to incorrect behavior of other modules, special cases are the scourge of 
developers. The necessity to account for all possible situationsis a powerful impediment 
in the constant battle against software complexity. 

This problem strongly affects the design of module interfaces What software 
developer has not wished that it would just go away? Then we could write clear, elegant 
algorithms for normal cases, and rely on external mechanisms to take care of all the others. 
Much of the hope placed in exception mechanisms results from this dream. In Ada, for 
example, you may deal with an abnormal case by writing something like 

if some_abnormal_situation_detected then
raise some_exception;

end;
“Go on with normal processing”

where execution of the raise instruction stops the execution of the current routine or block 
and transfers control to an “exception handler” written in one of the direct or indirect 
callers. But this is a control structure, not a method for dealing with abnormal cases. In the 
end you still have to decide what to do in these cases: is it possible to correct the situation? 
If so, how, and what should the system do next? If not, how quickly and gracefully can 
you terminate the execution? 
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We saw in an earlier chapter that a disciplined exception mechanism fits well with 
the rest of the object-oriented approach and in particular with the notion of Design by 
Contract. But not all special cases justify resorting to exceptions. The design techniques 
that we will now examine are perhaps less impressive at first — “low-tech” might be a 
good characterization — but they are remarkably powerful and address many of the 
possible practical situations. After studying them we will review the cases in which 
exceptions remain indispensable. 

The a priori scheme 

Perhaps the most important criterion in dealing with abnormal cases at the module 
interface level is specification. If you know exactly what inputs each software element is 
prepared to accept, and what guarantees it ensures in return, half the battle is won.

This idea was developed in depth as part of the study of Design by Contract. We saw 
in particular that, contrary to conventional wisdom, one does not obtain reliability by 
including many possible redundant checks, but by assigning every consistency constraint 
to the responsibility of just one class, either the client or the supplier.

Including the constraint in a routine precondition means assigning it to the clients. 
The precondition expresses what is required to make the routine’s operation possible:

operation (x: …)
require

precondition (x)
do

… Code that will only work if precondition is met …
end

The precondition should, whenever possible, be complete, in the sense of 
guaranteeing that any call satisfying will succeed. If so, there are two ways to write the 
corresponding client extracts. One is to test explicitly: 

if precondition (y) then
operation (y)

else
… Appropriate alternate action …

end
(For brevity this example uses an unqualified call, but of course most calls will be of the 
qualified form z  operation (y).) The other possibility avoids the if…then…else by 
ensuring that the context leading to the call ensures the precondition:

… Some instructions that, among other possible effects, ensure precondition (y) …
check precondition (y) end

operation (y)

As shown here and in many other examples throughout this book, it is desirable in 
this case to include a check instruction, with two benefits: making it immediately clear, 
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for the reader of the software text, that you did not forget the precondition but instead 
checked that it would hold; and, in case your deduction was wrong, facilitating debugging 
when the software is executed with assertion monitoring on. (If you do not remember the 
details of the check instruction, make sure to re-read the corresponding section now.)

Such use of a precondition, which the client has to ensure beforehand — either by 
testing for it as in if precondition ( y) …, or by relying on other instructions —, may be 
called the a priori scheme: the client is asked to take advance measures to avoid any error.

With the a priori scheme, any remaining run-time failure signals a design error — a 
client not abiding by the rules. Then the only long-term solution is to correct the error, 
although we have seen that for mission-critical systems it is possible to devise software-fault-
tolerant solutions which, on assertion violation, will attempt partial recovery through retry. 

Obstacles to the a priori scheme 

Because of its simplicity and clarity, the a priori scheme is ideal in principle. Three 
reasons, however, prevent it from being universally applicable: 

A1  • Efficiency considerations make it impractical in some cases to test for the 
precondition before a call. 

A2  • Limitations of practical assertion languages imply that some of the assertions of 
interest cannot be expressed formally.

A3  • Finally, some of the conditions required for the successful execution of a routine 
depend on external events and are not assertions at all. 

An example of case A1, from numerical computation, is a linear equation solver. A 
function for solving an equation of the form a x = b, where a is a matrix, and x (the unknown) 
and b are vectors, might take the following form in an appropriately designed MATRIX class:

inverse (b: VECTOR): VECTOR

so that a particular equation will be solved by x := a  inverse (b). A unique solution only 
exists if the matrix is not “singular”. (Singularity mans that one of the rows is a linear 
combination of others or, equivalently, that the determinant is zero.) We could make non-
singularity the precondition of inverse, requiring client calls to be of the form

if a  singular then
… Appropriate error action …

else
x := a  inverse (b)

end

This technique works but is very inefficient: determining whether a matrix is 
singular is essentially the same operation as solving the associated linear equation. 
Standard algorithms (Gaussian elimination) will at each step compute a divisor, called the 
pivot; if the pivot found at some step is zero or below a certain threshold, this shows that 
the matrix was singular. This result is obtained as a byproduct of the equation-solving 
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algorithm; to obtain it separately would take almost as much computation time as to 
execute the entire algorithm. So doing the job in two steps — first finding out whether the 
matrix is singular, and then, if it is not, computing the solution — is a waste of effort.

Examples of A2 include cases in which the precondition is a global property of a data 
structure and would need to be expressed with quantifiers, for example the requirement 
that a graph contain no cycles or that a list be sorted. Our notation does not support this. 
As noted, we can usually rely on such assertions using functions; but then we might be 
back in case A1, as the precondition can be too costly to check before every call. 

Finally, limitation A3 arises when it is impossible to test the applicability of the 
operation without attempting to execute it, because interaction with the outside world — 
a human user, a communication line, a file system — is involved. 

The a posteriori scheme 

When the a priori scheme does not work, a simple a posteriori scheme is sometimes 
possible. The idea is to try the operation first and then find out how it went; this will work 
if a failed attempt has no irrecoverable consequences.

The matrix equation problem provides a good example. With an a posteriori scheme, 
client code will now be of the form 

a  invert (b)
if a  inverted then

x := a  inverse
else

… Appropriate error action …
end

Function inverse has been replaced by a procedure invert, for which a more accurate 
name might be attempt_to_invert. A call to this procedure sets the attribute inverted to true 
or false to indicate whether a solution was found; if it was, the procedure makes the 
solution itself available through attribute inverse. (An invariant clause in the matrix class 
may state that inverted = (inverse /= Void).)

With this method, any function that may produce an error condition is transformed 
into a procedure, the result being accessible, if it exists, through an attribute set by the 
procedure. To save space you may use a once function rather than an attribute if at most 
one answer is needed at any time.

This also works for input operations. For example a “read” function that may fail is 
better expressed as a procedure that attempts to read, and two attributes, one boolean 
indicating whether the operation succeeded and the other yielding the value read if any. 

This technique, as you will have noted, is in line with the Command-Query 
Separation principle. A function that may fail to compute its intended result is not side-
effect-free, and so is better decomposed into a procedure that attempts to compute the 
value and two queries (functions or attributes), one to ascertain success and the other to 
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yield the value in case of success. The technique is also consistent with the idea of objects 
as machines, whose state can be changed by commands and accessed by queries.

The example of input functions is typical of cases that can benefit from this scheme. 
Most of the read functions provided by programming languages or the associated libraries 
are of the form “next integer”, “next string” etc., requiring the client to state in advance 
the type of the element to be read. Inevitably, they will fail when the actual input does not 
match the expectation. A read procedure, on the other hand, can attempt to read the next 
input item without any preconception of what it will be, and then return information about 
its type through one of the queries available to clients. 

This example highlights one of the constant rules for dealing with failure: whenever 
available, a method for engineering out failures is preferable to methods for recovering 
from failures. 

The role of an exception mechanism 

The preceding discussion has shown that in most cases methods based on standard control 
structures, principally essentially conditional instructions, are adequate for dealing with 
abnormal cases. Although the a priori scheme is not always practical, it is often possible 
to check success after attempting an operation. 

There remain, however, cases in which both a priori and a posteriori techniques are 
inadequate. The above discussion leaves only three categories of such cases: 

• Some abnormal events such as numerical failure or memory exhaustion can lead to 
preemptive action by the hardware or operating system, such as raising an exception 
and, unless the software catches the exception, terminating execution abruptly. This 
is often intolerable, especially in systems with continuous availability requirements 
(think of telephone switches and many medical systems).

• Some abnormal situations, although not detectable through a precondition, must be 
diagnosed at the earliest possible time; the operation must not be allowed to run to 
completion (for a posteriori checking) because it could lead to disastrous 
consequences, such as destroying the integrity of a database or even endanger human 
lives, as in a robot control system. 

• Finally, the developer may wish to include some form of protection against the most 
catastrophic consequences of any remaining errors in the software; this is the use of 
exceptions for software fault tolerance. 

In such cases, exception-based techniques appear necessary. The orderly exception 
mechanism presented in an earlier chapter provides the appropriate tools. 
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The real Hugo quote 
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23.7  CLASS EVOLUTION: THE OBSOLETE CLAUSE
We try to make our classes perfect. All the techniques accumulated in this discussion tend 
towards that goal — unreachable, of course, but useful as an ever present ideal.

Unfortunately (with no intention of offending the reader) we are not ourselves 
perfect. What happens if, after a few months or a few years, we realize that some of the 
interface of a class could have been designed better? The dilemma is not pleasant:

• Favor the current users: this will mean continuing to live with an obsolete design 
whose unpleasant effects will be felt more and more sorely as time passes. This is 
known in the computer industry as upward compatibility. Compatibility, how many 
crimes have been committed in thy name! (as Victor Hugo almost wrote).

According to Unix folklore, one of the less pleasant conventions of the Make 
tool, which has bothered quite a few novice users, was detected not too long 
after the first release. Since it implied a language change and the 
inconvenience was not a show-stopper, the decision was made to let things 
stand so as not to disturb the user community. The Make user community, at 
that time, must have included a dozen or two people at Bell Laboratories.

• Favor the future users: you cause trouble to the current ones, whose only sin was to 
trust you too early.
Sometimes — but sometimes only — there is a way out. We introduce into our 

notation the concept of obsolete features and obsolete classes. Here is an example of 
obsolete routine:

enter (i: INTEGER; v: G)
obsolete "Use put (value, index) instead"

require
correct_index (i)

do
put (v, i)

ensure
entry (i) = v

end
This is a real example, although no longer current. Here is the context. Early in the 

evolution of the Base libraries, we realized that the names and conventions were not 
systematic enough; this is when the principles of style developed in chapter 26 of this book 
were codified. They entailed in particular using the name put rather than enter for the 
procedure that replaces an array element (and item rather than entry for the corresponding 
query) and, to make things worse, reversing the order of arguments, for compatibility with 
features of other classes in the library.

The above declaration smoothes out the evolution. Note how the old feature, enter, 
has a new implementation, relying on the new feature, put; you should normally use this 
scheme when making a feature obsolete, to avoid carrying along two competing 
implementations with the resulting reliability and extendibility risks.

What are the consequences of making a feature obsolete? Not much in practice. The 
tools of the environment must recognize this property, and output the corresponding 
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warnings when a client system uses the class. The compiler, in particular, will output a 
message, which includes the string that has been included after the keyword obsolete, 
such as Use put (value, index) instead in our example. That is all. The feature otherwise 
continues to be normally usable.

Similar syntax enables you to declare an entire class as obsolete.

What you are providing your client developers, then, is a migration path. By telling 
them that a feature will be removed, you encourage them to adapt their software; but you 
are not putting a knife to their throat. If the change is justified — as it should be — users 
of the class will not resent having to update their part; what is unacceptable is, when they 
receive a new version, to be forced to do all the changes immediately. Given a little time, 
they will readily comply.

In practice, the migration period should be bounded. At the next major release — a 
few months later, a year at most — you should remove the obsolete features and classes 
for good. Otherwise no one will take obsolescence warnings seriously. This is why the 
example was mentioned above as “no longer current”: enter and entry were removed 
several years ago. But in their short lives they helped keep more than one developer happy.

Feature and class obsolescence only solve a specific problem. The comment made 
when we discussed the Open-Closed principle and how inheritance enables you to adapt 
a parent’s design without disturbing the original is fully applicable here: when a design is 
flawed, the only reasonable approach is to correct it, while making your best efforts to help 
current users make the transition. Neither inheritance-cum-redefinition nor obsolescence 
should serve as cover-ups for bugs in existing software. But obsolescence is precious 
when the original design, while satisfactory in other respects, does not conform to your 
current views; it typically resulted from a narrower and less clear perspective than what 
you have gained now. Although there was nothing fundamentally wrong with the old 
design, you can do better: simpler interfaces, better consistency with the rest of the 
software, interoperability with other products, better naming conventions. In such cases, 
making a few features and classes obsolete is a remarkable way to protect the investment 
of your current users while moving ahead to an ever brighter future.

23.8  DOCUMENTING A CLASS AND A SYSTEM
Having mastered the most advanced techniques of class interface design, you build a set 
of great classes. To achieve the success they deserve, they will need good interface 
documentation. We have seen the basic documentation tool: the short form and its variant 
the flat-short form. Let us summarize their use and examine a complementary mechanism 
that works on entire systems rather than just classes.

Mentions of the short form in this discussion will encompass the flat-short form as 
well. The difference between the two, as you will remember, is that the flat-short form 
takes inherited features into account, whereas the plain short form only relies on the 
immediate features introduced in the class itself. In most practical cases, the flat-short 
form is what client authors will need.
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Chapter 26.
Showing the interface

The short form directly applies the rule of Information Hiding by removing all secret 
information from client view. Secret information includes:

• Any non-exported feature and anything having to do with it (for example, a clause 
of an assertion which refers to the feature). 

• Any routine implementation, as given by the do … clause. 

What remains is abstract information about the class, providing authors of client 
classes, current or prospective, with the implementation-independent description that they 
need to use it effectively.

Remember that the purpose is abstraction, not protection. We do not necessarily wish to 
prevent client authors from accessing secret class elements; we wish to relieve them from 
having to do so. By separating function from implementation, information hiding 
decreases the amount of information to be mastered; client authors should view it as help 
rather than hindrance.

The short form avoids the technique (supported, without assertions, by Ada, 
Modula-2 and Java) of writing separate and partially redundant module interfaces, as this 
can mean trouble for evolution; as always in software engineering, repetition breeds 
inconsistency. Instead it puts everything into the class and relies on computer tools to 
extract abstract information.

The underlying principle was introduced at the beginning of this book: try to make 
the software as self-documenting as possible. In this effort, judiciously chosen assertions 
will play a fundamental part. Examining the examples of this chapter and constructing 
their short forms (at least mentally) should provide clear enough evidence.

To help the short form deliver the best possible results, you should keep it in mind 
when writing your classes, and apply the following principle:

This simply translates the more general Self-Documentation principle into a 
practical rule to be applied day to day by developers. Particularly important will be:

• Well-designed preconditions, postconditions and invariants.

• Careful choice of names for both classes and features.

• Informative note clauses.

The chapter on style will give precise guidelines on the last two points.

Documentation principle
Try to write the software so that it includes all the elements needed for its 
documentation, recognizable by the tools that are available to extract 
documentation elements automatically at various levels of abstraction.
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System-level documentation

The short and flat-short tools, when applied to software developed according to the rules 
developed in this book (assertions, Design by Contract, information hiding, clear and 
systematic naming conventions, header comments etc.) apply the Documentation 
principle at the module level. There is also a need for higher-level documentation — 
documentation on an entire system, or one of its subsystems — applying the same 
principle. But here textual output, although necessary, is not sufficient. To grasp the 
organization of a possibly complex system, you will want graphical descriptions.

The Case tool of ISE’s environment, based on Business Object Notation concepts, 
provides such system views, as illustrated below for a session devoted to reverse-
engineering of the Base libraries. 

Although further details fall beyond the scope of this discussion, we may note that 
the tool supports the exploration of large systems through zooming, unzooming and other 
abstraction mechanisms such as the ability to focus on a cluster (subsystem) or one of its 
subclusters as well as the entire system; also, it combines graphical views, essential to 
provide a general glimpse of an architecture, with textual information about the 
components of a system, dictionaries of abstractions etc.

All these tools are applications of the Documentation principle, tending towards the 
production of software which, thanks to carefully designed notations and with the help of 
advanced environments, should get us ever closer to the ideal of self-documentation.
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23.9  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• A class should be known by its interface, which specifies the services offered 
independently of their implementation. 

• Class designers should strive for simple, coherent interfaces. 

• One of the key issues in designing modules is which features should be exported, and 
which should remain secret. 

• The design of reusable modules is not necessarily right the first time, but the 
interface should stabilize after some use. If not, there is a flaw in the way the 
interface was designed. The mechanism of obsolete features and classes makes it 
possible to smooth over the transition to a better design.

• It is often fruitful to treat some data structures as active machines, with an internal 
state remembered from one feature call to the next. 

• Proper use of assertions (preconditions, postconditions, invariants) is essential for 
documenting interfaces. 

• Abnormal situations are best dealt with through standard control structures, either 
through the a priori scheme, which checks applicability before calling an operation, 
or through the a posteriori scheme, which attempts the operation and then examines 
whether it has succeeded. A disciplined exception mechanism remains necessary in 
cases when execution must immediately cancel a potential dangerous operation.

23.10  BIBLIOGRAPHICAL NOTES 

The work of Parnas [Parnas 1972] [Parnas 1972a] introduced many seminal ideas on the 
design of interfaces. 

The operand-option distinction, and the resulting principle, come from [M 1982a].

The notion of “active data structure” is supported in some programming languages 
by control abstractions called iterators. An iterator is a mechanism defined together with 
a data structure, which describes how to apply an arbitrary operation to every element of 
an instance of the data structure. For example, an iterator associated with a list describes 
a looping mechanism for traversing the list, applying a given operation to every list 
element; a tree iterator specifies a tree traversal strategy. Iterators are available in the 
programming language CLU [Liskov 1981]; [Liskov 1986] contains a detailed discussion 
of the concept. In object technology, we can implement iterators through classes rather 
than predefine them as language constructs; see [M 1994a], which applies to library design 
a number of ideas from the present chapter.

The example of the self-adaptive complex number implementation comes from 
[M 1979], where it was expressed in Simula.
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Literate programming [Knuth 1984] emphasizes, like this chapter, that programs 
should contain their own documentation. Its concepts, however, are quite different from those 
of object technology; one of the exercises below invites you to compare the approaches.

Articles by James McKim and Richard Bielak [Bielak 1993], [McKim 1992a] 
[McKim 1995] present useful advice on class interface design based on the notion of 
Design by Contract.

EXERCISES

E23.1  A function with side effects

The example of component-level memory management for linked lists had a function 
fresh that calls a procedure, remove for stacks, and hence produces a side effect on the data 
structure. Discuss whether this is acceptable. 

E23.2  Operands and options

Examine a class or routine library to which you have access and study its routines to 
determine, for each of them, which arguments are operands and which are options.

E23.3  Optional arguments

Some languages, such as Ada, offer the possibility for a routine of having optional 
arguments, each with an associated argument keyword; if the keyword is not included, the 
argument may be set to a default. Discuss which of the advantages of the Operand 
principle this technique retains, and which it fails to ensure.

E23.4  Number of elements as function

Adapt the definition of class LINKED_LIST [G] so that count is a function rather than an 
attribute, the interface of the class being unchanged. 

E23.5  Searching in a linked list

Write the LINKED_LIST procedure search (x: G), searching for the next occurrence of x.

E23.6  Invariant theorems

Prove the three assertion clauses listed as theorems in the first part of the invariant for 
LINKED_LIST.

E23.7  Two-way lists

Write a class describing two-way linked lists, with the same interface as LINKED_LIST, 
but more efficient implementations of some operations such as back, go and finish. 
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E23.8  Alternative linked list class design
Devise a variant of the linked list class design using the convention that an empty list is 
considered both after and before. (This was the technique used in the first edition of this 
book.) Assess it against the approach developed in the present chapter.

E23.9  Insertion in a linked list
Drawing inspiration from remove, write the procedures put_left and put_right to insert an 
element to the left and right of the cursor position.

E23.10  Circular lists
Explain why the LINKED_LIST class may not be used for circular lists. (Hint: show what 
assertions would be violated.) Write a class CIRCULAR_LINKED that implements 
circular lists. 

E23.11  Side-effect-free input functions
Design a class describing input files, with input operations, without any side-effect-
producing functions. Only the class interface (without the do clause describing the routine 
implementations, but with the routine headers and any appropriate assertions) is required. 

E23.12  Documentation 
Discuss, expand and refine the Self-Documentation principle and its various 
developments in this book, considering various kinds of documentation in software and 
examining what styles of documentation are appropriate in various circumstances and at 
various levels of abstraction. 

E23.13  Self-documenting software 
The approach to self-documenting software advocated in this chapter emphasizes 
terseness and does not readily support long explanations of design decisions. Knuth’s 
“Literate programming” style of design combines techniques from programming, writing 
and text processing to integrate a program, its complete design documentation and its 
design history within a single document. The method relies on a classical paradigm: top-
down development of a single program. Starting from Knuth’s work, discuss how his 
method could be transposed to the object-oriented development of reusable components. 



24  
Using inheritance well
Extracts from “Soft-
ware Engineering” 
by Ian Sommerville,
Fourth edition, 
Addison-Wesley, 
L earning all the technical details of inheritance and related mechanisms, as we did in 
part C, does not automatically mean that we have fully grasped the methodological 
consequences. Of all issues in object technology, none causes as much discussion as the 
question of when and how to use inheritance; sweeping opinions abound, for example on 
Internet discussion groups, but the literature is relatively poor in precise and useful advice.

In this chapter we will probe further into the meaning of inheritance, not for the sake 
of theory, but to make sure we use it best to benefit our software development projects. We 
will in particular try to understand how inheritance differs from the other inter-module 
relation in object-oriented system structures, its sister and rival, the client relation: when 
to use one, when to use the other, when both choices are acceptable. Once we have set the 
basic criteria for using inheritance — identifying along the way the typical cases in which 
it is wrong to use it — we will be able to devise a classification of the various legitimate 
uses, some widely accepted (subtype inheritance), others, such as implementation or 
facility inheritance, more controversial. Along the way we will try to learn a little from the 
experience in taxonomy, or systematics, gained from older scientific disciplines.

24.1  HOW NOT TO USE INHERITANCE
To arrive at a methodological principle, it is often useful — as illustrated by so many other 
discussions in this book — to study first how not to do things. Understanding a bad idea 
helps find good ones, which we might otherwise miss. In too constantly warm a climate, a 
pear tree will not flower; it needs the jolt of Winter frost to attain full bloom in the Spring.

Here the jolt is obligingly provided by a widely successful undergraduate textbook, 
used throughout the world to teach software engineering to probably more computing 
science students than any other. Already in its fourth edition, it introduced some elements of 
object orientation, including a discussion of multiple inheritance. Here is the beginning:

Multiple inheritance allows several objects to act as base objects and is supported 
in object-oriented languages such as [the notation of the present book] [M 1988].

The bibliographic reference is to the first edition of the present book. Apart from the 
unfortunate use of “objects” for classes, this is an auspicious start. The extract continues:

The characteristics of several different object classes

(classes, good!)
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A proper model
can be combined to make up a new object.

(no luck). Then comes the example of multiple inheritance:

For example, say we have an object class CAR which encapsulates information 
about cars and an object class PERSON which encapsulates information about 
people. We could use both of these to define

(will our worst fears come out true?)

a new object class CAR-OWNER which combines the attributes of CAR
and PERSON.

(They have.) We are invited to consider that every CAR-OWNER object may be viewed as 
not only a person but also a car. To anyone who has studied inheritance even at an 
elementary level, this will be a surprise.

As you will undoubtedly have figured out, the relation to use in the second case was 
client, not inheritance: a car owner is a person, but has a car. In pictures:

In formal words:

class CAR_OWNER inherit
PERSON

feature
my_car: CAR
… 

end
In the cited text, both links use the inheritance relation. The most interesting twist 

actually comes a little later in the discussion, when the author advises his reader to treat 
inheritance with caution:

Adaptation through inheritance tends to lead to extra functionality being 
inherited, which can make components inefficient and bulky.

Bulky indeed; think of the poor car owner, loaded with his roof, engine and 
carburetor, not to mention four wheels plus a spare. This view might have been influenced 
by one of the picturesque phrases of Australian slang, about a car owner who does look as 
if he also is his car:

PERSON

CAR_
OWNER CAR

Inheritance

Client
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Inheritance is a non-trivial concept, so we can forgive the author of this extract on 
the grounds that he was perhaps a little far from his home turf. But the example has an 
important practical benefit apart from helping us feel smarter: it reminds us of the basic 
rule on inheritance.

In other words, we must be able to convince someone — if only ourselves to start 
with — that “every B is an A” (hence the name: “is-a”). 

In spite of what you may think at first, this is a loose rule, not a strict one. Here is why:

• Note the phrase ‘‘can somehow make the argument”. This is voluntarily vague: we 
do not require a proof that every B is an A. Many cases will leave room for 
discussion. Is it true that “Every savings account is a checking account”? There is no 
absolute answer; depending on the bank’s policies and your analysis of the properties 
of the various kinds of account, you may decide to make class SAVINGS_ACCOUNT
an heir to BANK_ACCOUNT, or put it elsewhere in the inheritance structure, getting 
some help from the other criteria discussed in this chapter. Reasonable people 
might still disagree on the result. But for this to be the case the “is-a” argument 
must be sustainable. Once again our counter-example helps: the argument that a
CAR_OWNER “is-a” CAR is not sustainable.

• Our view of what “is-a” means will be particularly liberal. It will not, for example, 
disallow implementation inheritance — a form of inheritance that many people view 
with suspicion — as long as the “is-a” argument can reasonably be made.

“Is-a” rule of inheritance
Do not make a class B inherit from a class A unless you can somehow make 
the argument that one can view every instance of B also as an instance of A.
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These observations define both the usefulness and the limitations of the Is-a rule. It 
is useful as a negative rule in the Popperian style, enabling you to detect and reject 
inappropriate uses of inheritance. But as a positive rule it is not sufficient; not all 
suggested uses that pass the rule’s test will be appropriate.

Gratifying as the CAR_OWNER counter-example may be, then, any feeling of 
elation that we may have gained from it will be short-lived. It was both the beginning and 
the end of the unmitigated good news — the news that some proposed uses of inheritance 
are obviously wrong and easy to spot. The rest of this chapter has to contend with the bad 
or at least mixed news: that in just about all other cases the decision is a true design issue, 
that is to say hard, although we will fortunately be able to find some general guidelines.

24.2  WOULD YOU RATHER BUY OR INHERIT?

To choose between the two possible inter-module relations, client and inheritance, the basic 
rule is deceptively simple: client is has, inheritance is is. Why then is the choice not easy?

To have and to be

The reason is that whereas to have is not always to be, in many cases to be is also to have.

No, this is neither some cheap attempt at existentialist philosophy nor a pitch to make 
you buy a house if you are currently renting; rather, simple observations on the difficulty 
of system modeling. We have already encountered an illustration of the first property — 
to have is not always to be — in the preceding example: a car owner has a car, but by no 
twist of reasoning or exposition can we assert that he is a car.

What about the reverse situation? Take a simple statement about two object types 
from ordinary life, such as

Every software engineer is an engineer. [A]

whose truth we accept for its value as an example of the “is-a” relation (whatever our 
opinion may be as to the statement’s accuracy). It seems hard indeed to think of a case 
which so clearly expresses “to be” rather than “to have”. But now consider the following 
rephrasing of the property:

In every software engineer there is an engineer. [B]

which can in turn be restated as 

Every software engineer has an “engineer” component. [C]

Twisted, yes, and perhaps a trifle bizarre in its expression; but not fundamentally 
different from our premise [A]! So here it is: by changing our perspective slightly we can 
rephrase the “is” property as a “has”.
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Another 
possible view 
If we look at the picture through the eyes of a programmer, we may summon an 
object diagram, in the style of those which served to discuss the dynamic model in an 
earlier chapter, showing a typical instance of a class and its components:

This shows an instance of SOFTWARE_ENGINEER with various subobjects, 
representing the various posited aspects of a software engineer’s personality and tasks. 
Rather than subobjects (the expanded view) we might prefer to think in terms of references:

Take both of these representations as ways to visualize the situation as seen from 
an implementation-oriented mindset, nothing more. Both suggest, however, that a client, 
or “has”, interpretation — every software engineer has an engineer as one of his parts — 
is faithful to the original statement. The same observation can be made for any similar 
“is-a” relationship.

So this is why the problem of choosing between client and inheritance is not trivial: 
when the “is” view is legitimate, one can always take the “has” view instead.

(SOFTWARE_ENGINEER)

(ENGINEER)

(POET)

(PLUMBER)

(SOFTWARE_ENGINEER) (ENGINEER)

(POET)

(PLUMBER)
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Object and 
subobject
The reverse is not true: when “has” is legitimate, “is” is not always applicable, as the 
CAR_OWNER example shows so clearly. This observation takes care of the easy mistakes, 
obvious to anyone having understood the basic concepts, and perhaps even explainable to 
authors of undergraduate texts. But whenever “is” does apply it is not the only contender. 
So two reasonable and competent people may disagree, one wanting to use inheritance, 
the other preferring client.

Two criteria fortunately exist to help in such discussions. Not surprisingly (since 
they address a broad design issue) they may sometimes fail to give a clear, single solution. 
But in many practical cases they do tell you, beyond any hesitation, which of the two 
relations is the right one.

Conveniently, one of these two criteria favors inheritance, and the other favors client.

The rule of change

The first observation is that the client relation usually permits change, while the 
inheritance relation does not. Here we must be careful with our use of the verbs “to be” 
and “to have” from ordinary language; so far they have helped us characterize the general 
nature of our two software relations, but software rules are, as always, more precise than 
their general non-software counterparts.

One of the defining properties of inheritance is that it is a relation between classes, 
not objects. We have interpreted the property “Class B inherits from class A” as meaning 
“every B object is an A object”, but must remember that it is not in the power of any such 
object to change that property: only a change of the class can achieve such a result. The 
property characterizes the software, not any particular execution.

With the client relation, the constraints are looser. If an object of type B has a 
component of type A (either a subobject or an object reference), it is quite possible to change 
that component; the only restrictions are those of the type system, ensuring provably reliable 
execution (and governed, through an interesting twist, by the inheritance structure).

So even though a given inter-object relationship can result from either inheritance or 
client relationships between the corresponding classes, the effect will be different as to 
what can be changed and what cannot. For example our fictitious object structure

(SOFTWARE_ENGINEER)

(ENGINEER) (Other components omitted)
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could result from an inheritance relationship between the corresponding classes:

class SOFTWARE_ENGINEER_1 inherit

ENGINEER

feature

…

end

but it could just as well have been obtained through the client relation:

class SOFTWARE_ENGINEER_2 feature

the_engineer_in_me: ENGINEER

…

end

which could in fact be

class SOFTWARE_ENGINEER_3 feature

the_truly_important_part_of_me: VOCATION

…

end

provided we satisfy the type rules by making class ENGINEER a descendant of 
class VOCATION.

Strictly speaking the last two variants represent a slightly different situation from the first 
if we assume that none of the given classes is expanded: instead of subobjects, the 
“software engineer” objects will in the last two cases contain references to “engineer” 
objects, as in the second figure of page 813. The introduction of references, however, 
does not fundamentally affect this discussion.

With the first class definition, because the inheritance relationship holds between the 
generating classes, it is not possible to modify the object relationship dynamically: once 
an engineer, always an engineer.

But with the other two definitions such a modification is possible: a procedure of the 
“software engineer” class can assign a new value to the corresponding object field (the 
field for the_engineer_in_me or the_truly_important_part_of_me). In the case of class 
SOFTWARE_ENGINEER_2 the new value must be of type ENGINEER or compatible; but 
with class SOFTWARE_ENGINEER_3 it may be of any type compatible with 
VOCATION. So our software can model the idea of a software engineer who, after many 
years of pretending to be an engineer, finally sheds that part of his personality in favor of 
something that he deems more representative of his work, such as poet or plumber.

ENGINEER

SOFTWARE_ENGINEER_1

SOFTWARE_ENGINEER_3

VOCATION
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This yields our first criterion:

Only use inheritance if the corresponding inter-object relation is permanent. In other 
cases, use the client relation.

The really interesting case is the one illustrated by SOFTWARE_ENGINEER_3. With 
SOFTWARE_ENGINEER_2 you can only replace the engineer component with another 
of exactly same type. But in the SOFTWARE_ENGINEER_3 scheme, VOCATION should 
be a high-level class, most likely deferred; so the attribute can (through polymorphism) 
represent objects of many possible types, all conforming to VOCATION.

This also means that even though this solution uses client as the primary relation, in 
practice its final form will often use inheritance as a complement. This will be particularly 
clear when we come to the notion of handle.

The polymorphism rule

Now for a criterion that will require inheritance and exclude client. That criterion is 
simple: polymorphic uses. In our study of inheritance we have seen that with a declaration 
of the form

x: C

x denotes at run time (assuming class C is not expanded) a potentially polymorphic 
reference; that is to say, x may become attached to direct instances not just of C but of any 
proper descendants of C. This property is of course a key contribution to the power and 
flexibility of the object-oriented method, especially through its corollary, the possibility 
of defining polymorphic data structures, such as a LIST [C] which may contains instances 
of any of C’s descendants.

In our example, this means that with the SOFTWARE_ENGINEER_1 solution — the 
form of the class which inherits from ENGINEER — a client can declare an entity

eng: ENGINEER

which may become attached at run time to an object of type SOFTWARE_ENGINEER_1. 
Or we can have a list of engineers, or a database of engineers, which includes a few 
mechanical engineers, a few chemical engineers, and a few software engineers as well.

A reminder on methodology: the use of non-software words is a good help for 
understanding the concepts, but we should not let ourselves get carried away by such 
anthropomorphic examples; the objects of interest are software objects. So although we 
may loosely understand the words “a software engineer” for what they say, they actually 
denote an instance of SOFTWARE_ENGINEER_1, that is to say, a software object 
somehow modeling a real person.

Rule of change
Do not use inheritance to describe a perceived “is-a” relation if the 
corresponding object components may have to be changed at run time. 
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Such polymorphic effects require inheritance: with SOFTWARE_ENGINEER_2 or 
SOFTWARE_ENGINEER_3 there is no way an entity or data structure of type ENGINEER 
can directly denote “software engineer” objects.

Generalizing these observations — which are not, of course, specific to the example 
— yields the complement of the rule of change:

Summary

Although it brings no new concept, the following rule will be convenient as a summary of 
this discussion of criteria for and against inheritance.

24.3  AN APPLICATION: THE HANDLE TECHNIQUE
Here is an example using the preceding rule. It yields a design pattern of wide 
applicability: handles.

The first design of the Vision library for platform-independent graphics encountered 
a general problem: how to account for platform dependencies. The first solution used 
multiple inheritance in the following way: a typical class, such as the one describing 
windows, would have a parent describing the platform-independent properties of the 
corresponding abstraction, and another providing the platform-specific elements.

class WINDOW inherit
GENERAL_WINDOW
PLATFORM_WINDOW

feature
…

end

Polymorphism rule
Inheritance is appropriate to describe a perceived “is-a” relation if entities or 
data structure components of the more general type may need to become 
attached to objects of the more specialized type.

Choosing between client and inheritance
In deciding how to express the dependency of a class B on a class A, apply 
the following criteria:
CI1  • If every instance of B initially has a component of type A, but that 

component may need to be replaced at run time by an object of a 
different type, make B a client of A.

CI2  • If there is a need for entities of type A to denote objects of type B, 
or for polymorphic structures containing objects of type A of which 
some may be of type B, make B an heir of A.
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On the platform-
specific libraries 
WEL and MEL see 
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architecturing”, 
page 441

Platform 
adaptation 
through 
inheritance

On the notion of Ace 
see “Assembling a 
system”, page 198
Class GENERAL_WINDOW and similar ones such as GENERAL_BUTTON are 
deferred: they express all that can be said about the corresponding graphical objects and 
the applicable operations without reference to a particular graphical platform. Classes 
such as PLATFORM_WINDOW provide the link to a graphical platform such as Windows 
or GTK (on Linux); they give access to the platform-specific mechanisms (encapsulated 
through a library such as WEL or MEL).

A class such as WINDOW will then combine its two parents through features which 
effect (implement) the deferred features of GENERAL_WINDOW by using the 
implementation mechanisms provided by PLATFORM_WINDOW.

PLATFORM_WINDOW (like all other similar classes) needs several variants, one 
for each platform. These identically named classes will be stored in different directories; 
the Ace for a compilation (the control file) will select the appropriate one.

This solution works, but it has the drawback of tying the notion of WINDOW closely 
to the chosen platform. To transpose an earlier comment about inheritance: once a Motif 
window, always a Motif window. This may not be too bad, as it is hard to imagine a Linux 
window which, suddenly seized by middle-age anxiety, decides to become a Windows 
window. The picture becomes less absurd if we expand our definition of “platform” to 
include formats such as Postscript or HTML; then a graphical object could change 
representation for purposes of printing or inclusion in a Web document.

The observation that we might need a looser connection between GUI objects such 
as a window and the underlying toolkit suggests trying the client relation. An inheritance 
link will remain, between WINDOW and GENERAL_WINDOW; but the platform 
dependency will be represented by a client link to a class TOOLKIT representing the 
underlying “toolkit” (graphical platform). The figure at the top of the facing page 
illustrates the resulting structure, involving both client and inheritance.

An interesting aspect of this solution is that it recognizes the notion of toolkit as a full-
fledged abstraction, represented by a deferred class TOOLKIT. Each specific toolkit is then 
represented by an effective descendant of TOOLKIT such as MOTIF or MS_WINDOWS.

Here is how it works. Each class describing graphical objects, such as WINDOW, has 
an attribute providing access to the underlying platform:

handle: TOOLKIT

WINDOW

GENERAL_
WINDOW

PLATFORM_
WINDOW
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Platform 
adaptation 
through a 
handle
This will yield a field in each instance of the class. It is possible to change the handle:
set_handle (new: TOOLKIT)

-- Make new the new handle for this object.
do

handle := new
end

A typical operation inherited from GENERAL_WINDOW in deferred form will be 
effected through a call to the platform’s mechanism:

display
-- Display window on screen.

do
handle  window_display (Current)

end
Through the handle, the graphical object asks the platform to perform the required 

operation. A feature such as window_display is deferred in class TOOLKIT and effected 
variously for its various descendants such as MOTIF.

Note that it would be inappropriate to draw from this example the conclusion “Aha! 
Another case in which inheritance was overused, and the final version stays away from it.” 
The initial version was not wrong; in fact it works quite well, but is less flexible than the 
second one. And that second version fundamentally relies on inheritance and the 
consequent techniques of polymorphism and dynamic binding, which it combines with the 
client relation. Without the TOOLKIT-rooted inheritance hierarchy, the polymorphic entity 

WINDOW TOOLKIT

MOTIF MS_
WINDOWS

…

handle  window_display (Current)

window_display*

*handle

GENERAL_
WINDOW

window_display+
window_display+
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This is actually a 
consequence of the 
Inheritance rule 
seen later in this 
chapter, page 822.
handle, and dynamic binding on features such as window_display, it would not work. Far 
from being a rejection of inheritance, then, this technique illustrates a more sophisticated 
form of inheritance.

The handle technique is widely applicable to the development of libraries supporting 
multi-platform compatibility. Besides the Vision graphical library, we have applied it to 
the Store database library, where the notion of platform covers various SQL-based 
relational database interfaces such as Oracle, Ingres, Sybase and ODBC.

24.4  TAXOMANIA

For every one of the inheritance categories introduced later in this chapter, the heir 
redeclares (redefines or effects) some inherited features, or introduces features of its own, 
or adds to the invariant. (It may of course do several of these things.) A consequence is:

What this rule addresses is a foible sometimes found in newcomers who have been 
won over to the O-O method, and enthusiastically start seeing taxonomical divisions 
everywhere (hence the name of the rule, a shortcut for “taxonomy mania”). The result is 
over-complicated inheritance hierarchies. Taxonomy and inheritance are meant to help us 
master complexity, not to introduce complexity. Adding useless classification levels is 
self-defeating. 

As is so often the case, you can gain the proper perspective — and bring the 
neophytes back to reason — by keeping in mind the ADT view at all times. A class is the 
implementation, partial or total, of an abstract data type. Different classes, in particular a 
parent and an heir, should describe different ADTs. Then, because an ADT is entirely 
characterized by the applicable features and their properties (captured in the class by 
assertions), a new class should change an inherited feature, introduce a new feature or 
change some assertion. Since you can only change a precondition or postcondition by 
redefining the enclosing feature, the last case means the addition of an invariant clause (as 
in restriction inheritance, one of the categories in our taxonomy).

You may occasionally justify a case of taxomania — a class that does not bring 
anything new of its own, apart from its existence — on the grounds that the heir class 
describes an important variant of the notion described by the parent, and that you are 
introducing it now to pave the way for future introduction or redeclaration of features, 
even if none has occurred so far. This may be valid when the inheritance structure 
corresponds to a generally accepted classification in the problem domain. But you should 
always be wary of such cases, and resist the introduction of new featureless classes unless 
you can find compelling arguments. 

Taxomania rule
Every heir must introduce a feature, redeclare an inherited feature, or add an 
invariant clause.
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Here is an example. Assume a certain system or library includes a class PERSON and 
that you are considering adding heirs MALE and FEMALE. Is this justified? You will have 
to take a closer look. A personnel management system that includes gender-specific 
features, pertaining for example to maternity leave, may benefit from having heir classes 
MALE and FEMALE. But in many other cases the variants, if present, would have no 
specific features; for example statistical software that just records the gender of 
individuals may be better off with a single class PERSON and a boolean attribute

female: BOOLEAN
or perhaps

Female: INTEGER unique
Male: INTEGER unique

rather than new heirs. Yet if there is any chance that specific features will be added later 
on, the corresponding classification is so clearly known in the problem domain that you 
may prefer to introduce these heirs anyway.

One guideline to keep in mind is the Single Choice principle. We have learned to 
distrust the use of explicit variant lists, as implemented by unique constants, for fear of 
finding our software polluted with conditional instructions of the form

if female then
…

else
…

or inspect instructions. This is, however, not too much of a concern here:

• One of the principal criticisms against this style was that any addition of a variant 
would cause a chain reaction of changes throughout the software, but in certain cases 
— such as the above example — we can be confident there will be no new variants.

• Even with a fixed set of variants, the explicit if … style is less effective than relying 
on dynamic binding through calls such as this_  person  some_operation where 
MALE and FEMALE have different redeclarations of some_operation. But then if we 
do need to discriminate on a person’s gender we violate the premise of this 
discussion — that there are no features specific to the variants. If such features do 
exist, inheritance is justified.

The last comment alerts us to the real difficulty. Simple cases of taxomania — in 
which the patient needlessly adds intermediate nodes all over the inheritance structure — 
are relatively easy to diagnose (by noticing classes that have no specific features) and cure. 
But what if the variants do have specific features, although the resulting classification 
conflicts with other criteria? A personnel management system for which we can justify a 
class FEMALE_EMPLOYEE because of a few specific features might have other 
distinctions as well, such as permanent versus temporary employees, or supervisory 
versus non-supervisory ones. Then we do not have taxomania any more, but face a general 
and delicate problem, multi-criteria classification, whose possible solutions are discussed 
later in this chapter.
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24.5  USING INHERITANCE: A TAXONOMY OF TAXONOMY
The power of inheritance comes from its versatility. True, this also makes it scary at times, 
causing many authors to impose restrictions on the mechanism. While understanding 
these fears and even sometimes sharing them — do the boldest not harbor the occasional 
doubt and anxiety? — we should overcome them and learn to enjoy inheritance under all 
of its legitimate variants, which will now be explored.

After recalling some commonly encountered wrong uses of inheritance we will 
individually review the valid uses:

• Subtype inheritance.
• View inheritance.
• Restriction inheritance.
• Extension inheritance.
• Functional variation inheritance
• Type variation inheritance.
• Reification inheritance.
• Structure inheritance.
• Implementation inheritance.
• Facility inheritance (with two special variants: constant inheritance and machine 

inheritance).
Some of these categories (subtype, view, implementation, facility) raise specific 

issues and will be discussed in more detail in separate sections.

Scope of the rules

The relatively broad view of inheritance taken in this book in no way means that 
“anything goes”. We accept and in fact encourage certain forms of inheritance on which 
some authors frown; but of course there are many ways to misuse inheritance, and not 
just CAR_OWNER. So the inevitable complement of our broad-mindedness is a 
particularly strict constraint:

This rule is stern indeed: it states that the types of use of inheritance are known and 
that if you encounter a case that is not covered by one of these types you should just not
use inheritance.

What are “the accepted categories”? The implicit meaning is “the accepted 
categories, as discussed in the rest of this section”. I indeed hope that all meaningful uses 

Inheritance rule
Every use of inheritance should belong to one of the accepted categories.
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are covered. But the phrasing is a little more careful because the taxonomy may need 
further thinking. I found precious little in the literature about this topic; the most useful 
reference is an unpublished Ph. D. thesis [Girod 1991]. So it is quite possible that this 
attempt at classification has missed some categories. But the rule indicates that if you see 
a possible use of inheritance that does not fall into one of the following categories, you 
should give it serious thought. Most likely you should not use inheritance in that case; if 
after further reflection you are still convinced that inheritance is appropriate, and you are 
still unable to attach your example to one of the categories of this chapter, then you may 
have a new contribution to the literature.

We already saw a consequence of the Inheritance rule: the Taxomania rule, which states 
that every heir class should redeclare or introduce a feature, or change some assertion. It 
follows directly from the observation that every legitimate form of inheritance detailed 
below requires the heir to perform at least one of these operations.

The Inheritance rule does not prohibit inheritance links that belong to more than one
of the inheritance categories. Such practice is, however, not recommended:

This is not an absolute rule but what an earlier discussion called an “advisory 
positive”. The rationale for the rule is once again the desire for simplicity and clarity: if 
whenever you introduce an inheritance link between two classes you apply explicit 
methodological principles, and in particular decide which one of the approved variants 
you will be using, you are less likely to make a design mistake or to produce a messy, hard-
to-use and hard-to-maintain system structure.

A compelling argument does not seem to exist, however, for making the rule 
absolute, and once in a while it may be convenient to use a single inheritance link for two 
of the goals captured by the classification. Such cases remain a minority.

Unfortunately I do not know of a simple criterion that would unambiguously tell us when 
it is all right to collapse several inheritance categories into one link. Hence the advisory 
nature of the Inheritance Simplicity rule. The reader’s judgment, based on a clear 
understanding of the methodology of inheritance, should decide any questionable case.

Wrong uses

The preceding two rules confirm the obvious: that it is possible to misuse inheritance. 
Here is a list of typical mistakes, most of which have already been mentioned. Human 
ability for mischief being what it is, we can in no way hope for completeness, but a few 
common mistakes are easy to identify.

The first is “has” relation with no “is” relation. CAR_OWNER served as an 
example — extreme but not unique. Over the years I have heard or seen a few similar ones, 
often as purported examples of multiple inheritance, such as APPLE_PIE inheriting from 

Inheritance Simplicity rule
A use of inheritance should preferably belong to just one of the accepted 
categories.
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Classification 
of the valid 
categories of 
inheritance
APPLE and from PIE, or (this one reported by Adele Goldberg) ROSE_TREE inheriting 
from ROSE and from TREE.

Another is a typical case of taxomania in which a simple boolean property, such as 
a person’s gender (or a property with a few fixed values, such as the color of a traffic light) 
is used as an inheritance criterion even though no significant feature variants depend on it.

A third typical mistake is convenience inheritance, in which the developer sees 
some useful features in a class and inherits from that class simply to reuse these features. 
What is wrong here is neither the act of “using inheritance for implementation”, nor 
“inheriting a class for its features”, both of which are acceptable forms of inheritance 
studied later in this chapter, but the use of a class as a parent without the proper is-a 
relationship between the corresponding abstractions — or in some cases without adequate 
abstractions at all.

General taxonomy

On now to the valid uses of inheritance. The list will include twelve different categories, 
conveniently grouped into three broad families:

Valid use of inheritance

Software 
inheritance

Model 
inheritance

Subtype 
inheritance

Restriction 
inheritance

Extension 
inheritance

Variation 
inheritance

Functional 
variation 
inheritance

Type 
variation 
inheritance

View 
inheritance

Reification 
inheritance

Structure 
inheritance

Implementation 
inheritance

Facility 
inheritance

Constant 
inheritance

Machine 
inheritanceUneffecting 

inheritance
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The classification is based on the observation that any software system reflects a 
certain external model, itself connected with some outside reality in the software’s 
application domain. Then we may distinguish:

• Model inheritance, reflecting “is-a” relations between abstractions in the model.
• Software inheritance, expressing relations within the software, with no obvious 

counterpart in the model.
• Variation inheritance — a special case that may pertain either to the software or to 

the model — serving to describe a class through its differences with another class.

These three general categories facilitate understanding, but the most important 
properties are captured by the final categories (the tree leaves on the preceding figure).

Since the classification is itself a taxonomy, you may want to ask yourself, out of 
curiosity, how the identified categories apply to it. This is the topic of an exercise.

The definitions which follow all use the names A for the parent class and B for the heir.

Each definition will state which of A and B is permitted to be deferred, and which 
effective. A table at the end of the discussion recalls the applicable categories for each 
deferred-effective combination.

Subtype inheritance
We start with the most obvious form of model inheritance. You are modeling some 
external system where a category of (external) objects can be partitioned into disjoint 
subcategories — as with closed figures, partitioned into polygons, ellipses etc. — and you 
use inheritance to organize the corresponding classes in the software. A bit more formally:

A' could be the set of closed figures, B' the set of polygons, A and B the 
corresponding classes. In most practical cases the “external system” will be non-software, 
for example some aspect of a company’s business (where the external objects might be 
checking and savings accounts) or some part of the physical world (where they might be 
planets and stars).

Definition: subtype inheritance
Subtype inheritance applies if A and B represent certain sets A' and B' of 
external objects such that B' is a subset of A' and the set modeled by any other 
subtype heir of A is disjoint from B'. A must be deferred.

B

A
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page 835.
Subtype inheritance is the form of inheritance that is closest to the hierarchical 
taxonomies of botany, zoology and other natural sciences (VERTEBRATE  MAMMAL
and the like). A typical software example (other than closed figures and polygons) is 
DEVICE  FILE. We insist that the parent, A, be deferred, so that it describes a non-
completely specified set of objects. B, the heir, may be effective, or it may still be deferred. 
The next two categories cover the case in which A may be effective.

A later section will explore in more detail this inheritance category, not always as 
straightforward as it would seem at first.

Restriction inheritance

Typical examples are RECTANGLE  SQUARE, where the extra constraint is 
side1 = side2 (included in the invariant of SQUARE), and ELLIPSE  CIRCLE, where 
the extra constraint is that the two focuses (or foci) of an ellipse  are the same point 
for a circle ; in the general case an ellipse is the set of points such that the sum of their 
distances to the two focuses  is equal to a certain constant. Many mathematical 
examples indeed fall into this category.

The last part of the definition is meant to avoid mixing this form of inheritance with 
others, such as extension inheritance, which may add completely new features in the heir. 
Here to keep things simple it is preferable to limit new features, if any, to those that 
directly follow from the added constraint. For example class CIRCLE will have a new 
feature radius which satisfies this property: in a circle, all points have the same distance 
from the merged center, and this distance deserves the status of a feature of the class, 
whereas the corresponding notion in class ELLIPSE (the average of the distances to the 
two focuses) was probably not considered significant enough to yield a feature.

Because the only conceptual change from A to B is to add some constraints, the 
classes should be both deferred or both effective.

Restriction inheritance is conceptually close to subtype inheritance; the later 
discussion of subtyping will for the most part apply to both categories.

Extension inheritance

Definition: restriction inheritance
Restriction inheritance applies if the instances of B are those instances of A
that satisfy a certain constraint, expressed if possible as part of the invariant 
of B and not included in the invariant of A. Any feature introduced by B
should be a logical consequence of the added constraint. A and B should be 
both deferred or both effective.

Definition: extension inheritance
Extension inheritance applies when B introduces features not present in A
and not applicable to direct instances of A. Class A must be effective.
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Non-mathematical 
readers may skip this
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The presence of both the restriction and extension variants is one of the paradoxes of 
inheritance. As noted in the discussion of inheritance, extension applies to features 
whereas restriction (and more generally specialization) applies to instances, but this does 
not completely eliminate the paradox.

The problem is that the added features will usually include attributes. So if we take 
the naïve interpretation of a type (as given by a class) as the set of its instances, then it 
seems the subset relation is the wrong way around! Assume for example

class A feature a1: INTEGER end

class B inherit
A

feature
b1: REAL

end

Then if we view each instance of A as representing a singleton, that is to say a set 
containing one integer (which we can write as <n> where n is the chosen integer) and each 
instance of B as a pair containing an integer and a real (such as the pair <1, –-2.5>), the 
set of pairs MB is not a subset of the set of singletons MA. In fact, if we absolutely want a 
subset relation, it will be in the reverse direction: there is a one-to-one mapping between 
MA and the set of all pairs having a given second element, for example 0.0.

This discovery that the subset relation seems to be the wrong way may make 
extension inheritance look suspicious. For example an early version of a respected O-O 
library (not from ISE) had RECTANGLE inheriting from SQUARE, not the other way 
around as we have learned. The reasoning was simple: SQUARE has a side attribute; 
RECTANGLE inherits from SQUARE and adds a new feature, other_side, so here is an 
inheritance link for you! Several people criticized the design and it was soon reversed.

But we cannot dismiss the general category of extension inheritance. In fact its 
equivalent in mathematics, where you specialize a certain notion by adding completely 
new operations, is frequently used and considered quite necessary. A typical example is 
the notion of ring, specializing the notion of group. A group has a certain operation, say 
+, with certain properties. A ring is a group, so it also has + with these properties, but it 
adds a new operation, say ∗, with extra properties of its own. This is not fundamentally 
different from introducing a new attribute in an heir software class.

The corresponding scheme is frequent in O-O software too. In most applications, of 
course, SQUARE should inherit from RECTANGLE, not the reverse; but it is not difficult 
to think of legitimate examples. A class MOVING_POINT (for kinematics applications) 
might inherit from a purely graphical class POINT and add a feature speed describing the 
speed’s magnitude and direction; or, in a text processing application, a class CHAPTER
might inherit from DOCUMENT, adding the specific features of a document which is a 
chapter in a book, such as its current position in the book and a procedure that will 
reposition it.
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The functions of 
interest are not only 
partial but finite.
A proper mathematical model

(Non-mathematically-inclined readers should skip this section.)

For peace of mind we must resolve the apparent paradox noted earlier (the discovery 
that MB is not a subset of MA) since we do want some subset relation to hold between 
instances of an heir and instances of the parent. That relation does exist in the case of 
extension inheritance; what the paradox shows is that it is inappropriate to use cartesian 
product of the attribute types to model a class. Given a class

class C feature
c1: T1
c2: T2
c3: T3

end

we should not take, as a mathematical model C' for the set of instances of C, the cartesian 
product T'1 × T'2 × T'3, where the prime signs ' indicate that we recursively use the model 
sets; this would lead to the paradox (among other disadvantages).

Instead, we should consider any instance as being a partial function from the set of 
possible attribute names ATTRIBUTE to the set of all possible values VALUE, with the 
following properties:

A1  • The function is defined for c1, c2 and c3.

A2  • The set VALUE (the target set of the function) is a superset of T'1 ∪ T'2 ∪ T'3.

A3  • The function’s value for c1 is in T'1, and so on.

Then if we remember that a function is a special case of a relation, and that a 
relation is a set of pairs (for example an instance of class A may be modeled by the 
function {<a1, 25>}, and the instance of B cited on the preceding page by {<a1, 1>, <b1,
–2.5>}), then we do have the expected property that B' is a subset of A. 

Note that it is essential to state the property A1 as “The function is defined for…”, not 
“The function’s domain is…” which would limit the domain to the set {c1, c2 c3}, 
preventing descendants from adding their own attributes. As a result of this approach, 
every software object is modeled by an infinity of (finite) mathematical objects.

This discussion has only given a sketch of the mathematical model. For more details 
on using partial functions to model tuples, and the general mathematical background, see 
[M 1990].

Variation inheritance

(Non-mathematical readers, welcome back!) We now move to the second of our three 
broad groups of inheritance categories: variation inheritance.
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Variation inheritance is applicable when an existing class A, describing a certain 
abstraction, is already useful by itself, but you discover the need to represent a similar 
although not identical abstraction, which essentially has the same features with some 
different signatures or implementations.

The definition requires that both classes be effective (the more common case) or both 
deferred: variation inheritance does not cover the case of an effecting, where we transform 
a notion from abstract to concrete. A closely related category is uneffecting, studied next, 
in which some effective features are made deferred.

The definition stipulates that the heir should introduce no new features, except as 
directly needed by the redefined features. This clause distinguishes variation inheritance 
from extension inheritance.

In type variation inheritance you only change the signatures (argument and result 
types and number) of some features. This form of inheritance is suspect; it is often a sign 
of taxomania. In legitimate cases, however, it may be a preparation for extension 
inheritance or implementation variation inheritance. An example of type variation 
inheritance might be the heirs MALE_EMPLOYEE and FEMALE_EMPLOYEE.

Type variation inheritance is not necessary when the original signature used 
anchored (like …) declarations. For example in the SEGMENT class of an interactive 
drawing package you may have introduced a function

perpendicular: SEGMENT
-- Segment of same length and same middle point, rotated 90 degrees

…

and then want to define an heir DOTTED_SEGMENT to provide a graphical 
representation with a dotted line rather than a continuous one. In that class, perpendicular 
should return a result of type DOTTED_SEGMENT, so you will need to redefine the type. 
None of this would be needed if the original returned a result of type like Current, and if 
you have access to the source of the original and the authority to modify it you may prefer 
to update that type declaration, normally without any adverse effect on existing clients. 
But if for some reason you cannot modify the original, or if an anchored declaration is not 
appropriate in that original (perhaps because of the needs of other descendants), then the 
ability to redefine the type can save the day.

In functional variation inheritance we change some of the features’ bodies; if, as is 
usually the case, the features were already effective, this means changing their 

Definition: functional and type variation inheritance
Variation inheritance applies if B redefines some features of A; A and B are 
either both deferred or both effective, and B must not introduce any features 
except for the direct needs of the redefined features. There are two cases:

• Functional variation inheritance: some of the redefinitions affect 
feature bodies, rather than just their signatures.

• Type variation inheritance: all redefinitions are signature redefinitions.



USING INHERITANCE PROPERLY  §24.5 830

See “The Open-
Closed principle”, 
page 57.

See “Rules on 
names”, page 562.
implementation. The features’ specification, as given by assertions, may also change. It is 
also possible, although less common, to have functional variation inheritance between two 
deferred classes; in that case the assertions will change. This may imply changes in some 
functions, deferred or effective, used by the assertions, or even the addition of new features 
as long as this is for the “direct needs of the redefined features” as the definition states.

Functional variation inheritance is the direct application of the Open-Closed 
principle: we want to adapt an existing class without affecting the original (of which we 
may not even have the source code) and its clients. It is subject to abuses since it may be 
a form of hacking: twisting an existing class so as to fit a slightly different purpose. At 
least this will be organized hacking, which avoids the dangers of directly modifying 
existing software, as analyzed in the discussion of the Open-Closed principle. But if you 
do have access to the source code of the original class, you should examine whether it is 
not preferable to reorganize the inheritance hierarchy by introducing a more abstract class 
of which both A (the existing variant) and B (the new one) will both be heirs, or proper 
descendants with peer status.

Uneffecting

Uneffecting is not common, and should not be. Its basic idea goes against the normal 
direction of inheritance, since we usually expect B to be more concrete and A more 
abstract (as with the next category, reification, for which A is deferred and B effective or 
at least less deferred). For that reason beginners should stay away from uneffecting. But it 
may be justified in the following two cases:

• In multiple inheritance, you may want to merge features inherited from two different 
parents. If one is deferred and the other is effective, this will happen automatically: 
as soon as they have the same name (possibly after renaming), the effective version 
will serve as implementation. But if both are effective, you will need to uneffect one 
of them; the other’s implementation will take precedence.

• You may find a reusable class that is too concrete for your purposes, although the 
abstraction it describes serves your needs. Uneffecting will remove the unwanted 
implementations. Before using this solution, consider the alternatives: it is preferable 
to reorganize the inheritance hierarchy to make the more concrete class an heir of the 
new deferred class, rather than the reverse. But this is not always possible, for 
example if you do not have the authority to modify A and its inheritance hierarchy. 
Uneffecting may, in such cases, provide a useful form of generalization.

For a link of the uneffecting category, B will be deferred; A will normally be 
effective, but might be partially deferred.

Definition: uneffecting inheritance
Uneffecting inheritance applies if B redefines some of the effective features 
of A into deferred features.
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Reification inheritance

We now come to the third and last general group, software inheritance.

An example, used several times in earlier chapters, is a deferred class TABLE
describing tables of a very general nature. Reification leads to heirs SEQUENTIAL_
TABLE and HASH_TABLE, still deferred. Final reification of SEQUENTIAL_TABLE leads 
to effective classes ARRAYED_TABLE, LINKED_TABLE, FILE_TABLE.

The term “reification”, from Latin words meaning “making into a thing”, comes from the 
literary criticism of Georg Lukács. In computing science it is used as part of the VDM 
specification and development method.

Structure inheritance

Usually A represents a mathematical property that a certain set of objects may possess; for 
example A may be the class COMPARABLE, equipped with such operations as infix "<"
and infix ">=", representing objects to which a total order relation is applicable. A class 
that needs an order relation of its own, such as STRING, will inherit from COMPARABLE.

It is common for a class to inherit from several parents in this way. For example class 
INTEGER in the Kernel Library inherits from COMPARABLE as well as from a class 
NUMERIC (with features such as infix "+" and infix "∗") representing its arithmetic 
properties. (Class NUMERIC more precisely represents the mathematical notion of ring.)

What is the difference between the structure and reification categories? With 
reification inheritance B represents the same notion as A, with more implementation 
commitment; with structure inheritance B represents an abstraction of its own, of which A
covers only one aspect, such as the presence of an order relation or of arithmetic operations.

Waldén and Nerson note that novices sometimes believe they are using a similar 
form of inheritance when they are in fact mistaking a “contains” relation for “is” — as 
with AIRPLANE inheriting from VENTILATION_SYSTEM, a variant of the “car-owner” 
scheme, and just as wrong. They point out that it is easy to avoid this mistake through a 
criterion of the “absolute” kind, leaving no room for hesitation or ambiguity:

Definition: reification inheritance
Reification inheritance applies if A represents a general kind of data structure, 
and B represents a partial or complete choice of implementation for data 
structures of that kind. A is deferred; B may still be deferred, leaving room for 
further reification through its own heirs, or it may be effective.

Definition: structure inheritance
Structure inheritance applies if A, a deferred class, represents a general 
structural property and B, which may be deferred or effective, represents a 
certain type of objects possessing that property.
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With the inheritance scheme, although the inherited properties are 
secondary, they are still properties of the whole objects described by the 
class. If we make AIRPLANE inherit COMPARABLE to take account of an 
ordering relation on planes, the inherited features apply to each airplane as 
a whole; but the features of VENTILATION_SYSTEM do not. Feature stop of 
VENTILATION_SYSTEM is not supposed to stop the plane.

The conclusion in this example is clear: AIRPLANE must be a client, not an heir, of 
VENTILATION_SYSTEM.

Implementation inheritance

Implementation inheritance is discussed in detail later in this chapter. A common case is 
the “marriage of convenience”, based on multiple inheritance, where one parent provides 
the specification (reification inheritance) and the other provides the implementation 
(implementation inheritance).

The case of inheriting constant attributes or once functions is covered by the next variant.

Facility inheritance

Facility inheritance is the scheme in which the parent is a collection of useful features 
meant only for use by descendants:

An example of facility inheritance was provided by class EXCEPTIONS, a utility 
class providing a set of facilities for detailed access to the exception handling mechanism.

Sometimes, as in the examples given later in this chapter, a link of the facility kind 
uses only one of the two variants, constant or machine; but in others, such as 
EXCEPTIONS, the parent class provides both constants (such as the exception code 

Definition: implementation inheritance
Structural inheritance applies if B obtains from A a set of features (other than 
constant attributes and once functions) necessary to the implementation of the 
abstraction associated with B. Both A and B must be effective.

Definition: facility inheritance
Facility inheritance applies if A exists solely for the purpose of providing a 
set of logically related features for the benefit of heirs such as B. Two 
common variants are:

• Constant inheritance in which the features of A are all constants or once 
functions describing shared objects.

• Machine inheritance in which the features of A are routines, which may 
be viewed as operations on an abstract machine.
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Incorrect_inspect_value) and routines (such as trigger to raise a developer exception). 
Since this discussion is meant to introduce disjoint inheritance categories, we should treat 
facility inheritance as a single category — with two (non-disjoint) variants.

With constant inheritance, both A and B are effective. With machine inheritance, 
there is more flexibility, but B should be at least as effective as A.

Facility inheritance is discussed in detail later in this chapter.

Using inheritance with deferred and effective classes

Each of the various categories reviewed places some requirements on which of the heir 
and the parent may be deferred and which may be effective. The following table 
summarizes the rules. “Variation” covers type variation and functional variation. Items 
marked “”appear in more than one entry.           

24.6  ONE MECHANISM, OR MORE?

(Note: this discussion assumes as background the earlier presentation of “The meaning of 
inheritance”, especially its section entitled “The dual perspective”, and the presentation of 
descendant hiding, especially its section entitled “The two styles” with its summary table.)

The variety of uses of inheritance, evidenced by the preceding discussion, may lead 
to the impression that we should have several language mechanisms to cover the 
underlying notions. In particular, a number of authors have suggested separating between 
module inheritance, essentially a tool to reuse existing features in a new module, and type
inheritance, essentially a type classification mechanism.

Such a division seems to cause more harm than good, for several reasons.

     Parent →
Heir↓ 

Deferred Effective
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Restriction
Structure
Subtype
Uneffecting
Variation
View

Extension
Uneffecting

 
 
Effective

Constant
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Structure
Subtype

Constant
Extension
Implementation
Restriction
Variation
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First, recognizing only two categories is not representative of the variety of uses of 
inheritance, reflected by the preceding classification. Since no one will advocate 
introducing ten different language mechanisms, the result would be too restrictive.

The practical effect would be to raise useless methodological discussions: assume 
you want to inherit from an iterator class such as LINEAR_ITERATOR; should you use 
module inheritance or type inheritance? One can find arguments to support either answer. 
You will waste your time trying to decide between two competing language mechanisms; 
the contribution of such reflections to the only goals that count — the quality of your 
software and the speed at which you produce it — is exactly zero.

An exercise asks you to analyze our categories to try to see for each of them whether it 
relates more to the “module” or “type” kind.

It is also interesting to think of the consequences that such a division will have on 
the complexity of the language. Inheritance comes with a number of auxiliary 
mechanisms. Most of them will be needed on both sides:

• Redefinition is useful both for subtyping (think of RECTANGLE redefining 
perimeter from POLYGON) and for module extension (the Open-Closed principle 
demands that when we inherit a module we keep the flexibility of changing what is 
not adapted any more to our new context — a flexibility without which we would 
lose one of the main attractions of the object-oriented method).

• Renaming is definitely useful for module inheritance. To present it as inappropriate 
for type inheritance (see [Breu 1995]) seems too restrictive. In the modeled external 
system, variants of a certain notion may introduce specific terminology, which it is 
often desirable for the software to respect. A class STATE_INSTITUTIONS in a 
geographical or electoral information system might have a descendant class 
LOUISIANA_INSTITUTIONS reflecting the peculiarities of Louisiana’s political 
structures; it is not unreasonable to expect that the feature counties, giving the list of 
counties in a state, would be renamed parishes in the descendant, since parish is what 
Louisianians call what the rest of the US knows as a county.

• Repeated inheritance may occur with either form. Since we may expect that module-
only inheritance will preclude polymorphic substitution, the problem of 
disambiguating dynamic binding, and hence the need for a select clause, will only 
arise for type inheritance; but all the other questions, in particular when to share 
repeatedly inherited features and when to replicate them, still arise.

• As always when we introduce new mechanisms into a language, they interact with 
the rest, and with each other. Do we prohibit a class from both module-inheriting and 
type-inheriting the same class? If so, we may be just vexing developers who have a 
good reason to use the same class in two different ways; if not, we open up a whole 
Pandora’s box of new language issues — name conflicts, redefinition conflicts etc.
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All this for the benefit of a purist’s view of inheritance — restrictive and 
controversial. Not that there is anything wrong with defending controversial views; but 
one should be careful before imposing their consequences on language users — that is to 
say, on everyone. When in doubt, abstain. Once again, the contrast with Dijkstra’s original 
goto excommunication is striking: Dijkstra took great care to explain in detail the 
drawbacks of the goto instruction, based on a theory of software construction and 
execution, and to explain what replacements were available. In the present case, no 
compelling argument — at least none that I have seen — shows why it is “bad” to use a 
single mechanism to cover both module and type inheritance. 

Aside from blanket condemnations based on preconceived ideas of what inheritance 
should be, there is only one serious objection to the use of a single mechanism: the extra 
complication that this approach imposes on the task of static type checking. This issue 
was discussed at length in chapter 17; it places an extra burden on compilers, which is 
always justifiable (when the burden is reasonable, as here) if the effect is to facilitate the 
developer’s task.

In the end what all this discussion shows is that the ability to use only one inheritance 
mechanism for both module and type inheritance is not — as partisans of separate 
mechanisms implicitly consider — the result of a confusion of genres. It is the result of 
the very first decision of object-oriented software construction: the unification of module 
and type concepts into a single notion, the class. If we accept classes as both modules and 
types, then we should accept inheritance as both module accumulation and subtyping.

24.7  SUBTYPE INHERITANCE AND DESCENDANT HIDING

The first category on our list is probably the only form on which everyone agrees, at least 
everyone who accepts inheritance: what we may call pure subtype inheritance.

Most of the discussion will also apply to restriction inheritance, whose principal 
difference with subtype inheritance is that it does not require the parent to be deferred.

Defining a subtype

As was pointed out in the introduction of inheritance, part of the power of the idea comes 
from its fusion of a type mechanism, the definition of a new type as a special case of 
existing types, with a module mechanism, the definition of a module as extension of 
existing modules. Many of the controversial questions about inheritance come from 
perceived conflicts between these two views. With subtype inheritance there is no such 
question — although, as we shall see, this does not mean that everything becomes easy.

Subtype inheritance is closely patterned after the taxonomical principles of natural 
and mathematical sciences. Every vertebrate is an animal; every mammal is a vertebrate; 
every elephant is a mammal. Every group (in mathematics) is a monoid; every ring is a 
group; every field is a ring. Similar examples, of which we saw many in earlier chapters, 
abound in object-oriented software:
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• FIGURE  CLOSED_FIGURE  POLYGON  QUADRANGLE  
RECTANGLE  SQUARE

• DEVICE  FILE  TEXT_FILE

• SHIP  LEISURE_SHIP  SAILBOAT

• ACCOUNT  SAVINGS_ACCOUNT  FIXED_RATE_ACCOUNT

and so on. In any one of these subtype links, we have clearly identified the set of objects 
that the parent type describes; and we have spotted a subset of these objects, characterized 
by some properties which do not necessarily apply to all instances of the parent. For 
example a text file is a file, but it has the extra property of being made of a sequence of 
characters — a property that some other files, such as executable binaries, do not possess.

A general rule of subtype inheritance is that the various heirs of a class represent 
disjoint sets of instances. No closed figure, for example, is both a polygon and an ellipse.

Several of the examples, such as RECTANGLE  SQUARE, will most likely involve 
an effective parent, and so are cases of restriction inheritance.

Multiple views

Subtype inheritance is straightforward when a clear criterion exists to classify the variants 
of a certain notion. But sometimes several qualities vie for our attention. Even in such a 
seemingly easy example as the classification of polygons, doubt may arise: should we use 
the number of sides, leading to heirs such as TRIANGLE, QUADRANGLE etc., or should 
we divide our objects into regular polygons (EQUILATERAL_POLYGON, SQUARE and 
so on) and irregular ones?

Several strategies are available to address such conflicts. They will be reviewed as 
part of the study of view inheritance later in this chapter.

Enforcing the subtype view

A type is not just as a set of objects, of course: it is also characterized by the applicable 
operations (the features), and their semantic properties (the assertions: preconditions, 
postconditions, invariants). We expect the fate of features and assertions in the heir to be 
compatible with the concept of subtype — meaning that it must allow us to view any 
instance of the heir also as an instance of the parent.

The rules on assertions indeed support the subtype view:

• The parent’s invariant is automatically part of the heir’s invariant; so all the 
constraints that have been specified for instances of the parent also apply to instances 
of the heir.

• A routine precondition applies, possibly weakened, to any redeclaration of the 
routine: so any call which satisfies the requirement specified for instances of the 
parent will also satisfy the (equal or weaker) requirement specified for instances of 
the heir.
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• A routine postcondition applies, possibly strengthened, to any redeclaration of the 
routine: so any property of the routine’s outcome that has been specified for 
instances of the parent will be guaranteed to hold as a result of the (equal or stronger) 
properties specified for instances of the heir.

For features, the situation is a little more subtle. The subtype view implies that all 
operations applicable to an instance of the parent should be applicable to an instance of 
the heir. Internally, this is always true: even in the inheritance of ARRAYED_STACK from
ARRAY, which seems far from subtype inheritance, the features of ARRAY were still 
available to the heir, and indeed were essential to the implementation of its STACK
features. But in that case we had hidden all these ARRAY features from the heir’s clients, 
and for good reason (we do not want a client of a stack class to perform arbitrary 
operations on the representation, such as directly modifying an array element, since this 
would be a violation of the class interface).

For pure subtype inheritance we might expect a much stronger rule: that every
feature that a client can apply to instances of the parent class also be applicable, by that 
same client, to instances of the heir. In other words, no descendant hiding: if B inherits f
from A, then the export status of f in B is at least as generous as in A. (That is to say: if f 
was generally exported, it still is; and if it was selectively exported to some classes, it is 
still exported to them, although it may be exported to more.)

The need for descendant hiding

In a perfect world we could indeed enforce the no-descendant-hiding rule; but not in the 
real world of software development. Inheritance must be usable even for classes written by 
people who do not have perfect foresight; some of the features they include in a class may 
not make sense in a descendant written by someone else, later and in a completely different 
context. We may call such cases taxonomy exceptions. (In a different context the word 
“exception” would suffice, but we do not want any confusion with the software notion of 
exception handling as studied in earlier chapters.)

Should we renounce inheriting from an attractive and useful class simply because of 
a taxonomy exception, that is to say because one or two of its features are inapplicable to 
our own clients? This would be unreasonable. We just hide the features from our clients’ 
view, and proceed with our work.

The alternatives have been studied as part of one of the founding principles of object 
technology — Open-Closed principle — and they are not attractive:

• We might modify the original class. This means we may invalidate myriads of 
existing systems that relied on it — no, thanks. In most practical cases, anyway, the 
class will not be ours to modify; we may not even have access to its source form.

• We might write a new version of the class (or, if we are lucky and do have access to 
its source code, make a copy), and modify it. This approach is the reverse of 
everything that object technology promotes; it defeats any attempt at reusability and 
at an organized software process.
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Avoiding descendant hiding

Before probing further why and when we may need descendant hiding, it is essential to note 
that most of the time we do not. Descendant hiding should remain a technique of last resort. 
When you have a full grasp of the inheritance structure sufficiently early in the design 
process, preconditions are a better technique to handle apparent taxonomy exceptions.

Consider class ELLIPSE. An ellipse has two focuses through which you can 
normally draw a line:

Class ELLIPSE might correspondingly have a feature focus_line. 
It is quite normal to define class CIRCLE as an heir to ELLIPSE: every circle is also 

an ellipse. But for a circle the two focuses are the same point — the circle’s center — so 
there is no focus line. (It is perhaps more accurate to say that there is an infinity of focus 
lines, including any line that passes through the center, but in practice the effect is the same.)

Is this a good example of descendant hiding? In other words, should class CIRCLE
make feature focus_line secret, as in

class CIRCLE inherit
ELLIPSE

export {NONE} focus_line end
…

Probably not. In this case, the designer of the parent class has all the information at 
his disposal to determine that focus_line is not applicable to all ellipses. Assuming the 
feature is a routine, it should have a precondition:

focus_line
-- The line through the two focuses

require
not equal ( focus_1, focus_2)

do
…

end

Focuses

Focus line

Center
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See page 61.
(The precondition could also be abstract, using a function distinct_  focuses; this has 
the advantage that CIRCLE can redefine that function once and for all to yield false.)

Here the need to support ellipses without a focus line follows from a proper analysis 
of the problem. Writing an ellipse class with a function focus_line that has no precondition 
would be a design error; addressing such an error through descendant hiding would be 
attempting to cover up for that error. As was pointed out at the end of the presentation of 
the Open-Closed principle, erroneous designs must be fixed, not patched in descendants.

Applications of descendant hiding

The focus_line example is typical of taxonomy exceptions arising in application domains 
such as mathematics which can boast a solid theory with associated classifications, 
patiently refined over a long period. In such a context, the proper answer is to use a 
precondition, concrete or abstract, at the place where the original feature appears.

But that technique is not always applicable, especially in domains that are driven by 
human processes, with their attendant capriciousness that often makes it hard to foresee 
all possible exceptions.

Consider as an example a class hierarchy, rooted in a class MORTGAGE, in a 
software system for managing mortgages. The descendants have been organized according 
to various criteria, such as fixed rate versus variable rate, business versus personal or any 
other that was found appropriate; we may assume for simplicity that this is a taxonomy of 
the pure subtype kind. Class MORTGAGE has a procedure redeem, which handles the 
mechanisms for paying off a mortgage at a certain time earlier than maturation.

Now assume that Congress, in a fit of generosity (or under the pressure of 
construction lobbies), introduces a new form of government-backed mortgage whose 
otherwise advantageous conditions carry a provision barring any early redemption. We 
have found a proper place in the hierarchy for the corresponding class NEW_MORTGAGE; 
but what about procedure redeem?

We could use the technique illustrated with focus_line: a precondition. But what if 
there has never before in banker’s memory existed a mortgage that could not be 
redeemed? Then procedure redeem probably does not have a precondition. (The situation 
is the same if the precondition existed but was concrete, so that it cannot be redefined.)

So if we decide to use a precondition we must modify class MORTGAGE. As usual, 
this assumes that we have access to its source code and the right to modify it — often not 
true. Suppose, however, that this is not a problem. We will add to MORTGAGE a boolean-
valued function redeemable and to redeem a clause

require
redeemable

But now we have changed the interface of the class. All the clients of the class and 
of its numerous descendants have instantly been made potentially incorrect; to observe the 
specification all calls m  redeem (…) should now be rewritten as
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if m  redeemable then
m  redeem (…)

else
… (What in the world do we say here?) …

end

Initially this change is not urgent, since the incorrectness is only potential: existing 
software will only use the existing descendants of MORTGAGE, so no harm can result. 
But not fixing them means leaving a time bomb — unprotected calls to a precondition-
equipped routine — ticking in our software. As soon as a client developer has the clever 
idea of using a polymorphic attachment with a source of type NEW_MORTGAGE but 
forgets the test we have a bug. And the compiler will not produce any diagnostic.

The absence of a precondition in the original version of redeem was not a design 
mistake on the part of the original designers: in their view of the world, until now correct, 
no precondition was needed. Every mortgage was redeemable. We cannot require every 
feature to have a precondition; imagine a world in which for every useful f  there would be 
an accompanying boolean-valued function f_  feasible serving as its bodyguard; then we 
would never be able to write a simple x  f  for the rest of our lives; each call would be in an 
if … or equivalent as illustrated above for m  redeem. Not fun.

The redeem example is typical of taxonomy exceptions which, unlike focus_line and 
other cases of perfect-foresight classification, cannot be addressed through careful a priori
precondition design. The observation made earlier fully applies: it would be absurd to 
renounce inheritance — the reuse of a rich class structure, lovingly developed and 
carefully validated — because a feature or two, out of dozens of useful ones, do not apply 
to our goal of the moment. We should just use descendant hiding:

class NEW_MORTGAGE inherit
MORTGAGE

export {NONE} redeem end
…

No error or anomaly will be introduced in existing software — the existing class 
structure or its clients. If someone modifies a client class to include a polymorphic 
attachment with source type NEW_MORTGAGE, and the target of that attachment is also 
used with redeem, as in

m: MORTGAGE; nm: NEW_MORTGAGE 
…
m := nm
…
m  redeem (…)

then the call becomes a catcall, and the potential error will be caught statically by the 
extended mechanism described in our discussion of typing.
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Taxonomies and their limitations

Taxonomy exceptions are not specific to software examples. Even — or perhaps 
especially — in the most established areas of natural science, it sometimes seems 
impossible to find a statement of the form “members of the ABC phylum [or genus, species 
etc.] are characterized by property XYZ  ” that is not prefaced by “most ”, qualified by 
“usually” or followed by “except in a few cases”.This is true at all levels of the hierarchy, 
even the most fundamental categories, which a layman might naïvely believe to be 
established on indisputable criteria!

If you think for example that the distinction between the animal and plant kingdoms 
is simple, just ponder its definition in a popular reference text (italics added):

DISTINGUISHING PLANTS FROM ANIMALS

There are several general factors that distinguish plants from animals, though there are 
numerous exceptions.

Locomotion Most animals move about freely, while it is rare to find plants that can move 
around in their surrounding environments. Most plants are rooted in the soil, or attached 
to rocks, wood or other materials.

Food Green plants that contain chlorophyll manufacture food themselves, but most
animals obtain nutrients by eating plants or other animals. […]

Growth Plants usually grow from the tips of their branches and roots, and at the outer 
layer of their stems, for their entire life. Animals usually grow in all parts of their bodies 
and stop growing after maturity.

Chemical regulation Though both plants and animals generally have hormones and 
other chemicals that regulate certain reactions within the organism, the chemical 
composition of these hormones differ[s] in the two kingdoms.

The same comments apply to another area of study, cultural rather than natural, 
which has also contributed to the development of systematic taxonomy: the historical 
classification of human languages.

In zoology a common example, so famous in Artificial Intelligence circles as to have 
become a cliché, still provides a good illustration of taxonomy exceptions. (Remember, 
however, that this is only an analogy, not a software example, and so cannot prove 
anything; it can only help us understand ideas whose relevance has been demonstrated 
otherwise.) Birds fly; in software terms class BIRD would have a procedure fly. Yet if we 
wanted a class OSTRICH we would have to admit that ostriches, although among the 
birdest of birds, do not fly.

We could think of classifying birds into flying and non-flying categories. But this 
would conflict with other possible criteria including, most importantly, the commonly 
retained one, shown on the next page.
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Kingdom: Animalia — multicellular organisms without chlorophyll General 
classification 
of birds 

(Data from Ed 
Everham, at 
www.runet.edu/
~eeverham.)
Reproduced with 
the author’s 
permission. 
Associated 
comments are 
reproduced in 
“The arbitrariness 
of classifications”, 
page 859.

Phylum: Chordata —coelemic cavity, 3 germ layers, a notocord, 
an endoskeleton and a closed circulatory system

Class: Aves birds (there are 30 orders) 

Order: Anseriformes — waterfowl

Order: Apodiformes — swifts and hummingbirds

Order: Casuariiformes cassowaries and emu
Order: Chardriiformes — shorebirds

Order: Ciconiiformes — long-legged wading birds 

Order: Coliiformes — mousebirds

Order: Columbiformes — pigeons and doves 

Order: Cuciliformes — cuckoos 

Order: Dinornithiformes — kiwis and moas 

Order: Falconiformes — raptors 

Order: Galliformes — gallinaceous birds (chickens, grouse, quail 
                                         and pheasant) 

Order: Musophagiformes — turacos 
Order: Passeriformes — perching birds, songbirds and passerines
Order: Pelecaniformes — waterbirds with webbed feet

Order: Phoenicopteriformes — flamingos 

Order: Piciformes — woodpeckers 

Order: Podicipediformes — grebes 

Order: Procellariiformes — tube-nosed seabirds 

Order: Psittaciformes — parrots, macaws 

Order: Pteroclidiformes — sandgrouse 

Order: Rheiformes — rheas, nandus 

Order: Strigiformes — owls 

Order: Struthioniformes — ostrich 

Order: Tinamiformes — tinamous 

Order: Trogoniformes — trogons and quetzals 

Order: Coraciiformes — kingfishers

Order: Sphenisciformes — penguins

Order: Gaviiformes — loons

Order: Gruiformes — terrestrial and marsh birds 

Order: Caprimulgiformes — nightjars, potoos, frogmouths, 
owlet- frogmouths and oilbirds 
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The OSTRICH example has an interesting twist. Although regrettably most of them 
do not seem to be aware of it, ostriches really should fly. Younger generations lost this 
ancestral skill through an accident of evolutionary history, but anatomically ostriches have 
retained most of the aeronautical machinery of birds. This property, which makes the job 
of the professional taxonomist a little harder (although it may facilitate that of his 
colleague, the professional taxidermist), will not in the end prevent him from classifying 
ostriches among birds.

In software terms OSTRICH will simply inherit from BIRD and hide the inherited 
fly feature.

Using descendant hiding

All our efforts [at classification] are powerless against the multiple relations 
which from everywhere affect the living beings around us. This is the fight,
described by the great botanist Goethe, between Man and Nature in her 
infinity. One can be sure that Man will always be defeated.

Henri Baillon, General Study of the Euphorbiaceous 
Family (1850). Quoted (in French) in Peter F. Stevens, 
The Development of Biological Systematics: Antoine-
Laurent de Jussieu, Nature, and the Natural System, 
Columbia University Press, New York, 1994.

The preceding evidence, from both software practice and non-software analogies, 
suggests that even with a careful design some taxonomy exceptions may remain. Hiding 
redeem from NEW_MORTGAGE or fly from OSTRICH is not necessarily a sign of sloppy 
design or insufficient foresight; it is the recognition that other inheritance hierarchies that 
would not require descendant hiding could be more complex and less useful.

Such taxonomy exceptions have the precedent of centuries of effort by intellectual 
giants (including Aristotle, Linné, Buffon, Jussieu and Darwin). They may even signal 
some intrinsic limitation of the human ability to comprehend the world. Could they be 
related to the indeterminacy results that shook scientific thought in the twentieth century, 
uncertainty in physics and undecidability in mathematics?

All this assumes that descendant hiding remains, as already noted, a rare occurrence. 
If you design a taxonomy with taxonomy exceptions all over — well, they are not 
exceptions any more, so you do not really have much of a taxonomy.

In software, for those few cases in which conflicting classification criteria or massive 
previous work precludes the production of a perfect subtype hierarchy, descendant hiding 
is more than a convenient facility: it will save your neck.
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“The marriage of 
convenience”, page 
530.

STACK2 appeared 
on page 349.
24.8  IMPLEMENTATION INHERITANCE
A form of inheritance that has often been criticized but is in fact both convenient and 
conceptually valid is the use of an inheritance link between a class describing a certain 
implementation of an abstract data structure and the class providing the implementation.

The marriage of convenience

In the discussion of multiple inheritance we saw an example of the “marriage of 
convenience” kind, which combines a deferred class with a mechanism to implement it. 
The example was ARRAYED_STACK, of the general form

class ARRAYED_STACK [G] inherit
STACK [G]

redefine change_top end
ARRAY [G]

rename
count as capacity, put as array_put

export
{NONE} all

end
feature

… Implementation of the deferred routines of STACK, such as put, count, full,
    and redefinition of change_top, in terms of ARRAY operations…

end
It is interesting to compare ARRAYED_STACK, as sketched here, with the class 

STACK2 of an earlier discussion — an array implementation of stacks defined without any 
use of inheritance. Note in particular how avoiding the need for the class to be a client of 
ARRAY simplifies the notation (the previous version had to use implementation  put where 
we can now just write put). 

In the above inheritance part for ARRAY all features have been made secret. This is 
typical of marriage-of-convenience inheritance: all the features from the specification-
providing parent, here STACK, are exported; all the features from the implementation-
providing parent, here ARRAY, are hidden. This forces clients of class ARRAY_STACK to 
use the corresponding instances through stack features only; we do not want to let them 
perform arbitrary array operations on the representation, such as changing the value of an 
element other than the top one.

It feels so good, but is it wrong?

Implementation inheritance is not without its critics. That we hide many inherited features 
seems to some people a violation of the “is-a” principle of inheritance.

It is not. There are different forms of “is-a”. By its behavior, an arrayed stack is a stack; 
but internally it is an array. In fact the representation of an instance of ARRAYED_STACK is 
exactly the same as that of an instance of ARRAY, enriched with one attribute (count). 
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Page 349.
Being made in the same way is a rather strong form of “is-a”. And it is not just the 
representation: all the features of ARRAY, such as put (renamed array_put), infix "@" and 
count (renamed capacity) are available to ARRAYED_STACK, although not exported to its 
clients; the class needs them to implement the STACK features.

So there is nothing conceptually wrong with such implementation-only inheritance. 
The comparison with the counter-example studied at the beginning of this chapter is 
striking: for CAR_OWNER we had a gross misunderstanding of the concept; with 
ARRAYED_STACK we have a well-identified form of the “is-a” relationship.

There is one drawback: permitting the inheritance mechanism to restrict the export 
availability of an inherited feature — that is to say, permitting the export clause — makes 
static type checking more difficult, as we have studied in detail. But this difficulty is 
largely for the compiler writer, not for the software developer.

Doing without inheritance

Let us probe further and see what it would take to work without implementation 
inheritance in our example case. This has been seen already: class STACK2 of an earlier 
chapter. It has an attribute representation of type ARRAY [G] and stack procedures 
implemented in the following style (assertions omitted):

put (x: G)
-- Add x on top.

require
…

do
count := count + 1
representation  put (count, x)

ensure
…

end
Every manipulation of the representation requires a call to a feature of ARRAY with 

representation as the target. There is a performance penalty: minor for space (the 
representation attribute), more serious for time (going throupfgh representation, that is to 
say adding an indirection, for each operation).

Assume we can ignore the efficiency issue. Tediousness is another, with all the 
“representation  ” prefixes that you must add before every array operation. This will be 
true in all the classes that implement various data structures — stacks, but also lists, 
queues and others — through arrays.

The object-oriented designer hates tedious, repetitive tasks. “Encapsulate repetition” 
is our motto. If we see such a pattern occurring repeatedly throughout a set of classes, the 
natural and healthy reaction is to try to understand the common abstraction, and 
encapsulate it in a class. The abstraction here is something like “data structure that has 
access to an array and its operations”. The class could be:
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note
description: "Objects that have access to an array and its operations"

class
ARRAYED [G]

feature -- Access
item (i: INTEGER): G

-- The representation’s element at index i
require

…
do

Result := representation  item (i)
ensure

…
end

feature -- Element change
put (x: G; i: INTEGER)

-- Replace by x the representation’s element at index i.
require

…
do

representation  put (x, i)
ensure

…
end

feature {NONE} -- Implementation
representation: ARRAY [G]

end
The features item and put have been exported. Since ARRAYED only describes internal 
properties of a data structure, it does not really need exported features. So someone who 
disagrees with the very idea of letting a descendant hide some of its parents’ exported 
features may prefer to make all the features of ARRAYED secret. They will then by default 
remain secret in descendants.

With this class definition it becomes quite uncontroversial to make classes such as 
ARRAYED_STACK or ARRAYED_LIST inherit from ARRAYED: they indeed describe 
“arrayed” structures. These classes can now use item instead of representation  item and 
so on; we have rid ourselves of the tediousness. 

But wait a minute! If it is right to inherit from ARRAYED, why can we not inherit 
directly from ARRAY ? We gain nothing from the further layer or encapsulation that we 
have thrown over ARRAY — a form of encapsulation that starts looking more like 
obfuscation. By going through ARRAYED we are just pretending to ourselves that we are 
not using implementation inheritance, but for all practical purposes we are. We have just 
made the software more complex and less efficient.

There is indeed no reason in this example for class ARRAYED. Direct implementation 
inheritance from classes such as ARRAY is simpler and legitimate.
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24.9  FACILITY INHERITANCE
With facility inheritance we are even less coy than with implementation inheritance about 
why we want the marriage: pure, greedy self-interest. We see a class with advantageous 
features and we want to use them. But there is nothing to be ashamed of: the class has no 
other raison d’être.

Using character codes

The Base Libraries include a class ASCII:

note
description:

"The ASCII character set. %
%This class may be used as ancestor by classes needing its facilities."

class ASCII feature -- Access
Character_set_size: INTEGER = 128; Last_ascii: INTEGER = 127
First_printable: INTEGER = 32; Last_printable: INTEGER = 126
Letter_layout: INTEGER = 70
Case_diff: INTEGER = 32

-- Lower_a – Upper_a
…
Ctrl_a: INTEGER = 1; Soh: INTEGER = 1
Ctrl_b: INTEGER = 2; Stx: INTEGER = 2
…
Blank: INTEGER = 32; Sp: INTEGER = 32
Exclamation: INTEGER = 33; Doublequote: INTEGER = 34
…
…
Upper_a: INTEGER = 65; Upper_b: INTEGER = 66
…
Lower_a: INTEGER = 97; Lower_b: INTEGER = 98
… etc. …

end
This class is a repertoire of constant attributes (142 features in all) describing 

properties of the ASCII character set. As the description entry states, it is meant to be 
inherited by classes needing access to such properties.

Consider for example a lexical analyzer — the part of a language analysis system 
that is responsible for identifying the basic elements, or tokens, of an input text; these 
tokens may be (assuming the input is a text in some programming language) integer 
constants, identifiers, symbols and so on. One of the classes of the system, say 
TOKENIZER, will need access to the character codes, to classify the input characters into 
digits, letters etc. Such a class will inherit these codes from ASCII:
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Exercise E24.7, 
page 870.
class TOKENIZER inherit ASCII feature
… Routines here may use such features as Blank, Case_diff etc. …

end

Classes such as ASCII have been known to raise a few eyebrows; before going into 
the methodological discussion of whether they are a proper application of inheritance, we 
will look at another example of facility inheritance.

Iterators

The second example will show a case in which the inherited features are not just constant 
attributes (as with ASCII) but routines of the most general kind.

Assume that we want to provide a general mechanism to iterate over data structures 
of a certain kind, for example linear structures such as lists. “Iterating” means performing 
a certain procedure, say action, on elements of such a structure, taken in their sequential 
order. We are asked to provide a number of iteration mechanisms, including: applying 
action to all the elements; applying it to all the elements that satisfy a certain criterion 
given by a boolean-valued function test; applying it to all the elements up to the first one 
that satisfies test, or the first one that does not satisfy this condition; and so on. A system 
that uses the mechanism must be able to apply it to any action and test of its choice.

At first it might seem that the iterating features should belong to the data structure 
classes themselves, such as LIST or SEQUENCE; but as an exercise invites you to 
determine for yourself this is not the right solution. It is preferable to introduce a separate 
hierarchy for iterators:

Class LINEAR_ITERATOR, the one of interest for this discussion, looks like this:

ITERATOR
*

LINEAR_
ITERATOR

*

BILINEAR_
ITERATOR

*

TREE_
ITERATOR

*
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note
description:

"Objects that are able to iterate over linear structures"
names: iterators, iteration, linear_iterators, linear_iteration

deferred class LINEAR_ITERATOR [G] inherit
ITERATOR [G]

redefine target end
feature -- Access

invariant_value: BOOLEAN
-- The property to be maintained by an iteration (default: true).

do
Result := True

end
target: LINEAR [G]

-- The structure to which iteration features will apply
test: BOOLEAN

-- The boolean condition used to select applicable elements
deferred
end

feature -- Basic operations
action

-- The action to be applied to selected elements.
deferred
end

do_if
-- Apply action in sequence to every item of target that satisfies test.

do
from start invariant invariant_value until exhausted loop

if test then action end
forth

end
ensure then

exhausted
end

… And so on: do_all, do_while, do_until etc. …

end
Now assume a class that needs to perform a certain operation on selected elements 

of a list of some specific type; for example a command class in a text processing system 
may need to justify all paragraphs in a document, excepted for preformated paragraphs 
(such as program texts and other display paragraphs). Then:



USING INHERITANCE PROPERLY  §24.9 850

“Don’t call us, we’ll 
call you”, page 504.
class JUSTIFIER inherit
LINEAR_ITERATOR [PARAGRAPH]

rename
action as justify, 
test as justifiable,
do_all as justify_all

end
feature

justify
do … end

justifiable
-- Is paragraph subject to justification?

do
Result := not preformated

end
…

end
The renaming was not indispensable but helps for clarity. Note that there is no need 

to declare or redeclare the procedure justify_all (the former do_all): as inherited, it does 
the expected job based on the effected versions of action and test.

Procedure justify, instead of being described in the class, could be inherited from 
another parent. In this case multiple inheritance would perform a “join” operation that 
effects the deferred action, inherited from one parent under the name justify (here the 
renaming is essential), with the effective justify inherited from the other parent. A form of 
marriage of convenience, in fact.

LINEAR_ITERATOR is a remarkable example of behavior class, capturing common 
behaviors while leaving specific components open so that descendants can plug in their 
specific variants.

Forms of facility inheritance
The two examples, ASCII and LINEAR_ITERATOR, are typical of the two main variants 
of facility inheritance:

• Constant inheritance, in which the parent principally yields constant attributes and 
shared objects.

• Operation inheritance, in which it yields routines.

As noted earlier, it is possible to combine both of these variants in a single 
inheritance link. That is why facility inheritance is one of our categories, not two.

Understanding facility inheritance
To some people facility inheritance appears to be an abuse of the mechanism — a form of 
hacking. But that is not necessarily the case.
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“Objects as 
machines”, page 
751.

On iterator objects 
see exercise E15.4, 
page 567.
The main question to consider in these examples is not about inheritance but about 
the classes that have been defined, ASCII and LINEAR_ITERATOR. As always when 
looking at a class design, we must ask ourselves: “Does this indeed describe a meaningful 
data abstraction?” — a set of objects characterized by their abstract properties.

With the examples the answer is less obvious than with a class RECTANGLE, 
BANK_ACCOUNT or LINKED_LIST, but it exists all the same:

• Class ASCII represents the abstraction: “any object that has access to the properties 
of the ASCII character set”.

• Class LINEAR_ITERATOR represents the abstraction: “any object that has the ability 
to perform sequential iterations on a linear structure”. Such objects tend to be of the 
“machine” kind described in the preceding chapter.

Once these abstractions have been accepted, the inheritance links do not raise any 
problem: an instance of TOKENIZER does need “access to the properties of the ASCII 
character set”, and an instance of JUSTIFIER does need “the ability to perform sequential 
iterations on a linear structure”. In fact, we could classify such examples of inheritance links 
under the subtype kind. What distinguishes facility inheritance is the nature of the parent.

That the classes themselves are the issue, not the use of inheritance, is reinforced by 
the observation that an application class could rely on these classes as a client rather than 
heir. This would make things heavier, especially for ASCII: with

charset: ASCII
… 
create charset

every use of a character code would have to be written charset  Lower_a and the like. The 
object attached with ASCII does not play any useful role. With LINEAR_ITERATOR the 
same comments apply as long as a given class needs only one kind of iteration. If several 
are required, it becomes interesting to create iterator objects, each with its own version of 
action and test; then you can have as many iteration schemes as you need.

If it is appropriate to have iterator objects, we need iterator classes, and there is no 
reason to deny such classes the right to join the inheritance club.

24.10  MULTIPLE CRITERIA AND VIEW INHERITANCE
Perhaps the most difficult problem of using inheritance arises when alternative criteria are 
available to classify the abstractions of a certain application area.

Classifying through multiple criteria

The traditional classifications of the natural sciences use a single criterion (possibly 
involving several qualities) at each level: vertebrate versus invertebrate, leaves renewed 
each year or not, and so on. The result is what we would call single inheritance hierarchies, 
whose main advantage is their great simplicity. But there are problems too, since nature is
definitely not single-criterion. This will be obvious to anyone who has ever tried to take a 
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A messy 
classification
nature walk armed with a botanical book meant to enable plant recognition through the 
official Linnaean criteria. Species A is deciduous and species B is not, the book says; how 
long can you afford to wait, if this is July, to find out whether the leaves remain? You are 
told that June will bring bright purple flowers, but how can you tell in the midst of 
January? The roots of A are at most 7 meters deep, versus at least 9 for B — must you dig?

In software, when a single criterion seems too restrictive, we can use all the 
techniques of multiple and especially repeated inheritance that we have learned to master 
in earlier chapters. Assume for example a class EMPLOYEE in a personnel management 
system. Assume further that we have two separate criteria for classifying employees:

• By contract type, such as permanent vs. temporary.

• By job type, such as engineering, administrative, managerial.

and that both of these criteria have been recognized to lead to valid descendant classes; 
in other words you are not engaging in taxomania, since the classes that you have 
identified, such as TEMPORARY_EMPLOYEE for the first criterion and MANAGER for 
the second, are truly characterized by specific features not applicable to the other 
categories. What do you do?

A first attempt might introduce all the variants at the same level:

To keep this sketched example small and the figure simple, the class names have been 
abbreviated. To go from this example to a real system we would have to apply the usual 
naming guidelines, which suggest longer and more accurate names such as 
PERMANENT_EMPLOYEE, ENGINEERING_EMPLOYEE and so on.

This inheritance hierarchy is not satisfactory since widely different concepts are 
represented by classes at the same level.

EMPLOYEE

PERMANENT

TEMPORARY

SUPERVISORY

ADMINISTRATIVE

ENGINEER

*
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Classification 
through views
View inheritance

If you retain the idea of using inheritance for the classification used in the example under 
discussion, you should introduce an intermediate level to describe the competing 
classification criteria:

Note that the name CONTRACT_EMPLOYEE does not mean “employee that has a 
contract” (as opposed to employees who might not have one!), but “employee as 
characterized by his contract”. The name of the sibling class similarly means “employee 
as characterized by his specialty”.

That these names seem far-fetched reflects a certain uneasiness, typical of this 
kind of inheritance. In subtype inheritance we encountered the rule that the sets of 
instances represented by the various heirs to a class be disjoint. Here the rule does not 
apply: a permanent employee, for example, may be an engineer too. This means that 
such a classification is meant for repeated inheritance: some proper descendants of the 
classes shown in the figure will have both CONTRACT_EMPLOYEE and 
SPECIALTY_EMPLOYEE as ancestors — not directly, but for example by inheriting 
from both PERMANENT and ENGINEER. Such classes will be repeated descendants 
of EMPLOYEE.

SPECIALTY_
EMPLOYEE

CONTRACT_
EMPLOYEE

EMPLOYEE

PERMANENT
TEMPORARY

SUPERVISORY

ADMINISTRATIVE

ENGINEER

*

* *
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This form of inheritance may be called view inheritance: various heirs of a certain 
class represent not disjoint subsets of instances (as in the subtype case) but various ways 
of classifying instances of the parent. Note that this only makes sense if both the parent 
and the heirs are deferred classes, that is to say, classes describing general categories rather 
than fully specified objects. Our first attempt at EMPLOYEE classification by views (the 
one that had all descendants at the same level) violated that rule; the second one satisfies it.

Is view inheritance appropriate?

View inheritance is relatively far from the more common uses of inheritance and is subject 
to criticism. The reader will be judge of whether to use it for his own purposes, but in any 
case we should examine the pros and cons.

It should be clear that — like repeated inheritance, which it requires — view 
inheritance is not a beginner’s mechanism. The rule of prudence that was introduced for 
repeated inheritance holds here: if you have less than a few months’ hands-on experience 
with O-O development of significant projects, better stay away from view inheritance.

The alternative to view inheritance is to choose one of the classification criteria as 
primary, and use it as the sole guide for devising the inheritance hierarchy; to address the 
other criteria, you will use specific features. It is interesting to note that many modern 
zoologists and botanists use this approach: their basic classification criterion is the 
reconstructed evolutionary history of the genera and species involved. Would it that we 
always had such a single, indisputable standard to guide us in devising software 
taxonomies.

To stick to a single primary criterion in our example we could decide that the job type 
is the factor of principal interest, and represent the employment status by a feature. As a 
first attempt, the feature (in class EMPLOYEE) could be

is_permanent: BOOLEAN

but this is dangerously constraining; to extend the possibilities, we could have

Permanent: INTEGER unique
Temporary: INTEGER unique
Contractor: INTEGER unique
…

but then we have learned to be wary, for good reasons, of explicit enumerations. A better 
approach is to introduce a class WORK_CONTRACT, most likely deferred, with as many 
descendants as necessary to account for specific kinds of work contract. Then we can stay 
away from loathed explicit discriminations of the form

if is_ permanent then … else … end

or
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Multi-criteria 
classification 
through 
separate, 
client-related 
hierarchies

See “AN APPLICA-
TION: THE HAN-
DLE TECHNIQUE”,
24.3, page 817.
inspect
contract_type

when Permanent then
…

when …
…

end

with their contingent of future extendibility troubles (stemming from their violation of just 
about every modularity principle: continuity, single choice, open-closedness); instead, we 
will equip class WORK_CONTRACT with deferred features representing contract-type-
dependent operations, which will then be effected differently in descendants. Most of 
these features will need an argument of type EMPLOYEE, representing the employee to 
which the operation is being applied; examples might include hire and terminate.

The resulting structure will look like this:

This scheme, as you may have noted, is almost identical to the handle-based design 
pattern described earlier in this chapter.

Such a technique may be used in place of view inheritance. It does complicate the 
structure by introducing a separate hierarchy, a new attribute (here contract) and the 
corresponding client relations. It has the advantage that the abstractions in such a hierarchy 
are beyond question (work contract, permanent work contract); with the view inheritance 
solution, the abstractions are clear too but a little trickier to explain (“employee seen from the 
perspective of his work contract”, “employee seen from the perspective of his specialty”).

EMPLOYEE

SUPERVISORY

ADMINISTRATIVE

ENGINEER

* WORK_
CONTRACT

PERMANENT_
CONTRACT

*contrac

hire* 
terminate*

hire+ hire+ 

TEMPORARY_
CONTRACT
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A view-based 
classification 
of fundamental 
computing 
structures
Criteria for view inheritance

It is not uncommon to think of view inheritance early in the analysis of a problem domain, 
while you are still struggling with the fundamental concepts and considering several 
possible classification criteria, all of which vie for your attention. As you improve your 
understanding of the application area, it will often happen that one of the criteria starts to 
dominate the others, imposing itself as the primary guide for devising the inheritance 
structure. In such cases, the preceding discussion strongly suggests that you should 
renounce view inheritance in favor of more straightforward techniques.

I still find view inheritance useful when the following three conditions are met:

• The various classification criteria are equally important, so any choice of a primary 
one would be arbitrary.

• Many possible combinations (such as, in the earlier example, permanent supervisor, 
temporary engineer, permanent engineer and so on) are needed.

• The classes under consideration are so important as to justify spending significant 
time to get the best possible inheritance structure. This applies in particular when the 
classes are part of a reusable library with large reuse potential.

An example of application of these criteria is the uppermost structure of the Base 
libraries, in the environment described in the last chapter of this book. The resulting 
classes followed from an effort, described in detail in the book [M 1994a], of applying 
taxonomical principles to the systematic classification of computing science’s basic 
structures, in the tradition of the natural scientists. The highest part of the “container” 
structure looks like this:

CONTAINER
*

* * *

**

***

BOX COLLECTION TRAVERSABLE

FINITE INFINITE BAG SET

LINEAR HIERARCHI
CAL

*
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Building a data 
structure class 
by combination 
of abstractions 
through 
multiple 
inheritance
The first-level classification (BOX, COLLECTION, TRAVERSABLE) is view-based; 
the level below it (and many of those further below, not shown) is a subtype classification. 
A container structure is characterized through three criteria:

• How items will be accessed: COLLECTION. A SET makes it possible to find out 
whether an item is present, whereas a BAG also enables the client to find out the 
number of occurrences of a given element. Further refinements include such access 
abstractions as SEQUENCE (items are accessed sequentially), STACK (items are 
accessed in the reverse order of their insertion) and so on.

• How items will be represented: BOX. Variants include finite and infinite structures. 
A finite structure can be bounded or unbounded; a bounded structured can be fixed 
or resizable.

• How the structure can be traversed: TRAVERSABLE.

It is interesting to note that the hierarchy did not start out as view inheritance. The 
initial idea was to define BOX, COLLECTION and TRAVERSABLE as unrelated classes, 
each at the top of a separate hierarchy; then, when describing any particular data structure 
implementation, to use multiple inheritance to pick one parent from each of the three parts. 
For example a linked list is finite and unbounded (representation), sequentially accessed 
(access), and linearly traversable (traversal): 

But then we realized that it was inappropriate to keep BOX, COLLECTION and 
TRAVERSABLE separate: they all needed a few common features, in particular has
(membership test) and empty (test for no elements). This clearly indicated the need for a 
common ancestor — CONTAINER, where these common features now appear. Hence a 
structure that was initially designed as pure multiple inheritance, with three disjoint 

* * *BOX COLLECTION TRAVERSABLE

Representation 
hierarchy

Access 
hierarchy

Traversal 
hierarchy
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Some of the material 
in this section is from 
[M 1995].

See “Production 
and description”, 
page 114.
hierarchies at the top, turned out to be a view inheritance hierarchy with a considerable 
amount of repeated inheritance.

Although initially difficult to get right, this structure has turned out to be useful, 
flexible and stable, confirming both of the conclusions of this discussion: that view 
inheritance is not for the faint of heart; and that when applicable it can play a key role for 
complex problem domains where many criteria interact — if the effort is justified, as in a 
fundamental library of reusable components, which simply has to be done right.

24.11  HOW TO DEVELOP INHERITANCE STRUCTURES
When you read a book or pedagogical article on the object-oriented method, or when you 
discover a class library, the inheritance hierarchies that you see have already been 
designed, and the author does not always tell you how they got to be that way. How then 
do you go about designing your own structures?

Specialization and abstraction

Voluntarily or not, many pedagogical presentations tend to create the impression that 
inheritance structures should be designed from the most general (the upper part) to the 
most specific (the leaves). This is in part because this is often the best way to describe a 
good structure once it exists: from the general to the particular; from the figures to the 
closed figures to the polygons to the rectangles to the squares. But the best way to describe 
a structure is not necessarily the best way to produce it.

A similar comment, due to Michael Jackson, was mentioned in the discussion of top-
down design.

In an ideal world populated with perfect people, we would always recognize the 
proper abstractions right away, and then draw the categories, their subcategories and so 
on. In the real world, however, we often see a specific case before we discover the general 
abstraction of which it is but a variant.

In many cases the abstraction is not unique; how best to generalize a certain notion 
depends on what you or your clients will most likely want to do with the notion and its 
variants. Consider for example a notion that we have often encountered in earlier 
discussion: points in a two-dimensional space. At least four generalizations are possible:

• Points in arbitrary-dimension space — leading to an inheritance structure where the 
sisters of class POINT will be classes POINT_3D and so on.

• Geometrical figures — the other classes in the structure being the likes of FIGURE, 
RECTANGLE, CIRCLE and so on.

• Polygons — with other classes such as QUADRANGLE (four vertices), TRIANGLE
(three vertices) and SEGMENT (two vertices), POINT being the special polygon 
with just one vertex.

• Objects that are entirely determined by two coordinates — the other contenders here 
being COMPLEX and VECTOR_2D.
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Although some of these generalizations may intuitively be more appealing than 
others, it is impossible to say in the absolute which one of them is the best. The answer 
will depend on how your software base evolves and what it will need. So a prudent process 
in which you sometimes abstract a bit too late, because you waited until you were sure that 
you had found the most useful path of generalization, may be preferable to one in which 
you might get too much untested abstraction too soon.

The arbitrariness of classifications

The POINT example is typical. When presented with two competing classifications of a 
certain set of abstractions, you will often be able to determine, based on rational 
arguments, which one is better; but seldom is one in a position to determine that a certain 
inheritance structure is the best possible one.

This situation is not specific to software. Do not believe for example that the 
Linnaean classifications of natural science are universally accepted or eternal. The 
maintainers of the “Tree of Life” Internet archive mentioned earlier (see also the 
bibliographical notes) state at the outset that the project’s classification — however 
collaborative and interdisciplinary — is controversial. And this is not just for weird 
smallish creatures too viscous to be discussed at lunch; Dr. Everham’s Web classification 
of birds cited earlier comes with the comment 

There are 174 Families, 2044 Genera and 9021 species of birds in the world! The 
most abundant species are in the order Passeriformes with 5276 species. The least 
number of species in an order is 1: the Ostrich in Struthioniformes. (I would have 
thought the Ostrich would be in an order with the Emus, Kiwis and Moas, all 
extinct, because they all are flightless with stout legs and longish necks.) The 
Linnaeus system groups organisms based on morphological similarities. Another 
classification of animals is based on DNA-DNA hybridization. This is highly 
complex; for example an American Cuckoo would be classified as: Kingdom,
Animalia; Phylum, Chordata; Class, Aves; Subclass, Neornithes; Infraclass,
Neoaves; Parvclass, Passerae; Superorder, Cuculimorphae; Order,
Cuculiformes; Infraorder, Cuculides; Parvorder, Coccyzida; Family, Coccyzidae.

This shows the competition between two systems: the traditional one, based on 
morphology (and evolution); and a more inductive one based on DNA analysis. They lead 
to radically different results. Also note, as an aside, that here we see a zoologist who does 
think that flightlessness should be a significant taxonomical criterion — but the official 
classification disagrees.

Induction and deduction

To design software hierarchies, the proper process is a combination of the deductive and 
the inductive, of specialization and generalization: sometimes you see the abstraction first 
and then infer the special cases; sometimes you first build or find a useful class and then 
realize that there is a more abstract underlying concept.



USING INHERITANCE PROPERLY  §24.11 860

Abstraction

Factoring
If you find yourself not always using the first scheme, but once in a while 
discovering the abstract only after you have seen the concrete, maybe there is nothing 
wrong with you. You are simply using a normal “yoyo” approach to classification.

As you accumulate experience and insight, you should find that the share of (correct) 
a priori decisions grows. But an a posteriori component will always remain.

Varieties of class abstraction

This principle of Reversion is the most wonderful of all 
the attributes of inheritance.

Charles Darwin
Two forms of a posteriori parent construction are common and useful.

Abstracting is the late recognition of a higher-level concept. You find a class B which 
covers a useful notion, but whose developer did not recognize that it was actually a special 
case of a more general notion A, justifying an inheritance link:

That this insight was initially missed — that is to say, that B was built without A — 
is not a reason to renounce the use of inheritance in this case. Once you recognize the need 
for A, you can, and in most cases should, write this class and adapt B to become one of its 
heirs. It is not as good as having written A earlier, but better than not writing it at all.

Factoring is the case in which you detect that two classes E and F actually represent 
variants of the same general notion:

If you recognize this commonality belatedly, the generalization step will enable you 
to add a common parent class D. Here again it would have been preferable to get the 
hierarchy right the first time around, but late is better than never.

A

B

D

E F
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Abstraction, 
factoring and 
clients
Client independence

Abstracting and factoring may in many cases proceed without negative effects on the 
existing clients (an application of the Open-Closed principle).

This property results from the method’s use of information hiding. Consider again 
the preceding schematic cases, but with a typical client class X added to the picture:

When B gets abstracted into A, or the features of E get factored with those of F into 
D, a class X that is a client of B or E (in the figure it is a client of both) will in many cases 
not feel any effect from the change. The ancestry of a class does not affect its clients if 
they are simply applying the features of the class on entities of the corresponding type. In 
other words, if X uses B and E as suppliers under the scheme

b1: B; e1: E
…
b1  some_feature_of_B
…
e1  some_feature_of_E

then X is unaffected by any re-parenting of B or E arising from abstracting or factoring.

Elevating the level of abstraction

Abstracting and factoring are typical of the process of continuous improvement that 
characterizes a successful object-oriented software construction process. In my 
experience this is one of the most elating aspects of practicing the method: knowing that 
even though you are not expected to reach perfection the first time around, you are given 
the opportunity to improve your design continually, until it satisfies everyone.

In a development group that applies the method well, this regular elevation of the 
level of abstraction of the software, and as a corollary of its quality, is clearly perceptible 
to the project members, and serves as constant incentive and motivation.

D

E F

A

B X
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24.12  A SUMMARY VIEW: USING INHERITANCE WELL

Inheritance will never cease to surprise us with its power and versatility. In this chapter we 
have tried to get a better handle at what inheritance really means and how we can use it to 
our best advantage. A few central conclusions have emerged.

First, we should not be afraid of the variety of ways in which we can use inheritance. 
Prohibiting multiple inheritance or facility inheritance achieves no other aim than to hurt 
ourselves. The mechanisms are there to help you: use them well, but use them. 

Next, inheritance is for the most part a supplier’s technique. It is one weapon in our 
arsenal of techniques for fighting our adversaries (in particular complexity, the software 
developer’s relentless foe). Inheritance may matter to client software as well, especially in 
the case of libraries, but its main goal is to help us building the thing in the first place.

Of course, all software is designed for its clients, and the clients’ needs drive the 
process. A set of classes is good if it will offer excellent service to client software: 
interfaces and associated implementations that are complete, free from bad surprises (such 
as unexpected performance penalties), simple to use, easy to learn, easy to remember, 
extendible. To achieve these goals, the designer is free to use inheritance and other object-
oriented techniques in any way he pleases.The end justifies the means.

Also remember, when designing an inheritance structure, that the goal is software 
construction, not philosophy. Seldom is there a single solution, or even a best one in the 
absolute. “Best” means best for the purposes of a certain class of client applications. This 
is particularly true as we move away from areas such as mathematics and fundamental 
computing science, where a widely accepted body of theory exists, towards business-
driven application domains. To find out what class hierarchy best addresses the notion of 
company share, you probably need to know whether the software caters to individual 
investors, to a publicly traded company, to a stock broker, or to the Stock Exchange.

In a way, this is comforting. The naturalist who classifies a certain set of plants and 
animals must devise absolute categories. In software the equivalent only happens if you 
are in the business of producing general-purpose libraries (such as those covering 
fundamental data structures, graphics, databases). Most of the time, your aims will be 
more modest. You will need to design a good hierarchy, one that will satisfy the needs of 
a certain kind of client software.

The final lesson of this chapter generalizes a comment made in the discussion of 
facility inheritance: the principal difficulty of building class structures is not inheritance 
per se; it is the search for abstractions. If you have identified valid abstractions, their 
inheritance structure will follow. To find the abstractions, the guide you will use is the 
guide that we follow throughout this book: the theory of abstract data types.
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24.13  KEY CONCEPTS INTRODUCED IN THIS CHAPTER
• Every use of inheritance should reflect some form of “is” relation between two 

categories of object, either in an external modeled domain or in the software itself.
• Do not use inheritance to model a “has this kind of component” relation; this is the 

province of the client relation. (Remember CAR_OWNER.)
• When inheritance is applicable, client is often potentially applicable too. If the 

corresponding view can change, use the client relation; if you foresee polymorphic 
uses, use inheritance.

• Do not introduce intermediate inheritance nodes unless they describe a well-
identified abstraction, characterized by specific features.

• A classification of inheritance was defined, based on twelve kinds divided into three 
general categories: model inheritance (describing relations existing in the modeled 
domain), software inheritance (describing relations in the software itself), and 
variation inheritance (for class adaptation in either the model or the software).

• The power of inheritance comes from its combination of a type specialization and a 
module extension mechanism. It seems neither wise nor useful to use different 
language mechanisms.

• Implementation and facility inheritance require some care but can be powerful 
supplier-side techniques.

• View inheritance, a delicate technique involving repeated inheritance, allows 
classifying object types along several competing criteria. It is useful for professional 
libraries. In many cases a simpler handle technique is preferable.

• Although not theoretically ideal, the actual process of designing inheritance 
hierarchies is often yoyo-like — from the abstract to the concrete and back.

• Inheritance is primarily a supplier technique.

24.14  BIBLIOGRAPHICAL NOTES
The principal reference on the taxonomy of inheritance is [Girod 1991]. A book on O-O 
methodology [Page-Jones 1995], one of a very small number that provide useful 
methodological advice on object-oriented design, includes precious advice on uses and 
misuses of inheritance. Another useful reference is [McGregor 1992]; John McGregor has 
particularly explored the technique called view inheritance in this chapter.

[Breu 1995] also provides interesting concepts, based on a view of proper 
inheritance usage more restrictive than the one in this chapter. 

A technique similar to this chapter’s “handles” is described in [Gil 1994].
The preparation of this chapter benefited from the comments of several biologists 

who maintain Web-accessible resources on the taxonomy of living beings, in particular: 
the “tree of life” at the University of Arizona (phylogeny.arizona.edu/tree/life.html), 
courtesy of Professors David Maddison and, for birds, Michel Laurin (the latter from 
Berkeley). Professor Edwin Everham from Radford University was also very helpful.

General references on the theory of classification, or systematics, appear at the end 
of the next section.
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24.15  APPENDIX: A HISTORY OF TAXONOMY
This Appendix is supplementary material, not used in the rest of this book. The study of 
taxonomic efforts in other disciplines is full of potential lessons for us object-oriented software 
developers. I hope to spur further interest in this fascinating area — possibly a topic for an inter-
disciplinary Master’s or Ph. D. thesis.

From Aristotle to Darwin
The classification of species began at least as early as Aristotle (384-322 B.C.E.), whose 
taxonomy of animals, Historia Animalium, continued for plants under the title Historia 
Plantarum by his student Theophrastus of Eresos (ca. 370-288 B.C.E.), was accepted as definitive 
for many centuries. Aristotle’s criteria for classifying animals include both how they reproduce 
and where they live; from a modern viewpoint, only the first would be considered relevant, as we 
have come to accept that regardless of habitat considerations a dolphin is closer to a llama than to 
a shark. Theophrastus’s classification was more systematically structural. Modern botanical 
terminology comes largely from Aristotle and Theophrastus through the Latin translation of the 
latter’s terms in the Natural History of Pliny the Elder (23-79 C.E.) (Pliny was well aware of the 
need to avoid being misled by appearances: “It was the plan [of some Greek naturalists] to 
delineate the various plants in colors, and then to add in writing a description of the properties 
which they possessed. Pictures, however, are very apt to mislead; … besides, it is not sufficient to 
delineate a plant as it appears at one period only, as it presents a different appearance at each of 
the four seasons of the year.”) A later important contributor was Dioscorides of Anazarbus (1st 
century C.E.), Nero’s doctor, who classified plants according to their medicinal properties.

Several scholars took up the work at the time of the Renaissance, in particular Conrad 
Gessner, who was to influence Linné and Cuvier through his Opera Botanica and Historia 
Plantarum (1541-1571), distinguishing genus from species and order from class, and Caspar 
Bauhin, who devised a binomial system for the classification of plants in his Pinax (1596). In the 
next century, John Ray (1628-1705) removed some of the arbitrariness of prevailing 
classifications by taking into account several properties of plants’ morphology, rather than just 
one feature. He established the basic division of flowering plants into monocots and dicots 
(foreseen by Theophrastus). That division, still in use today, is another example of the fuzziness 
of even some of the fundamental classification criteria of biology; the UC Berkeley Museum of 
Paleontology (see the bibliographical references at the end of this section) gives a list of seven 
factors distinguishing monocots from dicots — one vs. two cotyledons in the embryo, flower parts 
in multiples of three vs. multiples of four or five, etc. — but adds that no single factor in that list 
will infallibly identify a given flowering plant as a monocot or dicot.

Only in the eighteenth century, with the development of biology as a science and the fast 
growth in known species, did the problem of biological classification start to acquire a character 
of urgency. Whereas Theophrastus had identified five hundred plant species, Bauhin knew six 
thousand, and Linnaeus catalogued eighteen thousand; less than a century later Cuvier listed over 
fifty thousand! The philosopher-scientists of the Age of Enlightenment, aroused by Newton’s 
classification of heavenly bodies in his Principia Mathematica (1687), were not content any more 
to list the species, but started to look for meaningful principles of grouping them into categories 
— for the proper abstraction mechanisms, as we software people would say. The roots of modern 
taxonomy can be traced to that collective effort of the early modern era.

The key contributor was the Swedish botanist Carl Linné (1701-1778), also known by the 
Latin name Carolus Linnaeus, who in 1737 published his taxonomic system, still the basis of all 
taxonomic systems used today. One of his major innovations, was — using software engineering 
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terminology again — to discard the top-down approach used by previous taxonomists (who 
posited basic abstract categories and successively divided them into smaller groups) in favor of a 
bottom-up approach, well in line with the emphasis on pragmatism and experimentation that 
marked the beginnings of the scientific method; he started from the species themselves and 
grouped them into categories. 

Both Ray and Linné were in search of a “natural system”, that is to say an ideal 
classification that would reveal divine intentions.

Progress between Linné and Darwin was largely due to an astonishing succession of 
naturalists at the Paris Jardin des Plantes:

• Georges-Louis de Buffon (1707-1788) wrote the magnificent 44-volume Histoire 
Naturelle, bold enough to suggest a common ancestry for humans and apes.

• Antoine-Laurent de Jussieu (1748-1836) looked for a more natural and comprehensive 
system of plant classification than Linné’s. Modern taxonomies of plants actually follow 
from Jussieu’s work, itself based on Ray’s. (Although modern classification systems are 
based on Linné’s ideas, his actual taxonomy has largely been discarded — initially in part 
because of moral reasons, since he gave such importance to sexual features.)

• Jean-Baptiste Lamarck (1744-1829), whose theory of evolution announced Darwin’s, 
published his Flore française in 1778 and almost single-handedly originated the 
classification of “invertebrates”, a term he coined. In his Histoire naturelle des Animaux 
sans Vertèbres he was the first to separate the crustaceans from the insects.

• Georges Cuvier (1769-1832) did for vertebrates what Lamarck did for invertebrates. He 
was famous for his ability to reconstruct complete organisms from fossil fragments. He 
classified animals into four branches.

• Étienne Geoffroy Saint-Hilaire (1772-1844), another great taxonomist, was the adversary 
of Cuvier (whom he had brought to Paris) in a famous public debate about unity vs. diversity 
of life forms. The dispute reflected deeper questions: evolutionary vs. fixed views of 
species, and the issue, still open today, of formalism vs. functionalism. When we see Cuvier 
writing “If there are resemblances between the organs of fishes and those of the other 
vertebrate classes, it is only insofar as there are resemblances between their functions” in 
1828, and Geoffroy responding “Animals have no habits but those that result from the 
structure of their organs” in 1829, it is hard for a software professional to avoid thinking 
“abstract data type” and “implementation”.
The next revolution in taxonomical thought came with Charles Darwin (1809-1882), whose 

Origin of Species (1859) suggested a simple basis for taxonomy: use evolutionary history. The 
classification of organisms according to their origin in evolution is known as cladistics. For some 
biologists, this is the only criterion. The Berkeley Museum of Paleontology again:

For many years, since even before Darwin, it has been popular to tell “stories” about 
how certain traits of organisms came to be. With cladistics, it is possible to determine 
whether these stories have merit, or whether they should be abandoned in favor of a 
competing hypothesis. For instance, it was long said that the orb-weaving spiders, with 
their intricate and orderly webs, had evolved from spiders with cobweb-like webs. The 
cladistic analysis of these spiders showed that, in fact, orb-weaving was the primitive 
state, and that cobweb-weaving had evolved from spiders with more orderly webs.
Biologists who use to this single, unimpeachable criterion, are in a way more fortunate than 

us poor software modelers: they can assume, or pretend, that there is a single taxonomical truth, 
and that the only problem is to reconstruct it. (In other words they have fulfilled Ray’s, Linné’s 
and Jussieu’s quest for a single Natural System.) In software modeling we cannot postulate, let 
alone discover, such an underlying truth.
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The modern scene

You would think that biological taxonomy, with its long and prestigious history, from Aristotle to 
Darwin and Huxley, would by now be a sedate field. Think again. Since the sixties, controversy 
has been raging. There are three main schools, the ardor of whose debates will seem thoroughly 
familiar to anyone who has heard software engineers debate their favorite programming 
languages. Here is — after the taxonomy of taxonomy which occupied our efforts at the beginning 
of this chapter — the taxonomy of taxonomists:

• The numerical pheneticists draw their classifications from the study of organisms’ 
individual characters, using numerical measures of distance (and relying generously on 
computer algorithms) to group organisms that have the most characters in common. Sokal 
and Sneath are recognized as the founders of this approach.

• The cladists use evolutionary history as the sole criterion. The Berkeley extract reflected 
this view (more details below). Cladistics draws its inspiration from work by the German 
scientist Willi Hennig, first published in German in 1950 and in English in 1965.

• The evolutionary taxonomists, led by G.G. Simpson and Ernst Mayr, who claim Darwin’s 
direct heritage, “base [their] classifications on observed similarities and differences among 
groups of organisms, evaluated in the light of their inferred evolutionary history” (as stated 
by Mayr, 1981, reference below).

It is next to impossible to find neutral accounts of the arguments for each approach in the 
literature. (Perhaps this sounds familiar.) It falls on the outsider to try to develop an impartial 
view. In this brief survey we will try to remain as close as possible to the software analogies.

Numerical phenetics — what we would call the bottom-up approach — has the advantage 
of being based on precise, repeatable measures. But the choice of measured characters and their 
weighting is subjective. And a purely external measure risks being influenced by chance factors; 
it is well known since Darwin that evolution involves not only divergence (species evolving from 
a common ancestor by developing different characters) but convergence (completely distinct 
species developing similar features to adapt to similar environments or by sheer coincidence). So 
there is a great danger of arbitrariness. One can also fear instability: the discovery of new species 
— which occurs all the time in biology — could, more than with the other approaches, put into 
question classifications drawn from the statistical analysis of the previously known species.

On the surface the other two schools would seem to be very close to each other. Why then 
do they keep arguing with each other from their respective journals and conferences? The reason 
is that the cladists are particularly rigorous, as they would see it, or dogmatic, as the other two 
schools might put it. They take evolution, and evolution only, as the classification criterion. The 
method is particularly strict: it examines the evolutionary history, as given by the fossil record, 
and decides which characters are synapomorhic and which ones plesiomorphic. A feature is 
plesiomorphic if it was already present in a common ancestor; then for the cladist it is not 
interesting at all! The useful features as the synapomorphic ones, which hold for two organisms 
but not their ancestors. Synapomorphies are the primary tool for positing new groups (taxa, the 
plural of taxon). 

In the following situation, then, the cladists will see only two taxa:
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A cladogram

After Mayr, 1961.
This is a cladogram, or record of the appearance of characters in the evolutionary history. 
The marks indicate new characters. B and C have a synapomorphy, character b, which was not in 
the ancestor and is not in A; so for a cladist B and C will form a taxon, and A another. For an 
evolutionary taxonomist, there would be three taxa, since C differs from B in many other 
characters (c to h). In its pure form cladistics is even more restrictive: like Roman Jakobson’s 
phonology, it only considers binary characters; and it posits that when taxa evolve from a 
common ancestor the ancestor disappears.

Evolutionary taxonomy seems a more moderate approach, trying to draw from both 
cladistics and phenetics: evolution is the classification basis, but complemented by analysis of 
other characters, not necessarily synapomorphic.

Why then the restrictiveness of cladistics? The principal argument is epistemological: an 
attempt to satisfy Karl Popper’s rules of falsifiability. Cladists argue that their approach is the 
only non-circular one; whereas the other two more or less assume (according to this view) 
what they are trying to deduce, a cladistic hypothesis can be refuted, in the same way that a 
single experiment can disprove a theory of physics, although no amount of experimentation 
will prove a theory.

The debate between these approaches is not closed. The progress of molecular biology will 
certainly affect it; in particular, by providing a link between observed characters and the 
evolutionary record, it may help achieve some reconciliation between phenetics and the other 
two methods.

We will stop here, with regret (more mundane software engineering topics are claiming our 
attention). For an O-O software developer, reading the taxonomy literature, although requiring a 
fair deal of attention in some cases (“A phylogenetic definition of homology may be considered 
more falsifiable than a phenetic definition and therefore preferable if it leads to a hypothesis of 
homology which includes all the potential falsifiers provided by phenetic comparisons as well as 
the potential falsifiers provided by phylogeny…”) is rich in rewards. Our own work constantly 
subjects us, like our friends from the Biology department or the Herbarium, to two siren songs 
from opposite sides: the a priori form of classification, top-down, deductive and based on a 
“natural” order of things, coming to us through the cladists from Linné; and the empirical, 
inductive, bottom-up view of the pheneticists, telling us to observe and gather. Perhaps, like the 
evolutionary taxonomists, we will want a bit of both.
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Bibliography on taxonomy

The following references — which have been separated from the main bibliography of this book 
to avoid too much mélange des genres — will be useful as a starting point on the subject of 
taxonomy history:

• The on-line material on evolution at the University of California Museum of Paleontology 
in Berkeley: http://www.ucmp.berkeley.edu/clad/clad4.html (authors: Allen G. Collins, 
Robert Guralnick, Brian R. Speer). Resolutely cladist. Some of the above presentation 
draws from the UCMP pages and from suggestions by their authors.

• A biography of Jussieu: Antoine-Laurent de Jussieu, Nature and the Natural System by 
Peter F. Stevens, Columbia University Press, New York, 1994. (I am grateful to Prof. 
Stevens for several important suggestions.)

• A collection of papers on cladistics: Cladistic Theory and Methodology, edited by Thomas 
Duncan and Tod F. Stuessy, Van Nostrand Reinhold, 1985. Quite cladist, but the end of the 
volume adds some interesting critical articles, one in particular by Ernst Mayr (Cladistic 
analysis or cladistic classifications?, pages 304-308, originally in Zeitung Zool. Syst. 
Evolut.-Forsch., 19:94-128, 1974).

• Another volume of contributions: Prospects in Systematics, ed. D.L. Hawksworth, 
Systematics Association, Clarendon Press, Oxford, 1988.

• A textbook: Biological Systematics by Herbert H. Ross, Addison-Wesley, Reading 
(Mass.), 1973.

• The founding book of cladistics: Phylogenetic Systematics by Willi Hennig, English 
translation, University of Illinois Press, Urbana (Ill.), 1966. See also a shorter presentation 
by Hennig (adapted from his original 1950 article) in Duncan and Stuessy.

• A cladistic treatise, starting with the picture of Hennig: Phylogenetics — The Theory 
and Practice of Phylogenetic Systematics by E.O. Wiley, published by John Wiley and 
Sons, New York, 1981. By the same author, a Popperian argument for cladistics, Karl 
R. Popper, Systematics, and Classification: A Reply to Walter Bock and Other 
Evolutionary Taxonomists, pages 37-47 of Duncan and Stuessy, originally in Syst. Zool 
24:233-243, 1975.

• A clear article by Ernst Mayr, leaning to evolutionary taxonomy but discussing the other 
approaches with some sympathy: Biological Classification: Towards a Synthesis of 
Opposing Methodologies, in Science, vol. 214, 1961, pages 510-516.

• The foundational text of the pheneticists: Principles of Numerical Taxonomy, by Robert 
P. Sokal and Peter H.A. Sneath, Freeman Publishing, San Francisco, 1963, revised 
edition 1973.

• A short and more recent book advocating Transformed Cladistics (subtitle: Taxonomy and 
Evolution) by N.R. Scott-Ram, Cambridge University Press, 1990.
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See “General taxon-
omy”, page 824.

The Towers of Hanoï 
problem, used in 
many computing sci-
ence texts as an exam
ple of recursive 
procedure, comes 
from Édouard Lucas,
“Récréations 
Mathématiques”, 
Paris, 1883, reprinted
by Albert Blanchard, 
Paris, 1975.

“POLYGONS AND 
RECTANGLES”, 
14.1, page 460.

“ADVANCED EXCEP
TION HANDLING”, 
12.6, page 431.
EXERCISES
E24.1  Arrayed stacks
Write in full the STACK class and its heir ARRAYED_STACK sketched in this chapter, 
using the “marriage of convenience” technique.

E24.2  Meta-taxonomy
Imagine this chapter’s classification of the forms of inheritance were an inheritance 
hierarchy. What kind or kinds would it involve?

E24.3  The stacks of Hanoï
(This exercise comes from an example used by Philippe Drix on the French GUE 
electronic mailing list, late 1995 and early 1996.)

Assume a deferred class STACK with a procedure put to push an element onto the 
top, with a precondition involving the boolean-valued function full (which could also be 
called extendible; as you study the exercise you will note that the choice of name may 
affect the appeal of various possible solutions).

Now consider the famous problem of the Towers of Hanoï, where disks are stacked 
on piles — the towers — with the rule that a disk may only be put on a larger disk.

Is it appropriate to define the class HANOÏ_STACK, representing such piles, as an heir 
to STACK? If so, how should the class be written? If not, can HANOÏ_STACK still make use 
of STACK? Write the class in full for the various possible solutions; discuss the pros and 
cons of each, state which one you prefer, and explain the rationale for your choice.

E24.4  Are polygons lists?
The implementation of our first inheritance example, class POLYGON, uses a linked list 
attribute vertices to represent the vertices of a polygon. Should POLYGON instead inherit 
from LINKED_LIST [POINT]?

E24.5  Functional variation inheritance
Provide one or more examples of functional variation inheritance. For each of them, 
discuss whether they are legitimate applications of the Open-Closed principle or examples 
of what the discussion called “organized hacking”.

E24.6  Classification examples
For each of the following cases, indicate which one of the inheritance kinds applies:

• SEGMENT from OPEN_FIGURE.
• COMPARABLE (objects equipped with a total order relation) inheriting from 

PART_COMPARABLE (objects with a partial order relation).
• Some class from EXCEPTIONS.

-

 

 

-
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E24.7  Where do iterators belong?
Would it be a good idea to have iterator features (while_do and the like) included in 
classes describing the data structures on which they iterate, such as LIST ? Consider the 
following points:

• The ease of applying iterations to arbitrary action and test routines, chosen by the 
application.

• Extendibility: the possibility of adding new iteration schemes to the library.
• More generally, respect of object-oriented principles, in particular the idea that 

operations do not exist by themselves but only in relation to certain data abstractions.

E24.8  Module and type inheritance
Assume we devise a language with two kinds of inheritance: module extension and 
subtyping. Where would each of the inheritance kinds identified in this chapter fit?

E24.9  Inheritance and polymorphism
Of the kinds of inheritance reviewed in this chapter between a parent A and an heir B, 
which ones do you expect in practice to be used for polymorphic attachment, that is to say 
assignments x := y or the corresponding argument passing with x of type A and y of type B?



25  
Useful techniques
Chapter 28 discusses
seamlessness and 
reversibility.
E xamples of object-oriented design given in preceding chapters have illustrated a 
number of distinctive techniques. Although we are not done yet with our review of 
methodological issues — we must still explore style rules, O-O analysis concepts, 
teaching methods, and the software process — it is time to pause briefly to recapitulate 
some of the principal O-O techniques that we have learned.

This will be the tersest chapter of all: it just enumerates fruitful ideas, followed in a 
few cases by keywords meant to remind you of some of the examples in which we first 
encountered the ideas.

25.1  DESIGN PHILOSOPHY 

General development scheme

Bottom-up development: build a solid basis, then apply it to specific cases.

Seamlessness: apply consistent techniques and tools to analysis, design, implementation, 
maintenance.

Reversibility: let the functional specification benefit from the lessons of implementation.

Generalization: from specialized classes, derive reusable ones. Abstraction, factoring out 
commonalities.

The structure of systems

Systems are made of classes only.

The development style is bottom-up. Whenever possible, start from what you have.

Try to make classes as general as possible from the start.

Try to make classes as autonomous as possible.

Two inter-class relations: client (with “reference client” and “expanded client” variants); 
inheritance. Roughly correspond to “has” and “is”.

Use multi-layer architectures to separate abstract interface from implementations for 
various platforms: Vision, WEL/PEL/MEL.
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System evolution

Design for change and reuse.

When improving a design, use obsolete features and classes to facilitate the transition.

25.2  CLASSES

Class structure

Every class should correspond to a well-defined data abstraction.

Shopping List approach: if a feature is potentially useful, and fits in with the data 
abstraction of the class, put it in.

Facility classes: group related facilities (e.g. a set of constants).

Active data structures (object as abstract machine).

Key decision is what features to make secret and what to export.

Use selective exports for a group of intimately connected classes: LINKED_LIST, 
LINKABLE.

Re-engineer non-O-O software by encapsulating abstractions into classes (cf. Math library).

Class documentation

Put as much information as possible in the class itself.

Write header comments carefully and consistently; they will be part of the official 
interface.

Note clauses.

Designing feature interfaces

Command-Query Separation principle: a function should not produce any abstract side 
effect (concrete side effects are OK).

Use only operands as arguments.

Set status, then execute operation.

For each status-setting command, provide a status-returning query.

For argumentless queries, there should be no externally visible difference between an 
attribute implementation and a function implementation.

Let an object change representation silently as a result of requested operations (example 
of complex number class).

Cursor structures (LIST, LINKED_LIST and many others).
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Using assertions

The precondition binds the client, the postcondition binds the supplier.

Make precondition strong enough to enable the routine to do its job well — but not stronger.

Two kinds of invariant clause: some clauses come from the underlying abstract data type; 
others (representation invariant) describe consistency properties of the implementation. 
Use implementation invariant to express and improve your understanding of the 
relationship between the different constituents of the class, attributes in particular.

For an argumentless query, include abstract properties in the invariant (even if, for a 
function, the property also appears in the postcondition).

Redeclarations can weaken the precondition to make the routine more tolerant.

To achieve the effect of strengthening the precondition, use an abstract precondition 
(based on a boolean function) in the original.

Even with no strengthening need, abstract preconditions are preferable.

Any precondition must be enforceable and testable by clients.

Do not overconstrain postcondition, to enable strengthening in a descendant (for example 
you may want to use one-way implies rather than equality).

Dealing with special cases

A priori checking: before operation, check if you can apply it.

A posteriori checking: try operation, then query an attribute (or higher-level function 
encapsulation) to find out whether it worked.

When everything else fails: use exception handling.

Organized failure: if a rescue executes to the end, do not forget to restore the invariant. 
The caller will get an exception too.

Retrying: try another algorithm, or (the strategy of hope) the same one again. Record what 
happened through an attribute or local entity; local entities are initialized only when the 
call starts, not after a retry.

25.3  INHERITANCE TECHNIQUES

Redeclaration

Redefining a routine to use a more specific algorithm, for more efficiency: perimeter in 
POLYGON, RECTANGLE, SQUARE.

Redefining a routine into an attribute: balance in ACCOUNT.

Effecting a feature that was deferred in the parent.
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Joining two or more features through effecting (all but one inherited as deferred; the 
effective one takes over). Undefine some effective ones if needed.

Redefining two or more effective features together.

Accessing parent version in a redefinition: precursor.

Redeclarations preserve semantics (rules on assertions).

Deferred classes

Deferred classes capture high-level categories.

Deferred classes also serve as an analysis and design tool, to describe abstractions without 
commitment to an implementation.

Behavior classes: capture general behavior. Effective routines call deferred ones. Class 
will be partially deferred, partially implemented (covers partial choice of ADT 
implementation).

Polymorphism

Polymorphic data structures: through inheritance and genericity, combine right amount of 
similitude and variation.

Handles: describe a variable-type component through a polymorphic attribute.

Dynamic binding: avoid explicit discrimination.

Dynamic binding on a polymorphic data structure: apply to each element of a structure an 
operation that the element will apply in its own appropriate way.

For the point of single choice, pre-compute a data structure with one object of each 
possible type (as in the undoing pattern).

Forms of inheritance

Make sure all uses of inheritance belong to one of the categories in the taxonomy.

Inheritance for subtyping.

Inheritance for module extension.

Marriage of convenience: implement abstraction through concrete structure.

Restriction inheritance: add constraint.

Inheriting general-purpose mechanisms from facility classes.

Functional Variation inheritance: “organized hacking”, Open-Closed principle.

Type Variation inheritance: covariance.



26  
A sense of style
I mplementing the object-oriented method requires paying attention to many details of 
style, which a less ambitious approach might consider trifles.

26.1  COSMETICS MATTERS!

Although the rules appearing hereafter are not as fundamental as the principles of object-
oriented software construction covered in earlier chapters, it would be foolish to dismiss 
them as just “cosmetics”. Good software is good in the large and in the small, in its high-
level architecture and in its low-level details. True, quality in the details does not guarantee 
quality of the whole; but sloppiness in the details usually indicates that something more 
serious is wrong too. (If you cannot get the cosmetics right, why should your customers 
believe that you can master the truly difficult aspects?) A serious engineering process 
requires doing everything right: the grandiose and the mundane.

So you should not neglect the relevance of such seemingly humble details as text 
layout and choice of names. True, it may seem surprising to move on, without lowering 
our level of attention, from the mathematical notion of sufficient completeness in formal 
specifications (in the chapter on abstract data types) to whether a semicolon should be 
preceded by a space (in the present chapter). The explanation is simply that both issues 
deserve our care, in the same way that when you write quality O-O software both the 
design and the realization will require your attention.

We can take a cue from the notion of style in its literary sense. Although the first 
determinant of good writing is the author’s basic ability to tell a story and devise a 
coherent structure, no text is successful until everything works: every paragraph, every 
sentence and every word.

Applying the rules in practice

Some of the rules of this chapter can be checked or, better yet, enforced from the start by 
software tools. Tools will not do everything, however, and there is no substitute for care 
in writing every piece of the software.
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There is often a temptation to postpone the application of the rules, writing things 
casually at first and thinking “I will clean up everything later on; I do not even know how 
much of this will eventually be discarded”. This is not the recommended way. Once you 
get used to the rules, they do not add any significant delay to the initial writing of the 
software; even without special tools, it is always more costly to fix the text later than to 
write it properly from the start. And given the pressure on software developers, there is 
ever a risk that you will forget or not find the time to clean things up. Then someone who 
is asked later to take up your work will waste more time than it would have cost you to 
write the proper header comments, devise the right feature names, apply the proper layout. 
That someone may be you.

Terseness and explicitness

Software styles have oscillated between the terse and the verbose. In programming 
languages, the two extremes are perhaps APL and Cobol. The contrast between the 
Fortran-C-C++ line and the Algol-Pascal-Ada tradition — not just the languages 
themselves, but the styles they have bred — is almost as stark.

What matters for us is clarity and, more generally, quality. Extreme forms of 
terseness and verbosity can both work against these goals. Cryptic C programs are 
unfortunately not limited to the famous “obfuscated C” and “Obfuscated C++” contests; 
but the almost equally famous DIVIDE DAYS BY 7 GIVING WEEKS of Cobol is a waste 
of everyone’s attention.

The style that follows from this chapter’s rules is a particular mix of Algol-like 
explicitness (although not, it is hoped, verbosity) and telegram-style terseness. It never 
begrudges keystrokes, even lines, when they truly help make the software readable; for 
example, you will find rules that enjoin using clear identifiers based on full words, not 
abbreviations, as it is foolish to save a few letters by calling a feature disp (ambiguous) 
rather than display (clear and precise), or a class ACCNT (unpronounceable) rather than 
ACCOUNT. There is no tax on keystrokes. But at the same time when it comes to 
eliminating waste and unneeded redundancies the rules below are as pitiless as the 
recommendations of a General Accounting Office Special Commission on Improving 
Government. They limit header comments to indispensable words, getting rid of all the 
non-essential “the” and other such amenities; they proscribe over-qualification of feature 
names (as in account_balance in a class ACCOUNT, where balance is perfectly 
sufficient); against dominant mores, they permit the grouping of related components of a 
complex construct on a single line, as in from i := 1 invariant i <= n until i = n loop; and 
so on.

This combination of terseness and explicitness is what you should seek in your own 
texts. Do not waste space, as exaggerated size will in the end mean exaggerated 
complexity; but do not hesitate to use space when it is necessary to enhance clarity.

Also remember, if like many people you are concerned about how much smaller the 
text of an object-oriented implementation will be than the text of a comparable C, Pascal, 
Ada or Fortran program, that the only interesting answer will appear at the level of a 
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significant system or subsystem. If you express a basic algorithm — at the level of 
Quicksort, say, or Euclid’s algorithm — in C and in the notation of this book, expect the 
O-O version to be at least as large. In many cases, if you apply the principles thoroughly, 
it will be larger, since it will include assertions and more type information. Yet in ISE’s 
experience of looking at medium-scale systems we have sometimes found (without being 
able to give a general law, as the circumstances vary considerably) the object-oriented 
solution to be several times smaller. Why? This is not due to terseness at the “micro” level 
but to systemwide application of the architectural techniques of the O-O method:

• Genericity is one of the key factors. We have found C programs that repeated 
essentially the same C code many times to handle different types. With a generic 
class — or for that matter a generic Ada package — you immediately get rid of that 
redundancy. It is disturbing in this respect to see that Java, a recent O-O language 
based on C, does not support genericity.

• Inheritance is also fundamental in gathering commonalities and removing duplications.

• Dynamic binding replaces many complex decision structures by much shorter calls.

• Assertions and the associated idea of Design by Contract avoid redundant error 
checking, a principal source of bloat.

• The exception mechanism gets rid of some error code.

If you are concerned with source size, make sure to concentrate on these architectural 
aspects. You should also be terse in expressing algorithms, but never skimp on keystrokes 
at the expense of clarity.

The role of convention

Most rules define a single permissible form, with no variants. The few exceptions include 
font use, which is governed by external considerations (what looks good in a book may 
not be visible on overhead transparencies), and semicolons, for which there exist two 
opposite schools with equally forceful arguments (although we will have a few universal 
rules anyway). In all other cases, in line with the introductory methodology chapter’s 
exhortations against wishy-washiness, the rules leave about as much room to doubt as a 
past due reminder from the Internal Revenue Service.

The rules are rooted in a careful analysis of what works and what works less well, 
resulting from many years of observation; some of the rationale will appear in the 
discussion. Even so, some rules may appear arbitrary at first, and indeed in a few cases the 
decision is a matter of taste, so that reasonable persons working from the same 
assumptions may disagree. If you object to one of the recommended conventions, you 
should define your own, provided you explain it in detail and document it explicitly; but 
do think carefully before making such a decision, so obvious are the advantages of abiding 
by a universal set of rules that have been systematically applied to thousands of classes 
over more than ten years, and that many people know and understand.
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The comment was in 
the introduction to 
chapter 23.

Sentence in italics from
D.H. Brandon, “Data 
Processing Organiza-
tion and Manpower 
Planning”, Petrocelli, 
1974, emphasis in 
original. Quoted in 
[Boehm 1981], p. 674.
As noted in an earlier chapter (in the more general context of design principles), 
many of the style rules were originally developed for libraries, and then found their way 
into ordinary software development. In object technology, of course, all software is 
developed under the assumption that even if it is not reusable yet it might eventually be 
made reusable, so it is natural to apply the same style rules right from the start.

Self-practice

Like the design rules of the preceding chapters, the style rules which follow have been 
carefully applied to the many examples of this book. The reasons are obvious: one should 
practice what one preaches; and, more fundamentally, the rules do support clarity of 
thought and expression, which can only be good for a detailed presentation of the object-
oriented method.

The only exceptions are a few occasional departures from the rules on software text 
layout. These rules do not hesitate to spread texts over many lines, for example by 
requiring that every assertion clause have its own label. Lines are not a scarce resource on 
computer screens; it has been observed that with the computer age we are reversing the 
direction of the next-to-last revolution in written communication, the switch from papyrus 
rolls to page-structured books. But this text is definitely a book, structured into pages, and 
a constant application of the layout-related rules would have made it even bigger than it is. 

The cases of self-dispensation affect only two or three layout-related rules, and will 
be noted in their presentation below. Any exception only occurs after the first few 
examples of a construct in the book have applied the rules scrupulously.

Such exceptions are only justified for a paper presentation. Actual software texts 
should apply the rules literally.

Discipline and creativity

It would be a mistake to protest against the rules of this chapter (and others) on the grounds 
that they limit developer creativity. A consistent style favors rather than hampers 
creativity by channeling it to where it matters. A large part of the effort of producing 
software is spent reading existing software and making others read what is being written. 
Individual vagaries benefit no one; common conventions help everyone.

Some of the software engineering literature of the nineteen-seventies propounded 
the idea of “egoless programming”: developing software so that it does not reflect 
anything of its authors’ personality, thereby making developers interchangeable. Applied 
to system design, this goal is clearly undesirable, even if some managers may sometimes 
long for it (as in this extract of a programming management book quoted by Barry Boehm: 
“…the programmer[‘s] creative instincts should be totally dulled to insure uniform and 
understandable programming”, to which Boehm comments: “Given what we know about 
programmers and their growth motivation, such advice is a clear recipe for disaster”).

What quality software requires is egoful design with egoless expression.
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More than style standards, what would seem to require justification is the current 
situation of software development, with its almost total lack of style standards. In no other 
discipline that demands to be called “engineering” is there such room for such broad 
personal variations of whim and fancy. To become more professional, software 
development needs to regulate itself.

26.2  CHOOSING THE RIGHT NAMES

The first aspect that we need to regulate is the choice of names. Feature names, in 
particular, will be strictly controlled for everyone’s benefit.

General rules

What matters most is the names of classes and features which will be used extensively by 
the authors of classes that rely on yours.

For feature and class names, use full words, not abbreviations, unless the 
abbreviations are widely accepted in the application domain. In a class PART describing 
parts in an inventory control system, call number, not num, the feature (query) giving the 
part number. Typing is cheap; software maintenance is expensive. An abbreviation such 
as usa in a Geographical Information System or copter in a flight control system, having 
gained an independent status as a word of its own, is of course acceptable. In addition, a 
few standard abbreviations have gained recognition over the years, such as PART for 
PARTIAL in class names such as PART_COMPARABLE describing objects equipped with 
a partial order relation.

In choosing names, aim for clarity. Do not hesitate to use several words connected 
by underscores, as in ANNUAL_RATE, a class name, or yearly_premium, a feature name.

Although modern languages do not place any limit on the length of identifiers, and 
treat all letters as significant, name length should remain reasonable. Here the rule is not 
the same for classes and for features. Class names are input only occasionally (in class 
headers, type declarations, inheritance clauses and a few other cases) and should describe 
an abstraction as completely as possible, so PRODUCT_QUANTITY_INDEX_
EVALUATOR may be fine. For features, there is seldom a need for more than two or 
possibly three underscore-connected words. In particular, do not overqualify feature 
names. If a feature name appears too long, it is usually because it is overqualified:

The feature giving the part number in class PART should be called just number, not 
part_number. Such over-qualification is a typical beginner’s mistake; the resulting names 

Composite Feature Name rule

Do not include in a feature name the name of the underlying data 
abstraction (which should serve as the class name).
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obscure rather than illuminate the text. Remember that every use of the feature will 
unambiguously indicate the class, as in part1  number where part1 must have been 
declared with a certain type, PART or a descendant.

For composite names, it is better to avoid the style, popularized by Smalltalk and also 
used in such libraries as the X Window System, of joining several words together and 
starting the internal ones with an upper-case letter, as in yearlyPremium. Instead, separate 
components with underscores, as in yearly_ premium. The use of internal upper-case 
letters is ugly; it conflicts with the conventions of ordinary language; and it leads to cryptic 
names, hence to possible errors (compare aLongAndRatherUnreadableIdentifier with
an_even_longer_but_ perfectly_clear_choice_of_name).

Sometimes, every instance of a certain class contains a field representing an instance 
of another class. This suggests using the class name also as attribute name. You may for 
example have defined a class RATE and, in class ACCOUNT, need one attribute of type 
RATE, for which it seems natural to use the name rate — in lower case, according to the 
rules on letter case stated below. Although you should try to find a more specific name, 
you may, if this fails, just declare the feature as rate: RATE. The rules on identifier choice 
explicitly permit assigning the same name to a feature and a class. Avoid the style of 
prefixing the name with the, as in the_rate, which only adds noise.

Local entities and routine arguments

The emphasis on clear, spelled-out names applies to features and classes. Local entities 
and arguments of a routine only have a local scope, so they do not need to be as evocative. 
Names that carry too much meaning might almost decrease the software’s readability by 
giving undue weight to ancillary elements. So it is appropriate to declare local entities 
(here in routines of TWO_WAY_LIST in the Base libraries) as

move (i: INTEGER)
-- Move cursor i positions, or after if i is too large.

local
c: CURSOR; counter: INTEGER; p: like FIRST_ELEMENT

…

remove
-- Remove current item; move cursor to right neighbor (of after if none).

local
succ, pred, removed: like first_element

…

If succ and pred had been features they would have been called successor and 
predecessor. It is also common to use the names new for a local entity representing a new 
object to be created by a routine, and other for an argument representing an object of the 
same type as the current one, as in the declaration for clone in GENERAL:

frozen clone (other: GENERAL): like other is…
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The example of i 
was on page 648.

See the Class Name 
rule on page 727.
Letter case

Letter case is not significant in our notation, as it is too dangerous to let two almost 
identical identifiers denote different things. But strongly recommended guidelines help 
make class texts consistent and readable:

• Class names appear in all upper case: POINT, LINKED_LIST, PRICING_MODEL. 
Formal generic parameters too, usually with just one letter: G.

• Names of non-constant attributes, routines other than once functions, local entities 
and routine arguments appear in all lower case: balance, deposit, succ, i.

• Constant attributes have their first letter in upper case and the rest in lower case: 
Pi: INTEGER = 3.1415926524; Welcome_message: STRING = "Welcome!". This 
applies to unique values, which are constant integers.

• The same convention applies to once functions, the equivalent of constants for non-
basic types: Error_window, Io. Our first example, the complex number i, remained 
in lower case for compatibility with mathematical conventions.

This takes care of developer-chosen names. For reserved words, we distinguish two 
categories. Keywords such as do and class play a strictly syntactic role; they are written in 
lower case, and will appear in boldface (see below) in printed texts. A few reserved words
are not keywords because they carry an associated semantics; written with an initial upper 
case since they are similar to constants, they include Current, Result, Precursor, True and 
False. 

Grammatical categories

Precise rules also govern the grammatical category of the words from which identifiers are 
derived. In some languages, these rules can be applied without any hesitation; in English, 
as noted in an earlier chapter, they will leave more flexibility.

The rule for class names has already been given: you should always use a noun, as 
in ACCOUNT, possibly qualified as in LONG_TERM_SAVINGS_ACCOUNT, except for 
the case of deferred classes describing a structural property, which may use an adjective 
as in NUMERIC or REDEEMABLE.

Routine names should faithfully reflect the Command-Query separation principle:

• Procedures (commands) should be verbs in the infinitive or imperative, possibly 
with complements: make, move, deposit, set_color.

• Attributes and functions (queries) should never be imperative or infinitive verbs; 
never call a query get_value, but just value. Non-boolean query names should be 
nouns, such as number, possibly qualified as in last_month_balance. Boolean 
queries should use adjectives, as in full. In English, because of possible confusions 
between adjectives and verbs (empty, for example, could mean “is this empty?” or 
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command 
names

Standard 
names for non-
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queries
“empty this!”), a frequent convention for boolean queries is the is_ form, as in is_
empty.

Standard names

You will have noted, throughout this book, the recurrence of a few basic names, such as 
put and item. They are an important part of the method.

Many classes will need features representing operations of a few basic kinds: insert 
an element into a structure, replace the value of an element, access a designated element…
Rather than devising specific names for the variants of these operations in every class, it 
is preferable to apply a standard terminology throughout.

Here are the principal standard names. We can start with creation procedures, for 
which the recommended is make for the most common creation procedure of a class. Non-
vanilla creation procedures may be called make_some_qualification, for example make_
polar and make_cartesian for a POINT or COMPLEX class.

For commands the most common names are:

For non-boolean queries (attributes or functions):

extend Add an element.

replace Replace an element.

force Like put but may work in more cases; for example put
for arrays has a precondition to require the index to be 
within bounds, but force has no precondition and will 
resize the array if necessary.

remove Remove an (unspecified) element.

prune Remove a specific element.

wipe_out Remove all elements.

item The basic query for accessing an element: in ARRAY, the 
element at a given index; in STACK classes, the stack 
top; in QUEUE classes, the oldest element; and so on.

infix "@" A synonym for item in a few cases, notably ARRAY.

count Number of usable elements in a structure.

capacity Physical size allocated to a bounded structure, measured 
in number of potential elements. The invariant should 
include 0 <= count and count <= capacity.
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Standard 
names for 
boolean 
queries
For boolean queries:

A few name choices which may seem strange at first are justified by considerations 
of clarity and consistency. For example prune goes with prunable and extend with 
extendible; delete and add might seem more natural, but then s  deletable and s  addable 
would carry the wrong connotation, since the question is not whether s can be deleted or 
added but whether we can add elements to it or delete elements from it. The verbs prune
and extend, with the associated queries, convey the intended meaning.

The benefits of consistent naming

The set of names sketched above is one of the elements that most visibly contribute to the 
distinctive style of software construction developed from the principles of this book.

Is the concern for consistency going too far? One could fear that confusion could 
result from routines that bear the same name but internally do something different. For 
example item for a stack will return the top element, and for an array will return an element 
corresponding to the index specified by the client.

With a systematic approach to O-O software construction, using static typing and 
Design by Contract, this fear is not justified. To learn about a feature, a client author can 
rely on four kinds of property, all present in the short form of the enclosing class:

F1  • Its name.
F2  • Its signature (number and type of arguments if a routine, type of result if a query).
F3  • Its precondition and postcondition if any.
F4  • Its header comment.

A routine also has a body, but that is not part of what client authors are supposed to use.

empty Is the structure devoid of elements?

full Is there no more room in the representation to add 
elements? (Normally the same as count = capacity.)

has Is a certain element present? (The basic membership 
test.)

extendible Can an element be added? (May serve as a precondition 
to extend.)

prunable Can an element be removed? (May serve as a 
precondition to remove and prune.)

readable Is there an accessible element? (May serve as 
precondition to item and remove.)

writable Is it possible to change an element? (May variously 
serve as precondition to extend, replace, put etc.)
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Three of these elements will differ for the variants of a basic operation. For example 
in the short form of class STACK you may find the feature

put (x: G)
-- Push x on top.

require
writable: not full

ensure
not_empty: not empty
pushed: item = x

whereas its namesake will appear in ARRAY as

put (x: G; i: INTEGER)
-- Replace by x the entry of index i

require
not_too_small: i >= lower
not_too_large: i <= upper

ensure
replaced: item (i) = x

The signatures are different (one variant takes an index, the other does not); the 
preconditions are different; the postconditions are different; and the header comments are 
different. Using the same name put, far from creating confusion, draws the reader’s attention 
to the common role of these routines: both provide the basic element change mechanism.

This consistency has turned out to be one of the most attractive aspects of the method 
and in particular of the libraries. New users take to it quickly; then, when exploring a new 
class which follows the standard style, they feel immediately at home and can zero in on 
the features that they need.

26.3  USING CONSTANTS

Many algorithms will rely on constants. As was noted in an early chapter of this book, 
constants are widely known for the detestable practice of changing their values; we should 
prepare ourselves against the consequences of such fickleness.

Manifest and symbolic constants

The basic rule is that uses of constants should not explicitly rely on the value:

Symbolic Constant principle

Do not use a manifest constant, other than the zero elements of basic 
operations, in any construct other than a symbolic constant declaration.
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In this principle, a manifest constant is a constant given explicitly by its value, as 
in 50 (integer constant) or "Cannot find file" (string constant). The principle bars using 
instructions of the form

population_array  make (1, 50)

or

print ("Cannot find file") -- See mitigating comment below about this case

Instead, you should declare the corresponding constant attributes, and then, in the 
bodies of the routines that need the values, denote them through the attribute names:

US_state_count: INTEGER = 50
File_not_found: STRING = "Cannot find file"
…
population_array  make (1, state_count)
…
print (file_not_found)

The advantage is obvious: if a new state is added, or the message needs to be 
changed, you have only have to update one easy-to-locate declaration.

The use of 1 together with state_count in the first instruction is not a violation of the 
principle, since its prohibition applies to manifest constants “other than zero elements of 
basic operations”. These zero elements, which you may use in manifest form, include the 
integers 0 and 1 (zero elements of addition and multiplication), the real number 0.0, the 
null character written '%0', the empty string " ". Using a symbolic constant One every time 
you need to refer to the lower bound of an array (1 using the default convention) would 
lead to an unsustainable style — pedantic, and in fact less readable because of its verbosity. 
Sometimes, Freud is supposed to have said, a cigar is just a cigar; sometimes One is just 1.

Some other times 1 is just a system parameter that happens to have the value one today 
but could become 4,652 later — its role as addition’s zero element being irrelevant. Then 
it should be declared as a symbolic constant, as in Processor_count: INTEGER = 1 in a 
system that supports multiple processors and is initially applied to one processor. 

The Symbolic Constant principle may be judged too harsh in the case of simple 
manifest strings used just once, such as "Cannot find file" above. Some readers may want 
to add this case to the exception already stated in the principle (replacing the qualification 
by “other than manifest string constants used only once in the same class, and zero 
elements of basic operations”). This book has indeed employed a few manifest constants 
in simple examples. Such a relaxation of the rule is acceptable, but in the long run it is 
probably preferable to stick to the rule as originally given even if the result for string 
constants looks a little pedantic at times. One of the principal uses of string constants, after 
all, is for messages to be output to users; when a successful system initially written for the 
home market undergoes internationalization, it will be that much less translation work if 
all the user-visible message strings (at least any of them that actually appear in the 
software text) have been put in symbolic constant declarations.
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See “Facility inher-
itance”, page 832.
Where to put constant declarations

If you need more than a handful of local constant attributes in a class, you have probably 
uncovered a data abstraction — a certain concept characterized by a number of numeric 
or character parameters.

It is desirable, then, to group the constant declarations into a class, which can serve 
as ancestor to any class needing the constants (although some O-O designers prefer to use 
the client relation in this case). An example in the Base libraries is the class ASCII, which 
declares constant attributes for the different characters in the ASCII character set and 
associated properties.

26.4  HEADER COMMENTS AND NOTE CLAUSES

Although the formal elements of a class text should give as much as possible of the 
information about a class, they must be accompanied by informal explanations. Header 
comments of routines and feature clause answer this need together with the note clause of 
each class.

Routine header comments: an exercise in corporate downsizing

Like those New York street signs that read “Don’t even think of parking here!”, the sign at 
the entrance of your software department should warn “Don’t even think of writing a routine 
without a header comment”. The header comment, coming just after the signature of the 
routine, expresses its purpose concisely; it will be kept by the short and flat-short forms:

distance_to_origin: REAL

-- Distance to point (0, 0)
local

origin: POINT

do
create origin

Result := distance (origin)
end

Note the indentation: one step further than the start of the routine body, so that the 
comment stands out.

Header comments should be informative, clear, and terse. They have a whole style 
of their own, which we can learn by looking at an initially imperfect example and improve 
it step by step. In a class CIRCLE we might start with
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Warning: not the 
recommended style 
for header com-
ments!

Not the recom-
mended style.

Not yet…

Still not it…

Almost there, but 
not quite…
tangent_ from (p: POINT): LINE
-- Return the tangent line to the current circle going through the point p,
-- if the point is outside of the current circle.

require
outside_circle: not has (p)

…

There are many things wrong here. First, the comment for a query, as here, should 
not start with “Return the…” or “Compute the…”, or in general use a verbal form; this 
would go against the Command-Query Separation principle. Simply name what the query 
returns, typically using a qualified noun for a non-boolean query (we will see below what 
to use for a boolean query and a command). Here we get:

-- The tangent line to the current circle going through the point p,
-- if the point p is outside of the current circle

Since the comment is not a sentence but simply a qualified noun, the final period 
disappears. Next we can get rid of the auxiliary words, especially the, where they are not 
required for understandability. Telegram-like style is desirable for comments. (Remember 
that readers in search of literary frills can always choose Proust novels instead.)

--Tangent line to current circle from point p,
-- if point p is outside current circle

The next mistake is to have included, in the second line, the condition for the routine’s 
applicability; the precondition, not has (p), which will be retained in the short form where 
it appears just after the header comment, expresses this condition clearly and 
unambiguously. There is no need to paraphrase it: this could lead to confusion, if the 
informal phrasing seems to contradict the formal precondition, or even to errors (a common 
oversight is a precondition of the form x >= 0 with a comment stating “applicable only to 
positive x”, rather than “non-negative”); and there is always a risk that during the software’s 
evolution the precondition will be updated but not the comment. Our example becomes:

-- Tangent line to current circle from point p.

Yet another mistake is to have used the words line to refer to the result and point to 
refer to the argument: this information is immediately obvious from the declared types, 
LINE and POINT. With a typed notation we can rely on the formal type declarations — 
which again will appear in the short form — to express such properties; repeating them in 
the informal text brings nothing. So:

-- Tangent to current circle from p.

The mistakes of repeating type information and of duplicating the precondition’s 
requirements point to the same general rule: in writing header comments, assume the 
reader is competent in the fundamentals of the technology; do not include information that 
is obvious from the immediately adjacent short form text. This does not mean, of course, 
that you should never specify a type; the earlier example, -- Distance to point (0,0), could 
be ambiguous without the word point. 



A SENSE OF STYLE  §26.4 888

This is it.
When you need to refer to the current object represented by a class, use phrasing such 
as current circle, current number and so on as above, rather than referring explicitly to the 
entity Current. In many cases, however, you can avoid mentioning the current object 
altogether, since it is clear to everyone who can read a class text that features apply to the 
current object. Here, for example, we just need

-- Tangent from p.

At this stage — three words, starting from twenty-two, an 87% reduction that would 
make the toughest Wall Street exponent of corporate downsizing jealous — it seems hard 
to get terser and we can leave our comment alone. 

A few more general guidelines. We have noted the uselessness of “Return the …” in 
queries; other noise words and phrases to be avoided in routines of all kinds include “This 
routine computes…”, “This routine returns…”; just say what the routine does, not that it 
does it. Instead of

-- This routine records the last outgoing call.
write 

-- Record outgoing call.
As illustrated by this example, header comments for commands (procedures) should 

be in the imperative or infinitive (the same in English), in the style of marching orders. 
They should end with a period. For boolean-valued queries, the comment should always 
be in the form of a question, terminated by a question mark:

has (v: G): BOOLEAN
-- Does v appear in list?

…
A convention governs the use of software entities — attributes, arguments — 

appearing in comments. In typeset texts such as the above they will appear in italics (more 
on font conventions below); in the source text they should always appear between an 
opening quote (“backquote”) and a closing quote; the original text for the example is then:

-- Does ‘v’ appear in list?
Tools such as the short class abstracter will recognize this convention when 

generating typeset output. Note that the two quotes should be different: ‘v’, not ’v’.

Be consistent. If a function of a class has the comment Length of string, a routine of 
the same class should not say Update width of string if it affects the same property. 

All these guidelines apply to routines. Because an exported attribute should be 
externally indistinguishable from argumentless functions — remember the Uniform 
Access principle — it should also have a comment, which will appear on the line 
following the attribute’s declaration, with the same indentation as for functions:

count: INTEGER
-- Number of students in course

For secret attributes a comment is desirable too but the rule is less strict.



§26.4   HEADER COMMENTS AND NOTE CLAUSES 889

“Operands and 
options”, page 766.
Feature clause header comments

As you will remember, a class may have any number of feature clauses:

note
…

class LINKED_LIST [G] inherit … creation
… 

feature -- Initialization
make …

feature -- Access
item: G …
…

feature -- Status report
before: BOOLEAN …
…

feature -- Status setting
…

feature -- Element change
put_left (v: G) …
…

feature -- Removal
remove …
…

feature {NONE} -- Implementation
first_element: LINKABLE [G].
…

end
One of the purposes of having several feature clauses is to allow different features to 

have different export privileges; in this example everything is generally available except 
the secret features in the last clause. But another consequence of this convention is that 
you could, and should, group features by categories. A comment on the same line as the 
keyword feature should characterize the category. Such comments are, like header 
comments of routines, recognized an preserved by documentation tools such as short.

Eighteen categories and the corresponding comments have been standardized for the 
Base libraries, so that every feature (out of about 2000 in all) belongs to one of them. The 
example above illustrates some of the most important categories. Status report corresponds 
to options (set by features in the Status setting category, not included in the example). 
Secret and selectively exported features appear in the Implementation category. These 
standard categories always appear in the same order, which the tools know (through a user-
editable list) and will preserve or reinstate in their output. Within each category, the tools 
list the features alphabetically for ease of retrieval.

The categories cover a wide range of application domains, although for special areas 
you may need to add your own categories.
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Note clauses were 
previewed in “A 
note about compo-
nent indexing”, 
page 78.

“Self-Documenta-
tion”, page 54.

More details in 
[M 1994a].
Note clauses

Similar to header comments but slightly more formal are note clauses, appearing at the 
beginning of a class:

note
description: "Sequential lists, in chained representation"
names: "Sequence", "List"
contents: GENERIC
representation: chained
date: "$Date: 96/10/20 12:21:03 $"
revision: "$Revision: 2.4$"
…

class LINKED_LIST [G] inherit
…

Note clauses proceed from the same Self-Documentation principle (which also leads 
to built-in assertions and header comments): include as much as possible of the 
documentation in the software itself. For properties that do not directly appear in the 
formal text, you may include note entries, all of the form

indexing_term: indexing_value, indexing_value, …

where the indexing_term is an identifier and each indexing_value is some basic element 
such as a string, an integer and so on. Entries can indicate alternative names under which 
potential client authors might search for the class (names), contents type (contents), 
implementation choices (representation), revision control information, author 
information, and anything else that may facilitate understanding the class and retrieving it 
through keyword-based search tools — tools that support reuse and enable software 
developers to find their way through a potentially rich set of reusable components.

Both the indexing terms and the indexing values are free-form, but the possible 
choices should be standardized for each project. A set of standard choices has been used 
throughout the Base libraries; the above example illustrates six of the most common entry 
kinds. Every class must have a description entry, introducing as index_value a string 
describing the role of the class, always expressed in terms of the instances (as Sequential 
lists…, not “this class describes sequential lists”, or “sequential list”, or “the notion of 
sequential list” etc.). Most significant class texts in this book — but not short examples 
illustrating a specific point — include the description entry.

Non-header comments

The preceding rules on comments applied to standardized comments, appearing at 
specific places — feature declarations and beginning of feature clauses — and playing a 
special role for class documentation.
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As in all forms of software development, there is also a need for comments within 
routine bodies, to provide further explanations

Another use of comments, although frequent in the practice of software development, 
does not figure much in software engineering and programming methodology textbooks. 
I am referring here to the technique of transforming some part of the code into comments, 
either because it does not work, or because it is not ready yet. This practice is clearly a 
substitute for better tools and techniques of configuration management. It has enriched the 
language with a new verb form, comment out, whose potential, surprisingly enough, has 
not yet been picked up by hip journalists, even though the non-technical applications seem 
attractive and indeed endless: “The last elections have enabled Congress to comment out
the President”, “Letterman was commented out of the Academy Awards”, and so on.

Every comment should be of a level of abstraction higher than the code it documents. 
A famous counter-example is -- Increase i by 1 commenting the instruction i := i + 1. 
Although not always that extreme, the practice of writing comments that paraphrase the 
code instead of summarizing its effect is still common.

Low-level languages cry for ample commenting. It is a good rule of thumb, for 
example, that for each line of C there should be a comment line; not a negative reflection 
on C, but a consequence that in modern software development the role of C is to 
encapsulate machine-oriented and operating-system-level operations, which are tricky by 
nature and require a heavy explanatory apparatus. In the O-O part, non-header comments 
will appear much more sparsely; they remain useful when you need to explain some 
delicate operation or foresee possible confusion. In its constant effort to favor prevention 
over cure, the method decreases the need for comments through a modular style that yields 
small, understandable routines, and through its assertion mechanisms: preconditions and 
postconditions of routines, to express their semantics formally; class invariants; check
instructions to express properties expected to hold at certain stages; the systematic naming 
conventions introduced earlier in this chapter. More generally, the secret of clear, 
understandable software is not adding comments after the fact but devising coherent and 
stable system structures right from the start.

26.5  TEXT LAYOUT AND PRESENTATION
The next set of rules affects how we should physically write our software texts on paper 
— real, or simulated on a screen. More than any others, they prompt cries of “Cosmetics!”; 
but such cosmetics should be as important to software developers as Christian Dior’s are 
to his customers. They play no little role in determining how quickly and accurately your 
software will be understood by its readers — maintainers, reusers, customers.

Layout 

The recommended layout of texts results from the general form of the syntax of our 
notation, which is roughly what is known as an “operator grammar”, meaning that a class 
text is a sequence of symbols alternating between “operators” and “operands”. An 
operator is a fixed language symbol, such as a keyword (do etc.) or a separator (semicolon, 
comma …); an operand is a programmer-chosen symbol (identifier or constant).
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The comb-like 
structure of 
software texts
Based on this property, the textual layout of the notation follows the comb-like 
structure introduced by Ada; the idea is that a syntactically meaningful part of a class, 
such as an instruction or an expression, should either:

• Fit on a line together with a preceding and succeeding operators.

• Be indented just by itself on one or more lines — organized so as to observe the same 
rules recursively.

Each branch of the comb is a sequence of alternating operators and operands; it 
should normally begin and end with an operator. In the space between two branches you 
find either a single operand or, recursively, a similar comb-like structure.

As an example, depending on the size of its constituents a, b and c, you may spread 
out a conditional instruction as 

if c then a else b end
or 

if
c

then
a

else
b

end
or 

if c then
a

else b end

Operand

Operator
(keyword,
separator etc.)
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You would not, however, use a line containing just if c or c end, since they include 
an operand together with something else, and are missing an ending operator in the first 
case and a starting operator in the second.

Similarly, you may start a class, after the note clause, with

class C inherit -- [1]

or

class C feature -- [2]

or

class -- [3]
C

feature
but not

class C -- [4]
feature

because the first line would violate the rule. Forms [1] and [2] are used in this book for 
small illustrative classes; since most practical classes have one or more labeled feature
clauses, they should in the absence of an inherit clause use form [3] (rather than [2]):

class
C

feature -- Initialization
…

feature -- Access
etc.

Height and width

Like most modern languages, our notation does not attach any particular significance to 
line separations except to terminate comments, so that you can include two or more 
instructions (or two or more declarations) on a single line, separated by semicolons:

count := count + 1; forth
This style is for some reason not very popular (and many tools for estimating 

software size still measure lines rather than syntactical units); most developers seem to 
prefer having one instruction per line. It is indeed not desirable to pack texts very tightly; 
but in some cases a group of two or three short, closely related instructions can be more 
readable if they all appear on one line.

In this area it is best to defer to your judgment and good taste. If you do apply intra-
line grouping, make sure that it remains moderate, and consistent with the logical relations 
between instructions. The Semicolon Style principle seen later in this chapter requires any 
same-line instructions to be separated by a semicolon.
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A layout 
example

Note: this class 
has no useful 
semantics!
For obvious reasons of space, this book makes a fair use of intra-line grouping, 
consistent with these guidelines. It also avoids splitting multi-line instructions into more 
lines than necessary; on this point one can recommend the book’s style for general use: 
there is really no reason to split from i:= 1 invariant i <= n until i = n loop or 
if a = b then. Whatever your personal taste, do observe the Comb structure.

Indenting details

The comb structure uses indentation, achieved through tab characters (not spaces, which 
are messy, error-prone, and not reader-parameterizable).

Here are the indentation levels for the basic kinds of construct, illustrated by the 
example on the facing page:

• Level 0: the keywords introducing the primitive clauses of a class. This includes 
note (beginning of a note clause), class (beginning of the class body), feature
(beginning of a feature clause, except if on the same line as class), invariant
(beginning of an invariant clause, not yet seen) and the final end of a class.

• Level 1: beginning of a feature declaration; note entries; invariant clauses.
• Level 2: the keywords starting the successive clauses of a routine. This includes 

require, local, do, once, ensure, rescue, end.
• Level 3: the header comment for a routine or (for consistency) attribute; declarations 

of local entities in a routine; first-level instructions of a routine.
Within a routine body there may be further indentation due to the nesting of control 

structures. For example the earlier if a then … instruction contains two branches, each of 
them indented. These branches could themselves contain loops or conditional instructions, 
leading to further nesting (although the style of object-oriented software construction 
developed in this book leads to simple routines, seldom reaching high levels of nesting).

A check instruction is indented, together with the justifying comment that normally 
follows it, one level to the right of the instruction that it guards.

note
description: "Example for formating"

class EXAMPLE inherit
MY_PARENT

redefine f1, f2 end
MY_OTHER_PARENT

rename
g1 as old_g1, g2 as old_g2

redefine
g1

select
g2

end
creation

make
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feature -- Initialization
make

-- Do something.
require

some_condition: correct (x)
local

my_entity: MY_TYPE
do

if a then
b; c

else
other_routine

check max2 > max1 + x ^ 2 end
-- Because of the postcondition of other_routine.

new_value := old_value / (max2 – max1)
end

end
feature -- Access

my_attribute: SOME_TYPE
-- Explanation of its role (aligned with comment for make) 

… Other feature declarations and feature clauses …
invariant

upper_bound: x <= y
end
Note the trailer comment after the end of the class, a systematic convention.

Spaces

White space contributes as much to the effect produced by a software text as silence to the 
effect of a musical piece.

The general rule, for simplicity and ease of remembering, is to follow as closely as 
possible the practice of standard written language. By default we will assume this 
language to be English, although it may be appropriate to adapt the conventions to the 
slightly different rules of other languages.

Here are some of the consequences. You will use a space:

• Before an opening parenthesis, but not after: f  (x) (not f (x), the C style, or f (  x)).
• After a closing parenthesis unless the next character is a punctuation sign such as a 

period or semicolon; but not before. Hence: proc1 (x); x := f1 (x) + f2 (y)
• After a comma but not before: g (x, y, z).
• After the two dash signs that start a comment: -- A comment.
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Similarly, the default rule for semicolons is to use a space after but not before:

p1; p2 (x); p3 (y, z)

Here, however, some people prefer, even for English-based software texts, the 
French style of including a space both before and after, which makes the semicolon stand 
out and emphasizes the symmetry between the components before and after it:

p1 ; p2 (x) ; p3 (y, z)

Choose either style, but then use it consistently. (This book uses the English style.) 
English and French styles have the same difference for colons as for semicolons; since, 
however, the software notation only uses colons for declarations, in which the two parts 
— the entity being declared and its type — do not play a symmetric role, it seems 
preferable to stick to the English style, as in your_entity: YOUR_TYPE.

Spaces should appear before and after arithmetic operators, as in a + b. (For space 
reasons, this book has omitted the spaces in a few cases, all of the form n+1.)

For periods the notation departs from the conventions of ordinary written language 
since it uses periods for a special construct, as originally introduced by Simula. As you 
know, a  r means: apply feature r to the object attached to a. In this case there is a space 
neither before nor after the period. To avoid any confusion, this book makes the period 
bigger, as illustrated:  “  ” rather than just “.”.

There is another use of the period: as decimal point in real numbers, such as 3.14. 
Here, to avoid any confusion, the period is not made any bigger.

Some European languages use a comma rather than a period as the separator between 
integral and fractional parts of numbers. Here the conflict is irreconcilable, as in English the 
comma serves to separate parts of big numbers, as in “300,000 dollars”, where other 
languages would use a space. The committee discussions for Algol 60 almost collapsed 
when some continental members refused to bow to the majority’s choice of the period; the 
stalemate was resolved when someone suggested distinguishing between a reference 
language, fixed, and representation languages, parameterizable. (In retrospect, not such a 
great idea, at least not if you ever have to compile the same program in two different 
countries!) Today, few people would make this a point of contention, as the spread of digital 
watches and calculators built for world markets have accustomed almost everyone to 
alternate between competing conventions.

Precedence and parentheses

The precedence conventions of the notation conform to tradition and to the “Principle of 
Least Surprise” to avoid errors and ambiguities.

Do not hesitate, however, to add parentheses for clarity; for example you may write 
(a = (b + c)) implies (u /= v) even though the meaning of that expression would be the same 
if all parentheses were removed. The examples in this book have systematically over-
parenthesized expressions, in particular assertions, risking heaviness to avert uncertainty.
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The article is a 
study by Gannon 
and Horning 
[Gannon 1975].
The War of the Semicolons

Two clans inhabit the computing world, and the hatred between them is as ferocious as it 
is ancient. The Separatists, following Algol 60 and Pascal, fight for the recognition of the 
semicolon as a separator between instructions; the Terminatists, rallied behind the 
contrasting flags of PL/I, C and Ada, want to put a semicolon behind every instruction.

Each side’s arguments are endlessly relayed by its propaganda machine. The 
Terminatists worship uniformity: if every instruction is terminated by the same marker, no 
one ever has to ask the question “do I need a semicolon here?” (the answer in Terminatist 
languages is always yes, and anyone who forgets a semicolon is immediately beheaded for 
high treason). They do not want to have to add or remove a semicolon because an 
instruction has been moved from one syntactical location to another, for example if it has 
been brought into a conditional instruction or taken out of it.

The Separatists praise the elegance of their convention and its compatibility with 
mathematical practices. They see do instruction1; instruction2; instruction3 end as the 
natural counterpart of f (argument1, argument2, argument3). Who in his right mind, they 
ask, would prefer f (argument1, argument2, argument3,) with a superfluous final comma? 
They contend, furthermore, that the Terminatists are just a front for the Compilists, a cruel 
people whose only goal is to make life easy for compiler writers, even if that means 
making it hard for application developers.

The Separatists constantly have to fight against innuendo, for example the 
contention that Separatist languages will prevent you from including extra semicolons. 
Again and again they must repeat the truth: that every Separatist language worthy of the 
name, beginning with the venerated Patriarch of the tribe, Algol 60, has supported the 
notion of empty instruction, permitting all of

a; b; c
a; b; c; 
; a ;; b ;;; c; 

to be equally valid, and to mean exactly the same thing, as they only differ by the extra 
empty instructions of the last two variants, which any decent compiler will discard 
anyway. They like to point out how much more tolerant this convention makes them: 
whereas their fanatical neighbors will use any missing semicolon as an excuse for renewed 
attacks, the Separatists will gladly accept as many extra semicolons as a Terminatist 
transfuge may still, out of habit, drop into an outwardly Separatist text.

Modern propaganda needs science and statistics, so the Terminatists have their own 
experimental study, cited everywhere (in particular as the justification for the Terminatist 
convention of the Ada language): a 1975 measurement of the errors made by two groups 
of 25 programmers each, using languages that, among other distinguishing traits, treated 
semicolons differently. The results show the Separatist style causing almost ten times as 
many errors! Starting to feel the heat of incessant enemy broadcasts, the Separatist 
leadership turned for help to the author of the present book, who remembered a long-
forgotten principle: quoting is good, but reading is better. So he fearlessly went back to 
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Exercise E26.2, 
page 902.
the original article and discovered that the Separatist language used in the comparison — 
a mini-language meant only for “teaching students the concepts of asynchronous 
processes” — treats an extra semicolon after the final instruction of a compound, as in 
begin a; b; end, as an error! No real Separatist language, as noted above, has ever had such 
a rule, which would be absurd in any circumstance (as an extra semicolon is obviously 
harmless), and is even more so in the context of the article’s experiment since some of the 
subjects apparently had Terminatist experience from PL/I and so would have been 
naturally prone to add a few semicolons here and there. It then seems likely, although the 
article gives no data on this point, that many of the semicolon errors were a result of such 
normally harmless additions — enough to disqualify the experiment, once and for all, as 
a meaningful basis for defending Terminatism over Separatism. 

On some of the other issues it studies, the article is not marred by such flaws in its test 
languages, so that it still makes good reading for people interested in language design.

All this shows, however, that it is dangerous to take sides in such a sensitive debate, 
especially for someone who takes pride in having friends in both camps. The solution 
adopted by the notation of this book is radical:

“Almost” because of a few rare cases, not encountered in this book, in which omitting the 
semicolon would cause a syntactical ambiguity.

The Semicolon Syntax rule means you can choose your style:

• Terminatist: every instruction, declaration or assertion clause ends with a semicolon.

• Separatist: semicolons appear between successive elements but not, for example, 
after the last declaration of a feature or local clause.

• Moderately Separatist: like the Separatist style, but not worrying about extra 
semicolons that may appear as a result of habit or of elements being moved from one 
context to another.

• Discardist: no semicolons at all (except as per the Semicolon Style principle below).

This is one of the areas where it is preferable to let each user of the notation follow 
his own inclination, as the choice cannot cause serious damage. But do stick, at least 
across a class and preferably across an entire library or application, to the style that you 
have chosen (although this will not mean much for the Moderately Separatist style, which 
is by definition lax), and observe the following principle:

Semicolon Syntax rule

Semicolons, as markers to delimit instructions, declarations or assertion 
clauses, are optional in almost all the positions where they may appear in the 
notation of this book.
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See “Monitoring 
assertions at run 
time”, page 392.
The second clause governs elements that appear two or more to a line, as in
found := found + 1; forth

which should always include the semicolon; omitting it would make the line quite confusing.
Just for once, this discussion has no advice here, letting you decide which of the four 

styles you prefer. Since the earliest version of the notation required semicolons — in other 
words, it had not yet been tuned to support the Semicolon Syntax rule — the first edition 
of this book used a Separatist style. For the present one I dabbled into a few experiments; 
after polling a sizable group of co-workers and experienced users of the notation, I found 
(apart from a handful of Terminatists) an almost equal number of Discardists and 
Separatists. Some of the Discardists were very forceful, in particular a university professor 
who said that the main reason his students loved the notation is that they do not need 
semicolons — a comment which any future language designer, with or without grandiose 
plans, should find instructive or at least sobering.

You should defer to your own taste as long as it is consistent and respects the 
Semicolon Style principle. (As to this book: for a while I stuck to the original Separatist 
style, more out of habit than of real commitment; then, hearing the approach of the third 
millenium and its call to start a new life free of antique superstitions, I removed all the 
semicolons over a single night of utter debauchery.)

Assertions

You should label assertion clauses to make the text more readable:
require

not_too_small: index >= lower
This convention also helps produce useful information during testing and debugging 

since, as you will remember, the assertion label will be included in the run-time message 
produced if you have enabled monitoring of assertions and one of them gets violated.

This convention will spread an assertion across as many lines as it has clauses. As a 
consequence, it is one of the rules to which the present book has made a few exceptions, 
again in the interest of saving space. When collapsing several clauses on one line, you 
should actually remove the labels for readability:

require
index >= lower; index <= upper

In normal circumstances, that is to say for software texts rather than a printed 
textbook, better stick to the official rule and have one labeled clause per line.

Semicolon Style principle
If you elect to include semicolons as terminators (Terminatist style), do so 
for all applicable elements. 
If you elect to forego semicolons, use them only when syntactically 
unavoidable, or to separate elements that appear on the same line.
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26.6  FONTS

In typeset software texts, the following conventions, used throughout this book and related 
publications, are recommended.

Basic font rules

Print software elements (class names, feature names, entities…) in italics to distinguish 
them from non-software text elements. This facilitates their inclusion in sentences of the 
non-software text, such as “We can see that the feature number is a query, not an attribute”. 
(The word number denotes the name of the feature; you do not want to mislead your reader 
into believing that you are talking about the number of features!)

Keywords, such as class, feature, invariant and the like, appear in boldface.

This was also the convention of the first edition of this book. At some stage it seemed 
preferable to use boldface italics which blends more nicely with italics. What was 
esthetically pleasing, however, turned out to hamper quality; some readers complained 
that the keywords did not stand out clearly enough, hence the return to the original 
convention. This is a regrettable case of fickleness. [M 1994a] and a handful of books by 
other authors show the intermediate convention.

Keywords play a purely syntactic role: they have no semantics of their own but 
delimit those elements, such as feature and class names, that do carry a semantic value. As 
noted earlier in this chapter, there are also a few non-keyword reserved words, such as 
Current and Result, which have a denotation of their own — expressions or entities. They 
are written in non-bold italics, with an initial upper-case letter.

Following the tradition of mathematics, symbols — colons and semicolons : ;, 
brackets [ ], parentheses ( ), braces { }, question and exclamation marks ? ! and so on — 
should always appear in roman (straight), even when they separate text in italics. Like 
keywords, they are purely syntactic elements.

Comments appear in roman. This avoids any ambiguity when a feature name — 
which, according to the principles seen earlier, will normally be a word from ordinary 
language — or an argument name appears in a comment; the feature name will be in italics 
and hence will stand out. For example:

accelerate (s: SPEED; t: REAL)
-- Bring speed to s in at most t seconds.

…

set_number (n: INTEGER)
-- Make n the new value of number.

…
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In the software text itself, where no font variations are possible, such occurrences of 
formal elements in comments should follow a specific convention already mentioned 
earlier: they will appear preceded by a back quote ‘ and followed by a normal quote ’ , as in

-- Make ‘n’ the new value of ‘number’.
(Remember that you must use two different quote characters for opening and 

closing.) Tools that process class texts and can produce typeset output, such as short and
flat, know this convention and so can make sure the quoted elements are printed in italics.

Other font conventions
The preceding font conventions work well for a book, an article or a Web page. Some 
contexts, however, may call for different approaches. In particular, elements in plain 
italics, and sometimes even bold italics, are not always readable when projected on a 
projection screen, especially if what you are projecting is the output of a laptop computer 
with a relatively small display.

In such cases I have come to using the following conventions:
• Use non-italics boldface for everything, as this projects best.
• Choose a wide enough font, such as Bookman (for which boldface may be called 

“demibold”).
• Instead of italics versus roman versus bold, use color to distinguish the various 

elements: keywords in black; comments in red; the rest (entities, feature names, 
expressions…) in blue. More colors can be used to highlight special elements.
These conventions seem to work well, although there is always room for 

improvement, and new media will undoubtedly prompt new conventions.

Color
The particularly attentive reader may by now have come to notice another convention used 
by this book: for added clarity, all formal elements — software texts or text extracts, but 
also mathematical elements — appear in color. This technique, which of course cannot be 
presented as a general requirement, enhances the effect of the rules seen so far on font usage.

26.7  BIBLIOGRAPHICAL NOTES
[Waldén 1995] is the source of the idea of showing by example that even a longer 
separated_by_underscores identifier is easier to read than an internalUpperCase identifier.

[Gannon 1975] is an experimental study of the effect of various language design 
choices on error rates.

The rules on standard feature names were first presented in [M 1990b] and are 
developed in detail in [M 1994a].

I received important comments from Richard Wiener on students’ appreciation of 
the optionality of semicolons, and from Kim Waldén on the respective merits of bold 
italics and plain bold.
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EXERCISES

E26.1  Header comment style

Rewrite the following header comments in the proper style:

reorder (s: SUPPLIER; t: TIME)
-- Reorders the current part from supplier s, to be delivered
-- on time t; this routine will only work if t is a time in the future.

require
not_in_past: t >= Now

…
next_reorder_date: TIME

-- Yields the next time at which the current part is scheduled
-- to be reordered.

E26.2  Semicolon ambiguity

Can you think of a case in which omitting a semicolon between two instructions or assertions 
could cause syntactic ambiguity, or at least confuse a simple-minded parser? (Hint: a feature 
call can have as its target a parenthesized expression, as in (vector1 + vector2)   count.)



27  
Object-oriented analysis
F ocused initially on the implementation aspects of software construction, the object-
oriented method quickly expanded to cover the totality of the software lifecycle. Of 
particular interest has been the application of O-O ideas to the modeling of software 
systems, or even of non-software systems and issues. This use of object technology to 
present problems rather than solutions is known as object-oriented analysis.

In the past few years, many books have appeared on the topic and many specific 
methods of object-oriented analysis have been proposed. The bibliography section lists 
some of the best-known books, and Web addresses for some of the best-known methods.

Most of the concepts introduced in the preceding chapters are directly relevant to 
object-oriented analysis. Here we will briefly review what make object-oriented analysis
special among other object-oriented topics, and what makes object-oriented analysis 
different from other analysis methods.

Two points of terminology to avoid imagining differences where none exist. First, 
you will encounter, as a synonym for “analysis”, the term system modeling, or just 
modeling. Second, the computing science community tends to use the word specification
where information modeling folks talk about analysis; in particular, computing scientists 
have devoted considerable efforts to devising methods and languages for formal 
specification using mathematical techniques for purposes of system modeling. The goals 
are the same, although the techniques may differ. In the past few years the two 
communities — information modelers and formal specifiers — have been paying more 
attention to each other’s contributions.

27.1  THE GOALS OF ANALYSIS

To understand analysis issues we must be aware of the roles of analysis in software 
development and define requirements on an analysis method.

Tasks

By devoting time to analysis and producing analysis documents we pursue seven goals:
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If analysis is being applied to a non-software system, or independently of a decision 
to build a software system, A1, A2 and A3 may be the only relevant goals.

For a software system, the list assumes that analysis follows a stage of feasibility 
study which has resulted in a decision to build a system. If, as sometimes happens, the two 
stages are merged into one (not an absurd proposition, since you may need an in-depth 
analysis to determine whether a satisfactory result is conceivable), the list needs another 
item: A0, deciding whether to build a system. 

Although related, the goals listed are distinct, prompting us in the rest of this chapter 
to look for a set of complementary techniques; what is good for one of the goals may be 
irrelevant to another.

Goals A2 and A3 are the least well covered in the analysis literature and deserve all 
the emphasis they can get. One of the primary benefits of an analysis process, 
independently of any document that it produces in the end, is that it leads you to ask the 
relevant questions (A2): what is the maximum acceptable temperature? What are the 
recognized categories of employees? How are bonds handled differently from stocks? By 
providing you with a framework, which you will have to fill using input from people 
competent in the application domain, an analysis method will help spot and remove 
obscurities and ambiguities which can be fatal to a development. Nothing is worse than 
discovering, at the last stage of implementation, that the marketing and engineering 
departments of the client company have irreconcilable views of what equipment 
maintenance means, that one of these views was taken by default, and that no one cared 
to check what the actual order giver had in mind. As to A3, a good analysis document will 
be the place to which everyone constantly goes back if delicate questions or conflicting 
interpretations arise during the development process.

Requirements
The practical requirements on the analysis process and supporting notations follow from 
the above list of goals:

Goals of performing analysis
A1 • To understand the problem or problems that the eventual software 

system, if any, should solve.
A2 • To prompt relevant questions about the problem and the system.
A3 • To provide a basis for answering questions about specific properties of 

the problem and system.
A4 • To decide what the system should do.
A5 • To decide what the system should not do.
A6 • To ascertain that the system will satisfy the needs of its users, and define 

acceptance criteria (especially when the system is developed for an 
outside customer under a contractual relationship).

A7 • To provide a basis for the development of the system.



§27.1   THE GOALS OF ANALYSIS 905
• There must be a way to let non-software people contribute input to the analysis, 
examine the results and discuss them (A1, A2).

• The analysis must also have a form that is directly usable by software developers (A7).

• The approach must scale up (A1).

• The analysis notation must be able to express precise properties unambiguously (A3).

• It must enable readers to get a quick glimpse of the overall organization of a system 
or subsystem (A1, A7)

Scaling up (the third point) means catering to systems that are complex, large or both 
— the ones for which you most need analysis. The method should enable you to describe 
the high-level structure of the problem or system, and to organize the description over 
several layers of abstraction, so that you can at any time focus on as big or as small a part 
of the system as you wish, while retaining the overall picture. Here, of course, the 
structuring and abstracting facilities of object technology will be precious.

Scaling up also means that the criteria of extendibility and reusability, which have 
guided much of our earlier discussions, are just as applicable to analysis as they are to 
software design and implementation. Systems change, requiring their descriptions to 
follow; and systems are similar to previous systems, prompting us to use libraries of 
specification elements to build their specifications, just as we use libraries of software 
components to build their implementations.

The clouds and the precipice

It is not easy to reconcile the last two requirements of the above list. The conflict, already 
discussed in the context of abstract data types, has plagued analysis methods and 
specification languages as long as they have existed. How do you “express precise 
properties unambiguously” without saying too much? How do you provide readable 
broad-brush structural descriptions without risking vagueness?

The analyst walks on a mountain path. On your left is the mountain top, deep 
ensconced in clouds; this is the realm of the fuzzy. But you must also stay away, on your 
right, from the precipice of overspecification, to which you might be perilously drawn if 
your attempts to be precise tempt you to say too much, especially by giving out 
implementation details instead of external properties of the system.

The risk of overspecification is ever present in the minds of people interested in 
analysis. (It is said that, to gain the upper hand in a debate in this field, you should try 
“Approach X is nice, but isn’t it a tad implementation-oriented  ?” The poor author of X, 
reputation lost, career shattered, will not dare show up in a software gathering for the 
next twenty years.) To avoid this pitfall, analysis methods have tended to err on the side 
of the clouds, relying on formalisms that do a good job of capturing overall structures, 
often through cloud-like graphical notations, but are quite limited when it comes to 
expressing the semantic properties of systems as required to address goal A2 (answering 
precise questions).
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Requirements 
analysis as a 
negotiation
Many of the traditional analysis methods fit this description. Their success comes 
from their ability to list the components of a system and describe their relations 
graphically, making them the software equivalent of the block diagrams of other 
engineering disciplines. But they are not too good at capturing the semantics. For software 
projects this carries a risk: believing that you have completed a successful analysis when 
all you have really done is to define the major components and their relations, leaving out 
many deeper properties of the specification that may turn out to be critical.

Later in this chapter we will study ideas for reconciling the goals of structural 
description and semantic precision.

27.2  THE CHANGING NATURE OF ANALYSIS

Although the object-oriented analysis literature hardly mentions this point, the most 
significant contribution of object technology to analysis is not technical but 
organizational. Object technology does not just provide new ways of doing analysis; it 
affects the very nature of the task and its role in the software process.

This change follows from the method’s emphasis on reusability. If instead of 
assuming that every new project must start from scratch, considering the customer’s 
requirements as the Gospel, we bring into the picture the presence of a regularly growing 
repertory of software components, some obtained (or obtainable) from the outside and 
some developed as a result of in-house projects, the process becomes different: not the 
execution of an order from above, but a negotiation.

The figure suggests this process: the customer starts with a requirement at A; you 
counter with a proposal at B, covering perhaps only part of the requirements, or a slightly 
different form of the requirements, but based for a large part on existing reusable 
components and hence achievable at significantly less cost and sooner. The customer may 
initially find the sacrifice of functionality too large; this opens a haggling phase which 
should eventually lead to an acceptable compromise.

The haggling has always been there, of course. The customer’s requirements were 
the Gospel only in some descriptions of the “software process” in the software engineering 
literature, presenting an ideal view for pedagogical purposes, and perhaps in some 
government contracts. In most normal situations, the developers had some freedom to 
discuss requirements. But with the advent of object technology this officious phenomenon 
becomes an official part of the software development process, and gains new prominence 
with the development of reusable libraries.

Customer

Developer

A

B

(Compromise)
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27.3  THE CONTRIBUTION OF OBJECT TECHNOLOGY
Object technology also affects, of course, the techniques of analysis.

Here the most important thing to learn is that we have almost nothing to learn. The 
framework defined in the preceding chapters has more than enough to get us started with 
modeling. “More than enough” actually means too much: the notation includes an 
operational part, made of two components which we do not need for analysis:

• Instructions (assignments, loops, procedure calls, …) and all that goes with them.
• Routine bodies of the do form (but we do need deferred routines to specify 

operations without giving out their implementation).
If we ignore these imperative elements, we have a powerful system modeling 

method and notation. In particular:
• Classes will enable us to organize our system descriptions around object types, in 

the broad sense of the word “object” defined in preceding chapters (covering not just 
physical objects but also important concepts of the application domain).

• The ADT approach — the idea of characterizing objects by the applicable operations 
and their properties — yields clear, abstract, evolutionary specifications.

• To capture inter-component relations, the two basic mechanisms of “client” and 
inheritance are appropriate. The client relation, in particular, covers such 
information modeling concepts as “part of”, association and aggregation.

• As we saw in the discussion of objects, the distinction between reference and 
expanded clients corresponds to the two basic kinds of modeling association.

• Inheritance — single, multiple and repeated — addresses classification. Even such 
seemingly specialized inheritance mechanisms as renaming will be precious to 
model analysis concepts.

• Assertions are essential to capture what was called above the semantics of systems: 
properties other than structural. Design by Contract is a powerful guide to analysis.

• Libraries of reusable classes will provide us — especially through their higher-level 
deferred classes — with ready-made specification elements.
This does not necessarily mean that the approach seen so far covers all the needs of 

system analysis (a question that will be discussed further below); but it certainly provides 
the right basis. The following example will provide some evidence.

27.4  PROGRAMMING A TV STATION
Let us see concretely how to apply the O-O concepts that we know to pure modeling.

The example involves organizing the schedule of a television station. Because it is 
drawn from a familiar application area, we can start it (although we most likely could not 
complete it) without the benefit of input from “domain experts”, future users etc.; we can 
just, for the analysis exercise, rely on every layperson’s understanding of TV.

Although the effort may be the prelude to the construction of a computerized system 
to manage the station’s programming automatically, this possibility is neither certain nor 
relevant here; we are just interested in modeling.
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See “More on 
implicitness”, page 
149.
Schedules
We concentrate on the schedule for a 24-hour period; the class (data abstraction) 
SCHEDULE presents itself. A schedule contains a sequence of individual program 
segments; let us start with

class SCHEDULE feature
segments: LIST [SEGMENT]

end
When doing analysis we must constantly watch ourselves for fear of lapsing into 

overspecification. Is it overspecifying to use a LIST? No: LIST is a deferred class, 
describing the abstract notion of sequence; and television programming is indeed 
sequential, since one cannot broadcast two segments on the same station at the same time. 
By using LIST we capture a property of the problem, not the solution.

Note in passing the importance of reusability: by using classes such as LIST you 
immediately gain access to a whole set of features describing list operations: commands 
such as put for adding elements, queries such as the number of elements count. Reusability 
is as central to object-oriented analysis as it is to other O-O tasks.

What would be overspecifying here would be to equate the notion of schedule with 
that of list of segments. Object technology, as you will remember from the discussion of 
abstract data types, is implicit; it describes abstractions by listing their properties. Here 
there will certainly be more to a schedule than the list of its segments, so we need a 
separate class. Some of the other features of a schedule present themselves naturally:

note
description: "Twenty-four hour TV schedules"

deferred class SCHEDULE feature
segments: LIST [SEGMENT]

-- The successive segments
deferred 
end

air_time: DATE 
-- Twenty-four hour period for this schedule 

deferred 
end

set_air_time (t: DATE)
-- Assign this schedule to be broadcast at time t.

require
t  in_future

deferred
ensure

air_time = t
end

print
-- Print paper version of schedule.

deferred
end

end
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See “Using asser-
tions for documen-
tation: the short 
form of a class”, 
page 389.
Note the use of deferred bodies. This is appropriate since by nature an analysis 
document is implementation-independent and even design-independent; having no body, 
deferred features are the proper tool. You could, of course, dispense with writing the 
deferred specification and instead use a formalism such as that of short forms. But two 
important arguments justify using the full notation:

• By writing texts that conform to the syntax of the software notation, you can make 
use of all the tools of the supporting software development environment. In 
particular, the compiling mechanism will double up as a precious CASE (computer-
aided software engineering) tool, applying type rules and other validity constraints 
to check the consistency of your specifications and detect contradictions and 
ambiguities; and the browsing and documentation facilities of a good O-O 
environment will be as useful for analysis as they are for design and implementation.

• Using the software notation also means that, should you decide to proceed to the 
design and implementation of a software system, you will be able to follow a smooth 
transition path; your work will be to add new classes, effective versions of the 
deferred features and new features. This supports the seamlessness of the approach, 
discussed in the next chapter.

The class assumes a boolean query in_ future on objects of type DATE; it only allows 
setting air time for future dates. Note our first use of a precondition and postcondition to 
express semantic properties of a system during analysis.

Segments

Rather than continuing to refine and enhance SCHEDULE, let us at this stage switch to 
the notion of SEGMENT. We can start with the following features:

note
description: "Individual fragments of a broadcasting schedule"

deferred class SEGMENT feature

schedule: SCHEDULE deferred end 
-- Schedule to which segment belongs

index: INTEGER deferred end 
-- Position of segment in its schedule

starting_time, ending_time: INTEGER deferred end 
-- Beginning and end of scheduled air time

next: SEGMENT deferred end 
-- Segment to be played next, if any

sponsor: COMPANY deferred end 
-- Segment’s principal sponsor
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rating: INTEGER deferred end 
-- Segment’s rating (for children’s viewing etc.)

… Commands such as change_next, set_sponsor, set_rating omitted …
Minimum_duration: INTEGER = 30 

-- Minimum length of segments, in seconds
Maximum_interval: INTEGER = 2 

-- Maximum time between two successive segments, in seconds
invariant

in_list: (1 <= index) and (index <= schedule  segments  count)
in_schedule: schedule  segments  item (index) = Current
next_in_list: (next /= Void) implies (schedule  segments  item (index + 1) = next)
no_next_iff_last: (next = Void) = (index = schedule  segments  count)
non_negative_rating: rating >= 0
positive times: (starting_time > 0) and (ending_time > 0)
sufficient_duration: ending_time – starting_time >= Minimum_duration
decent_interval: (next  starting_time) – ending_time <= Maximum_interval

end
Each segment “knows” the schedule of which it is a part, expressed by the query 

schedule, and its position in that schedule, expressed by index. It has a starting_time and 
an ending_time; we could also add a query duration, with an invariant clause expressing 
its relation to the previous two. Redundancy is acceptable in system analysis provided 
redundant features express concepts of interest to users or developers, and the relations 
between redundant elements are stated clearly through the invariant. Here, clauses in_list
and in_schedule of the invariant express the relation between a segment’s own index and 
its position in the schedule’s list of segments.

A segment also knows about the segment that will follow, next. Invariant clauses 
again express the consistency requirements: clause next_in_list indicates that if the 
segment is at position i the next one is at position i +1; clause no_next_iff_last, that there 
is a next if and only if the segment is not the last in its schedule.

The last two invariant clauses express constraints on durations: sufficient_duration
defines a minimum duration of 30 seconds for a program fragment to deserve being called 
a segment, and decent_interval a maximum of two seconds for the time between two 
successive segments (when the TV screen may go blank).

The class specification has taken two shortcuts that would almost certainly have to 
be removed at the next iteration of the analysis process. First, times and durations have 
been expressed as integers, measured in seconds; this is not abstract enough, and we 
should be able to rely on library classes DATE, TIME and DURATION. Second, the notion 
of SEGMENT covers two separate notions: a TV program fragment, which can be defined 
independently of its scheduling time; and the scheduling of a certain program at a certain 
time slot. To separate these two notions is easy; just add to SEGMENT an attribute

content: PROGRAM_FRAGMENT
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with a new class PROGRAM_FRAGMENT describing the content independently of its 
scheduling. Feature duration should then appear in PROGRAM_FRAGMENT, and a new 
invariant clause of SEGMENT should state

content  duration = ending_time – starting_time

For brevity the rest of this sketch continues to treat the content as part of the segment. 
Such discussions are typical of what goes on during the analysis process, aided by the 
object-oriented method: we examine various abstractions, discuss whether they justify 
different classes, move features to other classes if we think they have been misassigned.

A segment has a primary sponsor, and a rating. Although here too we might benefit 
from a separate class, rating has just been specified as an integer, with the convention that 
a higher rating implies more restrictions; 0 means a segment accessible to all audiences.

Programs and commercials

Probing the notion of SEGMENT further, we distinguish two kinds: program segments and 
commercial breaks (advertizing segments). This immediately suggests using inheritance:

This urge to use inheritance during analysis, by the way, is always suspect; you 
should be wary of bouts of taxomania, prompting you to create spurious classes where 
simple distinctive properties would suffice. The guiding criterion was given in the 
description of inheritance: does each proposed class really correspond to a separate 
abstraction, characterized by specific features and properties? Here the answer will be yes; 
it is not difficult to think of features for both programs and commercials, as will be listed 
in part below. Using inheritance will also yield the benefit of openness: we can add a new 
heir such as INFOMERCIAL later to describe segments of a different kind.

We can start COMMERCIAL as follows:

note
description: "Advertizing segment"

deferred class COMMERCIAL inherit
SEGMENT

rename sponsor as advertizer end

PROGRAM

SEGMENT

COMMERCIAL
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feature
primary: PROGRAM deferred end 

-- Program to which this commercial is attached
primary_index: INTEGER deferred end 

-- Index of primary
set_primary (p: PROGRAM)

-- Attach commercial to p.
require

program_exists: p /= Void
same_schedule: p  schedule = schedule
before: p  starting_time <= starting_time

deferred
ensure

index_updated: primary_index = p  index
primary_updated: primary = p

end
invariant

meaningful_primary_index: primary_index = primary  index
primary_before: primary  starting_time <= starting_time
acceptable_sponsor: advertizer  compatible (primary  sponsor)
acceptable_rating: rating <= primary  rating

end
Note the use of renaming, another example of a notational facility that at first sight 

might have appeared to be useful mostly for implementation-level classes, but turns out to 
be just as necessary for modeling. When a segment is a commercial, it is more appropriate 
to refer to its sponsor as being its advertizer.

Every commercial segment is attached to an earlier program segment (not a 
commercial), its primary, whose index in the schedule is primary_index. The first two 
invariant clauses express consistency conditions; the last two express compatibility rules:

• If a show has a sponsor, any advertizer during that show must be acceptable to it; you 
do not advertize for Pepsi-Cola during a show sponsored by Coca-Cola. The query 
compatible of class COMPANY might be given through some database.

• The rating of a commercial must be compatible with that of its primary program: you 
should not advertize for Bulldozer Massacre III on a toddlers’ program.

The notion of primary needs refinement. It becomes clear at this stage of our analysis 
that we should really add a level: instead of a schedule being a succession of program 
segments and commercials, we should view it as a succession of shows, where each show 
(described by a class SHOW) has its own features, such as the show’s sponsor, and a 
succession of show segments and commercials. Such improvement and refinement, 
developed as we gain more insight into the problem and learn from our first attempts, are 
a normal component of the analysis process.
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Business rules
We have seen how invariant clauses and other assertions can cover semantic constraints 
of the application domain, also known in analysis parlance as business rules: in class 
SCHEDULE, that one can schedule a segment only in the future; in SEGMENT, that the 
interruption between two segments may not exceed a preset duration; in COMMERCIAL, 
that a commercial’s rating must be compatible with that of the enclosing program.

It is indeed one of the principal contributions of the method that you can use 
assertions and the principles of Design by Contract to express such rules along with the 
structure, avoiding both the clouds and the precipice.

A practical warning however: even without any implementation commitment, there 
is a risk of overspecification. In assertions of the analysis text, you should only include 
business rules that have a high degree of certainty and durability. If any rule is subject to 
change, use abstraction to express what you need but leave room for adaptation. For 
example the rules on sponsor-advertizer compatibility can change; so the invariant of 
COMMERCIAL stays away from overspecification by simply postulating a boolean-
valued query compatible in class COMPANY. One of the great advantages of analysis is 
that you choose what you say and what you say not. State what is known — if you specify 
nothing, the specification will not be of much interest — but no more. This is the same 
comment that we encountered in the discussion of abstract data types: we want the truth, 
all the relevant truth, but nothing more than the truth.

That ADT comments should be directly applicable here is no surprise: ADTs are a high-
level specification technique, and in fact the use of deferred classes with their assertions 
as a tool for analysis, illustrated by the TV station example, is conceptually a variant of 
ADT specification using software syntax.

Assessment
Although we have only begun the TV station programming example, we have gone far 
enough to understand the general principles of the approach. What is striking is how 
powerful and intuitive the concepts and notation are for general, software-independent 
system modeling, even though they were initially developed (in earlier chapters) for 
software purposes and, to the superficial observer, may even appear to address just 
programming issues. Here they come out in their full scope: as a general-purpose method 
and notation for describing systems of many kinds, covering the structure of systems as 
well as fine aspects of their semantics, and able to tackle complexity as well as evolution.

Nothing in a specification of the kind illustrated above is implementation-related, or 
even software-related, or even computer-related. We are using the concepts of object 
technology for purely descriptive purposes; no computer need enter the picture.

Of course if you or your customer do decide to go ahead and build a software system 
for managing TV station programming, you will have the tremendous advantage of a 
description that is already in a software-like form, syntactically and structurally. The 
transition to a design and implementation will proceed seamlessly in the same framework; 
you may even be able to retain many of the analysis classes as is in the final system, with 
implementations provided in proper descendants.



OBJECT-ORIENTED ANALYSIS  §27.5 914

“STUDYING A 
REQUIREMENTS 
DOCUMENT”, 22.
1, page 720.
27.5  EXPRESSING THE ANALYSIS: MULTIPLE VIEWS
The use of specifications expressed in a software-like language, illustrated by the TV 
station example, raises an obvious question of practicality in normal industrial 
environments.

What can cause some skepticism is that the people who will have to review the 
analysis document may not all be comfortable with such notations; more than any other 
stage, analysis is the time for collaboration with application domain experts, future users, 
managers, contract administrators. Can we expect to them to read a specification that at first 
sight looks like a software text (although it is a pure model), and possibly contribute to it?

Surprisingly often, the answer is yes. Understanding the part of the notation that 
serves for analysis, as illustrated by the preceding example, does not require in-depth 
software expertise, simply an understanding of elements of the basic laws of logic and 
organized reasoning in any discipline. I can attest to having used such specifications 
successfully with people of widely different backgrounds and education.

But this is not the end of the story. A core of formalism-averse people may remain, 
whose input you will still need. And even those who appreciate the power of the formalism 
will need other views, in particular graphical representations. In fact the recurrent fights 
about graphics versus formalism, formalism versus natural language, are pointless. In 
practice the description of a non-trivial system requires several complementary views, 
such as:

• A formal text, as illustrated in the preceding example.
• A graphical representation, showing system structures in terms of “yy-bubble and 

arrow” diagrams (also used in one instance for the example). Here the graphs will 
show classes, clusters, objects, and relations such as client and inheritance.

• A natural-language requirements document.
• Perhaps a tabular form, as appears in the presentation of the BON method below.

Each such view has its unique advantages, addressing some of the multiple goals of 
analysis defined at the beginning of this chapter; each has limitations that may make it 
irrelevant to other goals. In particular:

• Natural-language documents are irreplaceable for conveying essential ideas and 
explaining fine nuances. But they are notoriously prone to imprecision and 
ambiguity, as we saw in the critique of the “underline the nouns” approach.

• Tabular representations are useful to collect a set of related properties, such as the 
principal characteristics of a class — parents, features, invariant.

• Graphical representations are excellent for describing structural properties of a 
problem or system by showing the components and their relations. This explains the 
success of “yy-bubble-and-arrow” descriptions as promoted by “structured 
analysis”. But they are severely limited when it comes to expressing precise 
semantic properties, as required by item A3 of the list of analysis goals (answering 
specific questions). For example a graphical description is not the best place to look 
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at for an answer to the question “what is the maximum length of a commercial 
break?”.

• Formal textual representations, such as the notation of this book, are the best tool for 
answering such precise questions, although they cannot compete with graphical 
representation when the goal is simply to get a quick understanding of how a system 
is organized.

The usual argument for graphical representations over textual ones is the cliché that “a 
picture is worth a thousand words”. It has its share of truth; block diagrams are indeed 
unsurpassed to convey to the reader the overall impression of a structure. But the proverb 
conveniently ignores the details that the words can carry, the imprecision that can affect 
the picture, and the errors that it can contain. The next time someone invites you to use a 
diagram as the final specification of some delicate aspect of a system, look at the comics 
page of the daily paper: the “find the differences between these two variants” teasers do 
not ask you to rack your eyes and brain over two sentences or two paragraphs, but to find 
the hidden differences between two deceptively similar pictures.

So what we need with a good analysis method is a way to use each one of these views 
as the need arises, switching freely from one to the other.

The question then arises of how to maintain consistency between the various views. 
The solution is to use one of the views as the reference, and to rely on software tools to 
make sure that additions and changes get propagated to all views. The best candidate to 
serve as reference — the only credible one, in fact — is the formal text, precisely because 
it is the only one that is both defined rigorously and able to cover semantics as well as 
structural properties.

With this approach, the use of formal software-like descriptions is not exclusive of 
other styles, and you can use a variety of tools adapted to the expertise levels and personal 
tastes of the analysis participants (software people, managers, end users). For the formal 
text, the software development environment may be appropriate: we have seen in 
particular that the compiler can double as an analysis support tool thanks to its facilities 
for checking type rules and other validity constraints, although its code generation 
mechanism is irrelevant at this stage. For the graphical notation, you will use a graphical 
CASE tool, apt at producing and manipulating structure charts. For the natural language 
texts, document manipulation and management systems can help. Tables can also have 
specific tool support. The various tools involved can be either separate or integrated in an 
analysis or development workbench.

Graphical or tabular input will immediately be reflected in the formal representation; 
for example if the graphical view showed a class C inheriting from a class A

C

A B
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and you interactively redirect the arrow to point to B, the tools will automatically change 
the inherit clause of the formal text to reflect the change. Conversely, if you edit the 
formal description, the graphical and tabular representations will be updated.

It is more difficult for tools to process changes in natural-language descriptions. But 
if the document manipulation system enforces structured system descriptions, with 
chapters, sections and paragraphs, it is possible to keep links between the formal text and 
the natural-language requirements document, for example to indicate that a certain class 
or feature is connected to a certain paragraph of the requirements; this is particularly 
useful when the environment also provides configuration management tools, so that when 
something changes in the requirements the tools can, if not update the formal description, 
at least alert you to the change and produce a list of all the elements that depended, directly 
or indirectly, on the modified part.

The other direction is interesting too: producing natural-language descriptions from 
formal texts. The idea is simply to reconstruct, from a formal system description, a 
natural-language text that would express the same information in a form that will not scare 
the more formalism-averse members of the target readership. It is not hard indeed to think 
of a tool that, starting from our analysis sketch, would produce a fake English form such as

1. System concepts
The concepts of this system are:

SCHEDULE, SEGMENT, COMMERCIAL, PROGRAM …
SCHEDULE is discussed in section 2; SEGMENT is discussed in section 3; [etc.]

2. The notion of SCHEDULE
…

3. …
4. The notion of COMMERCIAL

4.1 General description:
Advertizing segments

4.2 Source notions.
The notion of COMMERCIAL is a specialized case of the notion
of SEGMENT and has all its operations and properties,
except for redefined ones as listed below.

4.2 Renamed operations.
What is called sponsor for SEGMENT is called advertizer for COMMERCIAL.
…

4.3 Redefined operations
…

4.4 New operations
The following operations characterize a COMMERCIAL:

primary, a query returning a PROGRAM
Needs: none [Arguments, if any, would be listed here]
Description:

Program to which commercial is attached
Input conditions:
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…
Result conditions:

…
… Other operations …

4.5 Constraints
… An English-like rendition of the invariant properties …

4. The notion of PROGRAM
…

etc.
All the English sentences (“The concepts of this system are”, “The following 

operations characterize a …” and so on) are drawn from a standard set of predefined 
formulae, so they are not really “natural” language; but the illusion can be strong enough 
to make the result palatable to non-technical people, with the guarantee that it is consistent 
with the more formal view since it has been mechanically derived from it.

Although I do not know any tool that has explored this idea very far, the goal seems 
reachable. A project to build such a tool would be several orders of magnitude more 
realistic than long-going efforts in the reverse direction (attempts at automatic analysis of 
natural-language requirements documents) which have never been able to produce much, 
because of the inherent difficulty of analyzing natural language. Here we are interested in 
natural language generation, an easier task (in the same way that speech synthesis has 
progressed faster than speech recognition).

What makes this possible is the generality of the formal notation and, especially, its 
support for assertions, allowing us to include useful semantic properties in the generated 
natural-language texts. Without assertions we would remain in the vague — in the clouds.

27.6  ANALYSIS METHODS
Here is a list of some of the best-known methods of O-O analysis, listed in the approximate 
order of their public appearance. Although the description focuses on the analysis 
component of the methods, note that most of them also include design-related or even 
implementation-related components. The short summaries cannot do justice to the methods; 
to learn more, see the books and Web pages listed in the bibliographic notes to this chapter.

The Coad-Yourdon method initially resulted from an effort to objectify ideas 
coming from structured analysis. It involves five stages: finding classes and objects, 
starting from the application domain and analyzing system responsibilities; identifying 
structures by looking for generalization-specialization and whole-part relationships; 
defining “subjects” (class-object groups); defining attributes; defining services.

The OMT method (Object Modeling Technique) combines concepts of object 
technology with those of entity-relation modeling. The method includes a static model, 
based on the concepts of class, attribute, operation, relation and aggregation, and a 
dynamic model based on event-state diagrams, describing in an abstract way the intended 
behavior of the system.
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The Shlaer-Mellor method is original in its emphasis on producing models that lend 
themselves to simulation and execution, making it possible to validate model behavior 
independently of any design or implementation. To separate concerns, it divides the problem 
into a number of domains: application domain, service domains (such as the user interface 
domain), software architecture domain, implementation domains (such as operating system 
or language). Rather than seamless development, its model for the development process uses 
translation to link the domains together into code for final system construction.

The presence of architecture, design and implementation models in Shlaer-Mellor and 
some of the following methods illustrates the comment made above that the methods’ 
ambition often extends beyond analysis to cover a large part of the lifecycle, or all of it.
In the Martin-Odell method, also known as OOIE (Object-Oriented Information 

Engineering), analysis consists of two parts: object structure analysis, which identifies the 
object types and their composition and inheritance relations; and object behavior analysis, 
which defines the dynamic model by considering object states and the events that may 
change these states. The events are considered first, leading to the identification of classes.

The Booch method uses a logical model (class and object structure) and a physical 
model (module and process architecture), including both static and dynamic components, 
and relying on numerous graphical symbols. It is intended to be subsumed by the “Unified 
Modeling Language” (see below).

The OOSE method (Object-Oriented Software Engineering), also known as 
Jacobson’s method or as Objectory, the name of the original supporting tool, relies on use 
cases (scenarios) to elicit classes. It distinguishes five use case models: domain object 
model, analysis model (the use cases structured by the analysis), design model, 
implementation model, testing model.

The OSA method (for Object-oriented Systems Analysis) is meant to provide a 
general model of the analysis process rather than a step-by-step procedure. It consists of 
three parts: the object-relationship model, which describes objects and classes as well as 
their relations — with each other and with the “real world”; the object-behavior model, 
which provides the dynamic view through states, transitions, events, actions and 
exceptions; and the object-interaction model, specifying possible interactions between 
objects. The method also supports a notion of view, as well as generalization and 
specialization, which apply to both the interaction and behavior models.

The Fusion method seeks to combine some of the best ideas of earlier methods. For 
analysis it includes an object model, devoted to the problem domain, and an interface 
model, describing system behavior. The interface model is itself made of an operation 
model, specifying events and the resulting operations, and a lifecycle model, describing 
scenarios that guide the evolution of the system. Analysts should maintain a data 
dictionary which collects all the information from the various models.

The Syntropy method defines three models: the essential model “is a model of a real 
or imaginary situation, [having nothing] to do with software: it describes the elements of 
the situation, their structure and behavior”. The specification model is an abstract model 
that treats the system as a stimulus-response mechanism, assuming unlimited hardware 
resources. The implementation model takes into account the actual computing environment. 
Each model may be expressed along several views: a type view describing object types and 
their static properties; state views, similar to the state transition diagrams of OMT, to 
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describe dynamic behavior; and mechanisms diagrams for implementation. The method 
also supports a notion of viewpoint to describe various interfaces to the same objects, going 
beyond the mere separation of interface and implementation provided by O-O languages.

The MOSES method involves five models: object-class; event, showing class 
collaboration by describing what messages are triggered as a result of calling a service on 
an object; “objectcharts”, to model state-transition dynamics; inheritance; and service 
structure, to show data flow. Like the Business Object Notation reviewed in the next 
section, MOSES emphasizes the importance of contracts in specifying a class, using 
preconditions, postconditions and invariants in the style of the present book. Its “fountain” 
process model defines a number of standard documents to be produced at each stage.

The SOMA method (Semantic Object Modeling Approach) uses a “Task Object 
Model” to capture the requirements and transforms them into a “Business Object Model”. 
It is one of the few methods to have benefited from formal approaches, using a notion of 
contract to describe business rules applying to objects.

At the time of writing, two separate efforts are progressing to unify existing methods. 
One, led by Brian Henderson-Sellers, Don Firesmith, Ian Graham and Jim Odell, is 
intended to produce an OPEN (the retained name) unified method. The other, by Rational 
Corporation, is starting from the OMT, Booch and Jacobson methods to define a “Unified 
Modeling Language”.

27.7  THE BUSINESS OBJECT NOTATION
Each of the approaches listed in the preceding sections has its strong points. The method 
that seems to provide the most benefit for the least complexity is Nerson’s and Waldén’s 
Business Object Notation; let us take a slightly closer look at it to gain some insight into 
what a comprehensive approach to O-O analysis requires. This brief presentation will only 
sketch the principal features of the method, limiting itself to its contribution to analysis; 
for more details, and to explore design and implementation aspects, see the Waldén-
Nerson book cited in the bibliography.

The Business Object Notation started as a graphical formalism for representing 
system structures. The original name was kept, even though BON has grown from just a 
notation to a complete development method. BON has been used in many different 
application areas for the analysis and development of systems, some very complex.

BON is based on three principles: seamlessness, reversibility and contracting. 
Seamlessness is the use of a continuous process throughout the software lifecycle. 
Reversibility is the support for both forward and backward engineering: from analysis to 
design and implementation, and back. Contracting (remember Design by Contract) is the 
precise definition, for each software element, of the associated semantic properties; BON 
is almost the only one among the popular analysis methods to use a full-fledged assertion 
mechanism, allowing analysts to specify not only the structure of a system but also its 
semantics (constraints, invariants, properties of the expected results).

Several other properties make BON stand out among O-O methods:
• It is meant to “scale up”, in the sense explained at the beginning of this chapter. 

Various facilities and conventions enable you to choose the level of abstraction of a 



OBJECT-ORIENTED ANALYSIS  §27.7 920

For further discus-
sion of clusters see 
“CLUSTERS”, 28.
1, page 923.

“Constraints” are 
invariants.
system or subsystem description, to zoom in on a component, to hide parts of a 
description. This selective hiding is preferable, in my opinion, to the use of multiple 
models illustrated by some of the preceding methods: here, for seamlessness and 
reversibility, you keep a single model; but you can at any time decide what aspects 
are relevant to your needs of the moment, and hide the rest.

• BON, created in the nineteen-nineties, was designed under the assumption that its 
users would have access to computing resources, not just paper and whiteboards. 
This makes it possible to use powerful tools to display complex information, free 
from the tyranny of fixed-size areas such as paper pages. Such a tool is sketched in 
the last chapter of this book. For small examples, the method can of course be used 
with pencil and paper.

• For all its ambition, especially its ability to cover large and complex systems, the 
method is notable for its simplicity. It only involves a small number of basic 
concepts. Note in particular that the formalism can be described over two pages; the 
most important elements appear below and on the facing page.

BON’s support for large systems relies in part on the notion of cluster, denoting a 
group of logically related classes. Clusters can include subclusters, so that the result is a 
nested structure allowing analysts to work on various levels at different times. Some of the 
clusters may of course be libraries; the method puts a strong emphasis on reuse.

The static part of the model focuses on classes and clusters; the dynamic part 
describes objects, object interactions and possible scenarios for message sequencing.

BON recognizes the need for several complementary formalisms, explained earlier 
in this chapter. (The assumed availability of software tools is essential here: with a manual 
process, multiple views would raise the issue of how to maintain the consistency of the 
model; tools can ensure it automatically.) The formalisms include a textual notation, a 
tabular form and graphical diagrams.

The textual notation is similar to the notation of this book; but since it does not have 
to be directly compilable, it can use a few extensions in the area of assertions, including 
delta a to specify that a feature can change an attribute a, forall and exists to express logic 
formulae of first-order predicate calculus, and set operators such as member_of.

The tabular form is convenient to summarize the properties of a class compactly. 
Here is the general form of a tabular class chart:

CLASS Class_name Part:

Short description Indexing information

Inherits from

Queries

Commands

Constraints
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The graphical notation is extremely simple, so as to be easy to learn and remember. 
The principal conventions, static as well as dynamic, appear below. 

NAME NAMENAME
[G, H]

∗NAME
+

NAME


NAME NAME

Class: generic,  effective, deferred, reused, persistent, interfaced, root.


NAME

STATIC DIAGRAMS

Name

Inter-class relations

Inherits from

Client

Expanded client
(aggregation)

Cluster (with some classes)

32 3

Multiplicity of relations

Invariant

Inherits: 
   Parent classes

Public features

A, B, 
Features selectively

exported to A, B

Class invariant

NAME

Class: detailed interface
Features

name*, name+, name++ deferred, effective, redefined
→name: TYPE input argument

     precondition, postcondition? !

Assertion operators
Δ name feature may change attribute name 
∃, ∀, |,    symbols for predicate calculus operations
∈, ∉ membership operators

DYNAMIC DIAGRAMS

Name

Object group (with some objects) Object 

Objects
(one or more)

Name

Name

Inter-object relations

Message passing

name

name

7
(with message number from scenario)

References and objects
@, ∅ current object, void reference
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The method defines a precise process for analysis and development, consisting of 
seven tasks. The order of tasks corresponds to an ideal process, but the method recognizes 
that in practice it is subject to variation and iteration, as implied in fact by the very concept 
of reversibility. The standard tasks are:
B1  • Delineate system borderline: identify what the system will include and not 

include; define major subsystems, user metaphors, functionality, reused libraries.
B2  • List candidate classes: produce first list of classes based on problem domain.
B3  • Select classes and group into clusters: organize classes in logical groups, decide 

what classes will be deferred, persistent, externally interfaced etc.
B4  • Define classes: expand the initial definition of classes to specify each of them in 

terms of queries, commands and constraints.
B5  • Sketch system behavior: define charts for object creation, events and scenarios.
B6  • Define public features: finalize class interfaces.
B7  • Refine system.

Throughout the process, the method prescribes keeping a glossary of terms of the 
technical domain. Experience shows this to be an essential tool for any large application 
project, both to give non-experts a place to go when they do not understand some of the 
domain experts’ jargon, and to make sure that the experts actually agree on the terms (it is 
surprising to see how often the process reveals that they do not!).

More generally, the method specifies for each step is a precise list of its deliverables: 
documents that the manager is entitled to expect as a result of the step’s work. This 
precision in defining organizational responsibilities makes BON not only an analysis and 
design method but also a strategic tool for project management.

27.8  BIBLIOGRAPHY
The principal reference on the Business Object Notation is [Waldén 1995]. The basic 
concepts were introduced in [Nerson 1992]. A Web page is available at www.tools.com/
products/bon/.

Here are the principal references on other methods, with associated Web addresses. 
Coad-Yourdon: [Coad 1990], www.oi.com; OMT: [Rumbaugh 1991]; Shlaer-Mellor 
[Shlaer 1992], www.projtech.com; Martin-Odell, [Martin 1992]; Booch: [Booch 1994]; 
OOSE: [Jacobson 1992]; OSA: [Embley 1992], osm7.cs.byu.edu/OSA.html; Syntropy: 
[Cook 1994], www.objectdesigners.co.uk/syntropy; Fusion, [Coleman 1994]; MOSES: 
[Henderson-Sellers 1994], www.csse.swin.edu.au/cotar/OPEN/OPEN.html; SOMA, 
[Graham 1995].

On the OPEN method convergence project see [Henderson-Sellers 1996]; 
[Computer 1996] is a discussion of Rational’s Unified Modeling Language effort (Booch-
OMT-Jacobson).

Katsuya Amako maintains a set of descriptions of O-O methods, along with other 
useful O-O information, at arkhp1.kek.jp/~amako/OOInfo.html.
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The software construction process
M 1995].

n super-modules see
The architectural 
ole of selective 
xports”, page 209.
F oremost among the methodological issues of object technology is how it affects the 
broader picture of software development. We will now examine the consequences of 
object-oriented principles on the organization of projects and their division into phases.

Such a presentation is part of a more general topic: the management perspective on 
object technology. Another book, Object Success, explores management issues in detail. 
The discussion which follows, drawing in part from Object Success, presents the essential 
ideas: clusters, the basic organizational unit; principles of concurrent engineering
leading to the cluster model of the software lifecycle; steps and tasks of that model; the role 
of generalization for reusability; and the principles of seamlessness and reversibility.

28.1  CLUSTERS

The module structure of the object-oriented method is the class. For organizational 
purposes, you will usually need to group classes into collections, called clusters — a 
notion briefly previewed in the last chapter’s sketch of the Business Object Notation.

A cluster is a group of related classes or, recursively, of related clusters.

The two cases are exclusive: for simplicity and ease of management, a cluster that 
contains subclusters should not have any classes of its own. So a cluster will be either a 
basic cluster, made of classes, or a supercluster, made of other clusters.

Typical basic clusters could include a parsing cluster for analyzing users’ text input, 
a graphic cluster for graphical manipulations, a communications cluster. A basic cluster 
will typically have somewhere between five and forty classes; at around twenty classes, 
you should start thinking about splitting it into subclusters. The cluster is also the natural 
unit for single-developer mastery: each cluster should be managed by one person, and one 
person should be able to understand all of it — whereas in a large development no one can 
understand all of a system or even a major subsystem. 

Clusters are not super-modules. In an earlier chapter we saw the arguments for 
avoiding the introduction of units such as packages, and instead keeping a single module 
mechanism, the class.
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On Lace see “Assem-
bling a system”, page 
198.

The waterfall 
model
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velopment!)
Unlike packages, clusters are not a language construct, although they will appear in 
the Lace control files used to assemble systems out of components. They are a 
management tool. The responsibility for finding clusters will rest with the project leader; 
less challenging than the task of finding classes, studied in detail in a previous chapter, 
clustering classes mostly relies on common sense and the project leader’s experience. This 
point actually deserves some emphasis, as it is sometimes misunderstood: the truly 
difficult job, which can launch a project on to an auspicious life or wreck it, and for which 
one can talk of right and wrong solutions, is to identify the classes (the proper data 
abstractions); grouping these classes into clusters is an organizational matter, for which 
many solutions are possible, depending on the resources available and on the expertise of 
the various team members. A less-than-optimal clustering decision may cause trouble and 
slow the development, but will not by itself bring the project down.

28.2  CONCURRENT ENGINEERING
One of the consequences of the division into clusters is that we can avoid the 
disadvantages of the all-or-nothing nature of traditional software lifecycle models. The 
well-known “waterfall” approach, introduced in 1970, was a reaction against the “code it 
now and fix it later” approach of that bygone era. It had the merit of separating concerns, 
of defining the principal tasks of software engineering, and of emphasizing the importance 
of up-front specification and design tasks.
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But the Waterfall Model also suffers (among other deficiencies) from the rigidity of 
its approach: taken literally, it would mean that no design can proceed until all the 
specification is complete, no implementation until all design is complete. This is a certain 
recipe for disaster: one grain of sand in the machine, and the whole project comes to a halt.

Various proposals such as the Spiral model have attempted to reduce this risk by 
providing a more iterative approach, But they retain the one-thread approach of the 
Waterfall, which hardly reflects the nature of today’s software development, especially for 
large “virtual” teams that may be distributed over many sites, communicating through the 
Internet and other “electronic collocation” mechanisms.

Successful object-oriented development needs to support a concurrent engineering
scheme, offering decentralization and flexibility, without losing the benefits of the 
waterfall’s orderliness. We will in particular have to retain a sequential component, with 
well-defined activities. Object-oriented development does not mean that we can or should 
get rid of sound engineering practices. If anything, the added power of the method requires 
us to be more organized than before.

With a division into clusters we can achieve the right balance between sequentiality 
and concurrent engineering. We will have a sequential process, but subject to backward 
adjustments (this is the concept of reversibility, discussed in more detail at the end of this 
chapter), and applied to clusters rather than to the entire system.

The mini-lifecycle governing the development of a cluster may pictured as this:

The shape of the activity representations suggests the seamless nature of the 
development. Instead of separate steps as in the waterfall model, we see an accretion 
process — think of the figure as depicting a stalactite — in which every step takes over 
from the previous one and adds its own contribution.
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28.3  STEPS AND TASKS
The steps listed in the mini-lifecycle of each cluster are:

• Specification: identify the classes (data abstractions) of the cluster and their major 
features and constraints (yielding invariant clauses).

• Design: define the architecture of the classes and their relations.

• Implementation: finalize the classes, with all details added.

• Verification & Validation: check that the cluster’s classes perform satisfactorily 
(through static examination, testing and other techniques).

• Generalization: prepare for reuse (see below).

Given the high-level of abstraction of the method, the distinction between design and 
implementation is not always clear-cut. So a variant of the model merges these two steps 
into one, “design-implementation”.

The need remains for two system-wide, cluster-independent phases. First, as with 
any other approach, you should perform a feasibility study, resulting in a go or no-go 
decision. Then, the project needs to be divided into clusters; this is, as noted, the 
responsibility of the project leader, who can of course rely on the help of other experienced 
team members.

28.4  THE CLUSTER MODEL OF THE SOFTWARE LIFECYCLE
The general development scheme, known as the Cluster Model, appears on the facing 
page. The vertical axis represents the sequential component of the process: a step that 
appears lower than another will be executed after it. The horizontal direction reflects 
concurrent engineering: tasks at the same level can proceed in parallel.

Various clusters, and various steps within each cluster, will proceed at their own pace 
depending on the difficulty of the task. The project leader is in charge of deciding when to 
start a new cluster or a new task.

The result is to give the project leader the right combination of order and flexibility. 
Order because the definition of cluster tasks provides a control framework and control 
points against which to assess progress and delays (one of the most difficult aspects of 
project management); flexibility because you can buffer unexpected delays, or take 
advantage of unexpectedly fast progress, by starting activities sooner or later. The project 
leader also controls the degree of concurrent engineering: for a small team, or in the early 
stages of a difficult project, there may be a small number of parallel clusters, or just one; 
for a larger team, or once the basic existential questions seems to be under control, you 
can start pursuing several clusters at once.

Better than traditional approaches, the cluster model enables project leaders to do 
their job to its full extent, exerting their decision power to devote resources where they are 
needed the most.
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lifecycle
To avoid divergence, the current states of the various clusters’ development must be 
regularly reconciled. This is the task of integration, best performed at preset intervals, for 
example once a week. It is the responsibility of the project leader, and ensures that at every 
stage after start-up there will be a current demo, not necessarily up to date for all aspects 
of the system, but ready to be showed to whoever — customers, managers... — needs 
reassurance about the project’s progress. This also serves to remove any inconsistency 
between clusters before it has had the opportunity to cause damage, reassuring the project 
members themselves that the pieces fit together and that the future system is taking shape.

What makes possible the cluster model’s form of concurrent engineering is the set of 
information hiding properties of the object-oriented method. Clusters may depend on each 
other; for example a graphical interface cluster may need, for remote display, classes of 
the communication cluster. Thanks to data abstraction, it is possible for a cluster to 
proceed even if the clusters on which it depends are not yet finished; it suffices that the 
specification phase of the needed classes be complete, so that you can proceed on the basis 
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A project’s 
clusters as a set 
of abstraction 
layers
of their official interface, given as a short form or deferred version. This aspect of the 
model is perhaps easier to picture if we rotate the preceding figure, as illustrated below, to 
emphasize the software layers corresponding to the various clusters, with the more general 
clusters at the bottom and the more application-specific ones at the top. The design and 
implementation of each cluster depend only on the specifications of clusters below it, not 
on their own design and implementation. The figure only shows dependencies on the 
cluster immediately below, but a cluster may rely on any lower-level cluster. 

28.5  GENERALIZATION
The last task of cluster mini-lifecycles, generalization (the G on the above figure) has no 
equivalent in traditional approaches. Its goal is to polish the classes so as to turn them into 
potentially reusable software components.

Including a generalization step immediately suggests a criticism: instead of an a 
posteriori add-on, should reusability concerns not be part of the entire software process? 
How can one make software reusable after the fact? But this criticism is misplaced. The a 
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priori view of software reuse (“to be reusable, software should be designed as reusable 
from the start”) and the a posteriori view (“software will not be reusable the first time 
around”) are complementary, not contradictory. The success of a reusability policy 
requires both instilling a reusability culture in the minds of everyone involved, and 
devoting sufficient resources to improving the reusability of classes’ initial versions.

In spite of the best of intentions, software elements produced as part of an 
application-oriented project will usually not be fully reusable. This is due in part to the 
constraints affecting projects — the pressure of customers wanting the next version ASAP, 
of the competition putting out its own products, of shareholders eager to see results. We 
live in a hurried world and an even more hurried industry. But there is also an intrinsic 
reason for not always trusting reusability promises: until someone has reused it, you 
cannot be sure that a product has been freed of all its dependencies, explicit and 
(particularly) implicit, on its original developers’ background, corporate affiliation, 
technical context, working practices, hardware resources and software environment.

The presence of a generalization step is not, then, an excuse for ignoring reusability 
until the last moment. The arguments of the a priori school are correct: you cannot add 
reusability as an afterthought. But do not assume that having a reusability policy is 
sufficient. Even with reusability built into everyone’s mindset, you will need to devote 
some more time to your project’s classes before you can call them software components.

Including a generalization step in the official process model is also a matter of policy. 
Very few corporate executives these days will take a public stand against reusability. Of 
course, my friend, we want our software to be reusable! The software people need to find 
out whether this is sincere commitment or lip service. Very easy. The commitment exists 
if management is ready to reserve some resources, on top of the money and time allocated 
to each project, for generalization. This is a courageous decision, because the benefits may 
not be immediate and other urgent projects may suffer a little. But it is the only way to 
guarantee that there will, in the end, be reusable components. If, however, the management 
is not ready to pledge such resources, even modest ones (a few percent above the normal 
project budget can make a world of difference), then you can listen politely to the grandiose 
speeches about reuse and read sympathetically about the “reuser of the month” award in 
the company’s newsletter: in truth, the company is not ready for reusability and will not 
get reusability.

If, on the other hand, some resources are devoted to generalization, remember that 
this is not sufficient either. Success in reusability comes from a combination of a priori and 
a posteriori efforts:

The reusability culture
Develop all software under the assumption that it will be reused.

Do not trust that any software will be reusable until you have seen it reused.
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On abstracting and 
factoring see “Variet-
ies of class abstrac-
tion”, page 860.
The first part implies applying reusability concerns throughout development. The 
second implies not taking the result for granted, but performing a generalization step to 
remove any traces of context-specific elements.

The generalization task may involve the following activities:

• Abstracting: introducing a deferred class to describe the pure abstraction behind a 
certain class.

• Factoring: recognizing that two classes, originally unrelated, are in fact variants of 
the same general notion, which can then be described by a common ancestor.

• Adding assertions, especially postconditions and invariant clauses which reflect 
increased understanding of the semantics of the class and its features. (You may also 
have to add a precondition, but this is more akin to correcting a bug, since it means 
the routine was not properly protected.)

• Adding rescue clauses to handle exceptions whose possibility may initially have 
been ignored.

• Adding documentation.

The first two of these activities, studied in the discussion of inheritance 
methodology, reflect the non-standard view of inheritance hierarchy construction that we 
explored then: the recognition that, although it would be nice always to go from the 
general to the specific and the abstract to the concrete, the actual path to invention is often 
more tortuous, and sometimes just the other way around.

The role of generalization is to improve classes that may be considered good enough 
for internal purposes — as long, that is, as they are only used within a particular system — 
but not any more when they become part of a library available to any client author who 
cares to use them for his own needs. Peccadillos that may have been forgivable in the first 
setting, such as insufficient specification or reliance on undocumented assumptions, 
become show-stoppers. This is why developing for reusability is more difficult than 
ordinary application development: when your software is available to anyone, working on 
applications of any kind for any platform anywhere in the world, everything starts to 
matter. Reusability breeds perfectionism; you cannot leave good enough alone.

28.6  SEAMLESSNESS AND REVERSIBILITY

The “stalactite” nature of the cluster lifecycle reflects one of the most radical differences 
between O-O development and earlier approaches. Instead of erecting barriers between 
successive lifecycle steps, well-understood object technology defines a single framework for 
analysis, design, implementation and maintenance. This is known as seamless development; 
one of its consequences, previewed in the last chapter’s discussion of the Business Object 
Notation, is the need for a reversible software development process.
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“Direct Mapping”, 
page 47.
Seamless development

Different tasks will of course remain. To take extreme examples, you are not doing the 
same thing when defining general properties of a system that has yet to be built and 
performing the last rounds of debugging. But the idea of seamlessness is to downplay 
differences where the traditional approach exaggerated them; to recognize, behind the 
technical variations, the fundamental unity of the software process. Throughout 
development the same issues arise, the same intellectual challenges must be addressed, the 
same structuring mechanisms are needed, the same forms of reasoning apply and, as 
shown in this book, the same notation can be used.

The benefits of a seamless approach are numerous:

• You avoid costly and error-prone transitions between steps, magnified by changes in 
notation, mindset, and personnel (analysts, designers, implementers...). Such gaps 
are often called impedance mismatches by analogy with a circuit made of 
electrically incompatible elements; the mismatches between analysis and design, 
design and implementation, implementation and evolution, are among the worst 
causes of trouble in traditional software development.

• By starting from the analysis classes as a basis for the rest of the development, you 
ensure a close correspondence between the description of the problem and the 
solution. This direct mapping property helps the dialog with customers and users, 
and facilitates evolution by ensuring that they all think in terms of the same basic 
concepts. It is part of the O-O method’s support for extendibility.

• The use of a single framework facilitates the backward adjustments that will 
inevitably accompany the normally one-directional progress of the software 
development process.

Reversibility: wisdom sometimes blooms late in the season

The last benefit cited defines one of the principal contributions of object technology to the 
software lifecycle — reversibility.

Reversibility is the official acceptance of a characteristic of software development 
which, although inevitable and universal, is one of the most closely guarded secrets of the 
software literature: the influence of later stages of the software process on decisions made 
during initial stages.

We all wish, of course, that problems be fully defined before we get to solve them. 
That is the normal way to go, and in software it means that we complete the analysis before 
we engage in design, the design before we start implementation, the implementation 
before we deliver. But what if, during implementation, a developer suddenly realizes that 
the system could do something better, or should do something different altogether? Do we 
scold him for not minding his own business? What if his suggestion is indeed right?
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The phrase esprit de l’escalier, “wit of the staircase”, captures this phenomenon. 
Picture a pleasant dinner in an apartment on the second or fourth floor (the fashionable 
ones) of a Parisian building. Sharp comments fly back and forth over the veal Marengo, 
and you feel dumb. The soirée finishes and you take leave of your hosts, start walking 
down the stairs, when … there it is: the smashing repartee that would have made you the 
hero of the evening! But too late.

Are bouts of esprit de l’escalier too late in software also? They have existed ever 
since software projects have been told to freeze the specification before they start on a 
solution. Bad managers suppress them, telling the implementers, in effect, to code and shut 
up. Good managers try to see whether they can take advantage of belated specification 
ideas, without attracting the attention of whoever is in charge of enforcing the company’s 
software quality plan and its waterfall-style ukases against changing the specification at 
implementation time.

With O-O development it becomes clear that the esprit de l’escalier phenomenon is 
not just the result of laziness in analysis, but follows from the intrinsic nature of software 
development. Wisdom sometimes blooms late in the season. Nowhere more than with 
object technology do we see the intimate connection between problem and solution that 
characterizes our field. It is not just that we sometimes understand aspects of the problem 
only at the time of the solution, but more profoundly that the solution affects the problem 
and suggests better functionalities. 

Remember the example of command undoing and redoing: an implementation 
technique, the “history list” — which someone trained in a more traditional approach 
would dismiss as irrelevant to the task of defining system functionality —, actually 
suggested a new way of providing end-users of our system with a convenient interface for 
undoing and redoing commands.

The introduction of reversibility suggests that the general forward thrust of our 
earlier cluster mini-lifecycle diagrams is actually tempered by the constant possibility of 
backward revisions and corrections:
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28.7  WITH US, EVERYTHING IS THE FACE
The stress on seamlessness and reversibility is perhaps the most potentially subversive 
component of object technology. It affects project organization, and the very nature of the 
software profession; in line with modern trends in other industries, it tends to remove 
barriers between narrow specialties — analysts who only deal in ethereal concepts, 
designers who only worry about structure, implementers who only write code — and to 
favor the emergence of a single category of generalists: developers in a broad sense of the 
term, people who are able to accompany part of a project from beginning to end.

The approach also departs from the dominant view in the current software 
engineering literature, which treats analysis and implementation (with design somewhere 
in the middle) as fundamentally different activities, susceptible to different methods, using 
different notations and pursuing different goals, often with the connotation that analysis 
and design are all that really matters, implementation being an inevitable chore. This view 
has historical justifications: from its infancy in the nineteen-seventies, software 
engineering was an attempt to put some order into the haphazard nature of program 
construction by teaching software people to think before they shoot. Hence the stress on 
early stages of software development, on the need to specify what you are going to 
implement. This is all justified, now as much as then. But some of the consequences of 
this essentially beneficial effort have gone too far, creating impedance mismatches 
between the different activities, and producing a strictly sequential model even though 
product and process quality demands seamlessness and reversibility.

With object technology we can remove the unnecessary differences between 
analysis, design and implementation — the necessary ones will manifest themselves 
clearly enough — and rehabilitate the much maligned task of implementation. It was 
natural for the pioneers of software engineering, when programming meant trying to solve 
many machine-dependent issues and explaining the result to the computer in a language 
that it could understand, usually low-level and sometimes inelegant, to detach themselves 
from these mundane aspects and stress instead the importance of studying abstract 
concepts from the problem domain. But we can retain these abstraction qualities without 
losing the link to the solution.

The secret is to make the concepts of programming, and the notations for 
programming, high-level enough that they can serve just as well as tools for modeling. 
This is what object technology achieves.

The following story, stolen from Roman Jakobson’s Essays on General Linguistics, 
will perhaps help make the point clear:

In a far-away country, a missionary was scolding the natives. “You should not 
go around naked, showing your body like this!”. One day a young girl spoke 
back, pointing at him: “But you, Father, you are also showing a part of your 
body!”. “But of course”, the missionary said with a dignified tone; “That is my 
face”. The girl replied: “So you see, Father, it is really the same thing. Only,
with us, everything is the face”.
So it is with object technology. With us, everything is the face.
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28.8  KEY CONCEPTS COVERED IN THIS CHAPTER

• Object technology calls for a new process model, supporting seamless, reversible 
development.

• The unit for the sequential component of the lifecycle is the cluster, a set of logically 
related classes. Clusters can be arbitrarily nested.

• The lifecycle model relies on concurrent engineering: parallel development of 
several clusters, each permitted to rely on the specification of earlier ones.

• Object technology rehabilitates implementation.

28.9  BIBLIOGRAPHICAL NOTES

[M 1995] discusses further the topics of this chapter. It develops in detail the cluster 
model, and explores the consequences of the object-oriented software process on team 
organization, on the manager’s role, and on the economics of software engineering.

[Baudoin 1996] is an extensive discussion of the lifecycle issues raised by object 
technology, also covering many other important topics such as project organization and 
the role of standards, and including several case studies. 

The first presentation of the cluster model appeared in [Gindre 1989]. Another O-O 
lifecycle model, the fountain model, originally appeared in [Henderson-Sellers 1990] and is 
further developed in [Henderson-Sellers 1991], [Henderson-Sellers 1994]; it complements 
rather than contradicts the cluster model, emphasizing the need to iterate lifecycle activities.

A number of O-O analysis publications, in particular [Rumbaugh 1991] (the original 
text on the OMT method) and [Henderson-Sellers 1991], stress seamless development. 
For a detailed treatment of reversibility as well as seamlessness, see [Waldén 1995].

***

Wisdom sometimes blooms late in the season
Or half-way down the stairs.

Is it, my Lords, a crime of high treason
To trust the implementers?
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Teaching the method
E nding our study of methodological issues, we turn our attention to one of the principal 
questions facing companies and universities that adopt object technology: how best to 
educate those who will have to apply it. This chapter presents teaching principles and 
points to common errors.

The first part of the discussion takes the view of someone who is in charge of 
organizing a training program in a company; the following parts take the view of a 
university or high school professor. All emphasize the pedagogical issues of O-O training, 
and so they should be relevant to you even if you are in neither of these positions — in 
particular if you are a trainee rather than a trainer.

29.1  INDUSTRIAL TRAINING
Let us start with a few general observations about how to teach object technology — either 
in public seminars or as part of an in-company training plan — to software professionals 
previously trained in other approaches.

Paradoxically, the trainer’s task may be harder now than when object technology 
started to attract wide interest in the mid-eighties. It was new then to most people, and 
had an aura of heresy which made the audience listen. Today, no one will call security if 
one of the cocktail guests declares object-oriented tastes. This is the buzzword effect, 
which has been dubbed mOOzak: the omnipresence, in the computer press, of O-O this 
and O-O that, causing a general dilution of the concepts. The words flow so continuously 
from the loudspeakers — object, class, polymorphism… — as to seem familiar, but are 
the concepts widely understood? Often not. This puts a new burden on the trainer: 
convincing the trainees that they do not yet know everything, since no one can learn a 
subject who thinks he already knows it.

The only strategy guaranteed to overcome this problem applies the following plan:

Initial training: the “hit them twice” strategy
T1 • Take the initial training courses.
T2 • Try your hand at O-O development.
T3 • Take the initial training courses.
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T3 is not a typo: after having tried to apply O-O ideas to real development, trainees 
take the class again. O-O training companies sometimes suggest this strategy to their 
customers, not always with success since it suspiciously looks like a marketing ploy to sell 
the same thing twice. But that is not the case.

The second iteration is what really gets the concepts through. Although the first is 
necessary to provide the right background, it may not be fully effective; partly because of 
the mOOzak effect, your students may not quite internalize the concepts. Only when they 
have grappled with the day-to-day challenges of object-oriented software construction — 
Is a new class necessary for this concept? Is this a proper use of inheritance? Do these two 
features justify introducing a new node in the inheritance structure? Is this design pattern 
from the course relevant here? — will they have the necessary preparation to listen 
properly. The second session will not, of course, be identical to the first (if anything, the 
audience’s questions will be more interesting), and might straddle the border between 
training and consulting; but it is really a second presentation of the same basic material — 
not merely an advanced course following an elementary one.

In practice only the more enlightened companies are ready to accept the “teach it once, 
then teach it again” strategy. Others will dismiss the idea as a waste of resources. In my 
experience, however, the result is well worth the extra effort. The strategy is the best I 
know to train developers who truly understand object technology and can apply it 
effectively to serve the company’s needs.

The next principle addresses what should be taught:

Some people assume that the curriculum should start with object-oriented analysis. 
This is a grave mistake. A beginner in object technology cannot understand O-O analysis 
(except in the mOOzak sense of recognizing the buzzwords). To master O-O analysis, you 
must have learned the fundamental concepts — class, contracts, information hiding, 
inheritance, polymorphism, dynamic binding and the like — at the level of 
implementation, where they are immediately applicable, and you must have used them to 
build a few O-O systems, initially small and then growing in size; you must have taken 
these projects all the way to completion. Only after such a hands-on encounter with the 
operational use of the method will you be equipped to understand the concepts of O-O 
analysis and their role in the seamless process of object-oriented software construction.

Two more principles. First, do not limit yourselves to introductory courses:

Finally, do not consider developers alone:

Training Topics principle
Especially in initial training, focus on implementation and design.

Advanced Curriculum principle
At least 50% of a training budget should be reserved for non-introductory 
courses.
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It is unrealistic, for a company or group that is adopting object technology on any 
scale, to hope to succeed by training developers only. Managers, regardless of the depth 
of their technical background, must be introduced to the basic O-O ideas and apprised of 
their repercussions on distribution of tasks, team organization, project lifecycle, 
economics of software development. The lifecycle discussion of the next chapter and, 
more exhaustively, management-oriented books such as [Goldberg 1995], [Baudoin 1996]
and [M 1995], are typical of the material to be covered in such (usually short) courses.

Here is an example of what manager education must include to avoid potential trouble, 
allow effective development and benefit the bottom line. The industry’s measures of 
productivity are still largely based, deep-down, on ratios of produced code to production 
effort. In a reuse-conscious software process, you may spend some time improving 
software elements that already work well to increase their potential for reuse in future 
projects. This is the generalization task, an important step of the lifecycle model 
presented in the next chapter. Often, such efforts will remove code, for example because 
you have given a common ancestor to two originally unrelated classes, moving 
commonality to that ancestor. In the productivity ratio, the numerator decreases (less 
code) and the denominator increases (more effort)! Managers must be warned that the old 
measures do not tell the whole story, and that the extra effort actually improves the 
software assets of the company. Without such preparation, serious misunderstandings 
may develop, jeopardizing the success of the best planned technical strategies.

29.2  INTRODUCTORY COURSES

Let us turn our attention now to the teaching of object technology in an academic 
environment (although many observations will also be applicable to industrial training).

As the software community recognizes the value of the object-oriented approach, the 
question increasingly arises of when, where and how to include object-oriented concepts, 
languages and tools in a software curriculum – university, college or even high school. 

Phylogeny and ontogeny

When should we start?

The earlier the better. The object-oriented method provides an excellent intellectual 
discipline; if you agree with its goals and techniques, there is no reason to delay bringing 
it to your students; you should in fact teach it as the first approach to software 
development. Beginning students react favorably to O-O teaching, not because it is trendy, 
but because the method is clear and effective. 

This strategy is preferable to a more conservative one whereby you would teach an 
older method first, then unteach it in order to introduce O-O thinking. If you think object-
oriented development is the right way to go, there is no reason to make a detour first. 

Manager Training principle
A training curriculum should include courses for managers as well as 
software developers.
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Teachers may unconsciously tend to apply an idea that was once popular in biology: 
that ontogeny (the story of the individual) repeats phylogeny (the story of the species); a 
human embryo, at various stages of its development, vaguely looks like a frog, a pig etc. 
Transposed to our subject, it means that a teacher who first learned Algol, then went on to 
structured design and finally discovered objects may want to take his students through the 
same path. There is little justification for such an approach, which in elementary education 
would make students first learn to count in Roman numerals, only later to be introduced 
to more advanced “methodologies” such as Arabic numerals. If you think you know what 
the right approach is, teach it first. 

Paving the way for other approaches

One of the reasons for recommending (without fear of fanaticism or narrow-mindedness) 
the use of object technology right from the start is that, because the method is so general, 
it prepares students for the later introduction of other paradigms such as logic and 
functional programming – which should be part of any software engineer’s culture. If your 
curriculum calls for the teaching of traditional programming languages such as Fortran, 
Cobol or Pascal, it is also preferable to introduce these later, as knowledge of the object-
oriented method will enable students to use them in a safer and more reasoned way. 

O-O teaching is also good preparation for a topic which will become an ever more 
prevalent part of software education programs: formal approaches to software 
specification, construction and verification, rooted in mathematics and formal logic. The 
use of assertions and more generally of the Design by Contract approach is, in my 
experience, an effective way to raise the students’ awareness of the need for a sound, 
systematic, implementation-independent and at least partially formal characterization of 
software elements. Premature exposure to the full machinery of a formal specification 
method such as Z or VDM may overwhelm students and cause rejection; even if this does 
not occur, students are unlikely to appreciate the merits of formality until they have had 
significant software development experience. Object-oriented software construction with 
Design by Contract enables students to start producing real software and at the same time 
to gain a gentle, progressive exposure to formal techniques.

Language choice

Using the object-oriented method for introductory courses only makes sense if you can 
rely on a language and an environment that fully support the paradigm, and are not 
encumbered by ghosts of the past. Note in particular that “hybrid” approaches, based on 
object-oriented extensions of older languages, are unsuitable for beginning students, since 
they mix O-O concepts with unrelated remnants from other methods, forcing the teacher 
to spend much of the time on excuses rather than concepts.

In C-based languages, for example, just explaining why an array and a pointer have 
to be treated as the same notion — a property having its roots in optimization techniques 
for older hardware architectures — would consume precious time and energy, which will 
not be available for teaching the concepts of software design. More generally, students 
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would be encouraged, at the very beginning of their training, to reason in terms of low-
level mechanisms – addresses, pointers, memory, signals. They would inevitably spend 
much of their time, if they eventually produce a compilable program, chasing various 
bugs. The approach would leave the students perplexed and might end up in disaster. 

An introductory course must do the reverse: present the students with a clear, 
coherent set of practical principles. The notation must directly support these principles, 
ensuring a one-to-one correspondence between method and language. Any time you spend 
explaining the language per se is time lost. With a good language, you explain the 
concepts, and use the notation as the natural way to apply them.

Although the main quality of an introductory language is its structural simplicity and 
its support of O-O ideas such as class-based modularization, design by contract, static 
typing and inheritance, you should not underestimate the role of syntactic clarity. C++ and 
Java texts are replete with lines such as 

public static void main(String[] args {
if (this–>fd == –1 && !open_fd(this))
if ((xfrm = (char ∗)malloc(xfrm_len + 1)) == NULL) {

showing cryptic and confusing syntax relying on many special operators. Beginners should 
not be subjected to such contortions, justified only by historical considerations; learning to 
program well is hard enough without the interposed obstacle of a hostile notation.

David Clark from the University of Canberra went through this experience and 
posted some of his conclusions on Usenet:

Last semester I taught the second half of a first year programming [course] using 
Java… My experience has been that students do not find Java easy to learn. Time and 
again the language gets in the way of what I want to teach. Here are some examples:

• The first thing they see is public static void main (String [ ] args) throws IOException
There are about 6 different concepts in that one line which students are not yet ready 
to learn… 

• You get output for “free”, but have to jump through several hoops to input anything.
(import, declare, initialize.). The only way to read a number from the keyboard is to 
read a string and parse it. Again, this is something that crops up in the first lecture.

• Java treats the primitive data types (int, char, boolean, float, long,…) differently from 
other objects. There are Object-type equivalents (Integer, Boolean, Character etc.).
There is no relation between int and Integer. 

• The String class is a special case. (Again, for efficiency.) It is only used for strings 
that don't change. There is a StringBuffer class for strings that do change. Fair 
enough. but there is no relationship between String and StringBuffer. There are few 
features in common. 

• The lack of generics means that you are forever casting if you want to use a collection 
of elements such as Stack or Hashtable. [These things] are hurdles for beginning 
students, and distract them from the main learning outcomes of the course.

Prof. Clark goes on to compare this experience with his practice of teaching with the 
notation of this book, for which, he writes, “I do virtually no language teaching beyond 
giving some examples of code”.
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The initial notations taught to students, so important to their future vision, must 
always be simple and clear, to allow in-depth understanding of the basic concepts. Even 
Pascal, the traditional choice of computing science departments for introductory teaching, 
is preferable in this respect to a hybrid language since it provides a solid, consistent basis, 
from which students can later move to another solid, consistent approach. It is of course 
even better, as noted, if the basis can be solid, consistent and O-O.

Some hybrid languages are industrially important; but they should be taught later, 
when students have mastered the basic concepts. This is not a new idea: when computing 
science departments adopted Pascal in the nineteen-seventies, they also included service 
courses to teach Fortran, Cobol or PL/I as requested by industry then. Similarly, a modern 
object-based curriculum may include a C++ or Java service course to satisfy downstream 
requirements and enable the students to include the required buzzwords on their résumés. 
Students will understand C++ and Java better anyway after having been taught the 
principles of object technology using a pure O-O language. Introductory courses, which 
shape a student’s mind forever, must use the best technical approach.

Some teachers are tempted to use C hybrids because of perceived industry pressures. 
But this is inappropriate for several reasons:

• Industry demands are notoriously volatile. A few years ago, ads were all for things 
like RPG and Cobol. In late 1996 they were all for Java, but in 1995 no one had heard 
of Java. What will they list in 2010 or 2020? We do not know, but we must endow 
our students with capabilities that will still be marketable then. For this we must 
emphasize long-term design skills and intellectual principles.

• Starting with these skills and principles does not exclude teaching specific approaches 
later. In fact it helps, as already noted. A student who has been taught O-O concepts 
in depth, using an appropriate notation, will be a better C++ or Java programmer than 
one whose first encounter with programming involved fighting with the language.

• The historical precedent of Pascal around 1975 shows that computing science 
teachers can succeed with their own choices. At that time, no one in industry 
requested Pascal; in fact, almost no one in industry had heard of Pascal. Industry, if 
anything, would have requested one of the Three Tenors of the moment: Fortran, 
Cobol and PL/I. The computing scientists chose to go with the best technical 
solution, corresponding to the state of the art in programming methodology 
(structured programming). The result proved them right, as they were able to teach 
students the abstract concepts and techniques of software development while 
preparing them for learning new languages and tools.

29.3  OTHER COURSES

Beyond introductory courses, the object-oriented method can play a role at many stages 
of a software curriculum. Let us review the corresponding uses. 
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Terminology 
The organization of higher education differs widely among countries. To avoid any 
confusion we must first decide on a reasonably universal terminology to denote the 
various levels of study. Here is some attempt at common ground: 

• High school (US), lycée, Gymnasium, called secondary education below. 
• First few years of university or equivalent: this is called “undergraduate studies” in 

the US and other Anglo-Saxon countries (Gakubu in Japan). In France and countries 
influenced by its system it corresponds to either the combination of classes 
préparatoires with the first two years of engineering schools, or to the first and 
second cycles of universities. In the German system it is the Grundstudium. The term 
“undergraduate” will be retained below. 

• Finally for the later years, leading to advanced degrees, we can use the US term 
“graduate”. (The rough equivalents are “postgraduate” in the UK; third cycle, DEA, 
DESS, options of engineering schools in France; Hauptstudium in Germany; 
Daigakuin in Japan.) 

Secondary and undergraduate studies
At the secondary or undergraduate level the object-oriented method can play a central role, 
as noted, in an introductory programming course. It can also help for many other courses. 
We may distinguish here between courses that can be entirely taught in an object-oriented 
way, and those which will benefit from some partial use of object-oriented ideas. 

Here are some of the standard courses that can be taught in a fully O-O way:
• Data structures and algorithms. Here the techniques of Design by Contract are 

fundamental: characterizing routines by assertions, specifying data structures with 
class invariants, associating loop variants and invariants with algorithms. In 
addition, an innovative and powerful way to organize such a course is to design it 
around an existing library of software components from an existing object-oriented 
environment. Then instead of starting from scratch students can learn by imitation 
and improvement. (More on this topic below.) 

• Software engineering. The object-oriented method provides an excellent framework 
to introduce students to the challenges of industrial, multi-person software 
development, and to evaluate the benefits and limitations of project management 
techniques, software metrics, software economics, development environments and 
the other techniques which the software engineering literature discusses (in 
complement to object orientation) as answers to this challenge. 

• Analysis and design. Clearly this can be taught in a fully O-O way; again Design by 
Contract is central. Courses should emphasize the seamless transition to 
implementation and maintenance.

• Introduction to graphics; introduction to simulation; etc.
Courses that may benefit from heavier or lighter object doses include: operating 

systems (where the method helps understand the notion of process, the message passing 
paradigm, and the importance of information hiding, clearly defined interfaces and limited 
communication channels in the design of proper system architectures); introduction to 
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formal methods (as noted above); functional programming; logic programming (where the 
connection with assertions should be emphasized); introduction to artificial intelligence 
(where inheritance is a key concept for knowledge representation); databases (which 
should reserve a central place for the notion of abstract data type, and include a discussion 
of object-oriented databases). 

Even computer architecture courses are not immune from the influence of O-O ideas, 
as concepts of modularity, information hiding and assertions can serve to present the topic 
in a clear and convincing manner. 

Graduate courses 

At the graduate level, many O-O courses and seminars are possible, covering more 
advanced topics: concurrency, distributed systems, persistence, databases, formal 
specifications, advanced analysis and design methods, configuration management, 
distributed project management, program verification. 

A complete curriculum

This incomplete list shows the method as being so ubiquitous that it would make sense to 
design an entire software curriculum around it. A few institutions have made some 
progress in that direction. No doubt in the years to come someone will jump and convince 
the management of some university to go all the way. 

29.4  TOWARDS A NEW SOFTWARE PEDAGOGY

Not only does object technology affect what can be taught to students of software topics; 
the method also suggests new pedagogical techniques, which we will now explore.

An important note: the strategies described in the rest of this chapter are still 
somewhat futuristic. I believe that they must and will become prevalent for teaching 
software, but their full application will require an infrastructure which is not yet fully in 
place, in particular new textbooks and different administrative policies.

If you or your institution are not ready to apply such strategies, this does not mean 
that you should remove objects from your teaching. You can still, as described in the 
preceding sections, instill variable doses of object technology in your courses while 
retaining compatibility with your current way of teaching. And you should read the rest of 
this chapter anyway since, even if you do not follow its more radical suggestions, you 
might find an idea or two immediately applicable in a more conventional context.

The consumer-to-producer strategy
An O-O course on data structures and algorithms can, as noted above, be organized around 
a library. This idea actually has much broader applications.

A frustrating aspect of many courses is that teachers can only give introductory 
examples and exercises, so that students do not get to work on really interesting 



§29.4   TOWARDS A NEW SOFTWARE PEDAGOGY 943
applications. One can only get so much excitement out of computing the first 25 Fibonacci 
numbers, or replacing all occurrences of a word by another in a text, two typical exercises 
of elementary programming courses. 

With the object-oriented method, a good O-O environment and, most importantly, 
good libraries, a different strategy is possible if you give students access to the libraries 
early in the process. In this capacity students are just reuse consumers, and use the library 
components as black boxes in the sense defined above; this assumes that proper 
techniques are available for describing component usage without showing the 
components’ internals. Then students can start building meaningful applications early: 
their task is merely to combine existing components and assemble them into systems. In 
many respects this is a better introduction to the challenges and rewards of software 
development than the toy examples which have been the mainstay of most introductory 
courses. 

Almost on day one of the course, the students will be able to produce impressive 
applications by reusing existing software. Their first assignment may involve writing just 
a few lines — enough to call a pre-built application, and yielding striking results (devised 
by someone else!). It is desirable, by the way, to use libraries that include graphics or other 
multimedia components, so as to make the outcome truly dazzling.

Later, students will be invited to go further. First they will be shown, little by little, 
the internals of some of the components. Then they will be asked to make some extensions 
and modifications, either in the classes themselves or in new descendants. Finally they 
will write their own classes (the step that would have come first in a traditional curriculum, 
but should not occur until they have had ample exposure to the work of their elders).

This learning process may be called “progressive opening of the black boxes” or, 
using a shorter name, the consumer-to-producer strategy. (“Outside-in” would also be an 
appropriate name.)

If you like automotive comparisons, think of someone who first learns to drive, then is 
invited to lift the hood and study, little by little, how the engine works, then will do repairs 
— and, much later, design his own cars.

For this process to work, good abstraction facilities must be present, allowing a 
consumer to understand the essentials of a component without understanding all of it. The 
notion of short form of a class supports this idea by listing the exported features with their 
assertions, but hiding implementation properties. After students have seen and understood 

Consumer-to-producer strategy
S1 • Learn to use library classes, solely through their abstract specifications.
S2 • Learn to understand the internals of selected classes.
S3 • Learn to extend selected classes.
S4 • Learn to modify selected classes.
S5 • Learn to add your own classes.
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the short form, they may selectively explore the internals of the class – again under the 
guidance of the instructor. 

Abstraction

Most good introductory programming textbooks preach abstraction. Many in fact include 
the word “abstraction” in their titles. This is because the authors, being experienced 
software professionals and teachers, know that one cannot overcome the difficulties of 
large-scale software development without making constant efforts at abstraction.

Often, unfortunately, such preaching is lost on the students, who simply see it as 
another exhortation to “be good”. You can indeed handle the small programming exercises 
favored by traditional teaching methods without too much abstraction effort. So why pay 
attention to the teacher’s musings about the importance of abstraction? They will not, or 
so it seems, improve your Grade Point Average. Only when they have moved to larger 
developments would the students be in a position to benefit fully from this advice.

To preach is not the best way to teach. With the consumer-to-producer strategy, based 
on libraries, abstraction is not something to pontificate on: it is a practical and 
indispensable tool. Without abstraction, one cannot use libraries; the alternative would be 
to go into the source code, which is overwhelming (you would never get to do your own 
application) and may not be available anyway. Only through the short form with its high-
level information and assertions — the library module in its abstract form — can the 
students take advantage of a library class.

Having become used, right from the start, to view classes through abstract interfaces, 
the students will much more easily apply the same principles when they start developing 
their own classes.

Note once again that these results are only possible in an environment supporting 
short forms, appropriate documentation and browsing tools, assertions, and distribution of 
libraries without the source.

Apprenticeship 

The consumer-to-producer strategy is the application to software teaching of a time-
honored technique: apprenticeship. As an apprentice you learn from the previous 
generation of master practitioners of your chosen craft, and once you have understood 
their techniques you try to do better if you can. For lack of available masters, one-on-one 
apprenticeship is necessarily of limited applicability; but here we do not need the masters 
themselves, just the results of their work, made available as reusable components. 

This approach is the continuation of a trend that had already influenced the teaching 
of some topics in software education, such as compiler construction, before object 
technology became popular. In the seventies and early eighties, the typical term project for 
a compiler course was the writing of a compiler (or interpreter) from scratch. The front-
end tasks of compiler construction, lexical analysis and parsing, require such a large effort 
that in practice the compiler could only be for a very small toy language. Even so, few 
students ever got past parsing to the really interesting parts: semantic analysis, code 
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generation, optimization. Then tools for lexical analysis and parsing, such as Lex and 
Yacc, became widely available, enabling students to spend less time on these front-end 
tasks. The producer-consumer strategy generalizes this change. 

The inverted curriculum

The consumer-to-producer strategy has an interesting counterpart in electrical 
engineering, where Bernard Cohen has suggested an “inverted curriculum”. Criticizing 
the classical progression (field theory, then circuit theory, power, device physics, control 
theory, digital systems, VLSI design) as “reductionist”, the proponents of this approach 
suggest a more systems-oriented progression, which would successively cover:

• Digital systems, using VLSI and CAD. 

• Feedback, concurrency, verification. 

• Linear systems and control. 

• Power supply and transmission, impedance matching requirements. 

• Device physics and technologies, using simulation and CAD techniques. 

The software education strategy suggested above is similar: rather than repeating 
phylogeny, start by giving students a user’s view of the highest-level concepts and 
techniques that are actually applied in industrial environments, then, little by little, unveil 
the underlying principles. 

A long-term policy 

The consumer-to-producer strategy has an interesting variant applicable, for application-
oriented courses such as operating systems, graphics, compiler construction or artificial 
intelligence, by professors who are in a position to define a multi-year educational plan. 

The idea is to let students build a system by successive enhancement and 
generalization, each year’s class taking over the collective product of the previous year 
and trying to build on it. This method has some obvious drawbacks for the first class 
(which collectively serves as advanceman for future generations, and will not enjoy the 
same reuse benefits), and I must confess I have not yet seen it applied in a systematic way. 
But on paper at least it is attractive. There hardly seems to be a better way of letting the 
students weigh the advantages and difficulties of reuse, the need for building extendible 
software and the challenge of improving on someone else’s work. The experience will 
prepare them for the reality of software development in their future company, where 
chances are they will be asked to perform maintenance work on an existing system long 
before they are asked to develop a brand new system of their own. 

Even if the context does not permit such a multi-year strategy, instructors should try 
to avoid a standard pitfall. Many undergraduate curricula include a “software engineering” 
course, which often devotes a key role to a software project to be carried out by the 
students, often in groups. Such project work is necessary, but often disappointing because 
of the time limitations due to its inclusion in a one-trimester or one-semester course. When 
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administratively possible, it is by far preferable to run such a project over an entire 
schoolyear, even if the total amount of allocated work is the same. Trimester projects, in 
particular, border on the absurd; they either stop at the analysis or design stage, or result 
over the last few weeks in a rush to code at any cost and using any technique that will 
produce a running program — often defeating the very purpose of software engineering 
education. You need more time, if only to let the students appreciate the depth of the issues 
involved in building serious software. A year-long project, whether or not it is part of a 
longer-term policy, favors this process. It is more difficult to fit into the typical curriculum 
than the standard course, but worth the fight. 

29.5  AN OBJECT-ORIENTED PLAN 

The idea of a long-term teaching strategy based on reuse, as well as the earlier suggestion 
of organizing an entire curriculum around object-oriented concepts, may lead to a more 
ambitious concept which goes beyond the scope of software education to encompass 
research and development. Although this concept will be appealing to certain institutions 
only, it deserves a little more thought.

Assume a university department (computing science, information systems or 
equivalent) in search of a long-term unifying project — the kind of project that produces 
better teaching, development of new courses, faculty research, sources of publication, 
Ph. D. theses, Master’s theses, undergraduate projects, collaborations with industry and 
government grants.   Many a now well-respected department originally “put itself on the 
map” through such a collective multi-year effort. 

The object-oriented method provides a natural basis for such an endeavor. The focus 
of the work will not be compilers, interpreters and development tools (which may already 
be available from companies) but libraries. What object technology needs most to 
progress today is application-oriented reusable components, also called domain libraries. 
A good O-O environment will already provide, as noted, a set of general-purpose libraries 
covering such universal needs as the fundamental data structures and algorithms of 
computing science, graphics, user interface design, parsing. This leaves open entire 
application domains, from Web browsing to multimedia, from financial software to signal 
analysis, from computer-aided design to document processing, in which the need for 
quality software components is crying. 

The choice of such a library development project as a unifying effort for a university 
department presents several advantages: 

• Even though this is a long-term pursuit, partial results can start to appear early. 
Compilers and other tools tend to be of the all-or-nothing category: until they are 
reasonably complete, distributing them may damage your reputation more than it 
helps it. With libraries, this is not the case: just a dozen or two quality reusable 
classes can render tremendous services to their users, and attract favorable attention. 

• Because an ambitious library is a large project, there is room for many people to 
contribute, from advanced undergraduates to Ph. D. candidates, researchers and 
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professors. This assumes of course that the application domain and the breadth of the 
library’s coverage have been chosen judiciously so as to match the size of the 
available resources in people, equipment and funds. 

• Talking about resources, the project may start with relatively limited means but is a 
prime candidate to attract the attention of funding agencies. It also offers prospects 
of industry funding if the application domain is of direct interest to companies. 

• Building good libraries is a technically exciting task, which raises new scientific 
challenges, so that the output of a successful project may include theses and 
publications, not just software. The intellectual challenges are of two kinds. First the 
construction of reusable components is one of the most interesting and difficult 
problems of software engineering, for which the method brings some help but 
certainly does not answer all questions. Second, any successful application library 
must rest on a taxonomy of the application domain, requiring a long-term effort at 
classifying the known concepts in that area. As is well known in the natural sciences 
(remember the discussion of the history of taxonomy), classification is the first step 
towards understanding. Developed for a new application area, such an effort, known 
as domain analysis, raises new and interesting problems. 

• The last comment suggests the possibility of inter-disciplinary cooperation with 
researchers in various application domains, usually non-software.

• Cooperation should begin with people working in neighboring fields. Many 
universities have two groups pursuing teaching and research in software issues, one 
(often “computing science”) having more of an engineering and scientific 
background, the other (often “information systems”) more oriented towards business 
issues. Whether these groups are administratively separate or part of the same 
structure — both cases are common — the project may appeal to both, and provides 
an opportunity for collaboration. 

• Finally, a successful library providing components for an important application area 
will be widely used and bring much visibility to its originating institution. 

No doubt in the years to come a number of universities will seize on these ideas, and 
that the “X University Reusable Financial Components” or “Y Polytechnic Object-
Oriented Text Processing Library” will (with better names than these) bring to their 
institutions the modern equivalent of what UCSD Pascal, Waterloo Fortran and the MIT’s 
X Window system achieved in earlier eras for their respective sponsors. 

29.6  KEY CONCEPTS STUDIED IN THIS CHAPTER

• In object-oriented training, emphasize implementation and design.

• In initial training for professionals, do not hesitate to repeat a session, with some time 
in-between for actual practice.

• Training in a company should include courses for managers as well as developers.
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• Beginning programming courses, and many others, may take advantage of O-O 
techniques.

• For teaching, use a pure O-O language, clear and simple, supporting the full extent 
of the technology, in particular assertions.

• Courses should, as much as possible, be based on libraries of reusable components.

• The consumer-to-producer strategy (similar to “inverted curriculum” ideas), 
presents students with existing components, enabling them to write advanced 
applications right from the start, then lets students open the components, extend 
them, and produce new components by imitation through an apprenticeship process.

• More generally, a long-term library effort can be a unifying project for a department.

29.7  BIBLIOGRAPHICAL NOTES
The material in this chapter is derived from an article in the Journal of Object-Oriented 
Programming, of which a revised version was presented at TOOLS USA 93 and appears 
in the proceedings (see [M 1993c] for the two references). Further material about education 
and training issues appears in the book Object Success [M 1995], from which the term 
mOOzak is taken, as well as some observations regarding industry training. 

Important articles about teaching programming using O-O concepts include 
[McKim 1992] and [Heliotis 1996].

The notion of inverted curriculum for education in electrical engineering is due to 
Bernard Cohen [Cohen 1991]. I am grateful to Warren Yates, chairman of the Electrical 
Engineering Department at University of Technology, Sydney, for bringing it to my 
attention. This chapter also benefited from discussions with many educators, including 
Christine Mingins, James McKim, Richard Mitchell, John Potter, Robert Switzer, Jean-
Claude Boussard, Roger Rousseau, David Riley, Richard Wiener, Fiorella De Cindio, 
Brian Henderson-Sellers, Pete Thomas, Ray Weedon, John Kerstholt, Jacob Gore, David 
Rine, Naftaly Minsky, Peter Löhr, Robert Ogor, Robert Rannou.

An ongoing project is intended to produce an introductory programming book-cum-
CD applying the “consumer-to-producer strategy”, or “inverted curriculum” principle [M 
199?]. But there are already a number of good introductory programming textbooks based 
on O-O ideas; they were listed in an earlier chapter, but here they are again, for 
convenience, without further comments: [Rist 1995], [Wiener 1996], [Gore 1996], 
[Wiener 1997] and [Jézéquel 1996].
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Part E complements our study of object technology basics by exploring some more 
leading-edge, but equally important topics: concurrency, distribution, client-server 
computing and the Internet; persistence and databases; graphical interfaces.
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client-server and the Internet
arning: SPOILER!
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L ike humans, computers can team up with their peers to achieve results that none of 
them could obtain alone; unlike humans, they can do many things at once (or with the 
appearance of simultaneity), and do all of them well. So far, however, the discussion has 
implicitly assumed that the computation is sequential — proceeds along a single thread of 
control. We should now see what happens when this assumption no longer holds, as we 
move to concurrent (also known as parallel) computation.

Concurrency is not a new subject, but for a long time interest in it remained mostly 
confined to four application areas: operating systems, networking, implementation of 
database management systems, and high-speed scientific software. Although strategic and 
prestigious, these tasks involve only a small subset of the software development community.

Things have changed. Concurrency is quickly becoming a required component of just 
about every type of application, including some which had traditionally been thought of as 
fundamentally sequential in nature. Beyond mere concurrency, our systems, whether or not 
client-server, must increasingly become distributed over networks, including the network 
of networks — the Internet. This evolution gives particular urgency to the central question 
of this chapter: can we apply object-oriented ideas in a concurrent and distributed context?

Not only is this possible: object technology can help us develop concurrent and 
distributed applications simply and elegantly.

30.1  A SNEAK PREVIEW
As usual, this discussion will not throw a pre-cooked answer at you, but instead will 
carefully build a solution from a detailed analysis of the problem and an exploration of 
possible avenues, including a few dead ends. Although necessary to make you understand 
the techniques in depth, this thoroughness might lead you to believe that they are complex; 
that would be inexcusable, since the concurrency mechanism on which we will finally 
settle is in fact characterized by almost incredible simplicity. To avoid this risk, we will 
begin by examining a summary of the mechanism, without any of the rationale.

If you hate “spoilers”, preferring to start with the full statement of the issues and to let the 
drama proceed to its dénouement step by step and inference by inference, ignore the one-
page summary that follows and skip directly to the next section.
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A complete sum-
mary appears in 
30.11, page 1025.
The extension covering full-fledged concurrency and distribution will be as minimal 
as it can get starting from a sequential notation: a single new keyword — separate. How 
is this possible? We use the fundamental scheme of O-O computation: feature call, x  f (a), 
executed on behalf of some object O1 and calling f on the object O2 attached to x, with the 
argument a. But instead of a single processor that handles operations on all objects, we 
may now rely on different processors for O1 and O2 — so that the computation on O1 can 
move ahead without waiting for the call to terminate, since another processor handles it.

Because the effect of a call now depends on whether the objects are handled by the 
same processor or different ones, the software text must tell us unambiguously what the 
intent is for any x. Hence the need for the new keyword: rather than just x: SOME_TYPE, 
we declare x: separate SOME_TYPE to indicate that x is handled by a different processor, 
so that calls of target x can proceed in parallel with the rest of the computation. With such 
a declaration, any creation instruction create x  make (…) will spawn off a new processor 
— a new thread of control — to handle future calls on x.

Nowhere in the software text should we have to specify which processor to use. All 
we state, through the separate declaration, is that two objects are handled by different 
processors, since this radically affects the system’s semantics. Actual processor assignment 
can wait until run time. Nor do we settle too early on the exact nature of processors: a 
processor can be implemented by a piece of hardware (a computer), but just as well by a 
task (process) of the operating system, or, on a multithreaded OS, just a thread of such a 
task. Viewed by the software, “processor” is an abstract concept; you can execute the same 
concurrent application on widely different architectures (time-sharing on one computer, 
distributed network with many computers, threads within one Unix or Windows task…) 
without any change to its source text. All you will change is a “Concurrency Configuration 
File” which specifies the last-minute mapping of abstract processors to physical resources.

We need to specify synchronization constraints. The conventions are straightforward:
• No special mechanism is required for a client to resynchronize with its supplier after 

a separate call x  f (a) has gone off in parallel. The client will wait when and if it needs 
to: when it requests information on the object through a query call, as in 
value := x  some_query. This automatic mechanism is called wait by necessity.

• To obtain exclusive access to a separate object O2, it suffices to use the attached 
entity a as an argument to the corresponding call, as in r (a).

• A routine precondition involving a separate argument such as a causes the client to 
wait until the precondition holds.

• To guarantee that we can control our software and predict the result (in particular, 
rest assured that class invariants will be maintained), we must allow the processor in 
charge of an object to execute at most one routine at any given time.

• We may, however, need to interrupt the execution of a routine to let a new, high-
priority client take over. This will cause an exception, so that the spurned client can 
take the appropriate corrective measures — most likely retrying after a while.
This covers most of the mechanism, which will enable us to build the most advanced 

concurrent and distributed applications through the full extent of O-O techniques, from 
multiple inheritance to Design by Contract — as we will now study in detail, forgetting 
for a while all that we have read in this short preview.
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30.2  THE RISE OF CONCURRENCY
Back to square one. We must first review the various forms of concurrency, to understand 
how the evolution of our field requires most software developers to make concurrency part 
of their mindset. In addition to the traditional concepts of multiprocessing and 
multiprogramming, the past few years have introduced two innovative concepts: object 
request brokers and remote execution through the Net.

Multiprocessing

More and more, we want to use the formidable amount of computing power available 
around us; less and less, we are willing to wait for the computer (although we have become 
quite comfortable with the idea that the computer is waiting for us). So if one processing 
unit would not bring us quickly enough the result that we need, we will want to rely on 
several units working in parallel. This form of concurrency is known as multiprocessing.

Spectacular applications of multiprocessing have involved researchers relying on 
hundreds of computers scattered over the Internet, at times when the computers’ 
(presumably consenting) owners did not need them, to solve computationally intensive 
problems such as breaking cryptographic algorithms. Such efforts do not just apply to 
computing research: Hollywood’s insatiable demand for realistic computer graphics has 
played its part in fueling progress in this area; the preparation of the movie Toy Story, one 
of the first to involve artificial characters only (only the voices are human), relied at some 
point on a network of more than one hundred high-end workstations — more economical, 
it seems, than one hundred professional animators.

Multiprocessing is also ubiquitous in high-speed scientific computing, to solve ever 
larger problems of physics, engineering, meteorology, statistics, investment banking.

More routinely, many computing installations use some form of load balancing: 
automatically dispatching computations among the various computers available at any 
particular time on the local network of an organization.

Another form of multiprocessing is the computing architecture known as client-
server computing, which assigns various specialized roles to the computers on a network: 
the biggest and most expensive machines, of which a typical company network will have 
just one or a few, are “servers” handling shared databases, heavy computations and other 
strategic central resources; the cheaper machines, ubiquitously located wherever there is 
an end user, handle decentralizable tasks such as the human interface and simple 
computations; they forward to the servers any task that exceeds their competence.

The current popularity of the client-server approach is a swing of the pendulum away 
from the trend of the preceding decade. Initially (nineteen-sixties and seventies) 
architectures were centralized, forcing users to compete for resources. The personal 
computer and workstation revolution of the eighties was largely about empowering users 
with resources theretofore reserved to the Center (the “glass house” in industry jargon). 
Then they discovered the obvious: a personal computer cannot do everything, and some 
resources must be shared. Hence the emergence of client-server architectures in the 
nineties. The inevitable cynical comment — that we are back to the one-mainframe-
many-terminals architecture of our youth, only with more expensive terminals now called 
“client workstations” — is not really justified: the industry is simply searching, through 
trial and error, for the proper tradeoff between decentralization and sharing.
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Multiprogramming

The other main form of concurrency is multiprogramming, which involves a single 
computer working on several tasks at once. 

If we consider general-purpose systems (excluding processors that are embedded in 
an application device, be it a washing machine or an airplane instrument, and single-
mindedly repeat a fixed set of operations), computers are almost always multi-
programmed, performing operating system tasks in parallel with application tasks. In a 
strict form of multiprogramming the parallelism is apparent rather than real: at any single 
time the processing unit is actually working on just one job; but the time to switch between 
jobs is so short that an outside observer can believe they proceed concurrently. In addition, 
the processing unit itself may do several things in parallel (as in the advance fetch schemes 
of many computers, where each clock cycle loads the next instruction at the same time it 
executes the current one), or may actually be a combination of several processing units, 
so that multiprogramming becomes intertwined with multiprocessing.

A common application of multiprogramming is time-sharing, allowing a single 
machine to serve several users at once. But except in the case of very powerful 
“mainframe” computers this idea is considered much less attractive now than it was when 
computers were a precious rarity. Today we consider our time to be the more valuable 
resource, so we want the system to do several things at once just for us. In particular, multi-
windowing user interfaces allow several applications to proceed in parallel: in one window 
we browse the Web, in another we edit a document, in yet another we compile and test 
some software. All this requires powerful concurrency mechanisms.

Providing each computer user with a multi-windowing, multiprogramming interface 
is the responsibility of the operating system. But increasingly the users of the software we 
develop want to have concurrency within one application. The reason is always the same: 
they know that computing power is available by the bountiful, and they do not want to wait 
idly. So if it takes a while to load incoming messages in an e-mail system, you will want 
to be able to send an outgoing message while this operation proceeds. With a good Web 
browser you can access a new site while loading pages from another. In a stock trading 
system, you may at any single time be accessing market information from several stock 
exchanges, buying here, selling there, and monitoring a client’s portfolio. 

It is this need for intra-application concurrency which has suddenly brought the 
whole subject of concurrent computing to the forefront of software development and made 
it of interest far beyond its original constituencies. Meanwhile, all the traditional 
applications remain as important as ever, with new developments in operating systems, the 
Internet, local area networks, and scientific computing — where the continual quest for 
speed demands ever higher levels of multiprocessing.
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Object request brokers

Another important recent development has been the emergence of the CORBA proposal 
from the Object Management Group, and the OLE 2/ActiveX architecture from Microsoft. 
Although the precise goals, details and markets differ, both efforts promise substantial 
progress towards distributed computing.

The general purpose is to allow applications to access each other’s objects and 
services as conveniently as possible, either locally or across a network. The CORBA effort 
(more precisely its CORBA 2 stage, clearly the interesting one) has also placed particular 
emphasis on interoperability:

• CORBA-aware applications can coöperate even if they are based on “object request 
brokers” from different vendors.

• Interoperability also applies to the language level: an application written in one of the 
supported languages can access objects from an application written in another. The 
interaction goes through an intermediate language called IDL (Interface Definition 
Language); supported languages have an official IDL binding, which maps the 
constructs of the language to those of IDL. 

IDL is a common-denominator O-O language centered on the notion of interface. An 
IDL interface for a class is similar in spirit to a short form, although more rudimentary 
(IDL in particular does not support assertions); it describes the set of features available on 
a certain abstraction. From a class written in an O-O language such as the notation of this 
book, tools will derive an IDL interface, making the class and its instances of interest to 
client software. A client written in the same language or another can, through an IDL 
interface, access across a network the features provided by such a supplier.

Remote execution

Another development of the late nineties is the mechanism for remote execution through 
the World-Wide Web.

The first Web browsers made it not just possible but also convenient to explore 
information stored on remote computers anywhere in the world, and to follow logical 
connections, or hyperlinks, at the click of a button. But this was a passive mechanism: 
someone prepared some information, and everyone else accessed it read-only.

The next step was to move to an active setup where clicking on a link actually 
triggers execution of an operation. This assumes the presence, within the Web browser, of 
an execution engine which can recognize the downloaded information as executable code, 
and execute it. The execution engine can be a built-in part of the browser, or it may be 
dynamically attached to it in response to the downloading of information of the 
corresponding type. This latter solution is known as a plug-in mechanism and assumes 
that users interested in a particular execution mechanism can download the execution 
engine, usually free, from the Internet. 
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Cited in [Matsuoka 
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This idea was first made popular by Java in late 1995 and 1996; Java execution 
engines have become widely available. Plug-ins have since appeared for many other 
mechanisms. An alternative to providing a specific plug-in is to generate, from any source 
language, code for a widely available engine, such as a Java engine; several compiler 
vendors have indeed started to provide generators of Java “bytecode” (the low-level 
portable code that the Java engine can execute).

For the notation of this book the two avenues have been pursued: ISE has a free execution 
engine; and at the time of writing a project is in progress to generate Java bytecode.

Either approach raises the potential of security problems: how much do you trust 
someone’s application? If you are not careful, clicking on an innocent-looking hyperlink 
could unleash a vicious program that destroys files on your computer, or steals your 
personal information. More precisely you should not, as a user, be the one asked to be 
careful: the responsibility is on the provider of an execution engine and the associated 
library of basic facilities. Some widely publicized Java security failures in 1996 caused 
considerable worries about the issue.

The solution is to use carefully designed and certified execution engines and libraries 
coming from reputable sources. Often they will have two versions:

• One version is meant for unlimited Internet usage, based on a severely restricted 
execution engine.

In ISE’s tool the only I/O library facilities in this restricted tool only read and 
write to and from the terminal, not files. The “external” mechanism of the 
language has also been removed, so that a vicious application cannot cause 
mischief by going to C, say, to perform file manipulations. The Java “Virtual 
Machine” (the engine) is also draconian in what it permits Internet “applets” 
to do with the file system of your computer.

• The other version has fewer or no such restrictions, and provides the full power of 
the libraries, file I/O in particular. It is meant for applications that will run on a secure 
Intranet (internal company network) rather than the wilderness of the Internet.

In spite of the insecurity specter, the prospect of unfettered remote execution, a new 
step in the ongoing revolution in the way we distribute software, has generated enormous 
excitement, which shows no sign of abating.

30.3  FROM PROCESSES TO OBJECTS

To support all these mind-boggling developments, requiring ever more use of concurrent 
processing, we need powerful software support. How are we going to program these 
things? Object technology, of course, suggests itself.

Robin Milner is said to have exclaimed, in a 1991 workshop at an O-O conference, 
“I can’t understand why objects [of O-O languages] are not concurrent in the first place”. 
Even if only in the second or third place, how do we go about making objects concurrent?
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If we start from non-O-O concurrency work, we will find that it largely relies on the 
notion of process. A process is a program unit that acts like a special-purpose computer: 
it executes a certain algorithm, usually repeating it until some external event triggers 
termination. A typical example is the process that manages a printer, repeatedly executing

“Wait until there is at least a job in the print queue”
“Get the next print job and remove it from the queue”
“Print the job”
Various concurrency models differ in how processes are scheduled and 

synchronized, compete for shared hardware resources, and exchange information. In some 
concurrent programming languages, you directly describe a process; in others, such as 
Ada, you may also describe process types, which at run time are instantiated into 
processes, much as the classes of object-oriented software are instantiated into objects.

Similarities
The correspondence seems indeed clear. As we start exploring how to combine ideas from 
concurrent programming and object-oriented software construction, it seems natural to 
identify processes with objects, and process types with classes. Anyone who has studied 
concurrent computing and discovers O-O development, or the other way around, will be 
struck by the similarities between these two technologies:

• Both rely on autonomous, encapsulated modules: processes or process types; classes.

• Like processes and unlike the subroutines of sequential, non-O-O approaches, 
objects will, from each activation to the next, retain the values they contain.

• To build reasonable concurrent systems, it is indispensable in practice to enforce 
heavy restrictions on how modules can exchange information; otherwise things 
quickly get out of hand. The O-O approach, as we have seen, places similarly severe 
restrictions on inter-module communication.

• The basic mechanism for such communication may loosely be described, in both 
cases, under the general label of “message passing”. 

So it is not surprising that many people have had a “Eureka!” when first thinking, 
Milner-like, about making objects concurrent. The unification, it seems, should come 
easily.

This first impression is unfortunately wrong: after the similarities, one soon stumbles 
into the discrepancies. 

Active objects
Building on the analogies just summarized, a number of proposals for concurrent O-O 
mechanisms (see the bibliographical notes) have introduced a notion of “active object”. 
An active object is an object that is also a process: it has its own program to execute. In a 
definition from a book on Java:

Each object is a single, identifiable process-like entity (not unlike a Unix 
process) with state and behavior. 



CONCURRENCY, DISTRIBUTION, CLIENT-SERVER  AND THE INTERNET  §30.3 958

A simple 
producer-
consumer 
scheme
This notion, however, raises difficult problems.

The most significant one is easy to see. A process has its own agenda: as illustrated 
by the printer example, it relentlessly executes a certain sequence of actions. Not so with 
classes and objects. An object does not do one thing; it is a repository of services (the 
features of the generating class), and just waits for the next client to solicit one of those 
services — chosen by the client, not the object. If we make the object active, it becomes 
responsible for the scheduling of its operations. This creates a conflict with the clients, 
which have a very clear view of what the scheduling should be: they just want the supplier, 
whenever they need a particular service, to be ready to provide it immediately!

The problem arises in non-object-oriented approaches to concurrency and has led to 
mechanisms for synchronizing processes — that is to say, specifying when and how each 
is ready to communicate, waiting if necessary for the other to be ready too. For example 
in a very simple, unbuffered producer-consumer scheme we may have a producer process 
that repeatedly executes

a scheme which we may also view pictorially:

Communication occurs when both processes are ready for each other; this is 
sometimes called a handshake or rendez-vous. The design of synchronization mechanisms 
— enabling us in particular to express precisely the instructions to “Make it known that 
process is ready” and “Wait for process to be ready” — has been a fertile area of research 
and development for several decades.

“Make it known that producer is not ready”
“Perform some computation that produces a value x”
“Make it known that producer is ready”
“Wait for consumer to be ready”
“Pass x to consumer”

and a consumer process that repeatedly executes
“Make it known that consumer is ready”
“Wait for producer to be ready”
“Get x from producer”
“Make it known that consumer is not ready”
“Perform some computation that uses the value x”

Handshake

Produce

Consume

Wait

Communicate

producer consumer

Handshake
(pass x)

Wait

Communicate
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All this is fine for processes, the concurrent equivalent of traditional sequential 
programs which “do one thing”; indeed, a concurrent system built with processes is like a 
sequential system with several main programs. But in the object-oriented approach we 
have rejected the notion of main program and instead defined software units that stand 
ready to provide any one of a number of possible features.

Reconciling this view with the notion of process requires elaborate synchronization 
constructs to make sure that each supplier is ready to execute a feature when the client 
needs it. The reconciliation is particularly delicate when both client and supplier are active 
objects, since each has its own agenda.

All this does not make it impossible to devise mechanisms based on the notion of 
active object, as evidenced by the abundant literature on the subject (to which the 
bibliographical notes to this chapter give many references). But this evidence also shows 
the complexity of the proposed solutions, of which none has gained wide acceptance, 
suggesting that the active object approach is not the right one.

Active objects clash with inheritance

Doubts about the suitability of the active object approach grow as one starts looking at 
how it combines with other O-O mechanisms, especially inheritance.

If a class B inherits from a class A and both are active (that is to say, describe 
instances that must be active objects), what happens in B to the description of A’s process? 
In many cases you will need to add some new instructions, but without special language 
mechanisms this means that you will almost always have to redefine and rewrite the entire 
process part — not an attractive proposition.

Here is an example of special language mechanism. Although the Simula 67 
language does not support concurrency, it has a notion of active object: a Simula class can, 
besides its features, include a set of instructions, called the body of the class, so that we 
can talk of executing an object — meaning executing the body of its generating class. The 
body of a class A can include a special instruction inner, which has no effect in the class 
itself but, in a proper descendant B, stands for the body of B. So if the body of A reads

some_initialization; inner; some_termination_actions

and the body of B reads

specific_B_actions

then execution of that body actually means executing

some_initialization; specific_B_actions; some_termination_actions

Although the need for a mechanism of this kind is clear in a language supporting the 
notion of active object, objections immediately come to mind: the notation is misleading, 
since if you just read the body of B you will get a wrong view of what the execution does; 
it forces the parent to plan in detail for its descendants, going against basic O-O concepts 
(the Open-Closed principle); and it only works in a single-inheritance language.
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Even with a different notation, the basic problem will remain: how to combine the 
process specification of a class with those of its proper descendants; how to reconcile 
parents’ process specifications in the case of multiple inheritance.

Later in this chapter we will see other problems, known as the “inheritance anomaly” and 
arising from the use of inheritance with synchronization constraints.

Faced with these difficulties, some of the early O-O concurrency proposals preferred 
to stay away from inheritance altogether. Although justifiable as a temporary measure to 
help understand the issues by separating concerns, this exclusion of inheritance cannot be 
sustained in a definitive approach to the construction of concurrent object-oriented 
software; this would be like cutting the arm because the finger itches. (For good measure, 
some of the literature adds that inheritance is a complex and messy notion anyway, as if 
telling the patient, after the operation, that having an arm was a bad idea in the first place.)

The inference that we may draw is simpler and less extreme. The problem is not 
object technology per se, in particular inheritance; it is not concurrency; it is not even the 
combination of these ideas. What causes trouble is the notion of active object.

Processes programmed

As we prepare to get rid of active objects it is useful to note that we will not really be 
renouncing anything. An object is able to perform many operations: all the features of its 
generating class. By turning it into a process, we select one of these operations as the only 
one that really counts. There is absolutely no benefit in doing this! Why limit ourselves to 
one algorithm when we can have as many as we want?

Another way to express this observation is that the notion of process need not be a 
built-in concept in the concurrency mechanism; processes can be programmed simply as 
routines. Consider for example the concept of printer process cited at the beginning of this 
chapter. The object-oriented view tells us to focus on the object type, printer, and to treat 
the process as just one routine, say live, of the corresponding class:

note
description: "Printers handling one print job at a time"
note: “A better version, based on a general class PROCESS, %

%appears below under the name PRINTER"
class

PRINTER_1
feature -- Status report

stop_requested: BOOLEAN do … end
oldest: JOB do … end

feature -- Basic operations
setup do … end
wait_ for_ job do … end
remove_oldest do … end
print ( j: JOB) do … end
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feature -- Process behavior
live

-- Do the printer thing.
do

from setup until stop_requested loop
wait_ for_ job; print (oldest); remove_oldest

end
end

… Other features …
end
Note the provision for Other features: although so far live and the supporting features 

have claimed all our attention, we can endow processes with many other features if we 
want to, encouraged by the O-O approach developed elsewhere in this book. Turning 
PRINTER_1 objects into processes would mean limiting this freedom; that would be a 
major loss of expressive power, without any visible benefit.

By abstracting from this example, which describes a particular process type simply 
as a class, we can try to provide a more general description of all process types through a 
deferred class — a behavior class as we have often encountered in previous chapters. 
Procedure live will apply to all processes. We could leave it deferred, but it is not too much 
of a commitment to note that most processes will need some initialization, some 
termination, and in-between a basic step repeated some number of times. So we can 
already effect a few things at the most abstract level:

note
description: "The most general notion of process"

deferred class
PROCESS

feature -- Status report
over: BOOLEAN

-- Must execution terminate now?
deferred
end

feature -- Basic operations
setup

-- Prepare to execute process operations (default: nothing).
do
end

step
-- Execute basic process operations.

deferred
end
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wrapup
-- Execute termination operations (default: nothing).

do
end

feature -- Process behavior
live

-- Perform process lifecycle.
do

from setup until over loop
step

end
wrapup

end
end
A point of methodology: whereas step is deferred, setup and wrapup are effective 
procedures, defined as doing nothing. This way we force every effective descendant to 
provide a specific implementation of step, the basic process action; but in the not 
infrequent cases that require no particular setup or termination operation we avoid 
bothering the descendants. This choice between a deferred version and a null effective 
version occurs regularly in the design of deferred classes, and you should resolve it based 
on your appreciation of the likely characteristics of descendants. A wrong guess is not a 
disaster; it will just lead to more effectings or more redefinitions in descendants.

From this pattern we may define a more specialized class, covering printers:

note
description: "Printers handling one print job at a time"
note: “Revised version based on class PROCESS"

class PRINTER inherit
PROCESS

rename over as stop_requested end
feature -- Status report

stop_requested: BOOLEAN
-- Is the next job in the queue a request to shut down?

oldest: JOB
-- The oldest job in the queue

do … end
feature -- Basic operations

step
-- Process one job.

do
wait_ for_ job; print (oldest); remove_oldest

end
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wait_ for_ job
-- Wait until job queue is not empty.

do
…

ensure
oldest /= Void

end
remove_oldest

-- Remove oldest job from queue.
require

oldest /= Void
do

if oldest  is_stop_request then stop_requested := True end
“Remove oldest from queue”

end
print ( j: JOB)

-- Print j, unless it is just a stop request.
require

j /= Void
do

if not j  is_stop_request then “Print the text associated with j” end
end

end
The class assumes that a request to shut off the printer is sent as a special print job j 

for which j  is_stop_request is true. (It would be cleaner to avoid making print and 
remove_oldest aware of the special case of the “stop request” job; this is easy to improve.)

The benefits of O-O modeling are apparent here. In the same way that going from 
main program to classes broadens our perspective by giving us abstract objects that are not 
limited to “doing just one thing”, considering a printer process as an object described by 
a class opens up the possibility of new, useful features. With a printer we can do more than 
execute its normal printing operation as covered by live (which we should perhaps have 
renamed operate when inheriting it from PROCESS); we might want to add such features 
as perform_internal_test, switch_to_Postscript_level_1 or set_resolution. The equalizing 
effect of the O-O method is as important here as in sequential software.

More generally, the classes sketched in this section show how we can use the normal 
object-oriented mechanisms — classes, inheritance, deferred elements, partially 
implemented patterns — to implement processes. There is nothing wrong with the concept 
of process in an O-O context; indeed, we will need it in many concurrent applications. But 
rather than a primitive mechanism it will simply be covered by a library class PROCESS 
based on the version given earlier in this section, or perhaps several such classes covering 
variants of the notion.

For the basic new construct of concurrent object technology, we must look elsewhere.
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The three forces 
of computation 

(This figure first 
appeared on page 
101.)
30.4  INTRODUCING CONCURRENT EXECUTION

What — if not the notion of process — fundamentally distinguishes concurrent from 
sequential computation?

Processors

To narrow down the specifics of concurrency, it is useful to take a new look at the figure 
which helped us lay the very foundations of object technology by examining the three 
basic ingredients of computation:

To perform a computation is to use certain processors to apply certain actions to 
certain objects. At the beginning of this book we discovered how object technology 
addresses fundamental issues of reusability and extendibility by building software 
architectures in which actions are attached to objects (more precisely, object types) rather 
than the other way around.

What about processors? Clearly we need a mechanism to execute the actions on the 
objects. But in sequential computation there is just one thread of control, hence just one 
processor; so it is taken for granted and remains implicit most of the time.

In a concurrent context, however, we will have two or more processors. This 
property is of course essential to the idea of concurrency and we can take it as the 
definition of the notion. This is the basic answer to the question asked above: processors 
(not processes) will be the principal new concept for adding concurrency to the framework 
of sequential object-oriented computation. A concurrent system may have any number of 
processors, as opposed to just one for a sequential system.

The nature of processors

Definition: processor

A processor is an autonomous thread of control capable of supporting the 
sequential execution of instructions on one or more objects.

Action Object

Processor
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[Lieberman 1987], 
page 22. Square 
brackets signal differ-
ences in terminology.
This is an abstract notion, it should not be confused with that of physical processing 
device, for which the rest of this chapter will use the term CPU, common in computer 
engineering to denote the processing units of computers. “CPU” is an abbreviation of 
“Central Processing Unit” even though there is most of the time nothing central about 
CPUs. You can use a CPU to implement a processor; but the notion of processor is much 
more abstract and general. A processor can be, for example:

• A computer (with its CPU) on a network.

• A task, also called process, as supported on operating systems such as Unix, 
Windows and many others.

• A coroutine. (Coroutines, covered in detail later in this chapter, simulate true 
concurrency by taking turns at execution on a single CPU; after each interruption, 
each coroutine resumes its execution where it last left it.) 

• A “thread” as supported by such multi-threaded operating systems as Windows and 
Linux.

Threads are mini-processes. A true process can itself contain many threads, which it 
manages directly; the operating system (OS) only sees the process, not its threads. 
Usually the threads of a process will all share the same address space (in object-oriented 
terms, they potentially have access to the same set of objects), whereas each process has 
its own address space. We may view threads as coroutines within a process. The main 
advantage of threads is efficiency: whereas creating a process and synchronizing it with 
other processes are expensive operations, requiring direct OS intervention (to allocate the 
address space and the code of the process), the corresponding operations on threads are 
much simpler, do not involve any expensive OS operations, and so can be faster by a 
factor of several hundreds or even several thousands.

The difference between processors and CPUs was clearly expressed by Henry 
Lieberman (for a different concurrency model):

The number of [ processors] need not be bounded in advance, and if there are 
too many [ processors] for the number of real physical [CPUs] you have on 
your computer system, they are automatically time-shared. Thus the user can 
pretend that processor resources are practically infinite. 

To avoid any misunderstanding, be sure to remember that throughout this chapter the 
“processors” denote virtual threads of control; any reference to the physical units of 
computation uses the term CPU.

At some point before or during you will need to assign computational resources to 
the processors. The mapping will be expressed by a “Concurrency Control File”, as 
described below, or associated library facilities.

Handling an object

Any feature call must be handled (executed) by some processor. More generally, any 
object O2 is handled by a certain processor, its handler; the handler is responsible for 
executing all calls on O2 (all calls of the form x  f (a) where x is attached to O2).
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We may go further and specify that the handler is assigned to the object at the time 
of creation, and remains the same throughout the object’s life. This assumption will help 
keep the mechanism simple. It may seem restrictive at first, since some distributed 
systems may need to support object migration across a network. But we can address this 
need in at least two other ways:

• By allowing the reassignment of a processor to a different CPU (with this solution, 
all objects handled by a processor will migrate together).

• By treating object migration as the creation of a new object.

The dual semantics of calls

With multiple processors, we face a possible departure from the usual semantics of the 
fundamental operation of object-oriented computation, feature call, of one of the forms

x  f (a) -- if f  is a command
y := x  f (a) -- if f  is a query

As before, let O2 be the object attached to x at the time of the call, and O1 the object 
on whose behalf the call is executed. (In other words, the instruction in either form is part 
of a call to a certain routine, whose execution uses O1 as its target.)

We have grown accustomed to understanding the effect of the call as the execution 
of f  ’s body applied to O2, using a as argument, and returning a result in the query case. If 
the call is part of a sequence of instructions, as with

… previous_instruction; x  f (a); next_instruction; …

(or the equivalent in the query case), the execution of next_instruction will not commence 
until after the completion of f.

Not so any more with multiple processors. The very purpose of concurrent 
architectures is to enable the client computation to proceed without waiting for the 
supplier to have completed its job, if that job is handled by another processor. In the 
example of print controllers, sketched at the beginning of this chapter, a client application 
will want to send a print request (a “job”) and continue immediately with its own agenda.

So instead of one call semantics we now have two cases:

• If O1 and O2 have the same handler, any further operation on O1 (next_instruction) 
must wait until the call terminates. Such calls are said to be synchronous. 

• If O1 and O2 are handled by different processors, operations on O1 can proceed as 
soon as it has initiated the call on O2. Such calls are said to be asynchronous.

The asynchronous case is particularly interesting for a command, since the remainder
of the computation may not need any of the effects of the call on O2 until much later (if at 
all: O1 may just be responsible for spawning one or more concurrent computations and 
then terminating). For a query, we need the result, as in the above example where we 
assign it to y, but as explained below we might be able to proceed concurrently anyway.
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“Expanded types”, 
page 254.
Separate entities

A general rule of software construction is that a semantic difference should always be 
reflected by a difference in the software text.

Now that we have two variants of call semantics we must make sure that the software 
text incontrovertibly indicates which one is intended in each case. What determines the 
answer is whether the call’s target, O2, has the same handler (the same processor) as the 
call’s originator, O1. So rather than the call itself we should mark x, the entity denoting the 
target object. In accordance with the static typing policy, developed in earlier chapters to 
favor clarity and safety, the mark should appear in the declaration of x.

This reasoning yields the only notational extension supporting concurrency. Along 
with the usual

x: SOME_TYPE

we allow ourselves the declaration form
x: separate SOME_TYPE

to express that x may become attached to objects handled by a different processor. If a 
class is meant to be used only to declare separate entities, you can also declare it as

separate class X … The rest as usual …
instead of just class X … or deferred class X ….

The convention is the same as for declaring an expanded status: you can declare y as being 
of type expanded T, or equivalently just as T if T itself is a class declared as expanded 
class T… The three possibilities — expanded, deferred, separate — are mutually 
exclusive, so at most one qualifying keyword may appear before class.

It is quite remarkable that this addition of a single keyword suffices to turn our 
sequential object-oriented notation into one supporting general concurrent computation.

Some straightforward terminology. We may apply the word “separate” to various 
elements, both static (appearing in the software text) and dynamic (existing at run time). 
Statically: a separate class is a class declared as separate class …; a separate type is 
based on a separate class; a separate entity is declared of a separate type, or as separate 
T for some T; x  f (…) is a separate call if its target x is a separate entity. Dynamically: the 
value of a separate entity is a separate reference; if not void, it will be attached to an object 
handled by another processor — a separate object.

Typical examples of separate class include:
• BOUNDED_BUFFER, to describe a buffer structure that enables various concurrent 

components to exchange data (some components, the producers, depositing objects 
into the buffer, and others, the consumers, acquiring objects from it).

• PRINTER, perhaps better called PRINT_CONTROLLER, to control one or more 
printers. By treating the print controllers as separate objects, applications do not need 
to wait for the print job to complete (unlike early Macintoshes, with which you were 
stuck until the last page had come out of the printer).
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• DATABASE, which in the client part of a client-server architecture may serve to 
describe the database hosted by a distant server machine, to which the client may 
send queries through the network.

• BROWSER_WINDOW, in a Web browser that allows you to spawn a new window 
where you can examine different Web pages.

Obtaining separate objects

In practice, as illustrated by the preceding examples, separate objects will be of two kinds:

• In the first case an application will want to spawn a new separate object, grabbing 
the next available processor. (Remember that we can always get a new processor; 
since processors are not material resources but abstract facilities, their number is not 
bounded.) This is typically the case with BROWSER_WINDOW: you create a new 
window when you need one. A BOUNDED_BUFFER or PRINT_CONTROLLER
may also be created in this way.

• An application may simply need to access an existing separate object, usually shared 
between many different clients. This is the case in the DATABASE example: the client 
application uses an entity db_server: separate DATABASE to access the database 
through such separate calls as db_server  ask_query (sql_query). The server must 
have at some stage obtained the value of server — the database handle — from the 
outside. Accesses to existing BOUNDED_BUFFER or PRINT_CONTROLLER
objects will use a similar scheme.

The separate object is said to be created in the first case and external in the second.

To obtain a created object, you simply use the creation instruction. If x is a separate 
entity, the creation instruction

create x  make (…)

will, in addition to its usual effect of creating and initializing a new object, assign a new 
processor to handle that object. Such an instruction is called a separate creation.

To obtain an existing external object, you will typically use an external routine, such as

server (name: STRING; … Other arguments …): separate DATABASE

where the arguments serve to identify the requested object. Such a routine will typically 
send a message over the network and obtain in return a reference to the object.

A word about possible implementations may be useful here to visualize the notion 
of separate object. Assume each of the processors is associated with a task (process) of an 
operating system such as Windows or Unix, with its own address space; this is of course 
just one of many concurrent architectures. Then one way to represent a separate object 
within a task is to use a small local object, known as a proxy:
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A proxy for a 
separate object
The figure shows an object O1, instance of a class T with an attribute x: separate U. 
The corresponding reference field in O1 is conceptually attached to an object O2, handled 
by another processor. Internally, however, the reference leads to a proxy object, handled 
by the same processor as O1. The proxy is an internal object, not visible to the author of 
the concurrent application. It contains enough information to identify O2: the task that 
serves as O2’s handler, and O2’s address within that task. All operations on x on behalf of 
O1 or other clients from the same task will go through the proxy. Any other processor that 
also handles objects containing separate references to O2 will have its own proxy for O2.

Be sure to note that this is only one possible technique, not a required property of the 
model. Operating system tasks with separate address spaces are just one way to 
implement processors. With threads, for example, the techniques may be different.

Objects here, and objects there
When first presented with the notion of separate entity, some people complain that it is 
over-committing: “I do not want to know where the object resides! I just want to request 
the operation, x  f (…), and let the machinery do the rest — execute f on x wherever x is.”

Although legitimate, this desire to avoid over-commitment does not obviate the need 
for separate declarations. It is true that the precise location of an object is often an 
implementation detail that should not affect the software. But one “yes or no” property of 
the object’s location remains relevant: whether the object is handled by the same processor 
or by another. This is a fundamental semantic difference since it determines whether calls 
on the object are synchronous or asynchronous — cause the client to wait, or not. Ignoring 
this property in the software would not be a convenience; it would be a mistake.

Once we know the object is separate, it should not in most cases matter for the 
functionality of our software (although it may matter for its performance) whether the 
object belongs to another thread of the same process, another process on the same 
computer, another computer in the same room, another room in the same building, another 
site on the company’s private network, or another Internet node half-way around the 
world. But it matters that it is separate.

Other

fields
(non-separate)

x: separate U

(T)

PROXY
OBJECT

(U)

O1

O2

Other
objects

Other
objects

Address space 1

Address space 2
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Two-level 
architecture for 
concurrency 
mechanism

(See a similar archi-
tecture for graphical 
libraries on page 
1067.)
A concurrency architecture

The use of separate declarations to cover the fundamental boolean property “is this object 
here, or is it elsewhere?” while leaving room for various physical implementations of 
concurrency suggests a two-level architecture, similar to what is available for the 
graphical mechanisms (with the Vision library sitting on top of platform-specific 
libraries):

At the highest level the mechanism is platform-independent. This is the level which 
most applications use, and which this chapter describes. To perform concurrent 
computation, applications simply use the separate mechanism.

Internally, the implementation will rely on some practical concurrent architecture 
(lower level on the figure). The figure lists some possibilities:

• There may be an implementation using processes (tasks) as provided by the operating 
system. Each processor is associated with a process. This solution supports 
distributed computing: the process of a separate object can be on a remote machine 
as well as a local one. For non-distributed processing, it has the advantage that 
processes are stable and well known, and the disadvantage that they are CPU-
intensive; both the creation of a new process and the exchange of information 
between processes are expensive operations.

• There may be an implementation using threads. Threads, as already noted, are a 
lighter alternative to processes, minimizing the cost of creation and context 
switching. Threads, however, have to reside on the same machine.

• A CORBA implementation is also possible, using CORBA distribution mechanisms 
as the physical layer to exchange objects across the network.

• Other possible mechanisms include PVM (Parallel Virtual Machine), the Linda 
language for concurrent programming, Java threads…

As always with such two-level architectures, the correspondence between high-level 
constructs and the actual platform mapping (the handle in terms of a previous chapter) is 
in most cases automatic, so that application developers will see the highest level only. But 

Process-based 
handle

Thread-based 
handle

CORBA-
based handle

General concurrency mechanism (SCOOP)
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On Ace files see 
“Assembling a sys-
tem”, page 198.
mechanisms must be available to let them access the lower level if they need to (and, of 
course, are ready to renounce platform-independence).

Mapping the processors: the Concurrency Control File

If the software does not specify the physical CPUs, this specification must appear 
somewhere else. Here is a way to take care of it. This is only one possible solution, not a 
fundamental part of the approach; the exact format is not essential, but any configuration 
mechanism will somehow have to provide the same information. 

Our example format is a “Concurrency Control File” (CCF) describing the 
concurrent computing resources available to our software. CCFs are similar in purpose 
and outlook to Ace files used to control system assembly. A typical CCF looks like this:

creation
local_nodes:

system
"pushkin" (2): "c:\system1\appl  exe"
"akhmatova" (4): "/home/users/syst1"
Current: "c:\system1\appl2  exe"

end
remote_nodes:

system
"lermontov": "c:\system1\appl  exe"
"tiuchev" (2): "/usr/bin/syst2"

end
end

external
Ingres_handler: "mandelstam" port 9000
ATM_handler: "pasternak" port 8001

end

default
port: 8001; instance: 10

end
Defaults are available for all properties of interest, so that each of the three possible parts 
(creation, external, default) is optional, as well as the CCF as a whole.

The creation part specifies what CPUs to use for separate creations (instructions of 
the form create x  make (…) for separate x). The example uses two CPU groups: local_
nodes, presumably covering local machines, and remote_nodes. The software can select a 
CPU group through a call such as

set_cpu_group ("local_nodes")
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directing subsequent separate creations to use the CPU group local_nodes until the next call 
to set_cpu_group. This procedure comes from a class CONCURRENCY providing facilities 
for controlling the mechanism; we will encounter a few more of its features below.

The corresponding CCF entry specifies what CPUs to use for local_nodes: the first 
two objects will be created on machine pushkin, the next four on akhmatova, and the next 
ten on the current machine (the one which executes the creation instructions); after that 
the allocation scheme will repeat itself — two objects on pushkin and so on. In the absence 
of a processor count, as with Current here, the value is taken from the instance entry in 
the default part (here 10) if present, and is 1 otherwise. The system used to create each 
instance is an executable specified in each entry, such as c:\system1\appl  exe for pushkin
(obviously a machine running Windows).

In this example the processors are all mapped to processes. The CCF also supports 
assigning processors to threads (in the thread-based handle) or other concurrency 
mechanisms, although we need not concern ourselves with the details.

The external part specifies where to look for existing external separate objects. The 
CCF refers to these objects through abstract names, Ingres_handler and ATM_handler in 
the example, which the software will use as arguments to the functions that establish a 
connection with such an object. For example with the server function as assumed earlier

server (name: STRING; … Other arguments …): separate DATABASE

a call of the form server ("Ingres_handler", …) will yield a separate object denoting the 
Ingres database server. The CCF indicates that the corresponding object resides on 
machine mandelstam and is accessible on port 9000. In the absence of a port specification 
the value used is drawn from the defaults part or, barring that, a universal default.

The CCF is separate from the software. You may compile a concurrent or distributed 
application without any reference to a specific hardware and network architecture; then at 
run time each separate component of the application will use its CCF to connect to other 
existing components (external parts) and to create new components (creation parts).

This sketch of CCF conventions has shown how we can map the abstract concepts 
of concurrent O-O computation — processors, created separate objects, external separate 
objects — to physical resources. As noted, these conventions are only an example of what 
can be done, and they are not part of the basic concurrency mechanism. But they 
demonstrate that it is possible to decouple the software architecture of a concurrent system 
from the concurrent hardware architecture available at any particular stage.

Library mechanisms

With a CCF-like approach, the application software will, most of the time, not concern 
itself with the physical concurrency architecture. Some application developers may, 
however, need to exert a finer degree of control from within the application, at the possible 
expense of dynamic reconfigurability. Some CCF functionalities must then be accessible 
directly to the application, enabling it, for example, to select a specific process or thread 
for a certain processor. They will be available through libraries as part of the two-level 
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concurrency architecture; it does not raise any difficult problem. We will encounter the 
need for more library mechanisms later in this chapter.

At the other extreme, some applications may want unlimited run-time 
reconfigurability. It is not enough then to have the ability to read a CCF or similar 
configuration information at start-up time and then be stuck with it. But we cannot either 
expect to re-read the configuration before each operation, as this would kill performance. 
The solution is once again to use a library mechanism: a procedure must be available to 
read or re-read the configuration information dynamically, allowing the application to 
adapt to a new configuration when (and only when) it is ready to do so.

Validity rules: unmasking traitors

Because the semantics of calls is different for separate and non-separate objects, it is 
essential to guarantee that a non-separate entity (declared as x: T for non-separate T) can 
never become attached to a separate object. Otherwise a call x  f (a) would wrongly be 
understood — by the compiler, among others — as synchronous, whereas the attached 
object is in fact separate and requires asynchronous processing. Such a reference, falsely 
declared as non-separate while having its loyalties on the other side, will be called a 
traitor. We need a simple validity rule to guarantee that our software has no traitor — that 
every representative or lobbyist of a separate power is duly registered as such with the 
appropriate authorities. 

The rule will have four parts. The first part eliminates the risk of producing traitors 
through attachment, that is to say assignment or argument passing:

An attachment of target x and source y is either an assignment x := y or a call 
f (…, y, …) where the actual argument corresponding to x is y. Having such an attachment 
with y separate but not x would make x a traitor, since we could use x to access a separate 
object (the object attached to y) under a non-separate name, as if it were a local object with 
synchronous call. The rule disallows this.

Note that syntactically x is an entity but y may be any expression. This means that the rule 
assumes we have defined the notion of “separate expression”, in line with previous 
definitions. A simple expression is an entity; more complex expressions are function calls 
(remember in particular that an infix expression such as a + b is formally considered a 
call, similar to something like a  plus (b)). So the definition is immediate: an expression 
is separate if it is either a separate entity or a separate call.

As will be clear from the rest of the discussion, permitting an attachment of a non-
separate source to a separate target is harmless — although usually not very useful.

Separateness consistency rule (1)

If the source of an attachment (assignment instruction or argument passing) 
is separate, its target entity must be separate too.
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Passing a 
reference as 
argument to a 
separate call
We need a complementary rule covering the case in which a client passes to a 
separate supplier a reference to a local object. Assume the separate call

x  f (a)

where a, of type T, is not separate, although x is. The declaration of routine f, for the 
generating class of x, will be of the form

f (u: … SOME_TYPE)

and the type T of a must conform to SOME_TYPE. But this is not sufficient! Viewed from 
the supplier’s side (that is to say, from the handler of x), the object O1 attached to a has a 
different handler; so unless the corresponding formal argument u is declared as separate it 
would become a traitor, giving access to a separate object as if it were non-separate:

So SOME_TYPE must be separate; for example it may be separate T. Hence the 
second consistency rule:

The issue only arises for arguments of reference type. The other case, expanded types, 
including in particular the basic types such as INTEGER, is considered next.

As an application of the technique, consider an object that spawns several separate 
objects, giving them a way to rely later on its resources; it is saying to them, in effect, 
“Here is my business card; call me if you need to”. A typical example would be an 
operating system’s kernel that creates several separate objects and stands ready to perform 
operations for them when they ask. The creation calls will be of the form

create subsystem  make (Current, … Other arguments …)

Separateness consistency rule (2)
If an actual argument of a separate call is of a reference type, the 
corresponding formal argument must be declared as separate.

a O1

Processor 1

Processor 2

(T)

Here a is a reference 
to a local object.

x f (a)

u  f (u: …)
Here u is a reference 
to a separate object.

(the handler of x)
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Passing to a 
separate call an 
object with 
references
where Current is the “business card” enabling subsystem to remember its progenitor, and 
ask for its help in case of need. Because Current is a reference, the corresponding formal 
argument in make must be declared as separate. Most likely, make will be of the form

make ( p: separate PROGENITOR_TYPE; … Other arguments …)
do

progenitor := p
… Rest of subsystem initialization operations …

end

keeping the value of the progenitor argument in an attribute progenitor of the enclosing 
class. The second separateness consistency rule requires p to be declared as separate; so 
the first rule requires the same of attribute progenitor. Later calls for progenitor resources, 
of the form progenitor  some_resource (…) will, correctly, be treated as separate calls.

A similar rule is needed for function results:

Since the last two rules only apply to actual arguments and results of reference types, 
we need one more rule for the other case, expanded types:

In other words, the only expanded values that we can pass in a separate call are 
“completely expanded” objects, with no references to other objects. Otherwise we could 
again run into traitor trouble since attaching an expanded value implies copying an object:

Separateness consistency rule (3)
If the source of an attachment is the result of a separate call to a function 
returning a reference type, the target must be declared as separate.

Separateness consistency rule (4)
If an actual argument or result of a separate call is of an expanded type, its 
base class may not include, directly or indirectly, any non-separate attribute 
of a reference type.

a 
O1

Processor 1

Processor 2

x f (a)

 f (u: …)

This is a reference 
to a local object.

(the handler of x)

O2

u 
O'1

This is a 
separate reference.

(fields copied 
from O1)
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The effect of reat-
tachment in these 
cases was defined in 
“ATTACHMENT: 
REFERENCE AND 
VALUE SEMAN-
TICS”, 8.8, page 
261.

See “Object cloning 
and equality”, page 
245.
The figure illustrates the case in which the formal argument u is itself expanded. 
Then the attachment is simply a copy of the fields of the object O1 onto those of the object 
O'1 attached to u. Permitting O1 to contain a reference would produce a traitor field in O'1. 
The problem would also arise if O1 had a subobject with a reference; hence the mention 
“directly or indirectly” in the rule.

If the formal argument u is a reference, the attachment is a clone; the call would 
create a new object O'1 similar to the one on the last figure and attach reference u to it. In 
this case the solution is to create the clone explicitly on the client’s side, before the call:

a: expanded SOME_TYPE; a1: SOME_TYPE

…

a1 := a; -- This clones the object and attaches a1 to the clone.

x  f (a1)

As per the second validity rule, the formal argument u must be of a separate reference 
type, separate SOME_TYPE or conforming; the call on the last line makes u a separate 
reference attached to the newly created clone on the client’s side.

Importing object structures

A consequence of the separateness consistency rules is that it is not possible to use the 
clone function (from the universal class ANY) to obtain an object handled by another 
processor. The function is declared as

clone (other: GENERAL): like other

-- New object, field-by-field identical to other

…

so that an attempt to use y := clone (x) for separate x would violate part 1 of the rule: x, 
which is separate, does not conform to other which is not. This is what we want: a separate 
object running on a machine in Vladivostok may contain (non-separate) references to 
objects that are in Vladivostok too; but then if you could clone it in Kansas City, the 
resulting object would contain traitors — references to those objects, now separate, even 
though in the generating class the corresponding attributes are not declared as separate. 

The following function, also in class GENERAL, enables us to clone separate object 
structures without producing traitors:

deep_import (other: separate GENERAL): GENERAL

-- New object, field-by-field identical to other

…
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The result is a non-separate object structure, recursively duplicated from the separate 
structure starting at other. For the reasons just explained, a shallow import operation could 
yield traitors; so what we need is the equivalent of deep_clone applied to a separate object. 
Function deep_import provides it. It will produce a copy of the entire structure, making 
all the object copies non-separate. (It may of course still contain separate references if the 
original structure contained references to objects handled by another processor.)

For the developers of distributed systems, deep_import is a convenient and powerful 
mechanism, through which you can transfer possibly large object structures across a 
network without the need to write any specialized software, and with the guarantee that 
the exact structure (including cycles etc.) will be faithfully duplicated.

30.5  SYNCHRONIZATION ISSUES

We have our basic mechanism for starting concurrent executions (separate creation) and 
for requesting operations from these executions (the usual feature call mechanism). Any 
concurrent computation, object-oriented or not, must also provide ways to synchronize
concurrent executions, that is to say to define timing dependencies between them.

If you are familiar with concurrency issues, you may have been surprised by the 
announcement that a single language mechanism, separate declarations, is enough to add 
full concurrency support to our sequential object-oriented framework. Surely we need 
specific synchronization mechanisms too? Actually no. The basic O-O constructs suffice 
to cover a wide range of synchronization needs, provided we adapt the definition of their 
semantics when they are applied to separate elements. It is a testimony of the power of the 
object-oriented method that it adapts so simply and gracefully to concurrent computation.

Synchronization vs. communication

To understand how we should support synchronization in object-oriented concurrency, it 
is useful to begin with a review of non-O-O solutions. Processes (the concurrent units in 
most of these solutions) need mechanisms of two kinds:

• Synchronization mechanisms enforce timing constraints. A typical constraint might 
state that a certain operation of a process, such as accessing a database item, may 
only occur after a certain operation of another process, such as initializing the item.

• Communication mechanisms allow processes to exchange information, which in the 
object-oriented case will be in the form of objects (including the special case of 
simple values such as integers) or object structures.

A simple classification of approaches to concurrency rests on the observation that 
some of them focus on the synchronization mechanism and then use ordinary non-
concurrent techniques such as argument passing for communication, whereas others treat 
communication as the fundamental issue and deduce synchronization from it. We may talk 
about synchronization-based and communication-based mechanisms.
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Synchronization-based mechanisms
The best known and most elementary synchronization-based mechanism is the 
semaphore, a locking tool for controlling shared resources. A semaphore is an object on 
which two operations are available: reserve and free (traditionally called P and V, but more 
suggestive names are preferable). At any time the semaphore is either reserved by a certain 
client or free. If it is free and a client executes reserve, the semaphore becomes reserved 
by that client. If the client that has reserved it executes free, the semaphore becomes free. 
If the semaphore is reserved by a client and another executes reserve, the new client will 
wait until the semaphore is free again. The following table summarizes this specification:

Events represented by shaded entries are not supposed to occur; they can be treated either 
as errors or as having no effect.
The policy for deciding which client gets through when two or more are waiting for 

a semaphore that gets freed may be part of the semaphore’s specification, or may be left 
unspecified. (Usually clients expect a fairness property guaranteeing that if everyone 
gaining access to the semaphore ultimately frees it no one will wait forever.)

This description covers binary semaphores. The integer variant lets at most n clients 
through at any given time, for some n, rather than at most one.

Although many practical developments still rely on them, semaphores are widely 
considered too low-level for building large, reliable systems. But they provide a good 
starting point for discussing more advanced techniques.

Critical regions are a more abstract approach. A critical region is a sequence of 
instructions that may be executed by at most one client at a time. To ensure exclusive 
access to a certain object a you may write something like

hold a then … Operations involving fields of a …end
where the critical region is delimited by then … end. Only one client can execute the 
critical region at any given time; others executing a hold will wait.

Most applications need a more general variant, the conditional critical region, in 
which execution of the critical region is subject to a boolean condition. Consider a buffer 
shared by a producer, which can only write into the buffer if it is not full, and a consumer, 
which can only read from it if it is not empty; they may use the two respective schemes

hold buffer when not buffer  full then “Write into buffer, making it not empty” end
hold buffer when not buffer  empty then “Read from buffer, making it not full” end
Such interplay between input and output conditions cries for introducing assertions 

and giving them a role in synchronization, an idea to be exploited later in this chapter.

STATE
OPERATION

Free Reserved by 
me

Reserved by 
someone else

reserve Becomes 
reserved by me.

I wait.

free Becomes free.
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Another well-known synchronization-based mechanism, combining the notion of 
critical region with the modular structure of some modern programming languages, is the 
monitor. A monitor is a program module, not unlike the packages of Modula or Ada. The 
basic synchronization mechanism is simple: mutual exclusion at the routine level. At most 
one client may execute a routine of the monitor at any given time.

Also interesting is the notion of path expression. A path expression specifies the 
possible sequencing of a set of processes. For example the expression

init ; (reader* | writer)+ ; finish

prescribes the following behavior: first an init process; then a state in which at any time either 
one writer process or any number of reader processes may be active; then a finish process. 
The asterisk * means any number of concurrent instances; the semicolon ; indicates 
sequencing; | means “either-or”; + means any number of successive repetitions. An 
argument often cited in favor of path expressions is that they specify the processes and the 
synchronization separately, avoiding interference between the description of individual 
algorithmic tasks and the description of their scheduling.

Yet another category of techniques for specifying synchronization relies on analyzing the 
set of states through which a system or system component can go, and transitions 
between these states. Petri nets, in particular, rely on graphical descriptions of the 
transitions. Although intuitive for simple hardware devices, such techniques quickly 
yield a combinatorial explosion in the number of states and transitions, and make it hard 
to work hierarchically (specifying subsystems independently, then recursively 
embedding their specifications in those of bigger systems). So they do not seem 
applicable to large, evolutionary software systems.

Communication-based mechanisms

Starting with Hoare’s “Communicating Sequential Processes” (CSP) in the late seventies, 
most non-O-O concurrency work has focused on communication-based approaches.

The rationale is easy to understand. If you have solved the synchronization problem, 
you must still find a way to make concurrent units communicate. But if you devise a good 
communication mechanism you might very well have solved synchronization too: 
because two units cannot communicate unless the sender is ready to send and the receiver 
ready to receive, communication implies synchronization; pure synchronization may be 
viewed as the extreme case of communicating an empty message. If your communication 
mechanism is general enough, it will provide all the synchronization you need.

CSP is based on this “I communicate, therefore I synchronize” view. The starting 
point is a generalization of a fundamental concept of computing, input and output: a 
process receives information v from a certain “channel” c through the construct c ? v; it 
sends information to a channel through the construct c ! v. Channel input and output are 
only two among the possible examples of events.

For more flexibility CSP introduces the notion of non-deterministic wait, 
represented by the symbol , enabling a process to wait on several possible events and 
execute the action associated with the first that occurs. Assume for example a system 
enabling a bank’s customers to make inquiries and transfers on their accounts, and the 
bank manager to check what is going on:
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(balance_enquiry ? customer → 
(ask_ password  customer ? password →

(password_valid → (balance_out  customer ! balance) 
      (password_invalid → (denial  customer ! denial_message)))

      transfer_request ? customer → …
      control_operation ? manager → …)
In the initial state the system stands ready to accept one of three possible input 

events: a balance_enquiry or transfer_request from a customer, or a control_operation
from a manager. The first event that occurs will trigger the behavior described, using the 
same mechanisms, on the right of the corresponding arrow.

The right side of the arrow has only been filled in for the first event: after getting a 
balance_enquiry relative to a certain customer, you send the customer an ask_  password
event from which you expect to get the password; you validate the password, as a result 
sending to the customer one of two possible messages: balance_out, with the balance as 
argument, or denial.

Once the event’s processing is complete, the system returns to its initial state, 
listening to possible input events.

The original version of CSP was a major influence on the concurrency mechanism 
of Ada, whose “tasks” are processes able to wait on several possible “entries” through an 
“accept” instruction. The Occam language, a direct implementation of CSP, is the primary 
programming tool for the transputer, a family of microprocessors designed specifically by 
Inmos (now SGS-Thomson) for the construction of highly concurrent architectures.

Synchronization for concurrent O-O computation
Many of the ideas just reviewed will help us find the right approach to concurrency in an 
object-oriented context. In the final form of the solution you will recognize concepts 
coming from CSP as well as monitors and conditional critical regions.

The CSP emphasis on communication seems right for us, since the central technique 
of our model of computation — calling a feature, with arguments, on an object — is a 
communication mechanism. But there is another reason for preferring a communication-
based solution: a synchronization-based mechanism can conflict with inheritance.

This conflict is most obvious if we consider path expressions. The idea of using path 
expressions has attracted many researchers on O-O concurrency as a way to specify the 
actual processing, given by the features of a class, separately from the synchronization 
constraints, given by path expressions. The purely computational aspects of the software, 
which may have existed prior to the introduction of concurrency, will thus remain 
untainted by concurrency concerns. So for example if a class BUFFER has the features 
remove (remove the oldest element of the buffer) and put (add an element), we may 
express the synchronization through constraints such as

empty: {put}
partial: {put, remove}
full: {remove}
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using a path-expression-like notation which lists three possible states and, for each of them, 
the permitted operations. But then assume you want a descendant NEW_BUFFER to 
provide an extra feature remove_two which removes two buffer items at a time (with a 
buffer size of at least three). Then you need an almost completely new set of states:

empty: {put}
partial_one: {put, remove} -- State in which the buffer contains exactly one item
partial_two_or_more: {put, remove, remove_two}
full: {remove, remove_two}

and if the routines specify what states they produce in each possible case, they must all be 
redefined from BUFFER to NEW_BUFFER, defeating the purpose of inheritance.

This problem, and similar ones identified by several researchers, have been dubbed 
the inheritance anomaly, and have led some concurrent O-O language designers to view 
inheritance with suspicion. The first versions of the POOL parallel object-oriented 
language, for example, excluded inheritance (see the bibliographical notes).

Concerns about the “inheritance anomaly” have sparked an abundant literature 
proposing solutions, which generally try to decrease the amount of redefinition by looking 
for modular ways of specifying the synchronization constraints, so that descendants can 
describe the changes more incrementally, instead of having to redefine everything.

On closer examination, however, the problem does not appear to be inheritance, or 
even any inherent conflict between inheritance and concurrency, but instead the idea of 
specifying synchronization constraints separately from the routines themselves. (The 
formalisms discussed actually do not quite meet this goal anyway, since the routines must 
specify their exit states.)

To the reader of this book, familiar with the principles of Design by Contract, the 
technique using explicit states and a list of the features applicable in each state will look too 
low-level. The specifications of BUFFER and NEW_BUFFER obscure fundamental 
properties that we have learned to characterize through preconditions: put should state 
require not full; similarly, remove_two should state require count >= 2; and so on. This 
more compact and more abstract specification is easier to explain, to adapt (changing a 
routine’s precondition does not affect any other routine), and to relate to the views of 
outsiders such as customers. State-based techniques appear more restrictive and error-
prone. They also raise the risk of combinatorial explosion mentioned in relation to Petri 
nets and other state-based models: for the above elementary examples the number of states 
is already three in one case and four in the other, suggesting that in a complex system it 
might become unmanageable. 

The “inheritance anomaly” only occurs because such specifications tend to be rigid 
and fragile: change anything, and the whole specification crumbles. 

At the beginning of this chapter we saw another apparent inheritance-concurrency clash; 
but the culprit turned out to be the notion of active object. In both cases inheritance is at 
odds not with concurrency but with a particular approach to concurrency (active objects, 
state-based specifications); rather than dismissing or limiting inheritance — cutting the 
arm whose finger itches — the solution is to look for better concurrency mechanisms.
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One of the practical consequences of this discussion is that we should try to rely, for 
synchronization in concurrent computation, on what we already have in the object-oriented 
model, in particular assertions. Preconditions will indeed play a central role for 
synchronization, although we will need to adapt their semantics from the sequential case.

30.6  ACCESSING SEPARATE OBJECTS

We now have enough background to devise the proper synchronization mechanisms for 
our concurrent object-oriented systems.

Concurrent accesses to an object

The first question to address is how many executions may proceed concurrently on an 
object. The answer was in fact implicit in the definition of the notions of processor and 
handler: if all calls to features on an object are executed by its handler (the processor in 
charge of it), and a processor is a single thread of execution, it follows that at most one 
feature may be executing on a given object at any time.

Should we not allow several routines to execute concurrently on a given object? The 
main incentive for answering no is to retain the ability to reason on our software.

The study of class correctness in an earlier chapter provides the proper perspective. 
We saw the lifecycle of an object pictured as this:

In this view the object is externally observable only in the states marked as shaded 
squares: just after creation (S1), after every application of a feature by a client (S2 and 
subsequent states). These have been called the “stable times” of the object’s life. A 
consequence was the formal rule: to prove the correctness of the class, we only have to 
verify one property for each creation procedure, and one property for each exported 
feature. If p is a creation procedure, the property to check

{Default and prep}  Bodyp  {postp and INV}

create a  make (…)
S1

S2

S3

S4

a  f (…)

a  g (…)

a  f (…)



§30.6   ACCESSING SEPARATE OBJECTS 983
meaning: if you execute the body of p when the object has been initialized to the default 
values and the precondition of p holds, you will end up satisfying the postcondition and 
the invariant. For an exported routine r, the property to check

{prer and INV}  Bodyr  {postr and INV}

meaning: if you execute r when the precondition and the invariant are satisfied, you will 
end up satisfying the postcondition and the invariant.

So the number of things to check is very limited; there are no complicated run-time 
scenarios to analyze. This is important even in a somewhat informal approach to software 
development, which still requires the ability to reason about the software execution by 
examining the software text. The informal version of the preceding properties is that you 
can understand the class by looking at its routines separately from each other — 
convincing yourself, however informally, that each routine will deliver the intended final 
state starting from the expected initial state.

Introduce concurrent execution into this simple, consistent world, and all hell breaks 
loose. Even plain interleaving, in which we would start executing a routine, interrupt it in 
favor of another, switch back to the first and so on, would deprive us from any ability to 
use straightforward reasoning on our software texts. We simply would not have any clue 
as to what can happen at run-time; trying to guess would force us to examine all possible 
interleavings, immediately leading to a combinatorial explosion of cases to consider.

So for simplicity and consistency we will let at most one routine execute on any 
particular object at any particular time. Note, however, that in a case of emergency, or if a 
client keeps an object for too long, we should be able to interrupt the client, as long as 
we do so in a sufficiently violent way — triggering an exception — to ensure that the 
unfortunate client will receive a notification, enabling it to take corrective action if 
appropriate. The mechanism of duels, explained later, offers that possibility.

The end of the discussion section examines whether any circumstances would allow us 
to relax the prohibition of concurrent accesses to a single object.

Reserving an object

We need a way for a client to obtain exclusive access to a certain resource, represented by 
a certain object.

An idea which seems attractive at first (but will not suffice) would be simply to rely 
on the notion of separate call. Consider, executed on behalf of a certain client object O1, 
the call x  f (…), for separate x attached at run time to O2. Once the call has started 
executing, we have seen that O1 can safely move to its next business without waiting for 
the call’s termination; but this execution of the call cannot start until O2 is free for O1. So 
we might decide that before starting the call the client will wait until the target object is free.

Unfortunately this simple scheme is not sufficient, because it does not allow the 
client to decide how long to retain an object. Assume O2 is some shared data structure 
such as a buffer, and the corresponding class provides procedure remove to remove an 
element. A client O1 may need to remove two consecutive elements, but just writing
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buffer  remove; buffer  remove

will not do: between the two instructions, any other client can jump in and perform 
operations on the shared structure! So the two elements might not be adjacent.

One solution is to add to the generating class of buffer (or of a descendant) a 
procedure remove_two that removes two elements at once. But in the general case that is 
unrealistic: you cannot change your suppliers for every synchronization need of your own 
client code. There must be a way for the client to reserve a supplier object for as long as 
it needs, using the supplier class as it is.

In other words, we need something like a critical region mechanism. The syntax 
introduced earlier was

hold a then actions_requiring_exclusive_access end

or the conditional variant

hold a when a  some_property then actions_requiring_exclusive_access end

We will, however, go for a simpler approach, perhaps surprising at first. The 
convention will simply be that if a is a non-void separate expression a call of the form

actions_requiring_exclusive_access (a)

causes the caller to wait until the object attached to a is available. In other words, there is 
no need for a hold instruction; to reserve a separate object, you simply use it as actual 
argument in a call.

Note that waiting only makes sense if the routine contains at least one call x  some_routine 
on the formal argument x corresponding to a. Otherwise, for example if all it does is a 
“business card” assignment some_attribute := x, there is no need to wait. This is specified 
in the full form of the rule, also involving preconditions, which appears later in this chapter.

Other policies are possible, and indeed some authors have proposed retaining a hold
instruction (see the bibliographical notes). But the use of argument passing as the object 
reservation mechanism helps keep the concurrency model simple and easy to learn. One 
of the observations justifying this policy is that with the hold scheme shown above it will 
be tempting for developers, in line with the general “Encapsulate Repetition” motto of 
O-O development, to gather in a routine the actions that require exclusive access to an 
object; this trend was foreseen in the above summary of the hold instruction, where the 
actions appear as a single routine actions_requiring_exclusive_access. But then such a 
routine will need an argument representing the object; here we go further and consider that 
the presence of such an argument suffices to achieve object reservation.

This convention also means that, paradoxically enough, most separate calls do not 
need to wait. When we are executing the body of a routine that has a separate formal 
argument a, we know that we have already reserved the attached object, so any call with 
target a can proceed immediately. As we have seen, there is no need to wait for the call to 
terminate. In the general case, with a routine of the form
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r (a: separate SOME_TYPE)
do

…; a  r1 (…); …
…; a  r2 (…); …

end
an implementation can continue executing the intermediate instructions without waiting 
for any of the calls to terminate, as long as it logs all the calls on a so that they will be 
executed in the order requested. (We have yet to see how to wait for a separate call to 
terminate if that is what we want; so far, we just start calls and never wait!)

If a routine has two or more separate arguments, a client call will wait until it can reserve 
all the corresponding objects. This requirement is hard on the compiler, which will have 
to generate code using protocols for multiple simultaneous reservations; for that reason, 
an implementation might at first impose the restriction that a routine may have at most 
one separate formal argument. But if the full mechanism is implemented it provides 
considerable benefits to application developers; as a typical example, studied later in this 
chapter, the famous “dining philosophers” problem admits an almost trivial solution.

Accessing separate objects

The last example shows how to use, as the target of a separate call, a formal argument, 
itself separate, of the enclosing routine r. An advantage is that we do not need to worry 
about how to get access to the target object: this was taken care of by the call to r, which 
had to reserve the object — waiting if necessary until it is free.

We can go further and make this scheme the only one for separate calls:

Remember that a call a  r (…) is separate if the target a is itself an entity or expression 
declared as separate. So if we have a separate entity a we cannot call a feature on it unless 
a is a formal argument of the enclosing routine. If, for example, attrib is an attribute 
declared as separate, we must use, instead of attrib  r (…), the call rf  (attrib, …) with

rf  (x: separate SOME_TYPE; … Other arguments …)
-- Call r on x.

do
x  r (…)

end
This rule may appear to place an undue burden on developers of concurrent 

applications, since it forces them to encapsulate all uses of separate objects in routines. It 
may indeed be possible to devise a variant of this chapter’s model which does not include 
the Separate Call rule; but as you start using the model you will, I think, realize that the 

Separate Call rule

The target of a separate call must be a formal argument of the routine in 
which the call appears.
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rule is in fact of great help. It encourages developers to identify accesses to separate 
objects and separate them from the rest of the computation. Most importantly, it avoids 
grave errors that would be almost bound to happen without it.

The following case is typical. Assume a shared data structure — such as, once again, 
a buffer — with features remove to remove an element and count to query the number of 
elements. Then it is quite “natural” to write

if buffer  count >= 2 then
buffer  remove; buffer  remove

end

The intent is presumably to remove two elements. But, as we have already seen, this will 
not always work — at least not unless we have secured exclusive access to buffer. 
Otherwise between the time you test count and the time you execute the first remove, any 
other client can come in and remove an element, so that you will end up trying to apply 
remove to an empty structure.

Another example, assuming that we follow the style of previous chapters and include 
a feature item, side-effect-free, to return the element that remove removes,

if not buffer  empty then
value := buffer  item; buffer  remove

end

Without a protection on buffer, another client may add or remove an element 
between the calls to item and remove. If the author of the above extract thinks that the 
effect is to access an element and remove it, he will be right some of the time; but if this 
is not your lucky day you will access an element and remove another — so that you may 
for example (if you repeat the above scheme) access the same element twice! Very wrong.

By making buffer an argument of the enclosing routine, we avoid these problems: 
buffer is guaranteed to be reserved for the duration of the routine’s call.

Of course the fault in the examples cited lies with the developer, who was not careful 
enough. But without the Separate Call rule such errors are too easy to make. What makes 
things really bad is that the run-time behavior is non-deterministic, since it depends on the 
relative speed of the clients. The bug will be intermittent, here one minute, gone the next. 
Worse yet, it will probably occur rarely: after all (using the first example) a competing 
client has to be quite lucky to squeeze in between your test of count and your first call to 
remove. So the bug may be very hard to reproduce and isolate.

Such tricky bugs are responsible for the nightmarish reputation of concurrent system 
debugging. Any rule that can significantly decrease their likelihood of occurring is a big 
potential help.

With the Separate Call rule you will write the examples as the following procedures, 
assuming a separate type BOUNDED_BUFFER detailed below:
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remove_two (buffer: BOUNDED_BUFFER)
-- Remove oldest two items.

do
if buffer  count >= 2 then

buffer  remove; buffer  remove
end

end

get_and_remove (buffer: BOUNDED_BUFFER)
-- Assign oldest item to value, and remove it.

do
if not buffer  empty then

value := buffer  item; buffer  remove
end

end

These procedures may be part of some application class; preferably, they will appear 
in a class BUFFER_ACCESS which encapsulates buffer manipulation operations, and 
serves as parent to application classes needing to use buffers of the appropriate type.

The procedures both seem to be crying for a precondition. We will shortly see to it 
that they can get one.

Wait by necessity

Assume that a separate call such as buffer  remove has been started, after waiting if 
necessary for any separate arguments to become available. We have seen that from then 
on it does not block the client, which can proceed with the rest of its computation. But 
surely the client may need to resynchronize with the supplier. When should we wait for 
the call to terminate?

It would seem that we need a special mechanism, as has indeed been proposed by 
some concurrent O-O languages such as Hybrid, to reunite the parent computation with its 
prodigal call. But instead we can use the idea of wait by necessity, due to Denis Caromel. 
The goal is to wait when we truly need to, but no earlier.

When does the client need to be sure that a call a  r (…), for separate a attached to a 
separate object O1, is finished? Not when it is doing something else on other objects, 
separate or not; not even necessarily when it has started a new procedure call a  r (…) on 
the same separate object since, as we have seen, a smart implementation can simply log 
such calls so that they will be processed in the order emitted (an essential requirement, of 
course); but when we need to access some property of O1. Then we require the object to 
be available, and all preceding calls on it to have been finished.

You will remember the division of features into commands (procedures), which 
perform some transformation on the target object, and queries (functions and attributes) 
which return information about it. Command calls do not need to wait, but query calls may.
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Consider for example a separate stack s and the successive calls
s  put (x1); … Other instructions …; s  put (x2); … Other instructions …; value := s  item

(which because of the Separate Call rule must appear in a routine of which s is a formal 
argument). Assuming none of the Other instructions uses s, the only one that requires us 
to wait is the last instruction since it needs some information about the stack, its top value 
(which in this case should be x2).

These observations yield the basic concept of wait by necessity: once a separate call 
has started, a client only needs to wait for its termination if the call is to a query. A more 
precise rule will be given below, after we look at a practical example.

Wait by necessity (also called “lazy wait”, and similar to mechanisms of “call by 
necessity” and “lazy evaluation” familiar to Lispers and students of theoretical computing 
science) is a convenient rule which allows you to start parallel computations as you need 
and avoid unnecessary waiting, but be reassured that the computation will wait when it must.

A multi-launcher
Here is a typical example showing the benefits of wait by necessity. Assume that a certain 
object must create a set of other objects, each of which goes off on its own:

launch (a: ARRAY [separate X])
-- Get every element of a started.

require
-- No element of a is void

local
i: INTEGER

do
from i := a  lower until i > a  upper loop

launch_one (a @ i); i := i + 1
end

end 
launch_one (p: separate X)

-- Get p started.
require

p /= Void
do

p  live
end 

If, as may well be the case, procedure live of class X describes an infinite process, 
this scheme relies on the guarantee that each loop iteration will proceed immediately after 
starting launch_one, without waiting for the call to terminate: otherwise the loop would 
never get beyond its first iteration. One of the examples below uses this scheme. 

Readers familiar with coroutine-based discrete event simulation, studied in a later 
chapter, will recognize a scheme very close to what happens when you start a simulated 
process and want to gain control back, as permitted by Simula’s detach instruction.



§30.6   ACCESSING SEPARATE OBJECTS 989
An optimization

(This section examines a fine point and may be skipped on first reading.)

To wrap up this discussion of wait by necessity we need to examine more carefully 
when a client should wait for a separate call to terminate.

We have seen that only query calls should cause waiting. But we may go further by 
examining whether the query’s result is of an expanded type or a reference type. (For the 
s  item example, assuming s of type STACK [SOME_TYPE], this is determined by SOME_
TYPE.) If the type is expanded, for example if it is INTEGER or another of the basic types, 
there is no choice: we need the value, so the client computation must wait until the query 
has computed its result. But for a reference type, one can imagine that a smart 
implementation could still proceed while the result, a separate object, is being computed; 
in particular, if the implementation uses proxies for separate objects, the proxy object itself 
can be created immediately, so that the reference to it is available even if the proxy does 
not yet refer to the desired separate object.

This optimization, however, complicates the concurrency mechanism because it 
means proxies must have a “ready or not” boolean attribute, and all operations on separate 
references must wait until the proxy is ready. It also seems to prescribe a particular 
implementation — through proxies. So we will not retain it as part of the basic rule:

To account for the possible optimization just discussed, replace “a call to a query” 
by “a call to a query returning of expanded type”.

Avoiding deadlock

Along with several typical and important examples of passing separate references to 
separate calls, we have seen that it is also possible to pass non-separate references, as long 
as the corresponding formal arguments are declared as separate (since, on the supplier’s 
side, they represent foreign objects, and we do not want any traitors). Non-separate 
references raise a risk of deadlock and must be handled carefully.

The normal way of passing non-separate references is what we have called the 
business card scheme: we use a separate call of the form x  f (a) where x is separate but a 
is not; that is to say, a is a reference to a local object of the client, possibly Current itself; 
on the supplier side, f  is of the form

Wait by necessity

If a client has started one or more calls on a certain separate object, and it 
executes on that object a call to a query, that call will only proceed after all 
the earlier ones have been completed, and any further client operations will 
wait for the query call to terminate. 
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Exercise E30.4, page 
1035; see also E30.13, 
page 1036.
f (u: separate SOME_TYPE)
do

local_reference := u
end

where local_reference, also of type separate SOME_TYPE, is an attribute of the enclosing 
supplier class. Later on, in routines other than f, the supplier may use local_reference to 
request operations on objects on the original client’s side, through separate calls of the 
form local_reference  some_routine (…)

This scheme is sound. Assume, however, that f  did more, for example that it included 
a call of the form u  g (…) for some g. This is likely to produce deadlock: the client (the 
handler for the object attached to u and a) is busy executing f or, with wait by necessity, 
may be executing another call that has reserved the same object.

The following rule will avoid this kind of situation:

At present this is a only methodological guideline although it may be desirable to 
introduce a formal validity rule (an exercise asks you to explore this idea further.) Some 
more comments on deadlocks appear in the discussion section.

30.7  WAIT CONDITIONS
One synchronization rule remains to be seen. It will deal with two questions at once:

• How can we make a client wait until a certain condition is satisfied, as in conditional 
critical regions?

• What is the meaning of assertions, in particular preconditions, in a concurrent context?

A buffer is a separate queue

We need a working example. To study what happens to assertions, it is interesting to take 
a closer look at a notion that is ubiquitous in concurrent application (and has already 
appeared informally several times in this chapter): bounded buffers. A bounded buffer, 
illustrated by the top figure on the facing page, allows different components of a 
concurrent system to exchange data, produced by some and consumed by others, without 
forcing each producer that has generated an object to wait until a consumer is ready to use 
it, and conversely. Instead, communication occurs through a shared structure, the buffer; 
producers deposit their wares into the buffer, and consumers get their material from it. In 
a bounded implementation the structure can only hold a certain number maxcount of 
items, and so it can get full. But waits will only occur when a consumer needs to consume 

Business Card principle

If a separate call uses a non-separate actual argument of a reference type, the 
routine should only use the corresponding formal as source of assignments.
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The bounded queue 
of the Undoing 
design pattern used 
a similar representa-
tion. See page 710.

Bounded buffer

Bounded buffer 
implemented by 
an array
and the buffer is empty, or when a producer needs to produce and the buffer is full. In a 
well-regulated system such events will be much more infrequent than with unbuffered 
communication, and their frequency will decrease as the buffer’s capacity grows. True, a 
new source of delays arises because buffer access must be exclusive: at most one client 
may at any one time be performing a deposit (put) or retrieval (item, remove) operation. 
But these are very simple and fast operations, so any resulting wait is typically short.

In most cases the time sequence in which objects have been produced is relevant to 
the consumers, so the buffer must maintain a first-in, first-out policy (FIFO): an object 
deposited before another must be retrieved before it. The behavior is similar to that of train 
cars being added at one end of a single track and removed at the other end:

A typical implementation — not essential to the discussion, but giving us a more 
concrete view — can use an array representation of size capacity = maxcount + 1, managed 
circularly; the integer oldest will be the index of the oldest item, and next the index of the 
position to be used for inserting the next item that comes in. We can picture the array as 
being torn into a ring so that positions 1 and capacity are conceptually adjacent:

The procedure put used by a producer to add an item x will be implemented as

representation  put (x, next); next := (next \\ maxcount) + 1

where \\ is the integer remainder operation; the query item used by consumers to obtain 
the oldest element simply returns representation @ oldest (the array element at index 
oldest); and procedure remove simply executes oldest:= (oldest \\ maxcount) + 1. The 

Producers
produce

Consumers
consume

1

maxcount

next

oldest

capacity

Occupied position

Free position

Reserved position
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For an alternative 
technique see 
“Unconstrained 
genericity”, page 
1181.
array entry at index capacity, shaded in gray on the figure, is kept free; this makes it 
possible to distinguish between the test for empty, expressed as next = oldest, and the test 
for full, expressed as (next \\ maxcount) + 1 = oldest.

The structure, with its FIFO policy, and the circular array representation, are of 
course not concurrency-specific: what we have is simply a bounded queue similar to 
many of the structures studied in preceding chapters. Writing the corresponding class — 
directly applicable to the Undoing design pattern — is not hard; here is a short form of the 
class, in simplified form (main features only, header comments removed, principal 
assertion clauses only):

class interface BOUNDED_QUEUE [G] feature
empty, full: BOOLEAN
put (x: G)

require
not full

ensure
not empty

remove
require

not empty
ensure

not full
item: G

require
not empty

end
Obtaining from this description a class describing bounded buffers is about as simple 

as we could dream:

separate class BOUNDED_BUFFER [G] inherit
BOUNDED_QUEUE [G]

end
The separate qualifier applies only to the class where it appears, not its heirs. So a 
separate class may, as here, inherit from a non-separate one, and conversely. The 
convention is the same as with the other two qualifiers applicable to a class: expanded
and deferred. As noted, the three properties are mutually exclusive, so that at most one 
of the qualifiers may appear before the keyword class.

We see once again the fundamental simplicity of concurrent O-O software 
development, and the smooth transition from sequential to concurrent concepts, made 
possible in particular by the method’s focus on encapsulation. A bounded buffer (a notion 
for which you will find many complicated descriptions if you look at the concurrency 
literature) is nothing else than a bounded queue made separate.
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Preconditions under concurrent execution

Let us examine a typical use of a bounded buffer buffer by a client, for example a producer 
that needs to deposit a certain object y using the procedure put. Assume that buffer is an 
attribute of the enclosing class, having been declared, for some type T which is also the 
type of y, as buffer: BOUNDED_BUFFER [T].

The client may for example have initialized buffer to a reference to the actual buffer 
passed by its creation procedure, using the business card scheme suggested earlier:

make (b: BOUNDED_BUFFER [T], …) do …; buffer := b; … end

Because buffer, being declared of a separate type, is a separate entity, any call of the 
form buffer  put (y) is a separate call and has to appear in a routine of which buffer is an 
argument. So we should instead use put (buffer, y) where put (a routine of the client class, 
not to be confused with the put of BOUNDED_BUFFER, which it calls) is declared as

put (b: BOUNDED_BUFFER [T]; x: T)
-- Insert x into b. (First attempt.)

do
b  put (x)

end
Well, this is not quite right. Procedure put of BOUNDED_BUFFER has a 

precondition, not full. Since it does not make sense to try to insert x into b if b is full, we 
should mimic this precondition for our new procedure in the client class:

put (b: BOUNDED_BUFFER [T]; x: T)
-- Insert x into b.

require
not b  full

do
b  put (x)

end
Better. How can we call this procedure with a specific buffer and y? We must make 

sure, of course, that the precondition is satisfied on input. One way is to test:
if not full (buffer) then put (buffer, y) -- [PUT1]

but we could also rely on the context of the call as in
remove (buffer); put (buffer, y) -- [PUT2]

where the postcondition of remove includes not full. (Example PUT2 assumes that its 
initial state satisfies the appropriate precondition, not empty, for remove itself.)

Is this going to work? The answer, disappointing in light of the earlier comments 
about the unpredictability of bugs in concurrent systems, is maybe. Between the test for 
full and the call for put in the PUT1 variant, or between remove and put in PUT2, any other 
client may have interfered and made the buffer full again. This is the same flaw that 
required us, earlier on, to provide an object reservation mechanism through encapsulation.
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A contract: 
routine put for 
bounded 
queues

(From the 
example for stacks 
on page 342.)
We could try encapsulation again by writing PUT1 or PUT2 as a procedure to which 
buffer will be passed as argument, giving for PUT1:

put_if_possible (b: BOUNDED_BUFFER [T]; x: T)
-- Insert x into b if possible; otherwise set was_  full to true.

do
if b  full then was_ full:= True else

put (b, x); was_ full := False
end

end

But this does not really help me as a client. First, having to check was_   full on return is a 
nuisance; then, what do I do if it is true? Try again, probably — but with no more 
guarantee of result. What I probably want is a way to execute put when the buffer is 
indisputably non-full, even if I have to wait for this to be the case.

The precondition paradox

This situation that we have just uncovered is disturbing because it seems to invalidate, in 
a concurrent context, the basic methodological guideline for getting software right: Design 
by Contract. With a queue, that is to say in sequential computation, we have been used to 
precisely defined specifications of mutual obligations and benefits:

Implicit behind such contracts is a no hidden clause principle: the precondition is 
the only requirement that a client must satisfy to get served. If you call put with a non-full 
queue, you are entitled to the routine’s result, as expressed by the postcondition.

But in a concurrent context, with a separate supplier such as a BOUNDED_BUFFER, 
things are rather distressing for the client: however hard we try to please the supplier by 
ensuring its stated precondition, we can never be sure to meet its expectations! To execute 
correctly, however, the suppliers still need the precondition. For example the body of 
routine put in class BOUNDED_QUEUE (which is the same as in BOUNDED_BUFFER) 
will most likely not work unless full is guaranteed to be false.

put OBLIGATIONS BENEFITS

Client
(Satisfy precondition:)

Only call put (x) on a non-
full queue.

(From postcondition:)
Get new, non-empty queue 
with x added.

Supplier (Satisfy postcondition:)
Update queue to add x and 
ensure not empty.

(From precondition:)
Processing protected by 
assumption that queue not full.
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Exercise E30.6, 
page 1036.
To summarize: suppliers cannot do their work without the guarantee that the 
precondition holds; but for separate arguments the clients are unable to ensure these 
preconditions. This may be called the concurrent precondition paradox.

There is a similar postcondition paradox: on return from a separate call to put, we cannot 
any more be sure that not empty and other postcondition clauses hold for the client. These 
properties are satisfied just after the routine’s termination; but some other client may 
invalidate them before the caller gets restarted. Because the problem is even more serious 
for preconditions, which determine the correct execution of suppliers, the rest of the 
discussion mainly considers preconditions.

The paradoxes only arise for separate formal arguments. For a non-separate 
argument — in particular for an expanded value such as an integer — we can continue to 
rely on the usual properties of assertions. But this not much consolation.

Although this has not yet been widely recognized in the literature, the concurrent 
precondition paradox is one of the central issues of concurrent O-O software construction, 
and the futility of trying to retain habitual assertion semantics is one of the principal 
factors distinguishing concurrent computation from its sequential variants.

The precondition paradox may also arise in situations that are not ordinarily thought of 
as involving concurrency, such as accessing a file. This is explored in an exercise.

The concurrent semantics of preconditions

To resolve the concurrent precondition paradox we assess the situation through three 
observations:

A1 • Suppliers need the preconditions to protect their routine bodies. Here put will never 
work, in class BOUNDED_BUFFER as in BOUNDED_QUEUE, unless the routine 
has the guarantee that on entry the queue is non-full.

A2 • Separate clients cannot rely any more on the usual (sequential) semantics of 
preconditions. Testing for full before calling your buffer supplier gives you no 
guarantee at all.

A3 • Because each client may be vying with others for resource access, a client may be 
prepared to wait before it gets its resources — if this guarantees correct processing 
after the wait.

The conclusion seems inescapable: we still need preconditions, if only for the 
suppliers’ sake, but they must be given a different semantics. Instead of being a 
correctness condition, as in the sequential context, a precondition applying to a separate 
argument will be a wait condition. This will apply to what we may call “separate 
precondition clauses”: any precondition clause involving a call whose target is a separate 
argument. A typical separate precondition clause is not b  full for put.
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Here is the rule:

A separate object is free if it is not being used as an actual argument of a separate 
call (implying that no routine is being executed on it).

The rule only causes waiting for separate arguments appearing as call targets 
somewhere in the routine’s body (it uses the word “blocking” for the corresponding objects 
since they can block the call from proceeding). With a routine of the “business card” form

r (x: separate SOME_TYPE) do some_attribute := x end
or some other scheme that does not contain a call of the form x  some_routine, there is no 
need to wait on the actual argument corresponding to x.

If there is such a call the short form of the class must reflect it for the benefit of client 
authors. It will present the routine header as r (x: blocking SOME_TYPE)…

With this rule the above version of put in a client class achieves the desired result:
put (b: BOUNDED_BUFFER [T]; x: T)

require 
not b  full

do 
b  put (x)

ensure 
not b  empty

end
A call of the form put (buffer, y), from a producer client, will wait until buffer is free 

(available) and not full. If buffer is free but full, the call cannot be satisfied; but some other 
client, a consumer, may get access to it (since the precondition of interest to consumers, 
not b  empty, will be satisfied in this case); after such a client has removed an item, making 
the buffer non-full, the producer client can now have its call executed.

Which client should the implementation let through if two or more satisfy the conditions 
of the rule (blocking objects free, preconditions satisfied)? Some people, for fear of 
overspecifying, prefer to leave such decisions to the compiler, while providing library 
features allowing an application to specify a particular policy. It seems better to define a 
default first-in-first-out policy, which enhances portability and helps towards solving the 
issue of fairness. Library mechanisms can still be available to application writers who 
wish to override the default.
Be sure to note that the special semantics of preconditions as wait conditions only 

applies to what we have called separate precondition clauses, that is to say, clauses 
involving a condition of the form b  some_property where b is a separate argument. A non-

Separate call semantics
Before it can start executing the routine’s body, a separate call must wait until 
every blocking object is free and every separate precondition clause is satisfied.
In this definition, an object is blocking if it is attached to an actual argument, 
and the routine uses the corresponding formal as the target of at least one call.
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See “Monitoring 
assertions at run 
time”, page 392.

As a consequence, 
the assertion may 
not appear in a class 
invariant, which is 
not part of a routine.
separate clause, such as i > = 0 where i is an integer, or b /= Void even if b is separate (this 
does not involve a call on b), will keep its usual correctness semantics since the concurrent 
precondition paradox does not apply in such cases: if the client ensures the stated 
condition before the call, it will still hold when the routine starts; if the condition does not 
hold, no amount of waiting would change the situation.

Assertions, sequential and concurrent

The idea that assertions, and in particular preconditions, may have two different semantics 
— sometimes correctness conditions, sometimes wait conditions — may have surprised 
you. But there is no way around it: the sequential semantics is inapplicable in the case of 
separate precondition clauses.

One possible objection must be answered. We have seen that a mere compilation 
switch can turn run-time assertion checking on or off. Is it not dangerous, then, to attach 
that much semantic importance to preconditions in concurrent object-oriented systems? 
No, it is not. The assertions are an integral part of the software, whether or not they are 
enabled at run time. Because in a correct sequential system the assertions will always hold, 
we may turn off assertion checking for efficiency if we think we have removed all the 
bugs; but conceptually the assertions are still there. With concurrency the only difference 
is that certain assertions — the separate precondition clauses — may be violated at run 
time even for a correct system, and serve as wait conditions. So the assertion monitoring 
options must not apply to these clauses.

A validity constraint

To avert deadlock situations, we need to impose a validity constraint on precondition and 
postcondition clauses. Assume we permitted routines of the form 

f (x: SOME_TYPE)
require

some_property (separate_attribute)
do

…
end

where separate_attribute is a separate attribute of the enclosing class. Nothing in this 
example, save separate_attribute, need be separate. The evaluation of f  ’s precondition, 
either as part of assertion monitoring for correctness, or as a synchronization condition if 
the actual argument corresponding to x in a call is itself separate, could cause blocking if 
the attached object is not available.

This is not acceptable and is prohibited by the following rule:

Assertion Argument rule
If an assertion contains a function call, any actual argument of that call must, 
if separate, be a formal argument of the enclosing routine.
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States and transitions

The following figure summarizes some of the preceding discussion by showing the 
various possible states in which objects and processors may be, and how they will change 
state as a result of calls. 

A call is successful if the handler of its target is idle or suspended, all its non-void 
separate arguments are attached to free objects, and the corresponding separate 
precondition clauses, if any, are true. Note that this makes the definitions of object and 
processor states mutually dependent.

30.8  REQUESTING SPECIAL SERVICE

We have completed the review of the basic communication and synchronization policy. 
For more flexibility, it is useful to define a few mechanisms that will allow interrupting 
the normal processing in some cases.

Because these facilities are add-ons intended for convenience, rather than a part of 
the basic concurrency model, they are available not as language constructs but as library 
features. We will assume a class CONCURRENCY, which classes needing these special 
mechanisms can inherit. A similar approach has already been used twice in this book:

• To complement the basic exception handling rules when finer control is desired, 
through the library class EXCEPTIONS.

• To complement the default memory management and garbage collection mechanism 
when finer control is desired, through the library class MEMORY.

Successful call uses as target an 
object handled by this processor

Call terminates
FREE RESERVED

IDLE BUSY
Call terminates

Successful call uses this object as 
separate argument

Object states

Processor states

SUSPENDED

Current routine attempts 
an unsuccessful call

++

Same
as ++
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Express messages

The ABCL/1 concurrent language introduced the notion of “express message” for when 
we want to let a supplier object serve a certain VIP client immediately, even though the 
supplier may be busy with another client.

In some approaches an express message will just interrupt the normal message, get 
serviced, and then let the normal message be resumed. But this is unacceptable, as we saw 
earlier in this chapter when we found out that at most one execution should be active on 
any object at any given time: the express message, like any exported feature, needs an 
initial state satisfying the invariant; but who knows in what state the interrupted routine 
will be when it is forced to yield to the express message? And who knows what state the 
express message will produce as a result? All this opens the way to what the discussion of 
static binding called “one of the worst events that could occur during the execution of a 
software system”: producing an inconsistent object. As we saw then: “if such a situation 
can arise, we can no longer hope to predict what execution will do”.

This does not mean, however, that we should reject the notion of express message 
altogether. We may indeed need to interrupt a client — either because we have something 
more important to do with the object it has reserved, or because it is overextending its 
welcome to retain it. But such an interruption is not a polite request to step aside for a 
while. It is murder, at least attempted murder. To take our rival’s place we shoot at it, so 
that it will die unless it can recover in the hospital. In software terms, the interrupting 
client must cause an exception in its rival, which will either retry (the hospital) or fail.

Such behavior, however, assumes that the challenger is somehow stronger than the 
holder. If not, the one that will get an exception is the challenger.

Duels and their semantics

The almost inescapable metaphor suggests that instead of the “express message” 
terminology we talk about the attempt to snatch a shared object from its current holder as 
a duel (the result, in an earlier era, of trying to snatch away someone’s legitimate spouse). 
An object has executed the instruction

r (b)

where b is separate. After possibly waiting for the object of its desires, b, to become free, 
and for separate precondition clauses to hold, it has captured b, becoming its current 
holder. The execution of r on b has started on behalf of the holder, but is not finished. 
Another separate object, the challenger, executes

s (c)

where c, also separate, is attached to the same object as the holder’s b. Normally, the 
challenger will wait until the call to r is over. What if the challenger is impatient?
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Exercise E30.5, page 
1035, asks you to add 
priorities.

The semantics 
of duels
Through procedures in class CONCURRENCY we can provide the necessary 
flexibility. On the holder’s side we have yield, which means: “I am willing to release my 
hold if someone more worthy comes along”. Most holders, of course, are not so 
accommodating: unless it makes an explicit call to yield, a holder will retain its hold. To 
return to this default behavior, you may use the procedure retain.

On the challenger’s side we can use two kinds of request to get special treatment:
• demand means “now or never!”. If you cannot immediately capture the object of 

your dreams (that is to say, if the holder has not called yield), you will get an 
exception. (This is the old suicide threat trick, as in Così fan tutte.)

• insist is more gentle: you try to interrupt the holder’s routine, but if that is impossible 
you accept the common lot — waiting until the object is freed.

To return to the default behavior of waiting for the holder to finish, use wait_turn.
A call to one of these CONCURRENCY procedures will retain its effect until another 

supersedes it. Note that the two sets of facilities are not exclusive; for example a 
challenger could use both insist to request special treatment and yield to accept being 
interrupted by another. A priority scheme can be added, so that challengers will only defer 
to others with higher priorities, but we can ignore this refinement here.

The following table shows the result of a duel — a conflict between a holder and a 
challenger — in all possible cases. The default options and behavior, in the absence of any 
call to CONCURRENCY procedures, are underlined.

The “holder’s routine” that gets an exception in the two rightmost bottom entries is 
the supplier routine being executed on behalf of the holder. In the absence of a retry, it 
will pass on the exception to the holder, and the challenger will get the object.

As you will remember, every kind of exception has a code, accessible through class 
EXCEPTIONS. To distinguish an exception caused by one of the situations appearing in 
the above table, EXCEPTIONS provides the boolean query is_concurrency_interrupt.

Interrupt handling: the Secretary-Receptionist Algorithm
Here is an example using duels. Assume a certain controller object has started off a 
number of partner objects, and then proceeds with its own work, which needs a certain 
resource shared. But the other objects may need access to the shared resource, and the 
controller is willing to interrupt its current task to let any of them proceed; when the 
partner is done, the controller resumes the last interrupted task.

Challenger →

↓ Holder
wait_turn demand insist

retain Challenger waits Exception in 
challenger

Challenger waits

yield Challenger waits Exception in 
holder’s routine.

Exception in 
holder’s routine.
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This general description covers among others the case of an operating system kernel 
(the controller) which starts off input-output processors (the partners), but does not wait 
for an I/O operation to complete, since I/O is typically several orders of magnitude slower 
than computation. When an I/O operation terminates, its processor can interrupt the kernel 
to request attention. This is the traditional interrupt-driven scheme for handling I/O — and 
the problem which gave the original impetus, many years ago, to the study of concurrency.

The general scheme may be called the Secretary-Receptionist Algorithm by analogy 
with what you find in many organizations: a receptionist sits near the entrance to greet, 
register and direct visitors, but this is not a full-time job; the receptionist is also entrusted 
with some other work, usually secretarial. When a visitor shows up, the receptionist 
interrupts his work, takes care of the visitor, and then goes back to the interrupted task. 

Restarting a task after it has been started and interrupted may require some cleanup; 
this is why the following procedure passes to operate the value of interrupted, which will 
enable operate to find out whether the current task has already been attempted. The first 
argument of operate, here next, identifies the task to perform. The procedure is assumed 
to be part of a class that inherits from both CONCURRENCY (for yield and retain) and 
EXCEPTIONS (for is_concurrency_interrupt). Procedure operate could take a long time to 
execute, and so is the interruptible part.

execute_interruptibly
-- Perform own set of actions, but take interrupts
-- (the Secretary-Receptionist Algorithm).

local
done, next: INTEGER; interrupted: BOOLEAN

do
from done := 0 until termination_criterion loop

if interrupted then
process_interruption (shared); interrupted := False

else
next := done + 1; yield
operate (next, shared, interrupted)-- This is the interruptible part.
retain; done := next

end
end

rescue
if is_concurrency_interrupt then

interrupted := True; retry
end

end
Some of the steps performed by the controller may actually have been requested by 

one of the interrupting partners. In an I/O interrupt, for example, the I/O processor will 
signal the end of an operation and (in the input case) the availability of the data just read. 
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30.10, page 1022.

30.11, page 1025.

30.12, page 1028.

30.14, page 1033.
The interrupting partner may use the object shared to deposit that information; to interrupt 
the controller, it will execute

insist; interrupt (shared); wait_turn
-- Request controller’s attention, interrupting it if necessary. 
-- Deposit any needed information into the object shared.

This is the reason why process_interruption, like operate, uses shared as argument: 
it may have to analyze the shared object to detect information passed by the interrupting 
partner. This will allow it, if necessary, to set up one of its upcoming tasks, to be executed 
on behalf of that partner. Note that process_interruption, unlike operate, is not 
interruptible; any other partner that becomes ready while it is executing will have to wait 
(otherwise some partner requests might get lost). So process_interruption should only 
perform simple operations — registering information for future processing. If that is not 
possible, you may use a slightly different scheme in which process_interruption relies on 
a separate object other than shared.

We have one more precaution to take. Although partners’ requests can be processed 
later (through calls to operate in upcoming steps), it is essential that none of these requests 
be lost. With the scheme as given, after a partner executes an interrupt, another one could 
do the same, overriding the information deposited by the first, before the controller has 
had the time to register that information by executing process_interruption. This case is 
not acceptable. To avoid it, we can just add to the generating class of shared a boolean 
attribute deposited with the associated setting and resetting procedures. Then interrupt
will have the precondition not shared  deposited, so as to wait until the previous partner 
has been registered, and will execute the call shared  set_deposited before returning; 
process_interruption will execute shared  set_not_deposited before exiting.

The partners are initialized by “business card” calls of the form create partner  make 
(shared, …) which pass them a reference to shared to be retained for future needs.

Procedure execute_interruptibly has been spelled out in full, with the application-
specific elements represented by calls to routines operate, process_interruption, 
termination_criterion that are assumed to be deferred, in the behavior class style. This 
prepares for the procedure’s possible inclusion into a concurrency library. 

About the rest of this chapter

With the presentation of the duel mechanism we have finished defining the set of 
necessary concurrency tools. The rest of this chapter provides an extensive set of 
examples, from diverse application areas, illustrating the use of these tools. After the 
examples you will find:

• A sketch of a proof rule, for mathematically-inclined readers.

• A summary of the concurrency mechanism, with syntax, validity rules and semantics.

• A discussion of the mechanism’s goals and of further work needed.

• A detailed bibliography of other work in this area.
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The 
philosophers’ 
spaghetti plate

The class is defi-
nitely not what peo-
ple mean by 
“spaghetti code”.
30.9  EXAMPLES 

To illustrate the mechanism, here now are a few examples chosen from diverse 
backgrounds — from traditional concurrent programming examples through large-scale 
multiprocessing to real-time applications.

The dining philosophers

Dijkstra’s famous “dining philosophers”, an artificial example meant to illustrate the 
behavior of operating system processes vying for shared resources, is an obligatory part 
of any discussion on concurrency. Five philosophers around a table spend their time 
thinking, then eating, then thinking again and so on. To eat the spaghetti, each needs access 
to the fork immediately to his left and to his right — creating contention and possible 
deadlock.

The following class describes the philosopher’s behavior. Thanks to the mechanism 
for reserving objects through separate arguments, there is essentially (in contrast with the 
usual solutions in the literature) no explicit synchronization code:



CONCURRENCY, DISTRIBUTION, CLIENT-SERVER  AND THE INTERNET  §30.9 1004

Class PROCESS 
appeared on page 
961. wrapup remains 
an empty procedure.
separate class PHILOSOPHER creation 

make

inherit
GENERAL_PHILOSOPHER
PROCESS

rename setup as getup undefine getup end

feature {BUTLER} 

step
-- Perform a philosopher’s tasks.

do
think
eat (left, right)

end

feature {NONE} 
eat (l, r: separate FORK)

-- Eat, having grabbed l and r.
do … end

end

The entire synchronization requirement is embodied by the call to eat, which uses 
arguments left and right representing the two necessary forks, thus reserving these objects. 

The simplicity of this solution comes from the mechanism’s ability to reserve several 
resources through a single call having several separate arguments, here left and right. If 
we restricted the separate arguments to at most one per call, the solution would use one of 
the many published algorithms for getting hold of two forks one after the other without 
causing deadlock.

The principal procedure of class PHILOSOPHER does not appear above since it 
comes from the behavior class PROCESS: procedure live, which as given in PROCESS
simply executes from setup until over loop step end, so all we need to redefine here is 
step. I hope you will enjoy the renaming of setup as getup — denoting the philosopher’s 
initial operation.

Thanks to the use of multiple object reservation through arguments, the solution 
described here does not produce deadlock; but it is not guaranteed to be fair. Some of the 
philosophers can conspire to starve the others. Here too the literature provides various 
solutions, which may be integrated into the above scheme. 

To avoid confusion of genres the concurrency-independent features of a philosopher 
have been kept in a class GENERAL_PHILOSOPHER:

The synchronization
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class GENERAL_PHILOSOPHER creation 
make

feature -- Initialization

make (l, r: separate FORK)
-- Define l as left and r as right forks.

do
left := l; right := r

end
feature {NONE} -- Implementation

left, right: separate FORK
-- The two required forks

getup
-- Take any necessary initialization action.

do … end
think

-- Any appropriate action or lack thereof.
do … end

end 

The rest of the system simply takes care of initialization and of describing the 
auxiliary abstractions. Forks have no immediately relevant properties: 

class FORK end

A butler is used to set up and start a session:

class BUTLER creation 
make 

feature
count: INTEGER

-- The number of both philosophers and forks

launch
-- Start a full session.

local
i: INTEGER

do
from i := 1 until i > count loop

launch_one (participants @ i); i := i + 1
end

end 
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See “A multi-
launcher”, page 
988.
feature {NONE} 
launch_one (p: PHILOSOPHER)

-- Let one philosopher start his actual life.
do

p  live
end

participants: ARRAY [PHILOSOPHER]
cutlery: ARRAY [FORK] 

feature {NONE} -- Initialization
make (n: INTEGER)

-- Initialize a session with n philosophers.
require

n >= 0
do

count := n
create participants  make (1, count); create cutlery  make (1, count)
make_philosophers

ensure
count = n

end
make_philosophers

-- Set up philosophers.
local

i: INTEGER; p: PHILOSOPHER; left, right: FORK
do

from i := 1 until i > count loop
p := philosophers @ i
left := cutlery @ i
right := cutlery @ ((i \\ count) + 1
create p  make (left, right)
i := i + 1

end
end 

invariant 
count >= 0; participants  count = count; cutlery  count = count 

end 

Note how launch and launch_one, using a pattern discussed in the presentation of 
wait by necessity, rely on the property that the call p  live will not cause waiting, allowing 
the loop to proceed to the next philosopher.
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Making full use of hardware parallelism

The following example illustrates how to use wait by necessity to draw the maximum 
benefit from any available hardware parallelism. It shows a sophisticated form of load 
balancing in which we offload computation to many different computers on a network. 
Thanks to the notion of processor, we can rely on the concurrency mechanism to choose 
these computers automatically for us.

The example itself — computing the number of nodes in a binary tree — is of little 
practical value, but illustrates a general scheme that may be extremely useful for large, 
heavy computations such as those encountered in cryptography or advanced computer 
graphics, for which developers need all the resources they can get, but do not want to have 
to take care manually of the assignment of abstract computing units to actual computers.

Consider first a class extract that does not involve concurrency:

class BINARY_TREE [G] feature

left, right: BINARY_TREE [G]

… Other features …

nodes: INTEGER

-- Number of nodes in this tree

do

Result := node_count (left) + node_count (right) + 1

end

feature {NONE}

node_count (b: BINARY_TREE [G]): INTEGER

-- Number of nodes in b

do

if b /= Void then Result := b  nodes end

end

end

Function nodes uses recursion to compute the number of nodes in a tree. The 
recursion is indirect, through node_count. 

In a concurrent environment offering many processors, we could offload all the 
separate node computations to different processors. Declaring the class as separate, 
replacing nodes by an attribute and introducing procedures does the job:
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On how to specify the 
mapping see “Map-
ping the processors: 
the Concurrency 
Control File”, page 
971.
separate class BINARY_TREE1 [G] feature 
left, right: BINARY_TREE1 [G]
… Other features … 
nodes: INTEGER
update_nodes

-- Update nodes to reflect the number of nodes in this tree.
do

nodes := 1
compute_nodes (left); compute_nodes (right)
adjust_nodes (left); adjust_nodes (right)

end
feature {NONE} 

compute_nodes (b: BINARY_TREE1 [G])
-- Update information about the number of nodes in b.

do
if b /= Void then

b  update_nodes
end

end
adjust_nodes (b: BINARY_TREE1 [G])

-- Adjust number of nodes from those in b.
do

if b /= Void then nodes := nodes + b  nodes end
end

end
The recursive calls to compute_nodes will now be started in parallel. The addition 

operations wait for these two parallel computations to complete. 

If an unbounded number of CPUs (physical processors) are available, this solution 
seems to make the optimal possible use of the hardware parallelism. If there are fewer 
CPUs than nodes in the tree, the speedup over sequential computation will depend on how 
well the implementation allocates CPUs to the (virtual) processors. 

The presence of two tests for vacuity of b may appear unpleasant. It results, however, 
from the need to separate the parallelizable part — the procedure calls, launched 
concurrently on left and right — from the additions, which by nature must wait for their 
operands to become ready. 

An attractive property of the solution is that it ignores the practical problem of 
assigning the actual computers. The software just allocates processors as it needs to. (This 
is done in the creation instructions, not shown, which will appear in particular in the 
insertion procedure: to insert a new element into a binary tree you create a new node 
through create new_node  make (new_element) which here, new_node being of the 
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separate type BINARY_TREE1[G], will allocate a new processor to it.) The mapping of 
these virtual processors to the available physical resources is entirely automatic.

Locks

Assume you want to allow a number of clients (the “lockers”) to obtain exclusive access to 
certain resources (the “lockables”) without having to enclose the exclusive access sections 
in routines. This will provide us with a semaphore-like mechanism. Here is a solution:

class LOCKER feature 
grab (resource: separate LOCKABLE) is

-- Request exclusive access to resource.
require

not resource  locked 
do

resource  set_holder (Current)
end 

release (resource: separate LOCKABLE)
require

resource  is_held (Current)
do

resource  release
end

end

class LOCKABLE feature {LOCKER} 
set_holder (l: separate LOCKER)

-- Designate l as holder.
require

l /= Void
do

holder := l
ensure

locked
end

locked: BOOLEAN
-- Is resource reserved by a locker?

do
Result := (holder /= Void)

end
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is_held (l: separate LOCKER): BOOLEAN
-- Is resource reserved by l?

do
Result := (holder = l)

end
release

-- Release from current holder.
do

holder := Void
ensure

not locked
end 

feature {NONE} 
holder: separate LOCKER 

invariant
locked_iff_holder: locked = (holder /= Void)

end 

Any class describing resources will inherit from LOCKABLE. The proper 
functioning of the mechanism assumes that every locker performs sequences of grab and 
release operations, in this order. Other behavior will usually result in deadlock; this 
problem was mentioned in the discussion of semaphores as one of the major limitations of 
this technique. But we can once again rely on the power of object-oriented computation to 
enforce the required protocol; rather than trusting every locker to behave, we may require 
lockers to go through procedure use in descendants of the following behavior class:

deferred class LOCKING_PROCESS feature 
resource: separate LOCKABLE
use

-- Make disciplined use of resource.
require

resource /= Void
do

from create lock; setup until over loop
lock  grab (resource)
exclusive_actions
lock  release (resource)

end
finalize

end
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Exercise E30.7, 
page 1036.

Exercise E30.7, 
page 1036.
set_resource (r: separate LOCKABLE)
-- Select r as resource for use.

require
r /= Void

do
resource := r

ensure
resource /= Void

end
feature {NONE} 

lock: LOCKER
exclusive_actions

-- Operations executed while resource is under exclusive access
deferred
end

setup
-- Initial action; by default: do nothing.

do
end

over: BOOLEAN
-- Is locking behavior finished?

deferred
end

finalize
-- Final action; by default: do nothing.

do
end

end
An effective descendant of LOCKING_PROCESS will effect exclusive_actions

and over, and may redefine setup and finalize. Note that it is desirable to write 
LOCKING_PROCESS as a descendant of PROCESS.

Whether or not we go through LOCKING_PROCESS, a grab does not take away the 
corresponding lockable from all possible clients: it only excludes other lockers that 
observe the protocol. To exclude any client from accessing a resource, you must enclose 
the operations accessing the resource in a routine to which you pass it as an argument. 

Routine grab of class LOCKER is an example of what has been called the business 
card scheme: passing to resource a reference to the Current locker, which the resource will 
keep as a separate reference.

Based on the pattern provided by these classes, it is not difficult to write others 
implementing semaphores under their various forms. Object-oriented mechanisms help us 
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“Coroutine concepts”,
page 1118 (in the Sim-
ula chapter). The 
resume instruction 
comes from Simula.

Coroutine 
sequencing
help users of our classes avoid the classic danger of semaphores: executing a reserve on a 
resource and forgetting to execute the corresponding free. A developer using a behavior 
class such as LOCKING_PROCESS will fill in the deferred operations to cover the needs 
of his application, and can rely on the predefined general scheme to guarantee that each 
reserve will be properly followed by the corresponding free.

Coroutines

Although not truly concurrent, at least not in its basic form, our next example is essential 
as a way to test the general applicability of a concurrent mechanism.

The first (and probably the only) major programming language to include a coroutine 
construct was also the first object-oriented language, Simula 67; we will study its 
coroutine mechanism as part of the presentation of Simula. That discussion will also 
present some examples of the practical use of coroutines.

Coroutines emulate concurrency on a sequential computer. They provide a form of 
program unit that, although similar to the traditional notion of routine, reflects a more 
symmetric form of communication:

• With a routine call, there is a master and a slave; the caller starts a routine, waits for 
its termination, and picks up where it left; the routine, however, always starts from 
the beginning. The caller calls; the routine returns.

• With coroutines, the relationship is between peers; coroutine a gets stuck in its work 
and calls coroutine b for help; b restarts where it last left, and continues until it is its 
turn to get stuck or it has proceeded as far as needed for the moment; then a picks up 
its computation. Instead of separate call and return mechanisms, there is a single 
operation resume c, meaning: restart coroutine c where it was last interrupted; I will 
wait until someone else resumes me.

This is all strictly sequential and meant to be executed on a single process (task) of 
a single computer. But the ideas are clearly drawn from concurrent computation; in fact 
an operating system running on a single CPU will internally use a coroutine-like 
mechanism to implement such schemes as time-sharing, multitasking and multithreading.

Coroutines may be viewed as a boundary case of concurrency: the poor man’s 
substitute to concurrent computation when only one thread of control is available. It is 
always a good idea to check that a general-purpose mechanism degrades gracefully to 
boundary cases; so let us see how we can represent coroutines. The following two classes 
will achieve this goal.

resume a resume a

resume b resume b

a

b
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separate class COROUTINE creation 

make

feature {COROUTINE} 
resume (i: INTEGER)

-- Wake up coroutine of identifier i and go to sleep.
do

actual_resume (i, controller)
end

feature {NONE} -- Implementation

controller: COROUTINE_CONTROLLER

identifier: INTEGER

actual_resume (i: INTEGER; c: COROUTINE_CONTROLLER)
-- Wake up coroutine of identifier i and go to sleep.
-- (Actual work of resume).

do
c  set_next (i); request (c)

end

request (c: COROUTINE_CONTROLLER)
-- Request eventual re-awakening by c.

require
c  is_next (identifier)

do
-- No action necessary

end

feature {NONE} -- Creation 

make (i: INTEGER; c: COROUTINE_CONTROLLER)
-- Assign i as identifier and c as controller.

do
identifier := i
controller := c

end
end
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Exercise E30.10, 
page 1036.
separate class COROUTINE_CONTROLLER feature {NONE} 
next: INTEGER

feature {COROUTINE} 
set_next (i: INTEGER)

-- Select i as the identifier of the next coroutine to be awakened.
do

next := i
end

is_next (i: INTEGER): BOOLEAN
-- Is i the index of the next coroutine to be awakened?

do
Result := (next = i)

end
end 
One or more coroutines will share one coroutine controller (created through a “once” 

function not shown here). Each coroutine has an integer identifier. To resume a coroutine 
of identifier i, procedure resume will, through actual_resume, set the next attribute of the 
controller to i, and then block, waiting on the precondition next = j, where j is the 
coroutine’s own identifier. This ensures the desired behavior. 

Although it looks like normal concurrent software, this solution ensures that (if all 
coroutines have different identifiers) at most one coroutine may proceed at any time, 
making it useless to allocate more than one physical CPU. (The controller could actually 
make use of its own CPU, but its actions are so simple as not to warrant it.) 

The recourse to integer identifiers is necessary since giving resume an argument of 
type COROUTINE, a separate type, would cause deadlock. In practice, you should 
probably use unique declarations to avoid having to choose the values manually. This use 
of integers also has an interesting consequence: if we allow two or more coroutines to have 
the same identifier, then with a single CPU we obtain a non-deterministic mechanism: a 
call resume (i) will permit restarting any coroutine whose identifier has value i. With more 
than one CPU a call resume (i) will allow all coroutines of identifier i to proceed in parallel. 

So the above scheme, which for a single CPU provides a coroutine mechanism, 
doubles up in the case of several CPUs as a mechanism for controlling the maximum 
number of processes of a certain type which may be simultaneously active. 

An elevator control system

The following example shows a case where object technology and the mechanism defined 
in this chapter can be used to achieve a pleasantly decentralized event-driven architecture 
for a real-time application.

The example describes software for an elevator control system, with several 
elevators serving many floors. The design below is somewhat fanatically object-oriented 
in that every significant type of component in the physical system — for example the 
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Milner quote: page 
956.
notion of individual button in an elevator cabin, marked with a floor number — has an 
associated separate class, so that each corresponding object such as a button has its own 
virtual thread of control (processor). This is getting close to Milner’s wish, quoted at the 
beginning of this chapter, of making all objects parallel. The benefit is that the system is 
entirely event-driven; it does not need to include any loop for examining repeatedly the 
status of objects, for example whether any button has been pressed. 

The class texts below are only sketched, but provide a good idea of what a complete 
solution would be. In most cases the creation procedures have not been included. 

This implementation of the elevator example, adapted to control elevator displays on 
multiple screens and computers across the Internet (rather than actual elevators), has been 
used at several conferences to demonstrate concurrent and distributed O-O mechanisms.

Class MOTOR describes the motor associated with one elevator cabin, and the 
interface with the mechanical hardware: 

separate class MOTOR feature {ELEVATOR} 
move ( floor: INTEGER)

-- Go to floor; once there, report.
do

“Direct the physical device to move to floor”
signal_stopped (cabin)

end
signal_stopped (e: ELEVATOR)

-- Report that elevator stopped on level e.
do

e  record_stop (position)
end

feature {NONE} 
cabin: ELEVATOR
position: INTEGER

-- Current floor level
do

Result := “The current floor level, read from physical sensors”
end

end 
The creation procedure of this class must associate an elevator, cabin, with every 

motor. Class ELEVATOR includes the reverse information through attribute puller, 
indicating the motor pulling the current elevator. 

The reason for making an elevator and its motor separate objects is to reduce the 
grain of locking: once an elevator has sent a move request to its motor, it is free again, 
thanks to the wait by necessity policy, to accept requests from buttons either inside or 
outside the cabin. It will resynchronize with its motor upon receipt of a call to procedure 
record_stop, through signal_stopped. Only for a very short time will an instance of 
ELEVATOR be reserved by a call from either a MOTOR or BUTTON object 
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separate class ELEVATOR creation 
make

feature {BUTTON} 
accept ( floor: INTEGER)

-- Record and process a request to go to floor.
do

record ( floor)
if not moving then process_request end

end
feature {MOTOR} 

record_stop ( floor: INTEGER)
-- Record information that elevator has stopped on floor.

do
moving := false; position := floor; process_request

end
feature {DISPATCHER} 

position: INTEGER
moving: BOOLEAN

feature {NONE} 
puller: MOTOR
pending: QUEUE [INTEGER]

-- The queue of pending requests
-- (each identified by the number of the destination floor) 

record ( floor: INTEGER)
-- Record request to go to floor.

do
“Algorithm to insert request for floor into pending”

end
process_request

-- Handle next pending request, if any.
local

floor: INTEGER
do

if not pending  empty then
floor := pending  item
actual_process (puller, floor)
pending  remove

end
end
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actual_process (m: separate MOTOR; floor: INTEGER)
-- Direct m to go to floor.

do
moving := True; m  move ( floor)

end
end 

Buttons are of two kinds: floor buttons, which passengers press to call the elevator 
to a certain floor, and cabin buttons, inside a cabin, which they press to make the cabin 
move to a certain floor. The two kinds send different requests: for a cabin button, the 
request is directed to a specific cabin; for a floor button, it can be handled by any elevator 
and so will be sent to a dispatcher object, which will poll the various elevators to select 
one that will handle the request. (The selection algorithm is left unimplemented below 
since it is irrelevant to this discussion; the same applies to the algorithm used by elevators 
to manage their pending queue of requests in class ELEVATOR above.) 

Class FLOOR_BUTTON assumes that there is only one button on each floor. It is not 
difficult to update the design to support two buttons, one for up requests and the other for 
down requests. 

It is convenient although not essential to have a common parent BUTTON for the 
classes representing the two kinds of button. Remember that the features exported by 
ELEVATOR to BUTTON are, through the standard rules of selective information hiding, 
also exported to the two descendants of this class.

separate class BUTTON feature 
target: INTEGER

end

separate class CABIN_BUTTON inherit BUTTON feature 
cabin: ELEVATOR

request
-- Send to associated elevator a request to stop on level target.

do
actual_request (cabin)

end
actual_request (e: ELEVATOR)

-- Get hold of e and send a request to stop on level target.
do

e  accept (target) 
end

end
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separate class FLOOR_BUTTON inherit
BUTTON

feature

controller: DISPATCHER

request
-- Send to dispatcher a request to stop on level target.

do
actual_request (controller)

end 

actual_request (d: DISPATCHER)
-- Send to d a request to stop on level target.

do
d  accept (target) 

end
end 

The question of switching button lights on and off has been ignored. It is not hard to 
add calls to routines which will take care of this. 

Here finally is class DISPATCHER. To develop the algorithm that selects an elevator 
in procedure accept, you would need to let it access the attributes position and moving of 
class ELEVATOR, which in the full system should be complemented by a boolean attribute 
going_up. Such accesses will not cause any problem as the design ensures that 
ELEVATOR objects never get reserved for a long time.

separate class DISPATCHER creation 
make

feature {FLOOR_BUTTON} 

accept ( floor: INTEGER)
-- Handle a request to send an elevator to floor.

local
index: INTEGER; chosen: ELEVATOR

do
“Algorithm to determine what elevator should handle the
   request for floor”
index := “The index of the chosen elevator”
chosen := elevators @ index
send_request (chosen, floor)

end
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All routines with an 
argument t: REAL 
need the precondi-
tion t >= 0, omitted 
for brevity.
feature {NONE} 
send_request (e: ELEVATOR; floor: INTEGER)

-- Send to e a request to go to floor.
do

e  accept ( floor)
end

elevators: ARRAY [ELEVATOR]
feature {NONE} -- Creation 

make
-- Set up the array of elevators.

do
“Initialize array elevators”

end
end 

A watchdog mechanism

Along with the previous one, the following example shows the mechanism’s applicability 
to real-time problems. It also provides a good illustration of the concept of duel.

We want to enable an object to perform a call to a certain procedure action, with the 
provision that the call will be interrupted, and a boolean attribute failed set to true, if the 
procedure has not completed its execution after t seconds. The only basic timing 
mechanism available is a procedure wait (t), which will execute for t seconds.

Here is the solution, using a duel. A class that needs the mechanism should inherit 
from the behavior class TIMED and provide an effective version of the procedure 
action which, in TIMED, is deferred. To let action execute for at most t seconds, it 
suffices to call timed_action (t). This procedure sets up a watchdog (an instance of 
class WATCHDOG), which executes wait (t) and then interrupts its client. If, however, 
action has been completed in the meantime, it is the client that interrupts the watchdog.

 deferred class TIMED inherit
CONCURRENCY

feature {NONE}
failed: BOOLEAN; alarm: WATCHDOG
timed_action (t: REAL)

-- Execute action, but interrupt after t seconds if not complete.
-- If interrupted before completion, set failed to true.

do 
set_alarm (t); unset_alarm (t); failed := False

rescue 
if is_concurrency_interrupt then failed := True end

end
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 See exercise E30.13, 
page 1036, about 
this procedure and 
the Business Card 
principle.
set_alarm (t: REAL) is 
-- Set alarm to interrupt current object after t seconds.

do
-- Create alarm if necessary:

if alarm = Void then create alarm end
yield; actual_set (alarm, t); retain

end
unset_alarm (t: REAL)

-- Remove the last alarm set.
do

demand; actual_unset (alarm); wait_turn
end

action
-- The action to be performed under watchdog control

deferred
end

feature {NONE} -- Actual access to watchdog 
actual_set (a: WATCHDOG; t: REAL)

-- Start up a to interrupt current object after t seconds.
do

a  set (t)
end

… Procedure actual_unset similar, left to the reader …
feature {WATCHDOG} -- The interrupting operation 

stop
-- Empty action to let watchdog interrupt a call to timed_action

do -- Nothing end
end

separate class
WATCHDOG

feature {TIMED}
set (caller: separate TIMED; t: REAL)

-- After t seconds, interrupt caller; 
-- if interrupted before, terminate silently.

require
caller_exists: caller /= Void

local
interrupted: BOOLEAN

do
if not interrupted then wait (t); demand; caller   stop; wait_turn end

rescue
if is_concurrency_interrupt then interrupted  := True; retry end

end
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unset
-- Remove alarm (empty action to let client interrupt set).

do -- Nothing end
feature {NONE}

early_termination: BOOLEAN
end

For clarity and to avoid mistakes every use of retain should, as here, include also the 
following retain, in the form yield; “Some call”; retain. Every use of demand (or insist) 
should similarly be of the form demand; “Some call”; wait_turn. You can use behavior 
classes to enforce this rule.

Accessing buffers

As a last example, let us wrap up the example of bounded buffers used several times in the 
presentation of the mechanism. We have seen that the class could be declared as just 
separate class BOUNDED_BUFFER [G] inherit BOUNDED_QUEUE [G] end, 
assuming the proper sequential BOUNDED_QUEUE class.

To use a call such as q  remove on an entity q of type BOUNDED_BUFFER [T], you 
must enclose it in a routine using q as formal argument. It may be useful for that purpose 
to provide a class BUFFER_ACCESS that fully encapsulates the notion of bounded buffer; 
application classes may inherit from BUFFER_ACCESS. There is nothing difficult about 
this behavior class, but it provides a good example of how we can encapsulate separate 
classes, directly derived from sequential ones such as BOUNDED_QUEUE, so as to 
facilitate their direct uses by concurrent applications. 

note

description: “Encapsulation of access to bounded buffers"

class BUFFER_ACCESS [G] is 

put (q: BOUNDED_BUFFER [G]; x: G)
-- Insert x into q, waiting if necessary until there is room.

require
not q  full 

do
q  put (x)

ensure
not q  empty

end
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On first reading you 
may move to “DIS-
CUSSION”, 30.12, 
page 1028.
remove (q: BOUNDED_BUFFER [G])
-- Remove an element from q, waiting if necessary
-- until there is such an element. 

require
not q  empty

do
q  remove

ensure
not q  full

end
item (q: BOUNDED_BUFFER [G]): G

-- Oldest element not yet consumed
require

not q  empty
do

Result := q  item
ensure

not q  full
end 

end 

30.10  TOWARDS A PROOF RULE

(This section is for mathematically-inclined readers only. Although you may understand 
the basic ideas without having had a formal exposure to the theory of programming 
languages, full understanding requires that you be familiar with the basics of that theory, 
as given for example in [M 1990], whose notations will be used here.)

The basic mathematical property of sequential object-oriented computation was 
given semi-formally in the discussion of Design by Contract:

{INV and pre} body {INV and post}

where pre, post and body are the precondition, postcondition and body of a routine, and 
INV is the class invariant. With suitable axiomatization of the basic instructions this could 
serve as the basis of a fully formal axiomatic semantics for object-oriented software.

Without going that far, let us express the property more rigorously in the form of a 
proof rule for calls. Such a rule is fundamental for a mathematical study of O-O software 
since the heart of object-oriented computation — whether sequential as before, or 
concurrent as we are now able to achieve — is operations of the form 

t  f (…, a, …)

which call a feature f, possibly with arguments such as a, on a target t representing an 
object. The proof rule for the sequential case may be informally stated as follows:
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The basic 
sequential 
proof technique
For example, if we are able to prove that the actual implementation of put in class 
BOUNDED_QUEUE, assuming not full initially, produces a state satisfying not empty, 
then for any queue q and element a the rule allows us to deduce 

{not q  full} q  put (x) {not q  empty}

More formally, we may express the basic proof rule as an adaptation to the object-
oriented form of computation of Hoare’s procedure proof rule: 

{INV ∧ }  Body (r)  {INV ∧ }

{ }  Call (r)  { }

Here INV is the class invariant, Pre ( f ) is the set of precondition clauses of f and
Post ( f ) the set of its postcondition clauses. Recall that an assertion is the conjunction of 
a set of clauses, of the form 

clause1; …; clausen

The large “and” signs  indicate conjunction of all the clauses. The actual arguments 
of f  have not been explicitly included in the call, but the primed expressions such as t  q'
indicate substitution of the call’s actual arguments for the formal arguments of f. 

In the interest of conciseness, the rule is stated above in the form which does not support 
proofs of recursive routines. Adding such support, however, does not affect the present 
discussion. For details of how to handle recursion, see [M 1990].

The reason for considering the assertion clauses separately and then “anding” them 
is that this form prepares the rule’s adaptation, described next, to separate calls in the 
concurrent case. Also of interest as preparation for the concurrent version is that you must 
take the invariant INV into account in the proof of the routine body (above the line), 
without any visible benefit for the proof of the call (below the line). More assertions with 
that property will appear in the concurrent rule. 

What then changes with concurrency? Waiting on a precondition clause occurs only 
for a precondition of the form t  cond, where t is a formal argument of the enclosing 
routine, and is separate. In a routine of the form 

If we can prove that the body of   f, started in a state satisfying the precondition 
of f, terminates in a state satisfying the postcondition, then we can deduce the 
same property for the above call, with actual arguments such as a substituted 
for the corresponding formal arguments, and every non-qualified call in the 
assertions (of the form some_boolean_property) replaced by the 
corresponding property on t (of the form t   some_boolean_property).

p ∈Pre (r)
p

q ∈ Post (r)
q

p ∈Pre (r)
p'

q ∈ Post (r)
q'
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f (…, a: T, …)

require

clause1; clause2; …

do 
…

end

any of the precondition clauses not involving any separate call on a separate formal 
argument is a correctness condition: any client must ensure that condition prior to any call, 
otherwise the call is in error. Any precondition clause involving a call of the form a  some_
condition, where a is a separate formal argument, is a wait condition which will cause calls 
to block if it is not satisfied. 

These observations may be expressed as a proof rule which, for separate 
computation, replaces the preceding sequential rule: 

{INV ∧ }  Body (r)  {INV ∧ }

{ }  Call (r)  { }

 
where Nonsep_pre ( f ) is the set of clauses in f  ’s precondition which do not involve any 
separate calls, and similarly for Nonsep_post ( f ). 

This rule captures in part the essence of parallel computation. To prove a routine 
correct, we must still prove the same conditions (those above the line) as in the sequential 
rule. But the consequences on the properties of a call (below the line) are different: the 
client has fewer properties to ensure before the call, since, as discussed in detail earlier in 
this chapter, trying to ensure the separate part of the precondition would be futile anyway; 
but we also obtain fewer guarantees on output. The former difference may be considered 
good news for the client, the latter is bad news. 

The separate clauses in preconditions and postconditions thus join the invariant as 
properties that must be included as part of the internal proof of the routine body, but are 
not directly usable as properties of the call. 

The rule also serves to restore the symmetry between preconditions and 
postconditions, following a discussion that highlighted the role of the preconditions.

p ∈Pre (r)
p

q ∈ Post (r)
q

p ∈Nonsep_Pre (r)
p'

q ∈ Nonsep_Post (r)
q'
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On first reading you 
may move to “DIS-
CUSSION”, 30.12, 
page 1028.
30.11  A SUMMARY OF THE MECHANISM

Here now is the precise description of the concurrency facilities presented in earlier 
sections. There is no new material in this section, which serves only as reference and may 
be skipped on first reading. The description consists of four parts: syntax; validity 
constraints; semantics; library mechanisms. It extends the sequential O-O mechanisms 
developed in the preceding chapters.

Syntax

The syntactic extension involves just one new keyword, separate. 

A declaration of an entity or function, which normally appears as 

x: TYPE

may now also be of the form 

x: separate TYPE

In addition, a class declaration, which normally begins with one of class C, 
deferred class C and expanded class C, may now also be of a new form: 
separate class C. In this case C will be called a separate class. It follows from the syntax 
convention that a class may be at most one of: separated, expanded, deferred. As with 
expanded and deferred, the property of being separate is not inherited: a class is separate 
or not according to its own declaration, regardless of its parents’ separateness status. 

A type is said to be separate if it is either based on a separate class or of the form 
separate T for some T (in which case it is not an error, although redundant, for T to be 
separate — again the same convention as for expanded). An entity or function is separate 
if its type is separate. An expression is separate if it is either a separate entity or a call to 
a separate function. A call or creation instruction is separate if its target (an expression) is 
separate. A precondition clause is separate if it involves a separate call (whose target, 
because of rules that follow, can only be a formal argument).

Constraints

A Separateness Consistency rule in four parts governs the validity of separate calls:

• (1) If the source of an attachment (assignment instruction or assignment passing) is 
separate, its target entity must be separate too.

• (2) If an actual argument of a separate call is of a reference type, the corresponding 
formal argument must be declared as separate.

• (3) If the source of an attachment is the result of a separate call to a function returning 
a reference type, the target must be declared as separate.

• (4) If an actual argument of a separate call is of an expanded type, its base class may 
not include, directly or indirectly, any non-separate attribute of a reference type.
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There is also a simple consistency rule on types (not given earlier): in a type of the 
form separate TYPE, the base class of TYPE must be neither deferred nor expanded.

For a separate call to be valid, the target of the call must be a formal argument of the 
enclosing routine.

If an assertion contains a function call, any actual argument of that call must, if 
separate, be a formal argument of the enclosing routine, if any (separate argument rule).

Semantics

Each object is handled by a processor, its handler. If the target t of a creation instruction is 
non-separate, the newly created object will be handled by the same processor as the 
creating object. If t is separate, the new object will be allocated to a new processor. 

Once it has been created, an object will at any time be in either of two states: free and 
reserved. It is free if no feature is being executed on it, and no separate client is currently 
executing a routine that uses as actual argument a separate reference attached to it.

A processor will be in one of three states: idle, busy and suspended. It is busy if it is 
executing a routine whose target is an object that it handles. It becomes suspended if it 
attempts an unsuccessful call (defined below) whose target is an object that it handles.

The semantics of calls is affected only if one of more of the elements involved — 
target and actual arguments — are separate. The discussion assumes a call of the general 
form t  f (…, s, …) where f is a routine. (If f  is an attribute, we will assume for simplicity 
that it is called through an implicit function returning its value.)

The call is executed as part of the execution of a routine on a certain object C_OBJ, 
which may only be in a busy state at that stage. The basic notion is the following:

Definition: satisfiable call
In the absence of CONCURRENCY features (described next), a call to a routine 
f, executed on behalf of an object C_OBJ, is satisfiable if and only if every 
separate actual argument having a non-void value, and hence attached to a 
separate object A_OBJ, satisfies the following two conditions if the routine 
uses the corresponding formal as target of at least one call:
S1 • A_OBJ is free or reserved by C_OBJ.
S2 • Every separate clause of the precondition of f has value true when 

evaluated for A_OBJ and the actual arguments given. 



§30.11   A SUMMARY OF THE MECHANISM 1027
If a processor executes a satisfiable call, the call is said to be successful and 
proceeds immediately; C_OBJ remains reserved, its processor remains in the busy state, 
every A_OBJ becomes reserved, the target remains reserved, the target’s handler 
becomes busy, and it starts executing the routine of the call. When the call terminates, 
the target’s handler returns to its previous state (idle or suspended) and each A_OBJ
object returns to its previous state (free or reserved by C_OBJ). 

If the call is not satisfiable, it is said to be unsuccessful; C_OBJ enters the suspended 
state. The call attempt has no immediate effect on its target and actual arguments. If one 
or more earlier unsuccessful calls are now satisfiable, the processor selects one of them to 
become successful as just described. The default policy if more than one is satisfiable is 
to select the one that has been waiting longest.

The final semantic change is the definition of wait by necessity: if a client has started 
one of more calls on a certain separate object, and it executes on that object a call to a 
query, that call will only proceed after all the earlier ones have been completed, and any 
further client operations will wait for the query call to terminate. (We have seen that an 
optimizing implementation might apply this rule only to queries returning an expanded 
result.) When waiting for these calls to terminate, the client remains in the “reserved” state.

Library mechanisms

Features of class CONCURRENCY enable us in some cases to consider that condition S1
of the satisfiable call definition holds even if A_OBJ has been reserved by another object 
(the “holder”), assuming C_OBJ (the “challenger’) has called demand or insist; if as a 
result the call is considered satisfiable, the holder will get an exception. This will only 
occur if the holder is in a “yielding” state, which it can achieve by calling yield.

To go back to the default non-yielding state, the holder can execute retain; the 
boolean query yielding indicates the current state. The challenger’s state is given by the 
integer query Challenging which may have the value Normal, Demanding or Insisting.

To return to the default Normal state the challenger can execute wait_turn. The 
difference between demand and insist affects what happens if the holder is not yielding: with 
demand the challenger will get an exception; with insist it simply waits as with wait_turn.

When these mechanisms cause an exception in the holder or challenger, the boolean 
query is_concurrency_exception from class EXCEPTIONS has value true.
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30.12  DISCUSSION

As a conclusion to this presentation, let us review the essential criteria that should guide 
the development of a concurrent O-O mechanism. These criteria served as a basis for the 
approach presented here; in a few cases, as will be seen, some more work remains to be 
done to achieve their full satisfaction. The goals include:

• Minimality of mechanism. 

• Full use of inheritance and other object-oriented techniques. 

• Compatibility with Design by Contract. 

• Provability. 

• Support for command-query distinction. 

• Applicability to many forms of concurrency. 

• Support for coroutine programming. 

• Adaptability through libraries. 

• Support for reuse of non-concurrent software. 

• Support for deadlock avoidance. 

We will also take a final look at the question of interleaving accesses to an object.

Minimality of mechanism

Object-oriented software construction is a rich and powerful paradigm, which, as noted at 
the beginning of this chapter, intuitively seems ready to support concurrency. 

It is essential, then, to aim for the smallest possible extension. Minimalism here is 
not just a question of good language design. If the concurrent extension is not minimal, 
some concurrency constructs will be redundant with the object-oriented constructs, or will 
conflict with them, making the developer’s task hard or impossible. To avoid such a 
situation, we must find the smallest syntactic and semantic epsilon that will give 
concurrent execution capabilities to our object-oriented programs.

The extension presented in the preceding sections is indeed minimal syntactically, 
since it is not possible to add less than one new keyword. 

Full use of inheritance and other object-oriented techniques

It would be unacceptable to have a concurrent object-oriented mechanism that does not 
take advantage of all O-O techniques, in particular inheritance. We have noted that the 
“inheritance anomaly” and other potential conflicts are not inherent to concurrent O-O 
development but follow from specific choices of concurrency mechanisms, in particular 
active objects, state-based models and path-expression-like synchronization; the 
appropriate conclusion is to reject these choices and retain inheritance.



§30.12   DISCUSSION 1029

“Objects as 
machines”, page 751.
We have repeatedly seen how inheritance can be used to produce high-level behavior 
class (such as PROCESS) describing general patterns to be inherited by descendants. Most 
of the examples would be impossible without multiple inheritance.

Among other O-O techniques, information hiding also plays a central role.

Compatibility with Design by Contract

It is essential to retain the systematic, logic-based approach to software construction and 
documentation expressed by the principles of Design by Contract. The results of this chapter 
were indeed based on the study of assertions and how they fare in a concurrent context.

In that study we encountered a striking property, the concurrent precondition 
paradox, which forced us to provide a different semantics for assertions in the concurrent 
case. This gives an even more fundamental place to assertions in the resulting mechanism.

Support for command-query separation

A principle of object-oriented software construction was developed in preceding chapters: 
Command-Query Separation. The principle enjoins us not to mix commands (procedures), 
which change objects, and queries (functions and attributes), which return information 
about objects but do not change them. This precludes side-effect-producing functions.

It is commonly believed that the principle cannot hold in a concurrent context, as for 
example you cannot write

next_element := buffer  item

buffer  remove

and have the guarantee that the element removed by the second call is the same that the 
first instruction assigned to next_item. Between the two instructions, another client can 
mess up with the shared buffer. Such examples are often used to claim that one must have 
a side-effect-producing function get, which will both return an element and remove it.

This argument is plainly wrong. It is confusing two notions: exclusive access and 
routine specification. With the notation of this chapter, it is easy to obtain exclusive access 
without sacrificing the Command-Query Separation principle: simply enclose the two 
instructions above, with buffer replaced by b, in a procedure of formal argument b, and 
call that procedure with the attribute buffer as argument. Or, if you do not require the two 
operations to apply to the same element, and want to minimize the amount of time a shared 
resource is held, write two separate routines. This kind of flexibility is important for the 
developer. It can be provided, thanks to a simple exclusive access mechanism, whether or 
not functions may have side effects.
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Applicability to many forms of concurrency

A general criterion for the design of a concurrent mechanism is that it should make it 
support many different forms of concurrency: shared memory, multitasking, network 
programming, client-server computing, distributed processing, real time.

With such a broad set of application areas, a language mechanism cannot be 
expected to provide all the answers. But it should lend itself to adaptation to all the 
intended forms of concurrency. This is achieved by using the abstract notion of processor, 
and relying on a distinct facility (Concurrency Control File, libraries…) to adapt the 
solution to any particular hardware architecture that you may have available.

Adaptability through libraries

Many concurrency mechanisms have been proposed over the years; some of the best 
known were reviewed at the beginning of this chapter. Each has its partisans, and each may 
provide the best approach for a certain problem area. 

It is important, then, that the proposed mechanism should support at least some of 
these mechanisms. More precisely, the solution must be general enough to allow us to 
program various concurrency constructs in terms of that mechanism. 

Here the facilities of the object-oriented method should again be put to good use. 
One of the most important aspects of the method is that it supports the construction of 
libraries for widely used schemes. The library construction facilities (classes, assertions, 
constrained and unconstrained genericity, multiple inheritance, deferred classes and 
others) should allow us to express many concurrency mechanisms in the form of library 
components. Examples of such encapsulating mechanisms (such as the PROCESS class 
and the behavior class for locks) have been presented in this chapter, and the exercises 
suggest a few more.

One may expect that a number of libraries will be produced, relying on the basic 
tools and complementing them, to support concurrency models catering to specific needs 
and tastes.

We have also seen the use of library classes such as CONCURRENCY to provide 
various refinements to the basic scheme defined by the language mechanism.

Support for coroutine programming

As a special case, coroutines provide a form of quasi-concurrency, interesting both in itself 
(in particular for simulation activities), and as a smoke test of the applicability of the 
mechanisms, since a general solution should adapt itself gracefully to boundary cases. We 
have seen how it is possible, once again using the library construction mechanisms of 
object technology, to express coroutines based on the general concurrent mechanism.
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Support for reuse of non-concurrent software
It is necessary to support the reuse of existing, non-concurrent software, especially 
libraries of reusable software components.

We have seen how smooth the transition is between sequential classes such as 
BOUNDED_QUEUE and their concurrent counterparts such as BOUNDED_BUFFER (just 
write separate class BOUNDED_BUFFER [G] inherit BOUNDED_QUEUE [G] end). 
This result is somewhat tempered by the frequent desirability of encapsulation classes such 
as our BUFFER_ACCESS. Such encapsulation seems useful, however, and may be an 
inescapable consequence of the semantic differences between sequential and concurrent 
computation. Also note that such wrapper classes are easy to write.

Support for deadlock avoidance
One area in which more work remains necessary is how to guarantee deadlock avoidance.

Deadlock potential is a fact of concurrent life. For example any mechanism that can 
be used to program semaphores (and a mechanism that is not powerful enough to emulate 
semaphores would be viewed with suspicion) can cause deadlock, since semaphores are 
trivially open to that possibility.

The solution lies partly in the use of high-level encapsulation mechanisms. For 
example a set of classes encapsulating semaphores, as was presented for locks, should 
come with behavior classes that automatically provide a free for every reserve, thereby 
guaranteeing deadlock avoidance for applications that follow the recommended practice 
by inheriting from the behavior class. This is, in my experience, the best recipe for 
deadlock avoidance.

This approach may not be sufficient, however, and it may be possible to devise 
simple non-deadlock rules, automatically checkable by a static tool. Such a rule (expressed 
as a methodological principle rather than a language validity rule, for fear it may be too 
restrictive) was given earlier: the Business Card principle. But more is needed.

Permitting concurrent access?
A final note on one of the principal properties of the approach: the requirement that at most 
one client may access any supplier object at any given time, preventing interleaving of 
routines and requiring any VIP treatment to use the duel mechanism.

The rationale was clear: if any challenger client can interrupt the execution of a 
routine at any time, we lose the ability to reason on our classes (through properties of the 
form {INV and pre} body {INV and post}) since the challenger can leave the object in an 
arbitrary state.

This objection would disappear if we only permitted challengers to execute a 
routine of a very special kind: an applicative routine (in the sense defined for functions 
in earlier chapters) which does not modify the object or, if it modifies it, cancels all its 
modifications before it leaves. This would assume a language mechanism to state that a 
routine is applicative, and compilers enforcing that property.
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30.13  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Concurrency and distribution are playing an increasing role in most application areas 
of computers.

• Concurrency has many variants, including multiprocessing and multiprogramming. 
The Internet, the Web and object request brokers bring even more possibilities.

• It is possible to use the fundamental schemes of object technology — classes, 
encapsulation, multiple inheritance, deferred classes, assertions and so on — for the 
greatest benefit of developers of concurrent and distributed applications.

• No active-passive object distinction is necessary or desirable. Objects are by nature 
able to perform many operations; making them active would restrict them to just one.

• A simple extension of the sequential object-oriented notation, using a single 
keywords (separate), covers all the major application areas of concurrency.

• Each object is handled by a processor. Processors are an abstract notion describing 
threads of control; a system can use as many processors as it wants regardless of the 
number of available computing devices (CPUs). It must be possible to define the 
mapping from processors to CPUs outside of the software proper.

• An object handled by a different processor is said to be separate.

• Calls on separate targets have a different semantics, asynchronous rather than 
synchronous. For that reason, any entity representing separate objects must be 
declared as such, using the keyword separate.

• Consistency rules, implying in particular that a separate entity may not be assigned 
to a non-separate one, ensure that there are no “traitors” — that no non-separate 
entity becomes attached to a separate object.

• To achieve exclusive access to a separate object, it suffices to use the corresponding 
reference as an argument to a separate call (a call with a separate target).

• The target of a separate call must itself be a separate formal argument of the 
enclosing routine.

• Preconditions on separate targets cannot keep their usual semantics as correctness 
conditions (this is the “concurrent precondition paradox”). They serve as wait 
conditions.

• The mechanism developed in this chapter covers multitasking, time-sharing, multi-
threading, client-server computing, distributed processing on networks such as the 
Internet, coroutines and real-time applications.



§30.14   BIBLIOGRAPHICAL NOTES 1033
30.14  BIBLIOGRAPHICAL NOTES

The approach to concurrency described in this chapter evolved from a presentation at 
TOOLS EUROPE [M 1990a] and was revised in [M 1993b], from which some of the 
material in this chapter (examples in particular) was derived. It is now known as SCOOP 
for “Simple Concurrent Object-Oriented Programming”. John Potter and Ghinwa Jalloul 
have developed a variant that includes an explicit hold instruction [Jalloul 1991]
[Jalloul 1994]. Wait by necessity was introduced by Denis Caromel [Caromel 1989] 
[Caromel 1993].

The first implementation of the model described here was developed by Terry Tang 
and Xavier Le Vourch. Both contributed new insights.

A good textbook on the traditional approaches to concurrency is [Ben Ari 1990]. 
Original references include: on semaphores, [Dijkstra 1968a], which also introduced the 
“dining philosophers” problem; on monitors, [Hoare 1974]; on path expressions, 
[Campbell 1974]. The original CSP model was described in [Hoare 1978]; the book 
[Hoare 1985] presents a revised model with special emphasis on its mathematical 
properties. Occam2 is described in [Inmos 1988]. A CSP and Occam archive is available 
at Oxford University: http://www.comlab.ox.ac.uk/archive/csp.html (I am grateful to Bill 
Roscoe from Oxford for help with details of CSP). CCS (Communicating Concurrent 
Systems) [Milner 1989] is another influential mathematically-based model. Although 
cited only in passing in this chapter, Carriero’s and Gelernter’s Linda method and tool 
[Carriero 1990] is a must know for anyone interested in concurrency.

A special issue of the Communications of the ACM [M 1993a] presents a number of 
important approaches to concurrent object-oriented programming, originally drawn from 
concurrency papers at various TOOLS conferences.

Another collection of papers that appeared at about the same time is [Agha 1993]. 
An earlier collective book edited by Yonezawa and Tokoro [Yonezawa 1987] served as 
catalyst for much of the work in the field and is still good reading. Other surveys include 
a thesis [Papathomas 1992] and an article [Wyatt 1992]. Yet another compilation of 
contributions by many authors [Wilson 1996] covers C++ concurrency extensions.

Hewitt’s and Agha’s actors model, which predates the object-oriented renaissance 
and comes from a somewhat different background, has influenced many concurrent O-O 
approaches; it is described in an article [Agha 1990] and a book [Agha 1986]. Actors are 
computational agents similar to active objects, each with a mail address and a behavior. 
An actor communicates with others through messages sent to their mail addresses; to 
achieve asynchronous communication, the messages are buffered. An actor processes 
messages through functions and by providing “replacement behaviors” to be used in lieu 
of the actor’s earlier behavior after a certain message has been processed.
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One of the earliest and most thoroughly explored parallel object-oriented languages 
is POOL [America 1989]; POOL uses a notion of active object, which was found to raise 
problems when combined with inheritance. For that reason inheritance was introduced 
into the language only after a detailed study which led to the separation of inheritance and 
subtyping mechanisms. The design of POOL is also notable for having shown, from the 
start, a strong concern for formal language specification. 

Much of the important work in concurrent O-O languages has come from Japan. 
[Yonezawa 1987], already cited, contains the description of several influential Japanese 
developments, such as ABCL/1 [Yonezawa 1987a]. MUSE, an object-oriented operating 
system developed at the Sony Computer Science Laboratory, was presented by Tokoro and 
his colleagues at TOOLS EUROPE 1989 [Yokote 1989]. The term “inheritance anomaly” 
was introduced by Matsuoka and Yonezawa [Matsuoka 1993], and further papers by 
Matsuoka and collaborators which propose various remedies.

Work on distributed systems has been particularly active in France, with the 
CHORUS operating system, of which [Lea 1993] describes an object-oriented extension; 
the GUIDE language and system of Krakowiak et al. [Balter 1991]; and the SOS system 
of Shapiro et al. [Shapiro 1989]. In the area of programming massively parallel 
architectures, primarily for scientific applications, Jean-Marc Jézéquel has developed the 
ÉPÉE system [Jézéquel 1992], [Jézéquel 1996] (chapter 9)], [Guidec 1996].

Also influential has been the work done by Nierstrasz and his colleagues at the 
University of Genève around the Hybrid language [Nierstrasz 1992] [Papathomas 1992], 
which does not have two categories of objects (active and passive) but relies instead on 
the notion of thread of control, called activity. The basic communication mechanism is 
remote procedure call, either synchronous or asynchronous.

Other important projects include DRAGOON [Atkinson 1991], which, like the 
mechanism of this chapter, uses preconditions and postconditions to express 
synchronization, and pSather [Feldman 1993], based on the notion of thread and a 
predefined MONITOR class.

Many other developments would need to be added to this list. For more complete 
surveys, see the references cited at the beginning of this section. The proceedings of 
workshops regularly held at the ECOOP and OOPSLA conferences, such as [Agha 1988], 
[Agha 1991], [Tokoro 1992], describe a variety of ongoing research projects and are 
precious to anyone who wants to find out what problems researchers consider most pressing.

The work reported in this chapter has benefited at various stages from the comments 
and criticism of many people. In addition to colleagues cited in the first two paragraphs 
of this section they include Mordechai Ben-Ari, Richard Bielak, John Bruno, Paul 
Dubois, Carlo Ghezzi, Peter Löhr, Dino Mandrioli, Jean-Marc Nerson, Robert Switzer 
and Kim Waldén.
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EXERCISES

E30.1  Printers

Complete the PRINTER class, implementing the job queue as a bounded buffer and 
making sure queue manipulation routines as well as print do not need to process the 
special “stop request” print job (print may have not j  is_stop_request as a precondition).

E30.2  Why import must be deep

Assume that a shallow import mechanism (rather than deep_import) were available. 
Construct an example that will produce an inconsistent structure — one in which a 
separate object is attached to a non-separate entity.

E30.3  The “inheritance anomaly”

In the BUFFER example used to illustrate the “inheritance anomaly”, assume that each 
routine specifies the exit state in each case using a yield instruction, as in

put (x: G)
do

“Add x to the data structure representing the buffer”
if “All positions now occupied” then

yield full
else

yield partial
end

end

Write the corresponding scheme for remove. Then write the class NEW_BUFFER with the 
added procedure remove_two and show that the class must redefine both of the inherited 
features (along with the specification of which features are applicable in which states).

E30.4  Deadlock avoidance (research problem)

Starting from the Business Card principle, investigate whether it is feasible to eliminate 
some of the possible deadlocks by introducing a validity rule on the use of non-separate 
actual arguments to separate calls. The rule should be reasonable (that is to say, it should 
not preclude commonly useful schemes), enforceable by a compiler (in particular an 
incremental compiler), and easily explainable to developers.

E30.5  Priorities

Examine how to add a priority scheme to the duel mechanism of class CONCURRENCY, 
retaining upward compatibility with the semantics defined in the presentation of 
procedures yield, insist and related ones.
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Page 1020.
E30.6  Files and the precondition paradox
Consider the following simple extract from a routine manipulating a file:

f: FILE
…
if f /= Void and then f  readable then

f  some_input_routine
-- some_input_routine is any routine that reads
-- data from the file; its precondition is readable.

end
Discuss how, in spite of the absence of obvious concurrency in this example, the 
precondition paradox can apply to it. (Hint: a file is a separate persistent structure, so an 
interactive user or some other software system can access the file in between the various 
operations performed by the extract.) Discuss what can happen as a consequence of this 
problem, and possible solutions.

E30.7  Locking
Rewrite the class LOCKING_PROCESS as an heir of class PROCESS.

E30.8  Binary semaphores
Write one or more classes implementing the notion of binary semaphore. (Hint: start from 
the classes implementing locks.) As suggested at the end of the discussion of locks, be sure 
to include high-level behavior classes, meant to be used through inheritance, which 
guarantee a correct pattern of reserve and free operations.

E30.9  Integer semaphores
Write one or more classes implementing the notion of integer semaphore. 

E30.10  Coroutine controller
Complete the implementation of coroutines by spelling out how the controller is created.

E30.11  Coroutine examples
The discussion of Simula presents several examples of coroutines. Use the coroutine 
classes of the present chapter to implement these examples.

E30.12  Elevators
Complete the elevator example by adding all the creation procedures as well as the 
missing algorithms, in particular for selecting floor requests.

E30.13  Watchods and the Business Card principle
Show that the procedure set of class WATCHDOG violates the Business Card principle. 
Explain why this is all right. 

E30.14  Once routines and concurrency
What is the appropriate semantics for once routines in a concurrent context: executed once 
per system execution, or once per processor?
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Object persistence and databases
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 first view of per-
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E xecuting an object-oriented application means creating and manipulating a certain 
number of objects. What happens to these objects when the current execution terminates? 
Transient objects will disappear with the current session; but many applications also need 
persistent objects, which will stay around from session to session. Persistent objects may 
need to be shared by several applications, raising the need for databases.

In this overview of persistence issues and solutions we will examine the three 
approaches that O-O developers have at their disposal for manipulating persistent objects. 
They can rely on persistence mechanisms from the programming language and 
development environment to get object structures to and from permanent storage. They 
can combine object technology with databases of the most commonly available kind (not 
O-O): relational databases. Or they can use one of the newer object-oriented database 
systems, which undertake to transpose to databases the basic ideas of object technology.

This chapter describes these techniques in turn, providing an overview of the 
technology of O-O databases with emphasis on two of the best-known products. It ends 
with a more futuristic discussion of the fate of database ideas in an O-O context.

31.1  PERSISTENCE FROM THE LANGUAGE

For many persistence needs it suffices to have, associated with the development 
environment, a set of mechanisms for storing objects in files and retrieving them from 
files. For simple objects such as integers and characters, we can use input-output facilities 
similar to those of traditional programming.

Storing and retrieving object structures

As soon as composite objects enter the picture, it is not sufficient to store and retrieve 
individual objects since they may contain references to other objects, and an object 
deprived of its dependents would be inconsistent. This observation led us in an earlier 
chapter to the Persistence Closure principle, stating that any storage and retrieval 
mechanism must handle, together with an object, all its direct and indirect dependents. The 
following figure served to illustrate the issue:
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persistence 
closure
The Persistence Closure principle stated that any mechanism that stores O1 must 
also store all the objects to which it refers, directly or indirectly; otherwise when you 
retrieve the structure you would get a meaningless value (“dangling reference”) in the 
loved_one field for O1.

We saw the mechanisms of class STORABLE which provide the corresponding 
facilities: store to store an object structure and retrieved to access it back. This is a 
precious mechanism, whose presence in an O-O environment is by itself a major 
advantage over traditional environments. The earlier discussion gave a typical example of 
use: implementing the SAVE facility of an editor. Here is another, from ISE’s own 
practice. Our compiler performs several passes on representations of the software text. 
The first pass creates an internal representation, known as an Abstract Syntax Tree (AST). 
Roughly speaking, the task of the subsequent passes is to add more and more semantic 
information to the AST (to “decorate the tree”) until there is enough to generate the 
compiler’s target code. Each pass finishes by a store; the next pass starts by retrieving the 
AST through retrieved.

The STORABLE mechanism works not only on files but also on network connections 
such as sockets; it indeed lies at the basis of the Net client-server library.

Storable format variants

Procedure store has several variants. One, basic_store, stores objects to be retrieved by the 
same system running on the same machine architecture, as part of the same execution or 
of a later one. These assumptions make it possible to use the most compact format possible 
for representing objects.

Another variant, independent_store, removes all these assumptions; the object 
representation is platform-independent and system-independent. It consequently takes a 
little more space, since it must use a portable data representation for floating-point and 
other numerical values, and must include some elementary information about the classes 
of the system. But it is precious for client-server systems, which must exchange 

(PERSON1)

"Almaviva"name

landlord

loved_one

(PERSON1)

"Figaro"name

landlord

loved_one

(PERSON1)

"Susanna" name

landlord
loved_one

O1

O2 O3
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potentially large and complex collections of objects among machines of widely different 
architectures, running entirely different systems. For example a workstation server and a 
PC client can run two different applications and communicate through the Net library, with 
the server application performing the fundamental computations and the client application 
taking care of the user interface thanks to a graphical library such as Vision.

Note that the storing part is the only one to require several procedures — basic_store, 
independent_store. Even though the implementation of retrieval is different for each 
format, you will always use a single feature retrieved, whose implementation will detect 
the format actually used by the file or network data being retrieved, and will automatically 
apply the appropriate retrieval algorithm.

31.2  BEYOND PERSISTENCE CLOSURE

The Persistence Closure principle is, in theory, applicable to all forms of persistence. It 
makes it possible, as we saw, to preserve the consistency of objects stored and retrieved.

In some practical cases, however, you may need to adapt the data structure before 
letting it be applied by mechanisms such as STORABLE or the O-O database tools 
reviewed later in this chapter. Otherwise you may end up storing more than you want.

The problem arises in particular because of shared structures, as in this setup:

A relatively small data structure needs to be archived. Because it contains one or more 
references to a large shared structure, the Persistence Closure principle requires archiving 
that structure too. In some cases you may not want this. For example, as illustrated by the 
figure, you could be doing some genealogical research, or other processing on objects 
representing persons; a person object might, through an address field, reference a much 
bigger set of objects representing geographical information. A similar situation occurs in 
ISE’s ArchiText product, which enables users to manipulate structured documents, such as 
programs or specifications. Each document, like the FAMILY structure in the figure, 
contains a reference to a structure representing the underlying grammar, playing the role 
of the CITY structure; we may want to store a document but not the grammar, which already 
exists elsewhere and may be shared by many documents.

address

FAMILY structure

CITY structure
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In such cases you may want to “cut out” the references to the shared structure before 
storing the referring structure. This is, however, a delicate process. First, you must as always 
make sure that at retrieval time the objects will still be consistent — satisfy their invariants. 
But there is also a practical problem: to avoid complication and errors, you do not really 
want to modify the original structure; only in the stored version should references be cut out.

Once again the techniques of object-oriented software construction provide an 
elegant solution, based on the ideas of behavior class reviewed in the discussion of 
inheritance. One of the versions of the storing procedure, custom_independent_store, has 
the same effect as independent_store by default, but also lets any descendant of a library 
class ACTIONABLE redefine a number of procedures which do nothing by default, such 
as pre_store which will be executed just before an object is stored and post_store which 
will be executed after. So you can for example have pre_store perform

preserve; address := Void
where preserve, also a feature of ACTIONABLE, copies the object safely somewhere. 
Then post_action will perform a call to

restore

which restores the object from the preserved copy.

For this common case it is in fact possible to obtain the same effect through a call of 
the form

store_ignore ("address")

where ignore takes a field name as argument. Since the implementation of store_ignore 
may simply skip the field, avoiding the two-way copy of preserve and restore, it will be 
more efficient in this case, but the pre_store-post_store mechanism is more general, 
allowing any actions before and after storage. Again, you must make sure that these 
actions will not adversely affect the objects.

You may in fact use a similar mechanism to remove an inconsistency problem arising 
at retrieval time; it suffices to redefine the procedure post_retrieve which will be executed 
just before the retrieved object rejoins the community of approved objects. For example 
an application might redefine post_retrieve, in the appropriate class inheriting from 
ACTIONABLE, to execute something like

address := my_city_structure  address_value (…)
hence making the object presentable again before it has had the opportunity to violate its 
class invariant or any informal consistency constraint.

There are clearly some rules associated with the ACTIONABLE mechanism; in 
particular, pre_store must not perform any change of the data structure unless post_store
corrects it immediately thereafter. You must also make sure that post_retrieve will perform 
the necessary actions (often the same as those of post_store) to correct any inconsistency 
introduced into the stored structure by pre_store. Used under these rules, the mechanism 
lets you remain faithful to the spirit of the Persistent Closure principle while making its 
application more flexible. 
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31.3  SCHEMA EVOLUTION
A general issue arises in all approaches to O-O persistence. Classes can change. What if 
you change a class of which instances exist somewhere in a persistent store? This is known 
as the schema evolution problem.

The word schema comes from the relational database world, where it describes the 
architecture of a database: its set of relations (as defined in the next section) with, for every 
relation, what we would call its type — number of fields and type of each. In an O-O 
context the schema will also be the set of types, given here by the classes.

Although some development environments and database systems have provided 
interesting tools for O-O schema evolution, none has yet provided a fully satisfactory 
solution. Let us define the components of a comprehensive approach.

Some precise terminology will be useful. Schema evolution occurs if at least one 
class used by a system that attempts to retrieve some objects (the retrieving system) 
differs from its counterpart in the system that stored these objects (the storing system). 
Object retrieval mismatch, or just object mismatch for short, occurs when the retrieving 
system actually retrieves a particular object whose own generating class was different in 
the storing system. Object mismatch is an individual consequence, for one particular 
object, of the general phenomenon of schema evolution for one or more classes.

Remember that in spite of the terms “storing system” and “retrieving system” this whole 
discussion is applicable not only to storage and retrieval using files or databases, but also 
to object transmission over a network, as with the Net library. In such a case the more 
accurate terms would be “sending system” and “receiving system”.

To keep the discussion simple, we will make the usual assumption that a software 
system does not change while it is being executed. This means in particular that all the 
instances of a class stored by a particular system execution refer to the same version of the 
class; so at retrieval time either all of them will produce an object mismatch, or none of 
them will. This assumption is not too restrictive; note in particular that it does not rule out 
the case of a database that contains instances of many different versions of the same class, 
produced by different system executions.

Naïve approaches

We can rule out two extreme approaches to schema evolution:

• You might be tempted to forsake previously stored objects (schema revolution!). The 
developers of the new application will like the idea, which makes their life so much 
easier. But the users of the application will not be amused.

• You may offer a migration path from old format to new, requiring a one-time, en masse 
conversion of old objects. Although this solution may be acceptable in some cases, it 
will not do for a large persistent store or one that must be available continuously.

What we really need is a way to convert old objects on the fly as they are retrieved 
or updated. This is the most general solution, and the only one considered in the rest of 
this discussion.
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If you happen to need en-masse conversion, an on-the-fly mechanism will trivially let you 
do it: simply write a small system that retrieves all the existing objects using the new 
classes, applying on-the-fly conversion as needed, and stores everything.

On-the-fly object conversion

The mechanics of on-the-fly conversion can be tricky; we must be particularly careful to 
get the details right, lest we end up with corrupted objects and corrupted databases.

First, an application that retrieves an object and has a different version of its 
generating class may not have the rights to update the stored objects, which may be just 
as well since other applications may still use the old version. This is not, however, a new 
problem. What counts is that the objects manipulated by the application be consistent with 
their own class descriptions; an on-the-fly conversion mechanism will ensure this 
property. Whether to write back the converted object to the database is a separate question 
— a classical question of access privilege, which arises as soon as several applications, or 
even several sessions of the same application, can access the same persistent data. 
Database systems, object-oriented or not, have proposed various solutions

Regardless of write-back aspects, the newer and perhaps more challenging problem 
is how each application will deal with an obsolete object. Schema evolution involves three 
separate issues — detection, notification and correction:

• Detection is the task of catching object mismatches (cases in which a retrieved 
object is obsolete) at retrieval time.

• Notification is the task of making the retrieving system aware of the object 
mismatch, so that it will be able to react appropriately, rather than continuing with 
an inconsistent object (a likely cause of major trouble ahead!).

• Correction is the task, for the retrieving system, of bringing the mismatched object 
to a consistent state that will make it a correct instance of the new version of its class 
— a citizen, or at least a permanent resident, of its system of adoption.

All three problems are delicate. Fortunately, it is possible to address them separately.

Detection

We can define two general categories of detection policy: nominal and structural.

In both cases the problem is to detect a mismatch between two versions of an object’s 
generating class: the version used by the system that stored the object, and the version used 
by the system which retrieves it.

In the nominal approach, each class version is identified by a version name. This 
assumes some kind of registration mechanism, which may have two variants:

• If you are using a configuration management system, you can register each new 
version of the class and get a version name in return (or specify the version 
name yourself).
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• More automatic schemes are possible, similar to the automatic identification facility 
of Microsoft’s OLE 2, or the techniques used to assign “dynamic IP addresses” to 
computers on the Internet (for example a laptop that you plug in temporarily into a 
new network). These techniques are based on random number assignments, with 
numbers so large as to make the likelihood of a clash infinitesimal.

Either solution requires some kind of central registry. If you want to avoid the 
resulting hassle, you will have to rely on the structural approach. The idea here is to 
associate with each class version a class descriptor deduced from the actual structure of 
the class, as defined by the class declaration, and to make sure that whenever a persistent 
mechanism stores objects it also stores the associated class descriptors. (Of course if you 
store many instances of a class you will only need to store one copy of the class descriptor.) 
Then the detection mechanism is simple: just compare the class descriptor of each retrieved 
object with the new class descriptor. If they are different, you have an object mismatch.

What goes into a class descriptor? There is some flexibility; the answer is a tradeoff 
between efficiency and reliability. For efficiency, you will not want to waste too much 
space for keeping class information in the stored structure, or too much time for 
comparing descriptors at retrieval time; but for reliability you will want to minimize the 
risk of missing an object mismatch — of treating a retrieved object as up-to-date if it is in 
fact obsolete. Here are various possible strategies:

C1  • At one extreme, the class descriptor could just be the class name. This is generally 
insufficient: if the generator of an object in the storing system has the same name 
as a class in the retrieving system, we will accept the object even though the two 
classes may be totally incompatible. Trouble will inevitably follow.

C2  • At the other extreme, we might use as class descriptor the entire class text — perhaps 
not as a string but in an appropriate internal form (abstract syntax tree). This is clearly 
the worst solution for efficiency, both in space occupation and in descriptor 
comparison time. But it may not even be right for reliability, since some class 
changes are harmless. Assume for example the new class text has added a routine, 
but has not changed any attribute or invariant clause. Then nothing bad can happen 
if we consider a retrieved object up-to-date; but if we detect an object mismatch we 
may cause some unwarranted trouble (such as an exception) in the retrieving system.

C3  • A more realistic approach is to make the class descriptor include the class name and 
the list of its attributes, each characterized by its name and its type. As compared 
to the nominal approach, there is still the risk that two completely different classes 
might have both the same name and the same attributes, but (unlike in case C1) 
such chance clashes are extremely unlikely to happen in practice.

C4  • A variation on C3 would include not just the attribute list but also the whole class 
invariant. With the invariant you should be assured that the addition or removal of 
a routine, which will not yield a detected object mismatch, is harmless, since if it 
changed the semantics of the class it would affect the invariant.

C3 is the minimum reasonable policy, and in usual cases seems a good tradeoff, at 
least to start.
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Notification

What should happen when the detection mechanism, nominal or structural, has caught an 
object mismatch?

We want the retrieving system to know, so that it will be able to take the appropriate 
correction actions. A library mechanism will address the problem. Class GENERAL
(ancestor of all classes) must include a procedure

correct_mismatch
do

…See full version below …
end

with the rule that any detection of an object mismatch will cause a call to correct_mismatch
on the temporarily retrieved version of the object. Any class can redefine the default 
version of correct_mismatch; like a creation procedure, and like any redefinition of the 
default exception handling procedure default_rescue, any redefinition of correct_mismatch
must ensure the invariant of the class.

What should the default version of correct_mismatch do? It may be tempting, in the 
name of unobtrusiveness, to give it an empty body. But this is not appropriate, since it 
would mean that by default object retrieval mismatches will be ignored — leading to all 
kinds of possible abnormal behavior. The better global default is to raise an exception:

correct_mismatch
-- Handle object retrieval mismatch.

do 
raise_mismatch_exception

end

where the procedure called in the body does what its name suggests. It might cause some 
unexpected exceptions, but this is better than letting mismatches go through undetected. 
A project that wants to override this default behavior, for example to execute a null 
instruction rather than raise an exception, can always redefine correct_mismatch, at its 
own risk, in class ANY. (As you will remember, developer-defined classes inherit from 
GENERAL not directly but through ANY, which a project or installation can customize.)

For more flexibility, there is also a feature mismatch_information of type ANY, defined as 
a once function, and a procedure set_mismatch_information (info: ANY) which resets its 
value. This makes it possible to provide correct_mismatch with more information, for 
example about the various preceding versions of a class.

If you do expect object mismatches for a certain class, you will not want the default 
exception behavior for that class: instead you will redefine correct_mismatch so as to 
update the retrieved object. This is our last task: correction.
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Correction

How do we correct a object that has been found, upon retrieval, to cause a mismatch? The 
answer requires a careful analysis, and a more sophisticated approach than has usually 
been implemented by existing systems or proposed in the literature.

The precise situation is this: the retrieval mechanism (through feature retrieved of 
class STORABLE, a database operation, or any other available primitive) has created a 
new object in the retrieving system, deduced from a stored object with the same 
generating class; but it has also detected a mismatch. The new object is in a temporary 
state and may be inconsistent; it may for example have lost a field which was present in 
the stored object, or gained a field not present in the original. Think of it as a foreigner 
without a visa.

Such an object state is similar to the intermediate state of an object being created — 
outside of any persistence consideration — by a creation instruction create x  make (…), 
just after the object’s memory cell has been allocated and initialized to default values, but 
just before make has been called. At that stage the object has all the required components 
but is not yet ready for acceptance by the community since it may have inconsistent 
values in some of its fields; it is, as we saw, the official purpose of a creation procedure 
make to override default initializations as may be needed to ensure the invariant.

Let us assume for simplicity that the detection technique is structural and based on 
attributes (that is to say, policy C3 as defined earlier), although the discussion will 
transpose to the other solutions, nominal or structural. The mismatch is a consequence of 
a change in the attribute properties of the class. We may reduce it to a combination of any 
number of attribute additions and attribute removals. (If a class change is the replacement 
of the type of an attribute, we can consider it as a removal followed by an addition.) The 
figure above shows one addition and one removal.

Attribute removal does not raise any apparent difficulty: if the new class does not 
include a certain attribute present in the old class, the corresponding object fields are not 
needed any more and we may simply discard them. In fact procedure correct_mismatch
does not need to do anything for such fields, since the retrieval mechanism, when creating 
a tentative instance of the new class, will have discarded them; the figure shows this for 
the bottom field — rather, non-field — of the illustrated object.

The attribute for this field 
was not in the stored 
version; the field has been 
initialized to the default 
value for the attribute’s type.

The stored object had a field 
here, but the new version of 
the class has removed the 
corresponding attribute; 
so the field has been lost.

The attributes for these two 
fields have not changed from 

the stored object’s generating 
class to the new version.

0.0
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See “Uniform Access”,
page 55, and “Defini-
tion and example”, 
page 363.
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We might of course be a bit more concerned about the discarded fields; what if they were 
really needed, so that the object will not make sense without them? This is where having 
a more elaborate detection policy, such as structural policy C4 which takes the invariant 
into account, would be preferable.

The more delicate case is when the new class has added an attribute, which yields a 
new field in the retrieved objects, as illustrated by the top field of the object in the 
preceding figure. What do we do with such a field? We must initialize it somehow. In the 
systems I have seen offering some support for schema evolution and object conversion, 
the solution is to use a conventional default as initialization value (the usual choices: zero 
for numbers, empty for strings). But, as we know from earlier discussions of similar 
problems — arising for example in the context of inheritance — this may be very wrong!

Our standard example was a class ACCOUNT with attributes deposits_list  and 
withdrawals_list ; assume that a new version adds an attribute balance and a system using 
this new version attempts to retrieve an instance created from the previous version.

The purpose of adding the balance attribute is clear: instead of having to recompute 
an account’s balance on demand we keep it in the object and update it whenever needed. 
The new class invariant reflects this through a clause of the form

balance = deposits_list  total – withdrawals_list  total
But if we apply the default initialization to a retrieved object’s balance field, we will 

get a badly inconsistent result, whose balance field does not agree with the record of 
deposits and withdrawals. On the above figure, balance is zero as a result of the default 
initialization; to agree with the deposits and withdrawals shown, it should be 1000 dollars.

Hence the importance of having the correct_mismatch mechanism. In such a case the 
class will simply redefine the procedure as

correct_mismatch
-- Handle object retrieval mismatch by correctly setting up balance

do
balance := deposits_list  total – withdrawals_list  total

end
If the author of the new class has not planned for this case, the default version of 

correct_mismatch will raise an exception, causing the application to terminate abnormally 
unless a retry (providing another recovery possibility) handles it. This is the right outcome, 
since continuing execution could destroy the integrity of the execution’s object structure — 
and, worse yet, of the persistent object structure, for example a database. In the earlier 
metaphor, we will reject the object unless we can assign it a proper immigration status.

R
a
(
w
p0.0

Old fields

New field (initialized to 
default value of its type)

withdrawals_list

deposits_list

balance

$900 $850 $250

$300 $700
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31.4  FROM PERSISTENCE TO DATABASES

Using STORABLE ceases to be sufficient for true database applications. Its limitations 
have been noted in the earlier discussion: there is only one entry object; there is no support 
for content-based queries; each call to retrieved re-creates the entire structure, with no 
sharing of objects between successive calls. In addition, there is no support in STORABLE 
for letting different client applications access the same persistent data simultaneously. 

Although various extensions of the mechanism can alleviate or remove some of 
these problems, a full-fledged solution requires taking advantage of database technology.

O-O or not, a set of mechanisms for storing and retrieving data items (“objects” in a 
general sense) deserves being called a database management system if it supports the 
following features:

• Persistence: objects can outlive the termination of individual program sessions using 
them, as well as computer failures.

• Programmable structure: the system treats objects as structured data connected by 
clearly defined relations. Users of the system can group a set of objects into a 
collection, called a database, and define the structure of a particular database.

• Arbitrary size: there is no built-in limit (such as could result from a computer’s main 
memory size or addressing capability) to the number of objects in a database.

• Access control: users can “own” objects and define access rights to them.

• Property-based querying: mechanisms enable users and programs to find database 
objects by specifying their abstract properties rather than their location.

• Integrity constraints: users can define some semantic constraints on objects and have 
the database system enforce these constraints.

• Administration: tools are available to monitor, audit, archive and reorganize the 
database, add users, remove users, print out reports.

• Sharing: several users or programs can access the database simultaneously.

• Locking: users or programs can obtain exclusive access (read only, read and write) 
to one or more objects.

• Transactions: it is possible to define a sequence of database operations, called a 
transaction, with the guarantee that either the whole transaction will be executed 
normally or, if it fails, it will not have visibly affected the state of the database.

The standard transaction example is a money transfer from a bank account to 
another, requiring two operations — debiting the first account and crediting 
the second — which must either succeed together or fail together. If they fail, 
any partial modification, such as debiting the first account, must be canceled; 
this is called rolling back the transaction.

The features listed are not exhaustive; they reflect what most current commercial 
systems offer, and what users have come to expect.
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The BOOKS 
relation

Some authors, nota-
bly Date, use “attri-
bute name” for 
attribute and “attri-
bute” for field.
31.5  OBJECT-RELATIONAL INTEROPERABILITY

By far the most common form of database systems today is the relational kind, based on 
ideas developed by E. F. Codd in a 1970 article.

Definitions

A relational database is a set of relations, each containing a set of tuples (or records). A 
relation is also known as a table and a tuple as a row because it is convenient to present a 
relation in tabular form, as in

Each tuple is made of a number of fields. All the tuples in a relation have the same 
number and types of fields; in the example the first and last fields are strings, the other two 
are integers. Each field is identified by a name: title, date and so on in the above BOOKS 
example. The field names, or equivalently the columns, are known as attributes.

Relational databases are usually normalized, meaning among other things that every 
field is a simple value (such as an integer, a real, a string, a date); it cannot be a reference 
to another tuple.

Operations

The relational model of databases comes with a relational algebra which defines a number 
of operations on relations. Three typical operations are selection, projection and join.

Selection yields a relation containing a subset of the rows of a given relation, based 
on some condition on the fields. Applying the selection condition “pages less than 400” to 
BOOKS yields a relation made of BOOKS’s first, second and last tuples. 

The projection of a relation along one or more attributes is obtained by ignoring all the 
other fields, and removing any duplicate rows in the result. If we project the above relation 
along its last attribute we obtain a one-field relation with three tuples, "STENDHAL", 
“FLAUBERT" and "BALZAC"; if we project it along its first three attributes the result is a 
three-field relation, deduced from the above by removing the last column.

The join of two relations is a composite relation obtained by selecting type-
compatible attributes in each of them and combining rows that match for these attributes. 
Assume that we also have a relation AUTHORS:

title date pages author

"The Red and the Black" 1830 341 "STENDHAL"

"The Charterhouse of Parma" 1839 307 "STENDHAL"

"Madame Bovary" 1856 425 "FLAUBERT"

"Eugénie Grandet" 1833 346 "BALZAC"
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The AUTHORS
relation

Join of BOOKS 
and AUTHORS 
relations on 
author and 
name fields
Then the join of BOOKS and AUTHORS on the matching attributes author and name
is the following relation:

Queries

The relational model permits queries — one of the principal database requirements of our 
earlier list — through a standardized language called SQL, with two forms: one to be used 
directly by humans, the other (“embedded SQL”) to be used by programs. Using the first 
form, a typical SQL query

select title, date, pages from BOOKS

yielding the titles, dates and page numbers of all recorded books. As you will have noted, 
such a query is, in the relational algebra, a projection. Another example

select title, date, pages, author where pages < 400

corresponding in the relational algebra to a selection. The query

select

title, date, pages, author, real_name, birth, date

from AUTHORS, BOOKS where

author = name

is internally a join, yielding the same result as the join example given earlier.

name real_name birth death

"BALZAC" "Honoré de Balzac" 1799 1850

"FLAUBERT" "Gustave Flaubert" 1821 1880

"PROUST" "Marcel Proust" 1871 1922

"STENDHAL" "Henri Beyle" 1783 1842

title date pages author/name real_name birth death

"The Red and the Black" 1830 341 "STENDHAL" "Henri Beyle" 1783 1842

"The Charterhouse of Parma" 1839 307 "STENDHAL" "Henri Beyle" 1783 1842

"Madame Bovary" 1856 425 "FLAUBERT" "Gustave Flaubert" 1821 1880

"Eugénie Grandet" 1833 346 "BALZAC" "Honoré de Balzac" 1799 1850
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Using relational databases with object-oriented software

The concepts of relational databases, as just sketched, bear a marked resemblance to the 
basic model of O-O computation. We can associate a relation with a class, and a tuple of 
that relation with an object — an instance of that class. We need a class library to provide 
us with the operations of relational algebra (corresponding to embedded SQL).

A number of object-oriented environments provide such a library for C++, Smalltalk 
or (with the Store library) the notation of this book. This approach, which we may call 
object-relational interoperability, has been used successfully by many developments. It is 
appropriate in either of the following circumstances:

• You are writing an object-oriented system which must use and possibly update 
existing corporate data, stored in relational databases. In such a case there is no other 
choice than using an object-relational interface.

• Your O-O software needs to store object structures simple enough to fit nicely in the 
relational view of things. (Reasons why it might not fit are explained next.)

If your persistence requirements fall outside of these cases, you will experience what 
the literature calls an impedance mismatch between the data model of your software 
development (object-oriented) and the data model of your database system (relational). 
You may then find it useful to take a look at the newest development in the database field: 
object-oriented database systems.

31.6  OBJECT-ORIENTED DATABASE FUNDAMENTALS

The rise of object-oriented databases has been fueled by three incentives:

D1  • The desire to provide object-oriented software developers with a persistence 
mechanism compatible with their development method — to remove the 
impedance mismatches.

D2  • The need to overcome conceptual limitations of relational databases.

D3  • The attempt to offer more advanced database facilities, not present in earlier 
systems (relational or not), but made possible and necessary by the general 
technological advance of the computer field.

The first incentive is the most obvious for someone whose background is O-O 
software development when he comes to the persistence question. But it is not necessarily 
the most important. The other two are pure database concerns, independent of the 
development method.

To study the concept of O-O database let us start by examining the limitations of 
relational systems (D2) and how they can fail to meet the expectations of an O-O 
developer (D1), then move on to innovative contributions of the O-O database movement.
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An object with a 
reference to 
another object
Where relational databases stop

It would be absurd to deny the contribution of relational database systems. (In fact, 
whereas the first publications on O-O databases in the eighties tended to be critical of 
relational technology, the more recent trend is to describe the two approaches as 
complementary.) Relational systems have been one of the principal components in the 
growth of information technology since the seventies, and will be around for a long time. 
They are well adapted to situations involving data, possibly large amounts thereof, where

R1 • The structure of the data is regular: all objects of a given type have the same number 
and types of components.

R2 • The structure is simple: the component types all belong to a small set of predefined 
possibilities.

R3 • These types are drawn from a small group of predefined possibilities (integers, 
strings, dates…), each with fixed space requirements.

A typical example is a census or taxpayer database with many objects representing 
persons, each made of a fixed set of components for the name (string), date of birth (date), 
address (string), salary (integer) and a few more properties.

Property R3 rules out many multimedia, CAD-CAM and image processing 
applications, where some data elements, such as image bitmaps, are of highly variable 
sizes, and sometimes very large. It also precludes, as a result of the “normal form” 
requirements enforced by existing commercial tools, the possibility for an object to refer 
to another object. This is of course a dramatic limitation when compared to what we have 
come to taking for granted in the discussions of this book: whenever we had

the object-oriented model made it easy to access indirect properties of an object, such as 
redblack  author  birth_year (yielding 1783 if redblack is attached to the object on the left 
of the figure). A relational description will not be able to represent the reference field 
author, whose value is the denotation of another object. 

There is a workaround in the relational model, but it is heavy and impractical. To 
represent the above situation, you will have two relations, BOOKS and AUTHORS, as 
introduced a few pages back. Then, to connect the two relations, you may perform a join, 
which was also shown in the first part of this discussion, using matching fields author for 
the first relation and name from the second.

"The Red and the Black"

1830

title

date

(BOOK3)

341pages

(WRITER)

"Stendhal"

"Henri Beyle"

name

real_name

1783 birth

1842 deathauthor
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The join example was 
on page 1049.

Separate but 
equal

(Both bottom refer-
ences are attached 
to the same object.)
To answer questions such as “What is the birth year of the author of The Red and the 
Black?” the relational implementation will have to compute joins, projections etc.; here 
we can use the join seen earlier and then project along the date attribute.

This technique works and is widely used, but it is only applicable for simple 
schemes. The number of join operations would quickly become prohibitive in a system 
that must regularly handle queries with many indirections, as “How many rooms are there 
in the previous house of the manager of the department from which the lady who 
graduated at the top of my wife’s youngest maternal uncle’s undergraduate class was 
reassigned when the parent company went through its second round of venture funding?” 
— no particular problem in an O-O system’s run-time network of objects.

Object identity

The simplicity of the relational model follows in part from the identification of objects 
with their values. A relation (table) is a subset of A × B × …for some sets A, B, …, where 
× represents cartesian product; in other words each one of the elements of the relation — 
each object — is a tuple <a1, b1, …> where a1 is an element of A and so on. But such an 
object has no existence other than its value; in particular, inserting an object into a relation 
has no effect if the relation already has an identical tuple. For example inserting <"The Red 
and the Black", 1830, 341, "STENDHAL"> into the above BOOKS relation does not 
change the relation. This is very different from the dynamic model of O-O computation, 
where we can have two identical objects:

As you will remember, equal (obj1, obj2) will have value true if obj1 and obj2 are 
references attached to these objects, but obj1 = obj2 will yield false.

Being identical is not the same as being the same (ask any identical twins). This 
ability to distinguish between the two notions is part of the modeling power of object 
technology. It relies on the notion of object identity: any object has an existence 
independent of its contents.

Visitors to the Imperial Palace in Kyoto are told both that the buildings are very ancient 
and that each is rebuilt every hundred years or so. With the notion of object identity there 
is no contradiction: the object is the same even if its contents have changed.

You are the same individual as ten years ago even if none of the molecules that made up 
your body then remains in it now.

"The Red and the Black"

1830

title

date

(BOOK3)

341 pages

author

"The Red and the Black"

1830

(BOOK3)

341

title

date

pages

author

O1 O2



§31.6   OBJECT-ORIENTED DATABASE FUNDAMENTALS 1053

After [Zdonik 1990].
We can express object identity in the relational model, of course: just add to every 
object a special key field, guaranteed to be unique among objects of a given type. But we 
have to take care of it explicitly. With the O-O model, object identity is there by default.

In non-persistent O-O software construction, support for object identity is almost 
accidental: in the simplest implementation, each object resides at a certain address, and a 
reference to the object uses that address, which serves as immutable object identity. (This 
is not true any more in implementations, such as ISE’s, which may move objects around 
for effective garbage collection; object identity is then a more abstract concept.) With 
persistence, object identify becomes a distinctive factor of the object-oriented model.

Maintaining object identity in a shared databases raises new problems: every client 
that needs to create objects must obtain a unique identity for them; this means that the 
module in charge of assigning identities must be a shared resource, creating a potential 
bottleneck in a highly concurrent setup.

The threshold model

From the preceding observations follows what has been called the threshold model of 
object-oriented databases: the minimum set of properties that a database system must 
satisfy if it deserves at all to be called O-O. (More advanced features, also desirable, will 
be discussed next.) There are four requirements for meeting the threshold model: 
database, encapsulation, object identity and references. The system must:

T1  • Provide database functionality, as defined earlier in this chapter.

T2  • Support encapsulation, that is to say allow hiding the internal properties of objects 
and make them accessible through an official interface.

T3  • Associate with each object an identification that is unique in the database.

T4  • Allow an object to contain references to other objects.

Notable in this list is the absence of some object-oriented mechanisms that we know 
are indispensable to the method, in particular inheritance. But this is not as strange as 
might appear at first. All depends on what you expect from a database system. A system 
at the threshold level might be a good O-O database engine, providing a set of 
mechanisms for storing, retrieving and traversing object structures, but leaving any higher 
knowledge about the semantics of these objects, such as the inheritance relations, to the 
design and programming language and the development environment.

The experience of early O-O database systems confirms that the database engine 
approach is reasonable. Some of the first systems went to the other extreme and had a 
complete “data model” with an associated O-O language supporting inheritance, 
genericity, polymorphism and so on. The vendors found that these languages were 
competing with O-O design and programming languages, and tended to lose such 
competitions (since a database language, will likely be less general and practical than one 
designed from the start as a universal programming language); they scurried in most cases 
to replace these proprietary offerings with interfaces to the main O-O languages.
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Additional facilities
Beyond the threshold model a number of facilities are desirable. Most commercial 
systems offer at least some of them.

The first category includes direct support for more advanced properties of the O-O 
method: inheritance (single or multiple), typing, dynamic binding. This does not require 
more elaboration for the readers of this book. Other facilities, reviewed next, include: 
object versioning, schema evolution, long transactions, locking, object-oriented queries.

Object versioning
Object versioning is the ability to retain earlier states of an object after procedure calls 
have changed the state. This is particularly important as a result of concurrent accesses. 
Assume that an object O1 contains a reference to an object O2. A client changes some 
fields of O1, other than the reference. Another client changes O2. Then if the first client 
attempts to follow the reference, it may find a version of O2 that is inconsistent with O1.

Some O-O database systems address this problem by treating every object 
modification as the creation of a new object, thereby maintaining access to older versions.

Class versioning and schema evolution
Objects are not the only elements to require versioning: over time, their generating classes 
may change too. This is the problem of schema evolution, discussed at the beginning of 
this chapter. Only a few O-O database systems provide full support for schema evolution.

Long transactions
The concept of transaction has always been important in database systems, but classical 
transaction mechanisms have been directed towards short transactions: those which begin 
and end with a single operation performed by a single user during a single session of a 
computer system. The archetypal example, cited at the beginning of this chapter, is 
transferring a certain amount of money from one bank account to another; it is a 
transaction, since it requires an all-or-nothing outcome: either both operations (debiting 
one account and crediting the other) succeed, or both fail. The time it will take is on the 
order of seconds (less if we ignore user interaction).

Applications in the general idea of design of complex systems, such as CAD-CAM 
(computer-aided design and manufacturing of engineering products) and computer-aided 
software engineering, raise the need of long transactions, whose duration may be on the 
order of days or even months. During the design of a car, for example, one of the 
engineering teams may have to check out the carburetor part to perform some changes, 
and check it back in a week or two later. Such an operation has all the properties of a 
transaction, but the techniques developed for short transactions are not directly applicable.

The field of software development itself has obvious demand for long transactions, 
arising each time several people or teams work on a common set of modules. Interestingly, 
database technology has not been widely applied (in spite of many suggestions in the 
literature) to software development. The software field has instead developed for its own 
purposes a set of configuration management tools which address the specific issues of 
software component management, but also duplicate some standard database functions, 
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most of the time without the benefit of database technology. This situation, surprising at 
first look, has a most likely explanation: the absence of support for long transactions in 
traditional database management systems. 

Although long transactions may not conceptually require object technology, recent 
efforts to support them have come from O-O database systems, some of which offer a way 
to check any object in and out of a database.

Locking
Any database management system must provide some form of locking, to ensure safe 
concurrent access and updating. Early O-O database systems supported page-level
locking, where the operating system determines the scope of a lock; this is inconvenient 
for large objects (which may extend over several pages) and small objects (which may fit 
several to a page, so that locking one will also lock the others). Newer systems provide 
object-level locking, letting a client application lock any object individually.

Recent efforts have tried hard to minimize the amount of locking that occurs in actual 
executions, since locking may cause contention and slow down the operation of the 
database. Optimistic locking is the general name for a class of policies which try to avoid 
placing a lock on an object a priori, but instead execute the possibly contentious operations 
on a copy, then wait as long as possible to update the master copy, locking it and 
reconciling conflicting updates at that time if necessary. We will see below an advanced 
form of optimistic locking in the Matisse case.

Queries
Database systems, it was recalled earlier, support queries. Here object-oriented systems 
can offer more flexibility than relational ones in the presence of schema evolution. 
Changing the schema of a relational database often means that you must change the query 
texts too and recompile them if appropriate. In an O-O database, the queries are relative 
to objects; you query the instances of a certain class with respect to some of their features. 
Here instance has, at least on option, its general sense covering both direct instances of a 
class and instances of its proper descendants; so if you add a descendant to a class the 
original queries on that class will be able to retrieve instances of the new descendant.

31.7  O-O DATABASE SYSTEMS: EXAMPLES
Since the mid-eighties a number of object-oriented database products have appeared. Some 
of the best-known product names are Gemstone, Itasca, Matisse, Objectivity, ObjectStore, 
Ontos, O2, Poet, Versant. More recently a few companies such as UniSQL have introduced 
object-relational systems in an effort to reconcile the best of both approaches; the major 
relational database vendors are also proposing or announcing combined solutions, such as 
Informix’s Illustra (based in part on UC Berkeley’s POSTGRES project) and Oracle’s 
announced Oracle 8 system.

To facilitate interoperability, a number of O-O database vendors have joined forces 
in the Object Database Management Group, which has proposed the ODMG standard to 
unify the general interface of O-O databases and their query language.

Let us take a look at two particularly interesting systems, Matisse and Versant.
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Matisse

MATISSE, from ADB Inc., is an object-oriented database system with support for C, C++, 
Smalltalk and the notation of this book. 

Matisse is a bold design with many non-conventional ideas. It is particularly geared 
towards large databases with a rich semantic structure and can manipulate very large 
objects such as images, films and sounds. Although it supports basic O-O concepts such 
as multiple inheritance, Matisse refrains from imposing too many constraints on the data 
model and instead serves as a powerful O-O database engine in the sense defined earlier 
in this chapter. Some of the strong points are:

• An original representation technique that makes it possible to split an object — 
especially a large object — over several disks, so as to optimize access time.

• Optimized object placement on disks.

• An automatic duplication mechanism providing a software solution to hardware 
fault tolerance: objects (rather than the disks themselves) can be mirrored across 
several disks, with automatic recovery in case of a disk failure.

• A built-in object versioning mechanism (see below).

• Support for transactions.

• Support for a client-server architecture in which a central server manages data for a 
possibly large number of clients, which keep a “cache” of recently accessed objects.

Matisse uses an original approach to the problem of minimizing locks. The mutual 
exclusion rule enforced by many systems is that several clients may read an object at once, 
but as soon as one client starts writing no other client may read or write. The reason, 
discussed in the concurrency chapter, is to preserve object integrity, as expressed by class 
invariants. Permitting two clients to write simultaneously could make the object 
inconsistent; and if a client is in the middle of writing, the object may be in an unstable 
state (one that does not satisfy the invariant), so that another client reading it may get an 
inconsistent result.

Writer-writer locks are clearly inevitable. Some systems, however, make it possible 
to breach the reader-writer exclusion by permitting read operations to occur even in the 
presence of a write lock. Such operations are appropriately called dirty reads.

Matisse, whose designers were clearly obsessed with the goal of minimizing locks, 
has a radical solution to this issue, based on object management: no write operations. 
Instead of modifying an existing object, a write operation (one, that is, which appears as 
such to the client software) will create a new object. As a result, it is possible to read 
objects without any locking: you will access a certain version of the database, unaffected 
by write operations that may occur after you start the read. You are also able to access a 
number of objects with the guarantee that they will all belong to the same version of the 
database, whereas with a more traditional approach you would have to use global locks or 
transactions, and incur the resulting performance penalties, to achieve the same result.
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A consequence of this policy is the ability to go back to earlier versions of an object 
or of the database. By default, older versions are kept, but the system provides a “version 
collector” to get rid of unwanted versions.

Matisse provides interesting mechanisms for managing relations. If a class such as 
EMPLOYEE has an attribute supervisor: MANAGER, Matisse will on request maintain the 
inverse links automatically, so that you can access not only the supervisor of an employee 
but also all the employees managed by a supervisor. In addition, the query facilities can 
retrieve objects through associated keywords.

Versant

Versant, from Versant Object Technology, is an object-oriented database system with 
support for C++, Smalltalk and the notation of this book. Its data model and interface 
language support many of the principal concepts of O-O development, such as classes, 
multiple inheritance, feature redefinition, feature renaming, polymorphism and genericity.

Versant is one of the database systems conforming to the ODMG standard. It is 
meant for client-server architectures and, like Matisse, allows caching of the most recently 
accessed information, at the page level on the server side and at the object level for clients.

The design of Versant has devoted particular attention to locking and transactions. 
Locks can be placed on individual objects. An application can request a read lock, an 
update lock or a write lock. Update locks serve to avoid deadlock: if you have a read lock 
and want to write, you should first request an update lock, which will be granted only if 
no other client has done so; this still lets other clients read, until you request a write lock, 
which you are guaranteed to get. Going directly from read lock to write lock could cause 
deadlock: two clients each waiting indefinitely for the other to release its lock.

The transaction mechanism provides for both short and long transactions; an 
application may check out an object for any period. Object versioning is supported, as well 
as optimistic locking.

The query mechanism makes it possible to query all instances of a class, including 
instances of its proper descendants. As noted earlier, this makes it possible to add a class 
without having to redefine the queries applying to its previously existing ancestors.

Another interesting Versant capability is the event notification mechanism, which 
you can use to make sure that certain events, such as object update and deletion, will cause 
applications to receive a notification, enabling them to execute any associated actions that 
they may have defined for that purpose.

Versant provides a rich set of data types, including a set of predefined collection 
classes. It permits schema evolution, with the convention that new fields are initialized to 
default values. A set of indexing and query mechanisms is available.
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The database 
view

The O-O view

 “FROM PER-
SISTENCE TO 
DATABASES”, 31.4,
page 1047.
31.8  DISCUSSION: BEYOND O-O DATABASES
Let us conclude this review of persistence issues with a few musings on possible future 
evolutions. The observations that follow are tentative rather than final; they are meant to 
prompt further reflection rather than to provide concrete answers.

Is “O-O database” an oxymoron?

The notion of database proceeds from a view of the world in which the Data sit in the 
middle, and various programs are permitted to access and modify such Data:

In object technology, however, we have learned to understand data as being entirely 
defined by the applicable operations:

The two views seem incompatible! The notion of data existing independently of the 
programs that manipulate them (“data independence”, a tenet reaffirmed in the first few 
pages of every database textbook) is anathema to the object-oriented developer. Should we 
then consider that “object-oriented database” is an oxymoron?

Perhaps not, but it may be worthwhile to explore how, in a dogmatic O-O context, we 
could obtain the effect of databases without really having databases. If we define 
(simplifying to the barest essentials the definition of databases given earlier in this chapter)

DATA

Program

Program

Program Program

Program

f1 f2 f3 g1 g2 g3 h1 h2 h3

DATA A DATA B DATA C
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Separating 
persistence 
from sharing

On concurrency and 
the separate mecha-
nism see chapter 30.
DATABASE = PERSISTENCE + SHARING

the dogmatic view would consider the second component, data sharing, as incompatible 
with O-O ideas, and focus on persistence only. Then we would address the sharing needs 
through a different technique: concurrency! The picture becomes

Following O-O principles, the persistent data are implemented as a set of objects — 
instances of some abstract data types — and controlled by a certain server system. Client 
systems that need to manipulate the data will do so through the server; because the setup 
requires sharing and concurrent access, the clients will treat the server as separate in the 
sense defined by the discussion of concurrency. For example:

flights: separate FLIGHT_DATABASE; …
flight_details ( f: separate FLIGHT_DATABASE; 

rf: REQUESTED_FLIGHTS): FLIGHT
do

Result := f  flight_details (rf )
end

reserve ( f: separate FLIGHT_DATABASE; r: RESERVATION)
do

f  reserve (r); status := f  status
end

Then the server side requires no sharing mechanism, only a general persistence 
mechanism. We may also need tools and techniques to handle such matters as object 
versioning, which are indeed persistence rather than database issues.

The persistence mechanism could then become extremely simple, shedding much of 
the baggage of databases. We might even consider that all objects are persistent by 
default; transient objects become the exception, handled by a mechanism that generalizes 
garbage collection. Such an approach, inconceivable when database systems were 

f1 f2 f3

PERSISTENT
DATA

Client Client Client

Server
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Quotation from 
[Sombrero-Web].
invented, becomes less absurd with the constant decrease of storage costs and the growing 
availability of 64-bit virtual address spaces where, it has been noted, “one could create a 
new 4-gigabyte object, the size of a full address space on a conventional 32-bit processor,
once a second for 136 years and not exhaust the available namespace. This is sufficient to 
store all the data associated with almost any application during its entire lifetime.”

All this is speculative, and provides no proof that we should renounce the traditional 
notion of database. There is no need to rush and sell your shares of O-O database 
companies yet. Consider this discussion as an intellectual exercise: an invitation to probe 
further into the widely accepted notion of O-O database, examining whether the current 
approach truly succeeds in removing the dreaded impedance mismatches between the 
software development method and the supporting data storage mechanisms. 

Unstructured information
A final note on databases. With the explosion of the World-Wide Web and the appearance 
of content-based search tools (of which some well-known examples, at the time of writing, 
are AltaVista, Web Crawler and Yahoo) it has become clear that we can access data 
successfully even in the absence of a database.

Database systems require that before you store any data for future retrieval you first 
convert it into a strictly defined format, the database schema. Recent studies, however, 
show that 80% of the electronic data in companies is unstructured (that is to say, resides 
outside of databases, typically in text files) even though database systems have been 
around for many years. This is where content-based tools intervene: from user-defined 
criteria involving characteristic words and phrases, they can retrieve data from 
unstructured or minimally structured documents. Almost anyone who has tried these tools 
has been bedazzled by the speed at which they can retrieve information: a second or two 
suffices to find a needle in a bytestack of thousands of gigabytes. This leads to the 
inevitable question: do we really need structured databases?

The answer is still yes. Unstructured and structured data will coexist. But databases 
are no longer the only game in town; more and more, sophisticated query tools will be able 
to retrieve information even if it is not in the exact format that a database would require. 
To write such tools, of course, object technology is our best bet.

31.9  KEY CONCEPTS STUDIED IN THIS CHAPTER
• An object-oriented environment should allow objects to be persistent — to remain in 

existence after the session creating them has terminated.

• A persistence mechanism should offer schema evolution to convert retrieved objects 
on the fly if their generating class has changed (“object mismatch”). This involves 
three tasks: detection, notification, correction. By default, a mismatch should cause 
an exception.

• Beyond persistence, many applications need database support, offering concurrent 
access to clients.
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• Other properties of databases include querying, locking and transactions.

• It is possible to use O-O development in conjunction with relational databases, through 
a simple correspondence: classes to relations, objects to tuples.

• To gain full use of object technology and avoid impedance mismatches between the 
development and the data model, you may use object-oriented databases.

• Two interesting O-O database systems were studied: Matisse, providing original 
solutions for object versioning and redundancy, and Versant, providing advanced 
locking and transaction mechanisms.

• In a more tentative part of the discussion, some questions were raised as to the true 
compatibility of database principles with the O-O view, and the need for accessing 
unstructured as well as structured data.

31.10  BIBLIOGRAPHICAL NOTES
The original paper on the relational model is [Codd 1970]; there are many books on the 
topic. Probably the best-known database textbook, with particular emphasis on the 
relational model, is [Date 1995], the sixth edition of a book originally published in the 
mid-seventies. Another useful general-purpose text is [Elmasri 1989].

[Waldén 1995] contains a detailed practical discussion of how to make object-
relational interoperability work. [Khoshafian 1986] brought the question of object identity 
to the forefront of O-O database discussions.

A good starting point for understanding the goals of object-oriented database 
systems and reading some of the original papers is [Zdonik 1990], a collection of 
contributions by some of the pioneers in the field, whose introductory chapter is the source 
of the “threshold model” concept used in the present chapter. The widely circulated “O-O 
Database System Manifesto” [Atkinson 1989], the result of the collaboration of a number 
of experts, has been influential in defining the goals of the O-O database movement. There 
are now a number of textbooks on the topic; some of the best known, in order of 
publication, are: [Kim 1990], [Bertino 1993], [Khoshafian 1993], [Kemper 1994], 
[Loomis 1995]. For further, regularly updated references, Michael Ley’s on-line 
bibliography of database systems [Ley-Web] is precious. Klaus Dittrich’s group at the 
University of Zürich maintains a “mini-FAQ” about O-O databases at http://
www.ifi.unizh.ch/groups/dbtg/ObjectDB/ODBminiFAQ.html. [Cattell 1993] describes the 
ODMG standard. For an appraisal, somewhat jaded, of the achievements and failures of 
O-O databases by one of the pioneers of the field, see [Stein 1995].

This chapter has benefited from important comments by Richard Bielak, particularly 
on schema evolution, Persistence Closure, queries in O-O databases, Versant and 
Sombrero. Its presentation of Versant is based on [Versant 1994], that of Matisse on 
[ADB 1995] (see also http://www.adb.com/techovw/features.html). I am indebted to Shel 
Finkelstein for helping me with the features of Matisse. O2 is described in
[Bancilhon 1992]. The Sombrero project [Sombrero-Web] has explored the implications 
of large address spaces on traditional approaches to persistence and databases. 
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A preview of some of this chapter’s material on schema evolution appeared as 
[M 1996c]. The questioning of how well O-O and database concepts really match comes 
from two unpublished keynote lectures, presented in 1995 at TOOLS USA and the 
European Software Engineering Conference [M 1995d].

EXERCISES

E31.1  Dynamic schema evolution
Study how to extend the schema evolution techniques developed in this chapter to account 
for the case in which classes of a software system may change during the system’s execution.

E31.2  Object-oriented queries
Discuss the form that queries may take in an object-oriented database management system.



32  
Some O-O techniques for 
graphical interactive applications
Famous Designer has recently designed an automobile. It has neither a 
fuel gauge, nor a speedometer, nor any of the idiotic controls that plague 
other modern cars. Instead, if the driver makes a mistake, a large “?”
lights up in the middle of the dashboard. “The experienced driver”, says 
Famous, “will usually know what went wrong”.

Unix folklore. (Instead of “Famous Designer ”, the 
original names one of the principal contributors to Unix.)

E legant user interfaces have become a required part of any successful software product. 
Advances in display hardware, ergonomics (the study of human factors) and software have 
taken advantage of interaction techniques first pioneered in the seventies: multiple 
windows so you can work on several jobs, mouse or other fast-moving device so you can 
show what you want, menus to speed up your choices, icons to represent important 
notions, figures to display information visually, buttons to request common operations.

The acronym GUI, for Graphical User Interface, has come to serve as a general 
slogan for this style of interaction. Related buzzwords include WYSIWYG (What You See 
Is What You Get), WIMP (Windows, Icons, Menus, Pointing device) and the phrase “direct 
manipulation”, characterizing applications which give their users the impression that they 
work directly on the objects shown on the screen. 

These impressive techniques, not long ago accessible only to users of a few 
advanced systems running on expensive hardware, have now become almost 
commonplace even on the most ordinary personal computers. So commonplace and 
popular, in fact, that a software developer can hardly expect any success from a product 
that uses just a line-oriented interface, or even one that is full-screen but not graphical. 

Yet until recently the construction of interactive applications offering advanced 
graphical facilities remained so difficult as to justify what may be called the Interface 
Conjecture: the more convenient and easy an application appears to its users, the harder it 
will be for its developers to build. 

One of the admirable advances of the software field over the past few years has been 
to start disproving the interface conjecture through the appearance of good tools such as 
interface builders.
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More progress remains necessary in this fast-moving area. Object technology can 
help tremendously, and in fact the fields denoted by the two buzzwords, GUI and O-O, 
have had a closely linked history. Simply stated, the purpose of this chapter is to disprove 
the Interface Conjecture, by showing that to be user-friendly an application does not have 
to be developer-hostile. Object-oriented techniques will help us concentrate on the proper 
data abstractions, suggest some of these abstractions, and give us the ability to reuse 
everything that can be reused.

A complete exploration of O-O techniques for building graphical and interactive 
applications would take a book of its own. The aim of the present chapter is much more 
modest. It will simply select a few of the less obvious aspects of GUI building, and 
introduce a few fundamental techniques that you should find widely applicable if your 
work involves designing graphical systems.

32.1  NEEDED TOOLS 

What tools do we need for building useful and pleasant interactive applications? 

End users, application developers and tool developers 

First, a point of terminology to avoid any confusion. The word “user” (one of the most 
abused terms in the computer field) is potentially misleading here. Certain people, called 
application developers, will produce interactive applications to be used by other people, 
to be called end users; a typical end user would be a dentist’s assistant, using a system 
built by some application developer for recording and accessing patient history. The 
application developers themselves will rely, for their graphical needs, on tools built by the 
third group, tool developers. The presence of three categories is the reason why “user” 
without further qualification is ambiguous: the end users are the application developers’ 
users; but the application developers themselves are the tool developers’ users.

An application is an interactive system produced by a developer. An end user who 
uses an application will do so by starting a session, exercising the application’s various 
facilities by providing the input of his choice. Sessions are to applications what objects are 
to classes: individual instances of a general pattern. 

This chapter analyzes the requirements of developers who want to provide their end 
users with useful applications offering graphical interfaces. 

Graphical systems, window systems, toolkits 

Many computing platforms offer some tools for building graphical interactive 
applications. For the graphical part, libraries are available to implement designs such as 
GKS and PHIGS. For the user interface part, basic window systems (such as the Windows 
Application Programming Interface, and the Xlib API under Unix or Linux) are too low-
level to make direct use convenient for application developers, but they are complemented 
by “toolkits”, such as those based on the Motif user interface protocol.
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All these systems fulfill useful needs, but they do not suffice to satisfy developers’ 
requirements. Among their limitations: 

• They remain hard to use. With Motif-based toolkits, developers must master a multi-
volume documentation describing hundreds of predefined C functions and structures 
bearing such awe-inspiring names as XmPushButtonCallbackStruct — with the B of 
Button in upper case, but the b of back in lower case — or XmNsubMenuId. The 
difficulties and insecurities of C are compounded by the complexity of the toolkit. 
Using the basic Application Programming Interface of Windows is similarly tedious: 
to create an application, you must write the application’s main loop to get and dispatch 
messages, a window procedure to catch user events, and other low-level elements.

• Although the toolkits cover user interface objects — buttons, menus and the like — 
some of them offer little on graphics (geometrical figures and transformations). To add 
true graphics to the interface is a significant effort. 

• The toolkits are incompatible with each other. Motif, the Windows graphics and 
Presentation Manager, although based on essentially similar concepts, differ in many 
ways, some significant (in Windows and PM creating a user interface object displays 
it immediately, whereas under Motif you first build the corresponding structure and 
then call a “realize” operation to display it), some just a matter of convention (screen 
coordinates are measured from the top left in PM, from the bottom left in the others). 
Many user interface conventions also vary. Most of these differences are a nuisance to 
end users, who just want something that works and “looks nice”, and do not care 
whether window corners are sharp or slightly rounded. The differences are an even 
worse nuisance to developers, who must choose between losing part of their potential 
market or wasting precious development time on porting efforts. 

The library and the application builder 

To answer the needs of developers and enable them to produce applications that will 
satisfy their end users, we must go beyond the toolkits and provide portable, high-level 
tools that relieve developers from the more tedious and repetitive parts of their job, 
allowing them to devote their creativity to the truly innovative aspects. 

The toolkits provide a good basis, since they support many of the needed 
mechanisms. But we must hide their details and complement them with more usable tools. 

The basis of the solution is a library of reusable classes, supporting the fundamental 
data abstractions identified in this chapter, in particular the notions of window, menu, 
context, event, command, state, application. 

For some of the tasks encountered in building an application, developers will find it 
convenient to work not by writing software texts in the traditional fashion, but by relying 
on an interactive system, called an application builder, which will enable them to express 
their needs in a graphical, WYSIWIG form; in other words, to use for their own work the 
interface techniques that they offer to their users. An application builder is a tool whose 
end-users are themselves developers; they use the application builder to build the parts of 
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their systems that may be specified visually and interactively. The term “application 
builder” indicates that this tool is far more ambitious than plain “interface builders”, which 
only cover the user interface of an application. Our application builder must go further into 
expressing the structure and semantics of an application, stopping only where software 
text becomes the only reasonable solution. 

In defining the library and the application builder, we should be guided, as always, 
by the criteria of reusability and extendibility. This means in particular that for every data 
abstraction identified below (such as context, command or state) the application builder 
should provide two tools: 

• For reusability, a catalog (event catalog, context catalog, state catalog…) containing 
predefined representatives of the abstraction, which developers can include directly 
into their applications. 

• For extendibility, an editor (context editor, command editor, state editor…) enabling 
developers to produce their own variants, either from scratch or more commonly by 
pulling an element from a catalog and then modifying it. 

Using the object-oriented approach 

In the object-oriented approach to software construction, the key step is to find the right 
data abstractions: the types of objects which characterize applications in the given area. 

To advance our understanding of graphical user interfaces and devise good 
mechanisms for building applications, we must explore the corresponding abstractions. 
Some are obvious; others will prove more subtle. 

Each of the abstractions encountered below will yield at least one class in the library. 
Some will yield a set of classes, all descending from a common ancestor describing the 
most general notion. For example, the library includes several classes describing variants 
of the notion of menu. 

We will first examine the overall structure of a portable graphics library; then 
consider the main graphical abstractions covering the geometrical objects to be displayed, 
and the “interaction objects” supporting event-driven dialogues; finally we will study the 
more advanced abstractions describing applications: command, state, application itself. 

32.2  PORTABILITY AND PLATFORM ADAPTATION
Some application developers want a portable library, which will enable them to write a 
single source text that will then adapt automatically to the look-and-feel of many 
platforms, at the price of a recompile but without any change. Others want the reverse: to 
gain full access to all the specific “controls” and “widgets” of a particular platform such 
as Microsoft Windows, but in a convenient fashion (rather than at the typically low level 
of the native libraries). Yet others want a bit of both: portability as the default, but the 
ability to go native when needed.

With a careful design, relying on a two-layer structure, we can try to satisfy all of them:
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Graphical 
libraries 
architecture

(See a similar archi
tecture for concur-
rency, page 970.)

See “AN APPLICA-
TION: THE HANDLE
TECHNIQUE”, 24.3, 
page 817.
To make things more concrete the figure shows the names of the corresponding 
components in ISE’s environment, but the idea is applicable to any graphical library. At 
the top level (Vision) there is a portable graphical library; at the bottom level you find 
specialized libraries, such as WEL for Windows, adapted to one platform only.

WEL and other bottom-level libraries can be used directly, but they also serve as the 
platform-dependent component of the top level: Vision mechanisms are implemented 
through WEL on Windows, MEL on Motif and so on. This technique has several 
advantages: for the application developers, it fosters compatibility of concepts and 
techniques; for the tool developers, it removes unneeded duplications, and facilitates the 
implementation of the top level (which relies on clean, abstract, assertion-equipped and 
inheritance-rich O-O libraries such as WEL, rather than interfacing directly with the C 
level, always a dangerous proposition). The connection between the two levels relies on 
the handle design pattern developed in an earlier chapter.

Application developers have a choice of level:

• If you want to ensure portability, use the higher layer. This is also of interest to 
developers who, even if they work for a single platform, want to benefit from the higher 
degree of abstraction provided by high-level libraries such as Vision.

• If you want to have direct access to all the specific mechanisms of a platform (for 
example the many “controls” provided by Windows NT), go to the corresponding 
lower-layer library.

The last comment touches on a delicate issue. How much platform-specific 
functionality do you lose by relying on a portable library? The answer is necessarily a 
tradeoff. Some early portable libraries used an intersection (or “lowest common 
denominator”) approach, limiting the facilities offered to those that were present in native 
form in all the platforms supported. This is usually not enough. At the other extreme the 
library authors might use the union approach: provide every single mechanism of every 
supported platform, using explicit algorithms to simulate the mechanisms that are not 
natively available on a particular platform. This policy would produce an enormous and 
redundant library. The answer has to be somewhere in-between: the library authors must 
decide individually, for every mechanism present on some platforms only, whether it is 
important enough to warrant writing a simulation on the other platforms. The result must 
be a consistent library, simple enough to be used without knowledge of the individual 
platforms, but powerful enough to produce impressive visual applications.

WEL
(Windows)

MEL
(Motif)

PEL
(Presentation 

Manager)

Platform-independent library (Vision)
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For application developers, one more criterion in choosing between the two layers is 
performance. If your main reason for considering the top layer is abstraction rather than 
portability, you must be aware that including the extra classes will carry a space penalty 
(any time penalty should be negligible with a well-designed library), and decide whether 
it is worthwhile. Clearly, a one-platform library such as WEL will be more compact.

Finally, note that the two solutions are not completely exclusive. You can do the bulk 
of your work at the top level and provide some platform-specific goodies to users working 
on your top-selling platform. This has to be done carefully, of course; carelessly mixing 
portable and non-portable elements would soon cancel any expected benefits, even partial, 
of portable development. An elegant design pattern (which ISE has applied to some of its 
libraries) relies on assignment attempt. The idea is this. Consider a graphical object known 
through an entity m whose type is at the top level, say MENU. Any actual object to which 
it will become attached at run time will be, of course, platform-specific; so it will be an 
instance of a lower-layer class, say WEL_MENU. To apply platform-specific features you 
need an entity, say wm, of this type. You can use the following scheme:

wm ?= m
if wm = Void then

… We are not on Windows! Do nothing, or something else … 
else

… Here we may apply any WEL_MENU (i.e. Windows-specific)
     feature to wm …

end

We can picture this scheme as a way to go into the Windows-only room. The room 
is locked, to prevent you from claiming, if someone finds you there, that you just 
wandered into it by accident. You are permitted to enter, but you must ask for the key, 
explicitly and politely. For such official and conditional requests to enter a special-purpose 
area, the key is assignment attempt.

32.3  GRAPHICAL ABSTRACTIONS

Many applications will use graphical figures, often representing objects from an external 
system. Let us see a simple set of abstractions that will cover this need.

Figures 

First we need a proper set of abstractions for the graphical part of an interactive 
application. To keep things simple, this discussion will assume two-dimensional graphics. 

Geographical maps provide an excellent model. A map (of a country, a region, a city) 
provides a visual representation of some reality. The design of a map uses several levels 
of abstraction: 
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The graphical 
abstractions
• We must view the reality behind the model (in an already abstracted form) as a set of 
geometrical shape or figures. For a map the figures represent rivers, roads, towns and 
other geographical objects. 

• The map will describe a certain set of figures, which may be called the world. 

• The maps will show only a part of the world — one or more areas which we will call 
windows, and assume to be rectangular. For example a map can have one main 
window devoted to a country, and subsidiary windows devoted to large cities or 
outlying parts (as with Corsica in maps of France or Hawaii in maps of the USA). 

• Physically the map appears on a physical display medium, the device. The device is 
usually a sheet of paper, but we may also use a computer screen. Various parts of the 
device will be devoted to the various windows. 

WORLD

WINDOW

DEVICE

Figures

Windows
Window1

Window2

Window3

Window4
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The four basic concepts — WORLD, FIGURE, WINDOW, DEVICE — transpose 
readily to general graphical applications, where the world may contain arbitrary figures of 
interest to a certain computer application, rather than just representations of geographical 
objects. Rectangular areas of the world (windows) will be displayed on rectangular areas 
of the device (the computer screen). 

The figure on the previous page shows the three planes: world (bottom), window 
(middle) and device (top). The notion of window plays a central role, as each window is 
associated both with an area of the world and with an area of the device. Windows also 
cause the only significant extension to the basic map concepts: support for hierarchically 
nested windows. Our windows will be permitted to have subwindows, with no limit on the 
nesting level. (No nesting appears in the figure.) 

Coordinates 

We need two coordinate systems: device coordinates and world coordinates. Device 
coordinates measure the positions of displayed items on the device. On computer screens, 
they are often measured in pixels; a pixel (picture element) is the size of a small dot, 
usually the smallest displayable item. 

There is no standard for the unit of world coordinates, and there should not be since 
the world coordinate system is best left for application developers to decide: an 
astronomer may wish to work in light years, a cartographer in kilometers, a biologist in 
millimeters or microns.

Because a window captures part of a world, it will have a certain world position 
(defined by the x and y world coordinates of its top-left corner) and a certain extent 
(horizontal and vertical lengths of the parts of the world covered). The world position and 
the extent are expressed in world coordinate units. 

Because the window is displayed on part of a device, it has a certain device position 
(defined by the x and y device coordinates of its top-left corner) and a certain size on the 
device, all expressed in device coordinate units. For a window with no parent, the position 
is defined with respect to the device; for a subwindow, the position is always defined 
relative to the parent. Thanks to this convention, any application that uses windows may 
run with the whole screen to itself as well as in a previously allocated window. 

Operations on windows 

To take care of the hierarchical nature of windows we make class WINDOW an heir of 
class TWO_WAY_TREE, an implementation of trees. As a result, all hierarchical 
operations are readily available as tree operations: add a subwindow (child), reattach to a 
different enclosing window (parent) and so on. To set the world and device positions of a 
window, we will use one of the following procedures (all with two arguments):

Set absolute position Move, relative to current position
Position in world go pan
Position on device place_ proportional

place_ pixel
move_ proportional
move_ pixel
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The _   proportional procedures interpret the values of their arguments as fractions of 
the parent window’s height and width; arguments to the other procedures are absolute 
values (in world coordinates for go and pan, in device coordinates for the _  pixel
procedures). Procedures are similarly available to set the extent and size of a window. 

Graphical classes and operations 
All classes representing figures are descendants of a deferred class FIGURE; standard 
features include display, hide, translate, rotate, scale.

It is indispensable to keep the set of figure types extendible, allowing application 
developers (and, indirectly, end users of graphical tools) to define new types. We have 
seen how to do this: provide a class COMPOSITE_FIGURE, built by multiple inheritance 
from FIGURE and a container type such as LIST [FIGURE].

32.4  INTERACTION MECHANISMS 
Let us now turn our attention to how our applications will interact with users. 

Events 
Modern interactive applications are event-driven: as the interactive user causes certain 
events to occur (for example by entering text at the keyboard, moving the mouse or 
pressing its buttons), certain operations get executed. 

Innocuous as this description may seem, it represents a major departure from more 
traditional styles of interaction with users. In the old style (which is still by far the most 
common), a program that needed input from its user would get it by repeatedly executing 
scenarios of the form 

… Perform some computation …
print ("Please type in the value for parameter xxx.")
read_input
xxx := value_read
… Proceed with the computation, until it again needs a value from the user …
In the event-driven style, roles are reversed: operations occur not because the 

software has reached a preset stage of its execution, but because a certain event, usually 
triggered by the interactive user, has caused execution of a certain component of the 
software. Input determines the software’s execution rather than the reverse. 

The object-oriented style of software development plays an important role in making 
such schemes possible. Dynamic binding, in particular, enables the software to call a 
feature on an object under the understanding that the form of the object will determine how 
it will handle the feature. The feature may be associated with an event and the object to a 
command; more on this below. 

The notion of event is important enough in this discussion to yield a data abstraction. 
An event object (instance of the EVENT class) will represent a user action; examples are 
key press, mouse movement, mouse button down, mouse button up. These predefined 
events will be part of the event catalog. 
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A button
In addition, it must be possible to define custom events, which a software component 
may send explicitly by a procedure call of the form raise (e). 

Contexts and user interface objects 

GUI toolkits offer a number of predefined “User Interface Objects”: windows, menus, 
buttons, panels. Here is a simple example, an OK button.

Superficially, a user interface object is just a figure. But unlike the figures seen above 
it usually has no relation with the underlying world: its role is limited to the handling of 
user input. More precisely, a user interface object provides a special case of context. 

To understand the need for the notion of context, we must remember that an event 
generally does not suffice to determine the software’s response. Pressing a mouse button, 
for example, will give different results depending on where the mouse cursor is. Contexts 
are precisely those conditions which determine the responses that an application 
associates with events. 

In general, then, a context is simply a boolean value — a value which will be true or 
false at any instant of the software’s execution. 

The most common contexts are associated with user interface objects. A button such 
as the one above defines the boolean condition “is the mouse cursor inside the button?”, a 
context. Contexts of this kind will be written IN (uio), where uio is the user interface 
object. 

For every context c its negation not c is also a context; not IN (uio) is also called 
OUT (uio). The context ANYWHERE is always true; its negation NOWHERE is never true. 

Our application builder should then have a context catalog, which will include 
ANYWHERE and contexts of the form IN (uio) for all commonly useful interface objects 
uio. In addition, we may wish to enable application developers to define their own 
contexts; the application builder will provide a context editor for this purpose. Among 
other facilities, the context editor makes it possible to obtain not c for any c (in particular 
a c from the catalog). 

32.5  HANDLING THE EVENTS 

We now have the list of events, and the list of contexts in which these events may be 
significant. We must describe what to do as a response to these events. The responses will 
involve commands and transition labels. 

OK
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“Command as a 
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Commands 

Recognizing the notion of command as an important abstraction is a key step in producing 
good interactive applications. 

This notion was studied as part of the Undoing case study. As you remember, a 
command object represents the information needed to execute a user-requested operation 
and, if undoing is supported, cancel it.

To the features defined in the earlier discussion, we will add the attribute exit_label, 
explained below.

Basic scheme

With contexts, events and commands we have the basic ingredients to define the basic 
operation of an interactive application, which our application builder should support: an 
application developer will select the valid context-event combinations (which events are 
recognized in which contexts) and, for every one of them, define the associated command.

This basic idea can provide the first version of an application builder. There should 
be catalogs of contexts and events (based on the underlying toolkit) as well as commands 
(provided by the development environment, and available for application developers to 
extend). A graphical metaphor should make it possible to select a context-event 
combination, for example left-click on a certain button, and select a command to be 
executed in response.

States

For a fully general scheme we should include an extra level of abstraction, giving the 
Context-Event-Command-State model of interactive graphical applications.

In an application a given context-event combination does not always have the same 
effect. For example, you might find yourself during a session in a situation where part of 
the screen looks like this: 

Quit editing last_drawing?

OK Cancel
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Confirming a 
command
In this state the application recognizes various events in various contexts; for 
example you may click on a figure to move it, or request the Save command by clicking 
on the OK button shown. If you choose this latter possibility, a new panel appears:

At this stage only two context-event combinations will be accepted: clicking on the 
“OK” or on the “Cancel” button of the new panel. All others have been disabled (and the 
application has dimmed the rest of the figure as a reminder that everything but the two 
buttons is temporarily inactive). What happened is that the session has entered a new state 
of the application. States, also called modes, are a familiar notion in discussions of 
interactive systems, but are seldom defined precisely. Here we have the seeds for a formal 
definition: a state is characterized by a set of acceptable context-event combinations and 
a set of commands; for each context-event combination, the state defines the associated 
command. This will be restated as a mathematical definition below. 

Many interactive applications, graphical or not, will have several states.

A typical example is the well-known Vi editor under Unix. Since this tool is not graphical, 
events are simply key presses (each keyboard key triggering a different event) and the 
contexts are various possible cursor positions (under a character, at beginning of line, at 
end of line etc.). A rough analysis of Vi indicates at least four states: 

• In the basic state (which is also the initial one for an end user who calls the editor 
on a new or existing file), typing a letter key will, in most cases, directly execute a 
command associated with the letter. For example, typing x deletes the character at 
cursor position, if any. Some keys cause a transition to another state; for example 
typing a colon : leads to the command state, typing i leads to the insertion state, and 
typing R leads to the replacement state. Some letters cause unaccepted events; for 
example (unless it has been expressly defined as a macro) the letter z has no effect. 

Quit editing last_drawing?

Cancel

Overwrite existing file
last_drawing?

OK Cancel

OK



§32.5   HANDLING THE EVENTS 1075

Partial state 
diagram for Vi

The article was in 
the special Smalltalk 
issue of Byte  
[Goldberg 1981].
• In the command state, only one is available, at the bottom of the Vi window; it 
serves to enter commands such as “save” or “restart”. 

• In the insertion state, any key corresponding to a printable character is acceptable 
as an event; the corresponding character will be inserted into the text, causing 
displacement of any existing text to its right. The ESCAPE key gets the session back 
to the basic state. 

• Replacement state is a variant of insertion state in which the characters that you type 
overwrite rather than displace the ones already in place. 

The literature on user interfaces is critical of states because they can be confusing to 
users. An early article on the Smalltalk user interface contained a picture of the article’s 
author wearing a T-shirt that read “Don’t mode me in!”. It is indeed a general principle of 
sound user interface design to ensure that at every stage of a session end users should have 
as many commands as possible at their disposal (instead of having to change state before 
they can execute certain important commands). 

In accordance with this principle, a good design will try to minimize the number of 
states. The principle does not mean, however, that this number should always be one. Such 
an extreme interpretation of the “don’t mode me in” slogan could in fact decrease the 
quality of the user interface, as too many unrelated commands available at the same time 
may confuse end users. Furthermore, there may be good reasons to restrict the number of 
commands in a certain situation (for example when the application needs an urgent 
response from its end user). 

States, in any case, should be explicit for the developers, and usually for the end 
users as well. This is the only way to enable developers to apply the user interface policy 
of their choice — whether of the strongly anti-modal persuasion or more tolerant. 

So our application builder will provide developers with an explicit STATE
abstraction; as for the other abstractions, there will be a state catalog, containing states that 
have proved to be of general use, and a state editor, enabling developers to define new 
states, often by modifying states extracted from the catalog. 

REPLACEMENTINSERTION

BASIC

x dd p P D … 

i a I … R C …

q-Return wq-Return … 
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Return
Escape
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State transition
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COMMAND
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Applications 
The last major data abstraction is the notion of application. 

All the previous abstractions were intermediate tools. What developers really want 
to build is applications. A text processing system, an investment banking system, a factory 
control system are examples of applications. 

To describe an application, we need a set of states, transitions between these states, 
and the indication of which state is the initial one (in which all sessions will begin). We 
have seen that a state associates a certain response with every accepted context-event pair; 
the response, as noted, includes a command. To build complete applications, we may also 
need to include in a response some indication of the context-event pair which led to the 
response, so that different combinations may trigger transitions to different states. Such 
information will be called a transition label. 

With states and transition labels we may build the transition diagram describing an 
entire application, such as the partial diagram for Vi shown on the preceding page.

Context-Event-Command-State: a summary
The abstractions just defined can serve as the basis for a powerful interactive application 
builder — not just an interface builder, but a tool that enables application developers to 
build entire applications graphically; they will explore visual catalogs of contexts, events 
and, most importantly, commands; selecting the desired elements graphically, they will 
build the desired context-event-command associations through a simple drag-and-drop 
mechanism until they have a complete application.

Because simple applications can often rely on just one state, the application builder 
should make the notion of state as unobtrusive as possible. More advanced applications, 
however, should be able to use as many states as they need, and (if only for interface 
consistency) to derive a new state incrementally from an existing one.

32.6  A MATHEMATICAL MODEL
Some of the concepts presented informally in this chapter, in particular the notion of state, 
have an elegant mathematical description based on the notion of finite function and the 
mathematical transformation known as currying.

Because these results are not used in the rest of the book, and mostly of interest to 
readers who like to explore the mathematical models of software concepts, the 
corresponding sections are not printed here but appear in electronic form in the CD-ROM 
accompanying this book, as a supplementary chapter entitled “mathematical background”, 
an extract from [M 1995e].

32.7  BIBLIOGRAPHICAL NOTES
The ideas for an application builder sketched in this chapter derive largely from ISE’s 
Build application builder, described in detail in [M 1995e], which also discusses in detail 
the underlying mathematical model. (This is the manual from which the extra chapter on 
the CD-ROM was extracted.)
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Previous chapters have developed hand in hand the object-oriented method and the 
supporting notation. Part F will study how to realize the ideas, or emulate them, in 
some of the most popular languages and environments. There are three broad 
categories. Object-oriented languages such as Smalltalk support many of the 
fundamental concepts. Classical languages such as Fortran are not O-O at all, but 
people who must still use them (for various reasons, often not technical) may want to 
apply as many O-O ideas as feasible within the limitations of these older approaches. 
Somewhere in-between, encapsulation languages such as Ada provide a first step to 
object orientation, essentially limited to modules based on abstract data types, but 
without classes or inheritance. 
 
 
Although the logical progression is from Classical to Encapsulation to O-O, it will be 
convenient to start with Encapsulation languages, focusing on Ada 83, as it provides a 
good reference to assess techniques applicable in classical languages, the category that 
will follow; we will end with a review of some of the principal O-O languages other 
than the notation of this book.



33  

O-O programming and Ada
In the nineteen-seventies, advances in programming methodology brought about a new 
generation of languages combining the control structures of Algol 60 and the data 
structuring constructs of Algol W and Pascal with better system structuring facilities and 
support for information hiding. Although their precise traits differ, these languages share 
a common spirit and may be collectively called the encapsulation languages. (They are 
also known in the literature as “object-based”, a terminology that will be discussed in the 
next chapter.)

Although a complete list of encapsulation languages would be long, only a few have 
developed a sizable user community. Five deserve particular attention: Modula-2, a 
successor to Pascal designed at the Swiss Federal Institute of Technology by Niklaus 
Wirth, creator of Algol W, Pascal itself and (later) Oberon; CLU, developed at MIT under 
the direction of Barbara Liskov, which comes closest to realizing object-oriented concepts 
but lacks inheritance; Mesa, a Xerox effort with particular emphasis on describing inter-
module relationships of large systems; Alphard, by Mary Shaw, William Wulf and Ralph 
London of Carnegie-Mellon University, which included an assertion mechanism; and Ada.

We will limit our study of how to approach O-O techniques in encapsulation 
languages to Ada, which, besides having attracted the most attention, is also the most 
complete (and complex) of these languages, embodying in some form most of the features 
found in the others. Modula-2, for example, does not offer genericity or overloading.

33.1  A BIT OF CONTEXT
Ada was a response to a crisis perceived in the mid-seventies by the software policy-
makers of the US Department of Defense (DoD). They noted in particular that the various 
branches of the military were using more than 450 programming languages, many of them 
technically obsolete, gravely hampering contractor management, programmer training, 
technical progress, software quality and cost control.

Bearing in mind the successful precedent of COBOL (the result, in the late fifties, of 
a DoD call for a COmmon Business-Oriented Language), they put out successive versions 
of a Request For Proposals for a modern software engineering language capable of 
supporting embedded real-time applications. A first winnowing out of the several dozen 
initial responses led to four candidate designs, sealed and color-coded for fairness. The 
field was narrowed down to two, finally leading in 1979 to the selection of the Green 
language designed by Jean D. Ichbiah and his group at CII-Honeywell Bull in France 
(today’s Bull). Following a few years’ experience with the first industrial 
implementations, the language was revised and made into an ANSI standard in 1983.
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Ada (as Green was renamed) began a new era in language design. Never before had 
a language be subjected to such intense examination before being released. Never before 
(in spite of some valiant efforts by the PL/I team) had a language been treated like a large-
scale engineering project. Working groups comprising the best experts in many countries 
spent weeks reviewing the proposals and contributed — in those pre-Internet days — 
reams of comments. Like Algol 60 a generation earlier, Ada redefined not just the 
language landscape but the very notion of language design.

A recent revision of Ada has yielded a new language, now officially called Ada 95, 
which will be described at the end of this chapter. In the rest of the discussion, as elsewhere 
in this book, the name Ada without further qualification refers to the preceding version, 
Ada 83, by far the most widely used today.

Has Ada been successful? Yes and no. The DoD got what it had commissioned: 
thanks to a rigorous implementation of the “Ada mandate”, Ada became in a few years the 
dominant technical language in the various branches of the US military, and of the military 
establishment of some other countries too. It has also achieved significant use in such non-
military government agencies as NASA and the European Space Agency. But except for 
some inroads in computing science education — aided in part by DoD incentives — the 
language has only had limited success in the rest of the software world. It would probably 
have spread more widely were it not for the competition of the very ideas described in this 
book: object technology, which burst into the scene just as Ada and the industry were 
becoming ripe for each other.

The careful observer of language history can detect two ironies here. The first is that 
the designers of Ada were well aware of O-O ideas; although this is not widely known, 
Ichbiah had in fact written one of the first compilers for Simula 67, the original O-O 
language. As he has since explained when asked why he did not submit an O-O design to 
the DoD, he estimated that in the competitive bidding context of Ada’s genesis such a 
design would be considered so far off the mainstream as to stand no chance of acceptance. 
No doubt he was right; indeed one can still marvel at the audacity of the design accepted 
by the DoD. It would have been reasonable to expect the process to lead to something like 
an improvement of JOVIAL (a sixties’ language for military applications); instead, all 
four candidate languages were based on Pascal, a language with a distinct academic flavor, 
and Ada embodied bold new design ideas in many areas such as exceptions, genericity and 
concurrency. The second irony is that the Ada mandate, meant to force DoD software 
projects to catch up with progress in software engineering by retiring older approaches, 
has also had in the ensuing years the probably unintended effect of slowing down the 
adoption of newer (post-Ada) technology by the military-aerospace community.

The lessons of Ada remain irreplaceable, and it is a pity that many of the O-O languages 
of the eighties and nineties did not pay more attention to its emphasis on software 
engineering quality. However obvious, this comment is all the more necessary because the 
occasion for discussing Ada in this book is often to contrast some of its solutions with those 
of O-O development — as will again happen several times in this chapter. The resulting 
critiques of Ada techniques should be viewed less as reproach than as homage to the 
precursor against which any new solution must naturally be assessed.
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33.2  PACKAGES 

Each of the encapsulation languages offers a modular construct for grouping logically 
related program elements. Ada calls it a package; corresponding notions are known as 
modules in Modula-2 and Mesa, and clusters in CLU. 

A class was defined as both a structural system component — a module — and a 
type. In contrast, a package is only a module. An earlier discussion described this 
difference by noting that packages are a purely syntactic notion, whereas classes also have 
a semantic value. Packages provide a way to distribute system elements (variables, 
routines …) into coherent subsystems; but they are only needed for readability and 
manageability of the software. The decomposition of a system into packages does not 
affect its semantics: one can transform a multi-package Ada system into a one-package 
system, producing exactly the same results, through a purely syntactical operation — 
removing all package boundaries, expanding generic derivations (as explained below) and 
resolving name clashes through renaming. Classes, for their part, are also a semantic 
construct: besides providing a unit of modular decomposition, a class describes the 
behavior of a set of run-time objects; this semantics is further enriched by polymorphism 
and dynamic binding.

An Ada package is a free association of program elements and may be used for 
various purposes. Sensible uses of this notion include writing a package to gather: 

• A set of related constants (as with facility inheritance). 

• A library of routines, for example a mathematical library. 

• A set of variables, constants and routines describing the implementation of one 
abstract object, or a fixed number of abstract objects, accessible only through 
designated operations (as we will do in Fortran in the next chapter). 

• An abstract data type implementation. 

The last use is the most interesting for this discussion. We will study it through the 
example of a stack package, adapted from an example in the Ada reference manual. 

33.3  A STACK IMPLEMENTATION 

Information hiding is supported in Ada by the two-tier declaration of packages. Every 
package comes in two parts, officially called “specification” and “body”. The former term 
is too strong for a construct that does not support any formal description of package 
semantics (in the form of assertions or similar mechanisms), so we will use the more 
modest word “interface”. 

The interface lists the public properties of the package: exported variables, constants, 
types and routines. For routines it only gives the headers, listing the formal arguments and 
their types, plus the result type for a function, as in: 

function item (s: STACK) return X;
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The body part of a package provides the routines’ implementations, and adds any 
needed secret elements. 

A simple interface 

A first version of the interface part of a stack package may be expressed as follows. Note 
that the keyword package by itself introduces a package interface; the body, which will 
appear later, is introduced by package body. 

package REAL_STACKS is
type STACK_CONTENTS is array (POSITIVE range < >) of FLOAT;
type STACK (capacity: POSITIVE) is

record
implementation: STACK_CONTENTS (1. . capacity);
count: NATURAL := 0;

end record;
procedure put (x: in FLOAT; s: in out STACK);
procedure remove (s: in out STACK);
function item (s: STACK) return FLOAT;
function empty (s: STACK) return BOOLEAN;
Overflow, Underflow: EXCEPTION;

end REAL_STACKS;

This interface lists exported elements: the type STACK for declaring stacks, the 
auxiliary type STACK_CONTENTS used by STACK, the four basic routines on stacks, and 
two exceptions. Client packages will only rely on the interface (provided their 
programmers have some idea of the semantics associated with the routines).

This example suggests several general observations: 

• It is surprising to see all the details of stack representation, as given by the 
declarations of types STACK and STACK_CONTENTS, appear in what should be a 
pure interface. We will see shortly the reason for this problem and how to correct it.

• Unlike the classes of object-oriented languages, a package does not by itself define 
a type. Here you must separately define a type STACK. One consequence of this 
separation, for the programmer who builds a package around an abstract data type 
implementation, is the need to invent two different names — one for the package and 
one for the type. Another consequence is that the routines have one more argument 
than their object-oriented counterparts: here they all act on a stack s, implicit in the 
stack classes given in earlier chapters.

• A declaration may define not only the type of an entity, but also its initial value. Here 
the declaration of count in type STACK prescribes an initial value of 0. It obviates 
the need for an explicit initialization operation corresponding to creation; this would 
not be the case, however, if a less straightforward initialization were required. 
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• A few details of Ada are needed to understand the type declarations: POSITIVE and 
NATURAL denote the subtypes of INTEGER covering positive and non-negative 
integers, respectively; a type specification of the form array (TYPE range < >), 
where < > is known as the Box symbol, describes a template for array types. To 
derive an actual type from such a template, you choose a finite subrange of TYPE; 
this is done here in STACK, which uses the subrange 1. .capacity of POSITIVE. 
STACK is an example of a parameterized type; any declaration of an entity of type 
STACK must specify an actual value for capacity, as in 

s: STACK (1000) 

• In Ada, every routine argument must be characterized by a mode: in, out or in out, 
defining the routine’s rights on the corresponding actual arguments (read-only, 
write-only or update). In the absence of an explicit keyword, the default mode is in. 

• Finally, the interface also specifies two exception names: Overflow and Underflow. 
An exception is an error condition that the programmer has decided to treat 
separately from the normal flow of control. The interface of the package should list 
any exceptions that may be raised by the package’s routines and propagated to 
clients. More on the Ada exception mechanism below.

Using a package 

Client code using the package is based on the interface. Here is an example from some 
package needing a stack of real numbers: 

s: REAL_STACKS  STACK (1000);
REAL_STACKS  put (3.5, s); …;
if REAL_STACKS  empty (s) then …;

An Ada environment must be able to compile such client code even if only the 
interface of REAL_STACKS, not its body, is available. 

Syntactically, note how each use of an entity from this package (where “entities” 
here include type names such as STACK as well as routine names) must repeat the name 
of package REAL_STACKS, using dot notation. This could become tedious, hence the 
need for a more implicit form of qualification. If you include the directive

use REAL_STACKS;

at the beginning of the client package, you may write the above extract more simply as 

s: STACK (1000);
put (3.5, s); …;
if empty (s) then …;

You still need the full form, however, for any entity whose name conflicts with the 
name of another accessible to the client package (that is to say, declared in that package 
itself or in another supplier listed in a use directive). 
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Some of the Ada literature advises programmers to stay away from the use directive 
altogether on the grounds that it hampers clarity: an unqualified reference such as empty (s)
does not immediately tell the reader what supplier empty comes from (REAL_STACKS in 
the example). The equivalent in the object-oriented approach, s empty, unambiguously 
indicates the supplier through the type of s.

A similar problem does arise in the O-O world because of inheritance: when you see a 
name in a class, it may refer to a feature declared in any ancestor. But we saw a technique 
that solves this problem at least in part: the notion of flat form.

Implementation 

The body of the REAL_STACKS package might be declared along the following lines. 
Only one routine is shown in full. 

package body REAL_STACKS is
procedure put (x: in FLOAT; s: in out REAL_STACK) is

begin
if s  count = s  capacity then

raise Overflow
end if;
s  count := s  count + 1;
s  implementation (count) := x;

end put;
procedure remove (s: in out STACK) is

… Implementation of remove …
end remove;

function item (s: STACK) return X is
… Implementation of item …

end item;
function empty (s: STACK) return BOOLEAN is

… Implementation of empty …
end empty;

end REAL_STACKS;

Two properties apparent in this example will be developed in more detail below: the 
use of exceptions to handle a run-time error by raising a special condition and treating it 
separately; and the need for the body to repeat most of the interface information (routine 
headers) that already appeared in the interface.

Genericity

The package as given is too specific; it should be made applicable to any type, not just 
FLOAT. To turn it into a generic package, use the following syntax:
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See appendix B.
generic
type G is private;

package STACKS is
… As before, replacing all occurrences of FLOAT by G …

end STACKS;
The generic clause is heavier syntax than our O-O notation for generic classes 

(class C [G]…) because it offers more options. In particular, the parameters declared in 
a generic clause may represent not just types but also routines. The appendix on 
genericity vs. inheritance will discuss these possibilities.

The generic clause is not repeated in the package body, which will be identical to the 
version given earlier, except for the substitution of G for FLOAT throughout. 

The is private specification directs the rest of the package to treat G as a private type. 
This means that entities of the type may only be used in operations applicable to all Ada 
types: use as source or target of an assignment, as operand of an equality test, as actual 
argument in a routine, and a few other special operations. This is close to the convention 
used for unconstrained formal generic parameters in our notation. In Ada, other 
possibilities are also available. In particular, you can restrict the operations further by 
declaring the parameter as limited private, which essentially bars all uses other than as 
actual argument to a routine. 

Although called a package, a generically parameterized module such as STACKS is 
really a package template, since clients cannot use it directly; they must derive an actual 
package from it by providing actual generic parameters. We may define a new version of 
our stack-of-reals package through such a generic derivation:

package REAL_STACKS_1 is new STACKS (FLOAT);
Generic derivation is the principal Ada mechanism for adapting modules. It is 

somewhat inflexible, since you can only choose between generic modules (parameterized, 
but not directly usable) or usable modules (not extendible any more). In contrast, 
inheritance allows arbitrary extensions to existing modules, according to the Open-Closed 
principle. Appendix B pursues the comparison further.

33.4  HIDING THE REPRESENTATION: THE PRIVATE STORY
Package STACKS, as given, fails to implement the principle of information hiding: the 
declarations of types STACK and STACK_CONTENTS are in the interface, allowing 
clients to access the representation of stacks directly. For example, a client might include 
code of the form 

[1]
use REAL_STACKS_1;…
s: STACK; …
s  implementation (3) := 7.0; s  last := 51;

grossly violating the underlying abstract data type specification. 
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Conceptually, the type declarations belong in the body. Why did we not put them 
there in the first place? The explanation requires that we look, beyond the language, at 
programming environment issues. 

One requirement on the Ada design, already mentioned, was that it should be 
possible to compile packages separately and, moreover, to compile a client of any package 
A as soon as you have access to the interface of A, but not necessarily to its body. This 
favors top-down design: to proceed with the work on a module, it suffices to know the 
specification of the facilities it needs; actual implementations may be provided only later. 

So if you have access to the interface of REAL_STACKS_1 (that is to say, the 
interface of STACKS, of which REAL_STACKS_1 is just a generic derivation) you must be 
able to compile one of its clients. Such a client will contain declarations of the form 

use REAL_STACKS_1;…

s1, s2: STACK; …

s2 := s1;

which the poor compiler cannot properly handle unless it knows what size is taken up by 
an object of type STACK. But that can only be determined from the type declarations for 
STACK and the auxiliary type STACK_CONTENTS. 

Hence the dilemma that faced the designers of Ada: conceptually, such declarations 
belong to the inferno — the body; but implementation concerns seem to require their 
inclusion in the paradise — the interface. 

The solution retained was to create a purgatory: a special section of the package that 
is physically tied to the interface, and compiled with it, but marked in such a way that 
clients may not refer to its elements. The purgatory section is called the private part of the 
interface; it is introduced by the keyword private (also used, as we saw above, as a 
qualifier for protected types). Any declaration appearing in the private part is unavailable 
to clients. This scheme is illustrated by our final version of the stack package interface: 

generic

type G is private;

package STACKS is

type STACK (capacity: POSITIVE) is private;

procedure put (x: in G; s: in out STACK);

procedure remove (s: in out STACK);

function item (s: STACK) return G;

function empty (s: STACK) return BOOLEAN;

Overflow, Underflow: EXCEPTION;
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private

type STACK_VALUES is array (POSITIVE range < >) of G;

type STACK (capacity: POSITIVE) is

record

implementation: STACK_VALUES (1. .capacity);

count: NATURAL := 0;

end record

end STACKS;

Note how type STACK must now be declared twice: first in the non-private part of 
the interface, where it is only specified as private; then again in the private part, where 
the full description is given. Without the first declaration, a line of the form s: REAL_
STACK would not be legal in a client, since clients only have access to entities declared in 
the non-private part. This first declaration only specifies the type as private, barring 
clients from accessing any property of stack objects other than universal operations such 
as assignment, equality test and use as actual argument. This is consistent with the 
discussion of information hiding.

Type STACK_VALUES is purely internal, and irrelevant to clients: so it need only be 
declared in the package body.

Make sure to understand that the information in the private part should really be in 
the package body, and only appears in the package specification for reasons of language 
implementation. With the new form of STACKS client code such as [1], which directly 
accessed the representation in a client, becomes invalid. 

Authors of clients modules can see the internal structure of STACK instances, but 
they cannot take advantage of it in their modules. This can be tantalizing (although one 
may imagine that a good Ada environment could hide this part from a client author 
requesting interface information about the class, in the manner of the short tool of earlier 
chapters). While surprising to newcomers, the policy does not contradict the rule of 
information hiding: as was pointed out during the discussion of that rule, the goal is not 
physically to prevent client authors from reading about the hidden details, but to prevent 
them from using these details.

Someone who would like to make things sound very complicated could summarize 
by the following two sentences (to be spoken very quickly to impress friend and foe): The 
private section of the public part of a package lists the implementation of those conceptually 
private types which must be declared in the public part although their implementation is not 
publicly available. In the non-private part, these types are declared private.
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33.5  EXCEPTIONS 
The STACKS generic package lists two exceptions in its interface: Overflow and 
Underflow. More generally, you may deal with error conditions by defining arbitrary 
exception names; Ada also includes predefined exceptions, triggered by the hardware or 
the operating system, for such cases as arithmetic overflow or exhaustion of memory. 

Some elements of the Ada exception mechanism were introduced in the chapter on 
exceptions, so that we can limit ourselves to a brief examination of how exceptions fit in 
the Ada approach to software construction.

Simplifying the control structure 

Exceptions as they exist in Ada are a technique for dealing with errors without impairing 
the control structure of normal processing. If a program performs a series of actions, each 
of which may turn out to be impossible because of some erroneous condition, the resulting 
control structure may end up looking like

action1;
if error1 then

error_handling1;
else

action2;
if error2 then

error_handling2;
else

action3;
if error3 then

error_handling3;
else

…

The Ada exception mechanism is an effort to fight the complexity of such a scheme 
— where the elements that perform “useful” tasks sometimes look like a small archipelago 
in an ocean of error-handling code — by separating the handling of errors from their 
detection. There must still be tests to determine whether a certain erroneous condition has 
occurred; but the only action to take then is to raise a certain signal, the exception, which 
will be handled elsewhere. 

Raising and handling an exception 

To raise exceptions rather than handle errors in place, you may rewrite the extract as:

action1;
if error1 then raise exc1; end;
action2;
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See chapter 12.
if error2 then raise exc2; end;
action3;
if error3 then raise exc3; end;
…

When an instruction raise exc is executed, control does not flow to the instructions 
that would normally follow, but is transferred to an exception handler. This disruption of 
the normal flow of control explains why the else… clauses are no longer necessary here. 
An exception handler is a special paragraph of a block or routine, of the form 

exception
when exc1, … => treatment1;
when exc2 … => treatment2;
…

The handler that a raise exc will select is the first one that handles exc in the dynamic 
chain, that is to say the list of units beginning with the routine or block containing the raise
and continuing with its caller, its caller’s caller etc.

A handler is said to handle exc if exc appears in one of its when clauses (or it has a 
clause of the form when others). If there is such a handler, the corresponding instructions 
(after the => symbol) are executed and the enclosing routine returns control to its caller, 
or terminates if it is the main program. (Ada does have a notion of main program.) If no 
handler in the dynamic chain handles exc, execution terminates and control goes back to 
the operating system, which presumably will print out an error message.

Discussion 

It is interesting to compare the Ada exception mechanism with the one developed in the 
chapter on exceptions earlier in this book. There are technical differences and differences 
of methodology.

The technical differences, apart from the different ways of discriminating between 
exceptions (multiple when clauses vs. inheriting from class EXCEPTIONS), involve 
retrying, which the O-O design considered sufficiently important to warrant a special 
instruction, whereas Ada has no direct support for it and requires goto instructions or 
similar control structures.

r0 r1

r2

r3

r4

Routine call or 
block execution
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The methodological difference follows from the strong policy that we adopted, 
leading to the Disciplined Exception Handling principle that requires every exception 
handler, apart from the rare case of a “false alarm”, to end in either retrying or official 
failure (“organized panic”). Ada is less strict in this respect, and we saw that as a 
consequence it is possible to misuse exceptions by executing a seemingly normal return 
without having handled the problem.

The need to avoid such dangerous situations led us to a basic rule, worth repeating:

More generally, exceptions in the Ada spirit are control structures, helping to 
separate the handling of abnormal situations from their detection and hence to keep 
software structure simple. In practice, however, this hope is often disappointed.

When you write raise some_exception, you may have the impression of freeing 
yourself from the messy and boring task of taking care of strange cases, and instead 
concentrate on the core of the algorithm, handling normal cases. But raising an exception 
does not by itself solve the problem. Exceptions in the STACKS package are typical. An 
attempt to push an element into a full stack raises exception Overflow, and an attempt to 
access an element of an empty stack raises Underflow. How will you handle Underflow, 
the exception raised by a call to remove or item on an empty stack? As we saw in the 
discussion of Design by Contract, the routines themselves cannot reasonably contain a 
handler (item does not know what to do when applied to an empty stack); so the 
responsibility lies with the client, which should include code of the form 

[2]
use REAL_STACKS;
procedure proc (…) is

s: STACK; …
begin

… remove (s); …
exception

when Underflow => action1;
…

end proc;
So the client must specify exactly what happens in the erroneous case. Omitting the 

when Underflow clause would be a design error. Compare this with the usual, non-
exception-based form of the call (written in the syntax of the rest of this book): 

[3]
if not s  empty then s  remove else action1 end

(or a variant which detects the error a posteriori). Form [2], using exceptions, differs from 
[3] in two aspects only:

Ada exception rule
The execution of any Ada exception handler should end by either executing 
a raise instruction or retrying the enclosing program unit.
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• The code for handling the error, action1, is textually separate from the calls that may 
raise the error; 

• Error handling is the same for all such calls if more than one. 
On the first point, although it is desirable to avoid the deeply nested if… then… else… 

error-handling structures cited at the beginning of this chapter, the place in the algorithm 
where an error is detected is often the one that has the best information to handle the error; 
and if you separate the two you may need to use complicated control structures for cases 
that require restarting or resuming processing.

On the second point, if a routine contains more than one call to remove, the way to 
deal with empty stacks will unlikely be the same in each case.

There are two general styles of exception usage: the control structure style, which 
views exceptions as a normal mechanism to handle all but the most common cases; and 
the abnormal case style, which reserves them for unpredictable situations, when all other 
mechanisms have failed. The rescue/retry approach described earlier in this book tends 
to favor the abnormal case style, although it can be used for the other style as well. Ada 
exception handling is more geared towards the control structure style.

You will decide for yourself which of the two styles you prefer; you should in any 
case remember, from this discussion and the earlier ones, not to place any naïve hope in the 
use of exceptions. With or without an exception mechanism, run-time errors are a fact of 
system life, which the software must handle explicitly. A good methodological approach, 
supported by an effective exception mechanism, can help; but some of the complexity is 
inherent to the problem of error handling, and no magical wand will make it go away.

33.6  TASKS
Besides packages, Ada offers another interesting modular construct: the task. Tasks are the 
basic Ada mechanism for handling concurrency; the underlying concurrency model is 
close to the CSP approach described in the concurrency chapter. But they also deserve a 
mention purely for their modular concepts, since they actually come closer than packages 
to supporting object-oriented concepts. 

Syntactically, tasks share many aspects of packages. The main difference is that a 
task is not just a modular unit but the representation of a process, to be executed in parallel 
with other processes. So besides making up a syntactical unit it also describes a semantic 
component — unlike a package, and like a class.

Like a package, a task is declared in two parts, interface and body. Instead of 
routines, a task specification introduces a number of entries. To the client, entries look like 
procedures; for example, the interface of a buffer manager task may be 

task BUFFER_MANAGER is
entry read (x: out G);
entry write (x: in G);

end BUFFER_MANAGER;
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(Tasks may not be generic, so that type G has to be globally available, or a generic 
parameter of an enclosing package.) It is only the implementation of entries that 
distinguishes them from procedures: in the body, accept instructions will specify 
synchronization and other constraints on execution of the entries; here, for example, we 
might prescribe that only one read or write may proceed at any point in time, that read
must wait until the buffer is not empty, and write until it is not full. 

Besides individual tasks you may also specify a task type, and use it to create as many 
tasks — instances of the task type — as you need at run time. This makes tasks similar to 
classes, without inheritance. One can indeed conceive of an Ada realization of O-O concepts 
which would represent classes by task types and objects by their instances (perhaps even 
using accept instructions with different conditions to emulate dynamic binding). Because 
in sequential O-O computation we may expect classes to have many instances, this exercise 
is mostly of academic interest, given the overhead of creating a new process in current 
operating systems. Perhaps some day, in massively parallel hardware environments… 

33.7  FROM ADA TO ADA 95
The Ada 95 version of the language is a major revision intended in particular to add O-O 
concepts. There is in fact no notion of class in the sense of this book (module cum type), 
but support for inheritance and dynamic binding for record types.

O-O mechanisms of Ada 95: an example
The package text at the top of the facing page illustrates some of the Ada 95 techniques; 
its meaning should be clear enough to a reader of this book. To derive a new type with 
more fields (the Ada 95 form of inheritance), you must have declared a type, such as 
ACCOUNT, as tagged; this of course contradicts the Open-Closed principle, since you 
must know in advance which types may have descendants and which may not. A new type 
may be derived from only one type; that is to say, there is no multiple inheritance. Note the 
syntax (null record, with, surprisingly, no end) for a derived type that adds no attribute. 

Tagged types remain declared as records. The basic property of most O-O languages 
— that operations on a type become part of that type, and in fact, as we saw in the 
discussion of abstract data types, define the type — is not in force here: the routines that 
apply to a tagged type appear outside of its declaration, and take as argument a value of 
that type. (In languages generally recognized as object-oriented, deposit etc. would be part 
of the declaration of ACCOUNT and compound part of SAVINGS_ACCOUNT; they would 
not need their first arguments.) Here the only link between the routines and the type is that 
they must be declared as part of the same package; they do not even have to appear next to 
each other. Only the layout conventions, in the above example, indicate to the reader that 
certain routines are conceptually attached to certain tagged record types.

This is different from the usual view of O-O software construction. Although a 
tagged record type and the associated routines are, from a theoretical perspective, part of 
the same abstract data type, they do not form a syntactical unit — contradicting the 
Linguistic Modular Units principle, which suggested a close association between the 
modularizing concept and the syntactical structure.
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package Accounts is
type MONEY is digits 12 delta 0.01;

type ACCOUNT is tagged private;
procedure deposit (a: in out ACCOUNT; amount: in MONEY);
procedure withdraw (a: in out ACCOUNT; amount: in MONEY);
function balance (a: in ACCOUNT) return MONEY;

type CHECKING_ACCOUNT is new ACCOUNT with private;
function balance (a: in CHECKING_ACCOUNT) return MONEY;

type SAVINGS_ACCOUNT is new ACCOUNT with private;
procedure compound (a: in out SAVINGS_ACCOUNT; period: in Positive);

private
type ACCOUNT is tagged

record
initial_balance: MONEY := 0.0;
owner: String (1. .30);

end record;

type CHECKING_ACCOUNT is new ACCOUNT with null record;

type SAVINGS_ACCOUNT is new ACCOUNT with
record

rate: Float;
end record;

end Accounts;
The appearance of a new declaration for balance for SAVINGS_ACCOUNT signals 

a redefinition. Procedures withdraw and deposit are not redefined. As you will have 
recognized, this means that Ada 95 uses the overloading mechanism to obtain the O-O 
effect of routine redefinition. There is no syntactical mark (such as redefine) to signal a 
routine redefinition: to find out that function balance differs for SAVINGS_ACCOUNT 
from its base version in ACCOUNT, you must scan the text of the entire package. Here, of 
course, each routine version appears next to the corresponding type, with indentation to 
highlight the relationship, but this is a style convention, not a language rule.

A tagged type can be declared as abstract, corresponding to the notion of deferred 
class; you may make a routine abstract too instead of giving it a body.

A function returning a result of an abstract type must be abstract itself. This rule may 
seem strange at first, appearing to preclude writing an effective function returning, say, the 
top of a stack of figures, assuming FIGURE is abstract. In Ada, however, the result of such 
a function will typically be not of type FIGURE but of an “access type” describing 
references to instances of FIGURE. Then the function can be effective.

You can apply dynamic binding to entities of a tagged type, as in:
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procedure print_balance (a: in ACCOUNT  'Class) is
-- Print current balance.

begin
Put (balance (a));
New_Line;

 end print_balance;

You must request the dynamic binding explicitly by declaring the routine as a 
“classwide operation”, as represented by the 'Class qualification to the type of its argument; 
this is similar to the C++ obligation to declare any dynamically bound function as “virtual”, 
except that here it is the client that must choose between static and dynamic binding.

Ada 95 allows you to define a “child package” A  B of an existing package A. This 
enables the new package to obtain features from A and add its own extensions and 
modifications. (This concept is of course close to inheritance — but distinct.) Instead of 
declaring the three account types in a single package as on the preceding page, it is indeed 
probably better to split the package into three, with Accounts  Checking introducing 
CHECKING_ACCOUNT and its routines, and Accounts  Saving doing the same for 
SAVINGS_ACCOUNT.

Ada 95 and object technology: an assessment

If you come to Ada 95 from a background in object technology, you will probably find the 
language befuddling at first. After a while, you should be able to master the various 
language mechanisms enabling you to obtain the effects of single inheritance, 
polymorphism and dynamic binding.

The price to pay, however, is complexity. To Ada 83, a sophisticated construction, 
Ada 95 has added a whole new set of constructs with many potential interactions both 
between themselves and with the old constructs. If you come from the O-O side and are 
used to the pristine simplicity of the notion of class, you will find that you have to learn 
the intricacies of at least five concepts, each covering some of the aspects of classes:

• Packages, which are modules but not types, can be generic, and offer something 
resembling inheritance: child packages (as well as a number of other options not 
detailed above, such as the possibility of declaring a child package as private).

• Tagged record types, which are types but not modules, and have a form of 
inheritance, although unlike classes they do not allow the syntactical inclusion of 
routines into a type declaration.

• Tasks, which are modules but not types and have no inheritance.

• Task types, which are modules and types, but cannot be generic (although they can be 
included in generic packages) and have no inheritance.

• “Protected types” (a notion we have not yet encountered), which are types and may
include routines, as in
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protected type ANOTHER_ACCOUNT_TYPE is
procedure deposit (amount: in MONEY);
function balance return MONEY;

private
deposit_list: …; …

end ANOTHER_ACCOUNT_TYPE;

making them at first similar to classes — but with no inheritance.

The combination of interacting possibilities is mind-boggling. Packages, for 
example, still have, in addition to the notion of child package, the Ada mechanisms of use
and with, with explanations such as this one from a tutorial text:

Private children are intended for “internal” packages that should only be 
“with'ed” by a restricted number of packages. A private child can only be 
“with'ed” by the body of its parent or by descendants of the private child's 
parent. In exchange for such a restrictive requirement, a private child gets a 
new authority: a private child's specification automatically sees both the public 
and private parts of all of its ancestors' specifications.

No doubt it is possible to make sense of such explanations. But is the result worth 
the trouble? 

It is interesting to note that Jean Ichbiah, the creator of Ada, resigned publicly from the 
Ada 95 reviewing group after trying in vain for several years to keep the extensions 
simple. His long resignation letter includes comments such as: A massive increase in 
complexity will result from 9X [later renamed Ada 95] adding one or more additional 
possibilities where Ada now offers two. For example, 9X adds: […] access parameters,
to in, out, and in out; tagged types, to normal types; dispatched subprogram calls, to 
normal subprogram calls; use type clause, to use package clauses; [Other examples 
skipped; overall 12 were included.] With 9X, the number of interactions to consider is 
close to 60,000 since we have 3 or more possibilities in each case (that is, 310 ). 

The basic concepts of object technology, for all their power, are strikingly simple. 
Ada 95 may be the most ambitious effort so far to make them appear complicated.

Discussion: module and type inheritance

As a side observation following from this study of Ada 95, it is interesting to note that the 
Ada 95 design has found it necessary, along with the “inheritance” mechanism for tagged 
record types, to introduce the notion of child package. Ada, of course, has always kept 
module and type concepts separate, whereas classes are both. But then Ada 95 
methodologists will suggest that when you introduce a descendant type such as 
SAVINGS_ACCOUNT you should declare it, for clarity and modularity, not in the original 
package (Accounts) but in a child package. If you generalize this advice, you will end up 
creating, along with the type hierarchy, a module hierarchy which follows it faithfully.
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With the classes of object technology, such questions do not arise; classes being 
modules, there is by construction only one hierarchy.

The choices of Ada 95 show yet another example of the popular view that “one 
should separate type inheritance from code reuse”. Instead the insight of object 
technology since Simula has been to unify concepts: module and type, subtyping and 
module extension. Like any other bold unification of notions theretofore considered 
completely distinct, this idea can be scary at times, hence the attempts to reintroduce the 
distinction. But they would deprive us of the remarkable simplification that O-O ideas 
have brought to the understanding of software architecture.

Towards an O-O Ada

That Ada 95 seems hard to teach and to manage does not mean the idea of making Ada 
more O-O is doomed; one should simply set reasonable goals and keep a constant concern 
for simplicity and consistency. The Ada community might try again to develop an object-
oriented extension, which should be accompanied by the removal of a few facilities to 
keep the language size palatable. Two general directions are possible:

• The first idea, close in spirit to what the design of Ada 95 has attempted to achieve, 
is to keep the package structure and introduce a notion of class that would generalize 
Ada’s record types, with support for inheritance and dynamic binding. But these 
should be true classes, including the applicable routines. Such an extension would be 
similar in principle to that which led from C to C++. It should strive for minimalism, 
trying to reuse as much as possible of the existing mechanisms (such as with and use
for packages), rather than introducing new facilities which would then cause the 
interaction problems mentioned by Ichbiah.

• The other approach would build on an observation made in the presentation of tasks 
earlier in this chapter. It was noted then that task types are close in spirit to classes, 
since they may have instances created at run time; but structurally they have most of 
the properties of packages (visibility and information hiding rules, separate 
compilation). This suggests adding a modular unit that, roughly, has the syntax of 
packages and the semantics of classes; think of it as a package-class, or as a task type 
that does not need to be concurrent. The notion of “protected type” may be a starting 
point; but of course, it should be integrated into the existing mechanism.

Exercises at the end of this chapter ask you (if, like many software people, you like 
dabbling in language design experiments, if only to gain a better understanding of existing 
languages and, through them, of software issues) to explore these possibilities further.
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33.8  KEY CONCEPTS INTRODUCED IN THIS CHAPTER 

• Ada, studied as a representative of the class of “encapsulation languages” which also 
includes Modula-2, offers modular decomposition constructs: packages (and tasks). 

• The emphasis is on information hiding: interface and implementation are 
declared separately. 

• Genericity increases the flexibility of packages. 

• Conflicts between methodological requirements and language implementation 
concerns give rise to the “private” section, a conceptually secret element that is 
syntactically included in the interface.. 

• The package is a purely syntactic mechanism. Modules remain distinct from types. 
No inheritance mechanism is possible. 

• Exceptions separate error detection from error handling, but provide no magic 
solution to the problem of run-time errors. 

• The Ada exception mechanism should only be used in a disciplined fashion; any 
execution of an exception handler should terminate by either retrying the operation 
or signaling failure to the caller. 

• Task types could in principle be used to implement classes without inheritance, but 
this solution is not practical in most current environments. 

• Ada 95 enables the definition of a new record type as being derived from an existing 
type, with support for routine redefinition, polymorphism and dynamic binding.

33.9  BIBLIOGRAPHICAL NOTES 

[Booch 1986a] discusses (under the label “object-oriented design”, but not using classes, 
inheritance, polymorphism etc.) how to obtain some of the benefits of object orientation 
in Ada.

The official reference on Ada is [ANSI 1983], recommended neither as bedtime 
reading nor as introductory material. Numerous books are available to fulfill the latter need. 

References on the other modular languages mentioned at the beginning of this 
chapter are [Mitchell 1979] for Mesa, [Wirth 1982] for Modula-2, and [Liskov 1981] for 
CLU. See also [Liskov 1986] on programming methodology, based on CLU. The 
reference on Alphard is [Shaw 1981].

The Ada 95 reference manual is available on-line at [Ada 95-Web]. [Wheeler-Web] 
is an on-line tutorial (prelude to an announced book). For a commented list of Ada 95 
textbooks, see [Feldman-Web]. I am greatly indebted to Richard Riehle and Magnus 
Kempe for clarifying a number of points about Ada 95; the views expressed are as usual 
my own. Magnus Kempe is the source of the reference to Mats Weber’s thesis.
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EXERCISES

E33.1  Winning the battle without privates

The Ada compilation problem that gives rise to the private construct might appear to 
affect object-oriented languages as well if the underlying environment supports separate 
compilation of classes. In fact, the problem seems to be worse because of inheritance: a 
variable declared of type C may at run time refer to instances not only of C but of any 
descendant class; since any descendant may add its own attributes, the size of these 
instances is variable. If C is a deferred class, it is not even possible to assign a default size 
to its instances. Explain why, in spite of these remarks, the object-oriented notation of this 
book does not need a language construct similar to the private mechanism of Ada. (Hint: 
your discussion should consider in particular the following notions: expanded vs. 
reference types; deferred classes; and the techniques used in our O-O framework to 
produce abstract class specifications without requiring class authors to write two separate 
module separate parts.) Discuss the tradeoffs involved in both solutions. Can you suggest 
other approaches to the problem in the Ada framework? 

E33.2  Generic routine parameters

Generic parameters to Ada packages may be not just types but also routines. Explain the 
relevance of this possibility to the implementation of object-oriented concepts, and its 
limitations. (See also appendix B.) 

E33.3  Classes as tasks (for Ada programmers)

Rewrite class COMPLEX as an Ada task type. Show examples using the resulting type.

E33.4  Adding classes to Ada 

(This language design exercise assumes a good knowledge of Ada 83.) Devise an 
adaptation of Ada (83) that keeps the notion of package but extends records to classes with 
polymorphism, dynamic binding and inheritance (single or multiple?), in line with general 
O-O principles.

E33.5  Package-classes

(This language design exercise assumes a good knowledge of Ada 83.) Using task types 
as inspiration, devise an adaptation of Ada (83) supporting packages that can be 
instantiated at run time and hence can play the role of classes, with polymorphism, 
dynamic binding and inheritance.



34  
Emulating object technology in 
non-O-O environments
F ortran, Cobol, Pascal, C, Basic, PL/I and even assembly language still account for a 
large part of the software being written or updated today. Clearly, a project using one of 
these languages will not be able to draw the full benefits of object technology, as this would 
require a notation such as the one we have studied in this book, and the supporting 
compiler, environment and libraries. But people who are required to use pre-O-O tools, 
often because of non-technical constraints, can still gain inspiration from object technology 
and use some of its concepts to improve the quality of their software development.

This chapter presents the techniques of object emulation that may enable you to 
approximate some of object technology. It will particularly examine the case of Fortran, 
Pascal and C. (Ada and other encapsulation languages were discussed in the preceding 
chapter; the following one covers O-O languages such as Simula, Smalltalk, Objective-C, 
C++ and Java.) This presentation will be directly applicable if you must use one of these 
languages. But it extends further:

• If you use another non-O-O language not on this list, such as Basic or Cobol, you 
should not have too much trouble transposing the concepts.

• Even if you are able to use an O-O language, the following discussion can give you 
a better grasp of the innovations of object technology and of the supporting 
implementation techniques (which often make use, internally, of older languages).

34.1  LEVELS OF LANGUAGE SUPPORT 

In assessing how programming languages succeed in supporting object-oriented concepts, 
we may distinguish three broad categories (ignoring the lowest level, mostly containing 
assembly languages, which does not even support a routine construct):

• The functional level comprises languages whose unit of decomposition is the routine, 
a functional abstraction capturing a processing step. Data abstraction is handled, if at 
all, through definitions of data structures, either local to a routine or global.

• Languages at the encapsulation level provide a way to group a set of routines and 
data declarations in a syntactical unit, called a module or package; typically each unit 
can be compiled separately. This was discussed in some detail for Ada.
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See [Wegner 1987].
• Then we find object-oriented languages. This is not the place to be fussy about what 
exactly it takes to deserve this label — chapter 2 defined a set of criteria, and of 
course all of part C was devoted to analyzing O-O mechanisms in detail —, but we 
should at the very least expect some support for classes, inheritance, polymorphism 
and dynamic binding.

For the second category, encapsulation languages, which supports a data 
abstraction mechanism but no classes, inheritance, polymorphism or dynamic 
binding, you will find that the literature commonly uses the term object-
based, introduced in an article by Peter Wegner. Because the English words 
based and oriented do not readily evoke the conceptual difference between 
encapsulation techniques and O-O languages, “object-based” is a little hard to 
justify, especially to newcomers. Although either terminology is acceptable 
once you have defined the conventions, I have in the end decided to stick here 
to the phrases “encapsulation languages” and “object-oriented languages”, 
which more clearly conjure up the conceptual difference.

While we are on the subject of terminology: the term “functional language” is 
ambiguous since other parts of the literature apply it to a class of languages, based on 
mathematical principles and often deriving directly or indirectly from Lisp, which use 
side-effect-free functions instead of imperative constructs such as procedures and 
assignments. To avoid any confusion, the present book always uses the term applicative
to denote this programming style. The word function in our use of “functional language” 
is to be contrasted with object, not (as when “functional” is a synonym for “applicative”) 
with procedure. (To make a confusing situation worse, it is quite common to see 
“procedural” taken to mean “not object-oriented”! There is, however, no basis for such 
terminology; “procedural” normally means “imperative”, as opposed to applicative; all 
the common O-O languages, including the notation of this book, are quite procedural.)

A general comment on O-O emulation. In its most basic form, object technology is 
“programming with abstract data types”. You can apply a rudimentary form of the ideas, 
even at the functional level, by defining a set of strict methodological guidelines requiring 
every data access to go through routines. This assumes that you start from an object-
oriented design that has defined ADTs and their features; then you will write a set of 
routines representing these features — put, remove, item, empty in our standard stack 
example — and require all client modules to go through these routines. This is a far cry 
from object technology proper, and can only work under the assumption that everyone in 
the team behaves; but, if you lack any kind of language support, it can be a start. We will 
call this technique the disciplinary approach.

34.2  OBJECT-ORIENTED PROGRAMMING IN PASCAL?

Pascal, introduced in 1970 by Niklaus Wirth, has been for many years the dominant 
language for teaching introductory programming in computing science departments, and 
has influenced many of the subsequent language designs. Pascal is definitely a functional 
language in the sense just defined.
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“Linguistic Modular 
Units”, page 53.
Pascal proper

How much of the object-oriented approach can you implement in Pascal?
Not much. The Pascal program structure is based on a completely different 

paradigm. A Pascal program consists of a sequence of paragraphs, appearing in an 
immutable order: labels, constants, types, variables, routines (procedures and functions), 
and executable instructions. The routines themselves have the same structure, recursively. 

This simple rule facilitates one-pass compilation. But it dooms any attempt at using 
O-O techniques. Consider what it takes to implement an ADT, such as the standard 
example of stacks represented by arrays: a few constants such as the array size, one or a 
few types such as the record type describing the stack implementation, a few variables 
such as the pointer to the stack top, and a few routines representing the operations on the 
abstract data type. In Pascal, these elements will be scattered all over the program: all the 
constants for various abstract data types together, all the types together and so on. 

The resulting program structure is the opposite of O-O designs. Using Pascal would 
contradict the Linguistic Modular Units principle, which expresses that any modular 
policy you choose must be supported by the available language constructs, for fear of 
damaging composability, decomposability and other modularity requirements. 

So if we take Pascal as defined by its official standard, there is little we can do to 
apply O-O techniques this language beyond what was called the disciplinary approach 
above: imposing a strict methodological rule for data accesses.

Modular extensions of Pascal

Beyond standard Pascal, many commercially available versions remove the restrictions on 
the order of declarations and include support for some form of module beyond the routine, 
including separate compilation. Such modules may contain more than one routine, 
together with associated constants, types and routines. The resulting languages and 
products, more flexible and powerful than Pascal, are Pascal only by name; they are not 
standardized, and in fact resemble more an encapsulation language such as Modula-2 or 
Ada, to which the applicable discussion is that of the preceding chapter.

Object-oriented extensions of Pascal

Over the years a number of companies have offered object-oriented extensions of Pascal, 
loosely known as “Object Pascal”. Two are particularly significant:

• Apple’s version, originating from a language originally called Clascal and used for 
some of the software in Apple’s Macintosh and its Lisa predecessor.

• Borland’s version of Pascal, most recently adapted as the programming language for 
Borland’s Delphi environment.
The preceding discussion does not really apply to such languages since — even 

more than with the modular extensions — their connection to the original Pascal is 
essentially their name, syntactic style, and statically typed approach. Borland Pascal, in 
particular, is an O-O language with exception handling. It does not, however, support any 
of the mechanisms of genericity, assertions, garbage collection and multiple inheritance.
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Cited in [Wexelblat 
1981].

The official name is 
FORTRAN, although
the less obtrusive 
form is commonly 
used too.
34.3  FORTRAN
FORTRAN should virtually eliminate coding and debugging

FORTRAN Preliminary Report, IBM, November 1954

The oldest surviving programming language, Fortran remains widely used for scientific 
computation. Shockingly perhaps for people who went on from it to such “structured” 
languages as Pascal, you can in fact get a little more O-O frills in Fortran, although this is 
partly thanks to facilities that may be considered low-level and were intended for other goals.

Some context
Fortran was initially designed, as a tool for programming the IBM 704, by an IBM team under 
John Backus (later also instrumental in the description of Algol), with a first general release 
in 1957. Fortran II followed, introducing subroutines. Fortran IV solidified the language in 
1966 (Fortran III, 704-specific, was not widely distributed), and was standardized by ANSI. 
The next revision process led to Fortran 77, actually approved in 1978, with better control 
structures and some simplifications. An even longer revision yielded Fortran 90 and Fortran 
95, which have been diversely met and have not quite replaced their predecessors.

For most people with a computing science degree earned after the First World War, 
Fortran is old hat, and they would rather be caught reading the Intel 4044 User’s Manual 
than admit they know anything about FORMAT and arithmetic IF instructions. In reality, 
however, quite a few programmed in Fortran at some stage, and many other people who 
are programmers by any objective criterion, even if their business card reads “theoretical 
physicist”, “applied mathematician”, “mechanical engineer” or even, in a few cases, 
“securities analyst”, use Fortran as their primary tool day in and day out. Fortran remains 
in common use not only for maintaining old software but even for starting new projects.

To the outsider it sometimes seems that scientific programming — the world of 
Fortran — has remained aloof from much of the evolution in software engineering. This 
is partly true, partly not. The low level of the language, and the peculiar nature of scientific 
computing (software produced by people who, although scientists by training, often lack 
formal software education), have resulted in some software of less than pristine quality. 
But some of the best and most robust software also comes from that field, including 
advanced simulations of extremely complex processes and staggering tools for scientific 
visualization. Such products are no longer limited to delicate but small numerical 
algorithms; like their counterparts in other application areas, they often manipulate 
complex data structures, rely on database technology, include extensive user interface 
components. And, surprising as it may seem, they are still often written in Fortran.

The COMMON technique
A Fortran system is made of a main program and a number of routines (subroutines or 
functions). How can we provide a semblance of data abstraction?

The usual technique is to represent the data through a so-called COMMON block, a 
Fortran mechanism for making data accessible to any routine that cares to want it, and to 
implement each of the associated exported features (such as put etc. for stacks) through a 
separate routine. Here for example is a sketch of a put routine for a stack of real numbers:
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A C at the first 
position on a line 
introduces a 
comment.
SUBROUTINE RPUT (X)
REAL X

C
C PUSH X ON TOP OF REAL STACK
C

COMMON /STREP/ TOP, STACK (2000)
INTEGER TOP
REAL STACK

C
TOP = TOP + 1
STACK (TOP) = X
RETURN
END

This version does not have any overflow control; clearly it should be updated to test 
for TOP going over the array size. (The next version will correct this.) The function to 
return the top element is

INTEGER FUNCTION RITEM
C
C  TOP ELEMENT OF REAL STACK
C

COMMON /STREP/ TOP, STACK (2000)
INTEGER TOP
REAL STACK

RITEM = STACK (TOP)
RETURN
END

which would similarly need to test for underflow (empty stack). REMOVE and other 
features will follow the same pattern. What unites the different routines, making sure that 
they access the same data, is simply the name of the common block, STREP. (It is in fact 
possible, in different routines, to pretend that the same common block contains data of 
different types and sizes if the total memory occupied somehow coincides, although in a 
family-oriented book like this one it is probably preferable to avoid going into details that 
might not be entirely suitable for the younger members of the audience).

The limitations are obvious: this implementation describes one abstract object (one 
particular stack of reals), not an abstract data type of which the software can create 
arbitrarily many instances at run time, as with a class. The Fortran world is very static: you 
must dimension all the arrays (here to 2000, a number picked arbitrarily). Because there 
is no genericity, you should in principle declare a new set of routines for each type of 
stack; hence the names RPUT and RITEM, where the R stands for Real. One can work 
around some of these problems, but not without considerable effort.



EMULATING OBJECT TECHNOLOGY IN NON-O-O ENVIRONMENTS   §34.3 1104
The multiple-entry subroutine technique

The COMMON-based technique, as you will have noted, violates the Linguistic Modular 
Units principle. In a system’s modular structure, the routines are physically independent 
although conceptually related. You can all too easily update one and forget the others.

It is in fact possible to improve on this situation (without removing some of the other 
limitations just listed) through a language trait legalized by Fortran 77: multiple entry 
points to a single routine.

This extension — which was probably introduced for different purposes, but may be 
redeemed for the “good cause” — enables Fortran routines to have entry points other than 
the normal routine header. Client routines may call these entry points as if they were 
autonomous routines, and the various entries may indeed have different arguments. 
Calling an entry will start execution of the routine at the entry point. All entries of a routine 
share the persistent data of the routine; a persistent data item, which in Fortran 77 must 
appear in a SAVE directive, is one whose value is retained from one activation of a routine 
to the next. Well, you see where we are driving: we can use this technique to define a 
module that encapsulates an abstract object, almost as we would in one of the 
encapsulation languages. In Ada, for example, we could write a package with a data 
structure declaration, such as a stack representation, and a set of routines that manipulate 
these data. Here we will simulate the package with a subroutine, the data structure with a 
set of declarations that we make persistent through a SAVE, and each Ada routine (each 
feature of the corresponding class in an O-O language) with an entry. Each such entry must 
be followed by the corresponding instructions and a RETURN:

ENTRY (arguments)
… Instructions …
RETURN

so that the various entry-delimited blocks are disjoint: control never flows from one block 
to the next. This is a restricted use of entry points, which in general are meant to allow 
entering a routine at any point and then continuing in sequence. Also note that clients will 
never call the enclosing subroutine under its own name; they will only call the entries.

The main difference with the preceding COMMON-based solution is that all the 
features of the underlying abstract data type now appear in the same syntactical unit. The 
second part of the facing page shows an example implementing an abstract object (stack 
of reals). The calls from a client will look like this:

LOGICAL OK
REAL X

C
OK = MAKE ()
OK = PUT (4.5)
OK = PUT (–7.88)
X = ITEM ()
OK = REMOVE ()
IF (EMPTY ()) A = B
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A stack module 
emulation in 
Fortran
Look at this text for just a second, from a distance; you could almost believe that it is 
the use of a class, or at least of an object, through its abstract, officially defined interface! 

A Fortran routine and its entry points must be either all subroutines, or all functions. Here 
since EMPTY and ITEM must be functions, all other entries are also declared as functions, 
including MAKE whose result is useless.

C -- IMPLEMENTATION OF ONE
C -- ABSTRACT STACK OF REALS
C

 INTEGER FUNCTION RSTACK ()
PARAMETER (SIZE=1000)

C
C -- REPRESENTATION
C

REAL IMPL (SIZE)
INTEGER LAST
SAVE IMPL, LAST

C
C -- ENTRY POINT DECLARATIONS
C

LOGICAL MAKE
LOGICAL PUT
LOGICAL REMOVE
REAL ITEM
LOGICAL EMPTY

C
REAL X 

C
C -- STACK CREATION
C

ENTRY MAKE ()
MAKE = .TRUE.
LAST = 0

RETURN 
C
C -- PUSH AN ITEM
C

ENTRY PUT (X)
IF (LAST .LT. SIZE) THEN

PUT = .TRUE.
LAST = LAST + 1
IMPL (LAST) = X

ELSE
PUT = .FALSE.

END IF
RETURN

C -- REMOVE TOP ITEM
C

ENTRY REMOVE (X)
IF (LAST .NE. 0) THEN

REMOVE = .TRUE.
LAST = LAST – 1

ELSE
REMOVE = .FALSE.

END IF
RETURN

C
C -- TOP ITEM
C

ENTRY ITEM ()
IF (LAST .NE. 0) THEN

ITEM = IMPL (LAST)
ELSE

CALL ERROR
     ∗φσ ('ITEM: EMPTY STACK')

END IF
RETURN

C
C -- IS STACK EMPTY?
C

ENTRY EMPTY ()
EMPTY = (LAST .EQ. 0)

RETURN
C
END 
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This style of programming can be applied successfully to emulate the encapsulation 
techniques of Ada or Modula-2 in contexts where you have no choice but to use Fortran. 
It suffers of course from stringent limitations: 

• No internal calls are permitted: whereas routines in an object-oriented class usually 
rely on each other for their implementations, an entry call issued by another entry of 
the same subroutine would be understood as an instance of recursion — anathema to 
Fortran, and run-time disaster in many implementations.

• As noted, the mechanism is strictly static, supporting only one abstract object. It may 
be generalized to allow for a fixed number of objects (by transforming every variable 
into a one-dimensional array, and adding a dimension to every array). But there is no 
portable support for dynamic object creation. 

• In practice, it seems that some Fortran environments (two decades after Fortran 77 
was published!) do not deal too well with multiple-entry subroutines; in particular 
debuggers do not always know how to keep track of multiple entries. Before 
applying this technique to a production development, check with the local Fortran 
guru to find out whether it is wise to rely on this facility in your environment.

• Finally, the very idea of hijacking a language mechanism for purposes other than its 
probable design objective raises dangers of confusion and errors. 

34.4  OBJECT-ORIENTED PROGRAMMING AND C
Born in a log cabinet, C quickly rose to prominence. Although most people interested in 
both C and object technology have focused on the O-O extensions of C discussed in the 
next chapter (C++, Objective-C, Java), it remains interesting to see how C itself can be 
made to emulate O-O concepts, if only to understand the techniques that have made C so 
useful as a stepping stone towards the implementation of more advanced languages.

Some context
C was designed at AT&T’s Bell Laboratories as a portable language for writing operating 
systems. The first version of Unix had used assembly language, but a portable version 
soon appeared necessary, and C was designed around 1970 to make it possible. It was 
derived from ideas found in BCPL, a language of the sixties which, like C, can be 
mentioned in the same breath as “high-level”, “machine-oriented” and “portable”: high-
level thanks to control structures comparable to those of Algol or Pascal; machine-
oriented because you can manipulate data at the most elementary level, through addresses, 
pointers and bytes; portable because the machine-oriented concepts are so defined as to 
cover a wide variety of computer types.

C’s timing could not have been better. In the late seventies Unix became the 
operating system of choice for many universities, and C spread with it. Then in the eighties 
the microcomputer revolution burst out, and C was ready to serve as its lingua franca — 
more scalable than Basic, more flexible than Pascal. At the same time Unix also enjoyed 
some commercial success, and along with Unix still came C. In a few years, a boutique 
product became the dominant language in large segments of the computing industry, 
including much of where the action really was.



§34.4   OBJECT-ORIENTED PROGRAMMING AND C 1107

[Kernighan 1978], 
[Kernighan 1988].
Anyone interested in the progress of programming languages — even people who do 
not care too much for the language itself — has a political debt to C, and sometimes a 
technical one as well:

• Politically, C ended the fossilized situation that prevailed in the programming 
language world until around 1980. No one in industry wanted to hear (particularly 
after the commercial failure of Algol) about anything else than the sacred troika, 
Fortran for science, Cobol for business and PL/I for true blue shops. Outside of 
academic circles and a few R&D departments, any attempt at suggesting other 
solutions was met with as much enthusiasm as if it were a proposal to introduce a 
third brand of Cola drink. C broke that mindset, making it acceptable to think of the 
programming language as something you choose from a reasonably broad and 
evolving catalog. (A few years later, C itself became so entrenched that in some 
circles the choices seemed to have gone from three to one, but it is the fate of 
successful subversives that they become the new Establishment.)

• Technically, the portability and machine-closeness of C have made it an attractive 
solution as a target language of compilers for higher-level languages. The first C++ 
and Objective-C implementations used this approach, and compilers for many other 
languages, often having no visible connection to C, have followed their example. 
The advantages for the compiler writers and their users are: portability, since you can 
have a single C-generating compiler for your language and use C compilers 
(available nowadays for almost any computer architecture) to take care of platform 
dependencies; efficiency, since you can rely on the extensive optimization 
techniques that have been implemented in good C compilers; and ease of integration 
with ubiquitous C-based tools and components.

With time, the contradiction between the two views of C — high-level programming 
language, and portable assembly language — has become more acute. Recent evolution 
of the ANSI standard for C (first published in 1990, following the earlier version known 
as K&R from the authors of the first C book, Kernighan and Ritchie) have made the 
language more typed — and hence less convenient for its use as a compiler’s target code. 
It has even been announced that forthcoming versions will have a notion of class, 
obscuring the separation from C++ and Java.

Although an O-O extension of C simpler than C++ and Java may be desirable, one 
can wonder whether this evolution is the right one for C; a hybrid C-based O-O language 
will always remain a strange contraption, whereas the idea of a simple, portable, 
universally available, efficiently compilable machine-oriented language, serving both as 
a target language for high-level compilers and as a low-level tool for writing very short 
routines to access operating system and machine-dependent facilities (that is to say, for 
doing the same thing that assembly language used to do for C, only at the next level) 
remains as useful as it ever was.
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Basics 

As with any other language, you can apply to C the “disciplinary” technique of restricted 
data access, requiring all uses of data structures to go through functions. (All routines in 
C are functions; procedures are viewed as functions with a “void” result type.) 

Beyond this, the notion of file may serve to implement higher-level modules. Files 
are a C notion on the borderline between the language and the operating system. A file is 
a compilation unit; it may contain a number of functions and some data. Some of the 
functions may be hidden from other files, and some made public. This achieves 
encapsulation: a file may contain all the elements pertaining to the implementation of one 
or more abstract objects, or an abstract data type. Thanks to this notion of file, you can 
essentially reach the encapsulation language level in C, as if you had Ada or Modula-2. 
As compared to Ada, however, you will be missing genericity and the distinction between 
specification and implementation parts. 

In practice, a commonly used C technique is rather averse to O-O principles. Most 
C programs use “header files”, which describe shared data structures. Any file needing the 
data structures will gain access to them through an “include” directive (handled by the 
built-in C preprocessor) of the form 

#include <header. h>

where header.h is the name of the header file (.h is the conventional suffix for such file 
names). This is conceptually equivalent to copying the whole header file at the point 
where the directive appears, and allows the including file to access directly the data 
structure definitions of the header file. As a result the C tradition, if not the language itself, 
encourages client modules to access data structures through their physical representations, 
which clearly contradicts the principles of information hiding and data abstraction. It is 
possible, however, to use header files in a more disciplined fashion, enforcing rather than 
violating data abstraction; they can even help you go some way towards defining interface 
modules in the style we studied for Ada in the preceding chapter.

Emulating objects 

Beyond the encapsulation level, one of the more specialized and low-level features of C 
— the ability to manipulate pointers to functions — can be used to emulate fairly closely 
some of the more advanced properties of a true O-O approach. Although it is sufficiently 
delicate to suggest that its proper use is by compilers for higher-level languages rather than 
C programmers, it does deserve to be known.

In we take a superficial look at the notion of object as it exists in object technology, 
we might say that “every object has access to the operations applicable to it”. This is a little 
naïve perhaps, but not altogether wrong conceptually. If, however, we take this view 
literally, we find that C directly supports the notion! It is possible for an instance of a 
“structure type” of C (the equivalent of record types in Pascal) to contain, among its fields, 
pointers to functions. 
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A C object with 
function 
references
For example, a C structure type REAL_STACK may be declared by the type 
definition 

typedef struct 
{
/∗ Exported features ∗/

void (∗remove) ();
void (∗put) ();
float (∗item) ();
BOOL (*empty) ();

/∗ Secret features (implementation) ∗/
int count;
float representation [MAXSIZE];

}
REAL_STACK;

The braces { } delimit the components of the structure type; float introduces real 
numbers; procedures are declared as functions with a void result type; comments are 
delimited by /∗ and ∗/. The other asterisks ∗ serve to de-reference pointers; the idea in 
the practice of C programming is that you add enough of them until things seem to work, 
and if not you can always try a & or two. If this still does not succeed, you will usually 
find someone who knows what to do.

Here the last two components are an integer and an array; the others are references 
to functions. In the declaration as written, the comments about exported and secret 
features apply to the emulated class, but everything is in fact available to clients.

Each instance of the type must be initialized so that the reference fields will point to 
appropriate functions. For example, if my_stack is a variable of this type and C_remove is 
a stack popping function, you may assign to the remove field of the my_stack object a 
reference to this function, as follows: 

my_stack   remove = C_remove

In the class being emulated, feature remove has no argument. To enable the
C_remove function to access the appropriate stack object, you must declare it as

count

C_remove (…)
{

…}

C_put (…)
{

…}

C_item (…)
{

…}
C_empty (…)

{
…}

representation

put
remove
empty
item

CLASS
INSTANCE

1
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Exercise E34.3, page 
1112.
C_remove (s)
REAL_STACK s;

{
… Implementation of remove operation …

}
so that a client may apply remove to a stack my_stack under the form 

my_stack   remove (my_stack)

More generally, a routine rout which would have n arguments in the class will yield 
a C function C_rout with n+1 arguments. An object-oriented routine call of the form 

x   rout (arg1, arg2, …, argn)

will be emulated as 

x   C_rout (x, arg1, arg2, …, argn)

Emulating classes

The preceding technique will work to a certain extent. It can even be extended to 
emulate inheritance.

But it is inapplicable to any serious development: as illustrated in the figure of the 
preceding page, it implies that every instance of every class physically contains 
references to all the routines applicable to it. The space overhead would be prohibitive, 
especially with inheritance. 

To bring this overhead down to an acceptable level, notice that the routines are the 
same for all instances of a class. So we may introduce for each class a run-time data 
structure, the class descriptor, containing references to the routines; we can implement it 
as a linked list or an array. The space requirements decrease dramatically: instead of one 
pointer per routine per object, we can use one pointer per routine per class, plus one 
pointer per object giving access to the class descriptor, as shown by the figure at the top 
of the following page.

Timewise we pay the price of an indirection: as shown in the figure, you have to go 
through the descriptor to find the function applicable to an object. The space economy and 
the simplification seem well worth this penalty.

There is no secret about it: the technique just sketched is what has made C useful as 
an implementation vehicle for object-oriented languages, starting with Objective-C and 
C++ in the early eighties. The ability to use function pointers, combined with the idea of 
grouping these pointers in a class descriptor shared by an arbitrary number of instances, 
yields the first step towards implementing O-O techniques. 

This is only a first step, of course, and you must still find techniques for 
implementing inheritance (multiple inheritance in particular is not easy), genericity, 
exceptions, assertions and dynamic binding. To explain how this can be done would take 
another book. Let us, however, note one important property, deducible from what we have 



§34.4   OBJECT-ORIENTED PROGRAMMING AND C 1111

C objects 
sharing a class 
descriptor
seen so far. Implementing dynamic binding, regardless of the details, will require run-time 
access to the type of each object, to find the proper variant of the feature f   in a dynamically 
bound call x    f (…) (written here in O-O notation). In other words: in addition to its official 
fields, defined explicitly by the software developer through type declarations, each object 
will need to carry an extra internal field, generated by the compiler and accessible only to 
the run-time system, indicating the type of the object. Well, with the approach just 
defined, we already have a possible implementation of this type field — as a pointer to the 
class descriptor. This is the reason why the above figure uses the label type for such fields.

O-O C: an assessment 

This discussion has shown that implementation techniques are available in C to emulate 
object-oriented ideas. But it does not mean that programmers should use these techniques. 
As with Fortran, the emulation does violence to the language. C’s main strength is, as 
noted, its availability as a “structured assembly language” (a successor to BCPL and 
Wirth’s PL/360), portable, reasonably simple and efficiently interpreted. Its basic concepts 
are very far from those of object-oriented design.

The danger in trying to force an object-oriented peg into a C hole is to get an 
inconsistent construction, impairing the software development process and the quality of 
the resulting products. Better use C for what it does well: small interfaces to low-level 
hardware or operating system facilities, and machine-generated target code; then when the 
time comes to apply object technology we should use a tool designed for that purpose.

count
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34.5  BIBLIOGRAPHICAL NOTES

Techniques for writing Fortran packages based on the principles of data abstraction are 
described in [M 1982a]. They use routines sharing COMMON blocks, rather than 
multiple-entry routines. They go further in their implementation of object-oriented 
concepts than the techniques described in this chapter, thanks to the use of specific library 
mechanisms that provides the equivalent of dynamically allocated class instances. Such 
mechanisms, however, require a significant investment, and will have to be ported anew 
to each platform type.

I am indebted to Paul Dubois for pointing out that the multiple-entry Fortran 
technique, although definitely part of the standard, is not always supported well by 
current compilers.

[Cox 1990] (originally 1986) contains a discussion of C techniques for the 
implementation of object-oriented concepts. 

The basic reference on the history of classical programming languages is a 
conference proceedings [Wexelblat 1981]; see [Knuth 1980] for the earliest efforts.

EXERCISES

E34.1  Graphics objects (for Fortran programmers)

Write a set of Fortran multiple-entry routines that implement basic graphics objects 
(points, circles, polygons). For a specification of the abstractions involved and the 
associated operations, you may rely on the GKS graphics standard. 

E34.2  Genericity (for C programmers)

How would you transform the C emulation of a “real stack” class declaration into an 
emulated generic declaration, easy to adapt to stacks of any type G rather than just float? 

E34.3  Object-oriented programming in C (term project) 

Design and implement a simple object-oriented extension of C using the ideas of this 
chapter. You may write either a pre-processor, translating an extended version of the 
language into C, or a function package that does not change the language itself. 

Approach the problem through three successive refinements: 

• Implement first a mechanism allowing objects to carry their own references to 
available routines. 

• Then see how to factor routine references at the class level. 

• Finally, study how to add single inheritance to the mechanism. 



35  
Simula to Java and beyond: major 
O-O languages and environments
E ncouraged by the introduction of Simula in 1967, a number of object-oriented 
languages have appeared on the scene, highlighting various aspects of the approach. This 
chapter reviews some of the languages that have attracted the most attention: Simula; 
Smalltalk; C++ and other O-O extensions of C; Java.

The literature still lacks an in-depth comparative study of important O-O languages. 
The ambition of this chapter is of necessity more modest. In particular, the space allotted 
to each language is not an indication of the language’s practical significance, and some of 
the most publicized will indeed get a fairly short treatment. Our goal is to learn about issues
and concepts, finding them where we can, even if that means turning our attention for a 
while to one of the less hyped approaches. The risk of under-representing one of the 
principal players is not great, since one only has to look around to pick up articles and books 
describing it in generous detail. The real risk would be the reverse: to miss a promising idea 
just because the language supporting it (say Simula) does not currently enjoy top favor. In 
its coverage of notable languages, then, this survey is not equal-opportunity; it is instead, 
in its choice of notable language traits, a case of affirmative action.

Even when the concepts are the same or similar, the terms used to denote them in 
official language descriptions can vary. The discussion will use the native terms when they 
reflect language peculiarities; for simplicity and consistency, however, it uses the 
terminology of the rest of this book (designed as an attempt at unification) when 
differences are unimportant. For example you will read about Simula routines, procedures 
and functions, although the corresponding terms in official Simula usage are procedure, 
untyped procedure and typed procedure.

35.1  SIMULA

The undisputed founder of the House of Classes (Object Palace) is Simula, whose design 
was completed (if we ignore a few later updates, entirely minor) in 1967. This may seem 
hard to believe: a full-fledged object-oriented language was around, and implemented, 
before structured programming, before Parnas had published his articles on information 
hiding, many years before anyone had come up with the phrase “abstract data type”. The 
Vietnam War was still a page-4 item; barricades had not yet sprung up in the streets of 
Paris; a mini-skirt could still cause a stir: away by the Northern shores of the Baltic a few 
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fortunate software developers led by a handful of visionaries were already profiting from 
the power of classes, inheritance, polymorphism, dynamic binding and most of the other 
marvels of object orientation.

Background

Simula is actually a second design. In the early sixties, a language now known as Simula 1
was developed to support the programming of discrete-event simulations. Although not 
quite object-oriented in the full sense of the term, it already showed some of the key 
insights. “Simula” proper is Simula 67, designed in 1967 by Kristen Nygaard and Ole-
Johan Dahl from the University of Oslo and the Norwegian Computing Center (Norsk 
Regnesentral). Nygaard has explained since how the decision to keep the name was meant 
to ensure continuity with the previous language and the link to its user community; but an 
unfortunate effect was that for a long time that name evoked for many people the image 
of a language meant only for discrete-event simulation — a relatively narrow application 
area — even though Simula 67 is definitely a general-purpose programming language, 
whose only simulation-specific features are a handful of instructions and a SIMULATION 
library class, used by a minority of Simula developers.

The name was shortened to just Simula in 1986; the current standard is from 1987.

Availability

Simula is often presented as a respectable but defunct ancestor. In fact it is still alive and 
enjoys the support of a small but enthusiastic community. The language definition is 
maintained by the “Simula Standards Group”. Compilers are available for a variety of 
hardware and software environments from several companies, mostly Scandinavian.

Major language traits

We will take a general look at the basic properties of Simula. To some readers Simula will 
be passé, and the author of this book will not feel insulted if you skip to the next section, 
on Smalltalk. But if you do want to gain a full appreciation of object technology you will 
find Simula worth your time; the concepts are there in their original form, and a few of 
them show possibilities that may not yet, thirty years later, have been fully exploited.

Simula is an object-oriented extension of Algol 60. Most correct Algol programs are 
also correct Simula programs. In particular, the basic control structures are those of Algol: 
loop, conditional, switch (a multiple branch instruction, low-level precursor to Pascal’s 
case instruction). The basic data types (integer, real etc.) are also drawn from Algol.

Like Algol, Simula uses at the highest level a traditional software structure based on 
the notion of main program. An executable program is a main program containing a 
number of program units (routines or classes). Simula environments do support, however, 
a form of separate class compilation.

Simula uses full block structure in the Algol 60 style: program units such as classes 
may be nested within one another.
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See “References and 
simple values”, 
page 272.
All Simula implementations support automatic garbage collection. There is a small 
standard library, including in particular two-way linked lists used by the SIMULATION 
class studied later in this chapter.

As in the notation of this book, the most common entities of non-basic types denote 
references to class instances, rather than the instances themselves. Instead of being 
implicit, however, this property is emphasized by the notation. You will declare the type 
of such an entity as ref (C), rather than just C, for some class C; and the corresponding 
operations will use special symbols: :– for an assignment where integer or real operands 
would use :=; == rather than = for equality; =/= rather than /= for inequality. An earlier 
chapter presented the rationale for and against this convention.

To create an instance, you will use, rather than a creation instruction, a new expression:

ref (C) a; …; a :– new C

Evaluation of the new expression creates an instance of C and returns a reference to 
it. A class may have arguments (playing the role of the arguments to creation procedures 
in our notation), as in

class C (x, y); integer x, y
begin … end;

In this case, the new expression must provide corresponding actual arguments:

a :– new C (3, 98)

The arguments may then be used in routines of the class; but unlike with creation 
instructions this gives only one initialization mechanism.

Besides routines and attributes, a class may contain a sequence of instructions, the 
body of the class; if so, the new call will execute these instructions. We will see how to 
use this possibility to make classes represents process-like computational elements rather 
than just passive objects as in most other O-O languages.

No assertion mechanism is provided. Simula supports single inheritance; to declare 
B as an heir of A, use

A class B;
begin … end

To redefine a feature of a class in a descendant class, simply provide a new 
declaration; it will take precedence over the original one. (There is no equivalent to the 
redefine clause.)

The original version of Simula 67 did not have explicit information hiding 
constructs. In more recent versions, a feature declared as protected will be unavailable to 
clients; a protected feature which is further declared as hidden will also be unavailable to 
proper descendants. A non-protected feature may be protected by a proper descendant, but 
a protected feature may not be re-exported by proper descendants.

Deferred features are offered in the form of “virtual routines”, appearing in a virtual
paragraph at the beginning of the class. It is not necessary to declare the arguments of a 
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virtual routine; this means that different effective definitions of a virtual routine may have 
different numbers and types of arguments. For example, a class POLYGON might begin

class POLYGON;
virtual: procedure set_vertices

begin
…

end

allowing descendants to provide a variable number of arguments of type POINT for 
set_vertices: three for TRIANGLE, four for QUADRANGLE etc. This flexibility implies 
that some of the type checking must be done at run time.

C++ users should beware of a possible confusion: although inspired by Simula, C++ uses 
a different meaning for the word virtual. A C++ function is virtual if it is meant to be 
dynamically bound (it is, as we have seen, one of the most controversial aspects of C++ 
that you must specify this requirement explicitly). The C++ approximation to Simula’s 
virtual procedures is called a “pure virtual function”.

Simula supports polymorphism: if B is a descendant of A, the assignment a1 :– b1 is 
correct for a1 of type A and b1 of type B. (Interestingly enough, assignment attempt is 
almost there: if the type of b1 is an ancestor of the type of a1, the assignment will work if 
the run-time objects have the proper conformance relationship — source descendant of 
target; if not, however, the result will be a run-time error, rather than a special value which, 
as with assignment attempt, the software could detect and handle.) By default, binding is 
static rather than dynamic, except for virtual routines. So if f is a non-virtual feature 
declared at the A level, a1  f will denote the A version of f even if there is a different version 
in B. You can force dynamic binding by using the qua construct, as in

(a1 qua B)  f

This, of course, loses the automatic adaptation of every operation to its target. You 
may however obtain the desired dynamic binding behavior (which may largely be 
considered a Simula invention) by declaring polymorphic routines as virtual. In many of 
the examples that we have studied, a polymorphic routine was not deferred but had a 
default implementation right from the start. To achieve the same effect, the Simula 
developer will add an intermediate class where the routine is virtual.

As an alternative to using qua, the inspect instruction makes it possible to perform 
a different operation on an entity a1, depending on the actual type of the corresponding 
object, which must be a descendant of the type A declared for a1:

inspect a1
when A do …;
when B do …;
…

This achieves the same effect but assumes that the set of descendants of a class is 
frozen, and runs into conflict with the Open-Closed principle
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An example

The following class extracts illustrate the general flavor of Simula. They are drawn from 
the solution to the problem of full-screen entry systems.

class STATE;
virtual:

procedure display;
procedure read;
boolean procedure correct;

procedure message;
procedure process;

begin
ref (ANSWER) user_answer; integer choice;
procedure execute; begin

boolean ok;
ok := false;
while not ok do begin

display; read; ok := correct;
if not ok then message (a)

end while;
process;

end execute
end STATE;
class APPLICATION (n, m);

integer n, m;
begin

ref (STATE) array transition (1:n, 0:m–1);
ref (STATE) array associated_state (1:n);
integer initial;
procedure execute; begin

integer st_number;
st_number := initial;
while st_number /= 0 do begin

ref (STATE) st;
st := associated_state (st_number); st  execute;
st_number := transition (st_number, st  choice)

end while
end execute
…

end APPLICATION
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Coroutine concepts

Along with basic O-O mechanisms, Simula offers an interesting notion: coroutines.

The notion of coroutine was presented in the discussion of concurrency. Here is a 
brief reminder. Coroutines are modeled after parallel processes as they exist in operating 
systems or real-time software. A process has more conceptual autonomy than a routine; a 
printer driver, for example, is entirely responsible for what happens to the printer it 
manages. Besides being in charge of an abstract object, it has its own lifecycle algorithm, 
often conceptually infinite. The rough form of the printer process could be something like

from some_initialization loop forever
“Obtain a file to be printed”; “Print it”

end
In sequential programming, the relationship between program units is asymmetric: a 

program unit calls another, which will execute completely and return to the caller at the 
point of call. Communication between processes is more equal: each process pursues its 
own life, interrupting itself to provide information to, or get information from another. 

Coroutines are similarly designed, but for execution on a single thread of control. 
(This sequential emulation of parallel execution is called quasi-parallelism.) A coroutine 
that “resumes” another interrupts its own execution and restarts its colleague at its last 
point of interruption; the interrupted coroutine may itself be later resumed.

Coroutines are particularly useful when each of several related activities has its own 
logic; each may be described as a sequential process, and the master-slave relationship 
implied by routines is not adequate. A frequent example is an input-to-output 
transformation in which different constraints are placed on the structure of the input and 
output files. Such a case will be discussed below.

Simula represents coroutines as instances of classes. This is appropriate since 
coroutines almost always need persistent data, and often have an associated abstract 
object. As we noted earlier, a Simula class has a body, made of one or more instructions. 
In a class representing a passive data abstraction, it will only serve as initialization of the 
class instances (the equivalent of our creation procedure); but in a coroutine it will be the 
description of a process. The body of a coroutine is usually a loop of the form

resume a resume a
resume b resume b

a

b
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while continuation_condition do begin
… Actions…;
resume other_coroutine;
…Actions …

end
For some of the coroutines in a system the continuation_condition is often True to yield 
the equivalent of an infinite process (although at least one coroutine should terminate).

A system based on coroutines generally has a main program that first creates a 
number of coroutine objects, and then resumes one of them:

corout1 :– new C1; corout2 :– new C2; …
resume corouti
The evaluation of each new expression creates an object and starts executing its 

body. But the quasi-parallel nature of coroutines (as opposed to the true parallelism of 
processes) raises an initialization problem: with processes, each new would spawn off a 
new process and return control to the caller; but here only one coroutine may be active at 
any given time. If the new expression started the coroutine’s main algorithm, the above 
main thread would never recapture control; for example it would never get a chance to 
create C2 after spawning off C1.

Simula addresses this problem through the detach instruction. A coroutine may 
execute a detach to give control back to the unit that created it through a new. Coroutine 
bodies almost always begin (after initialization instructions if needed) with a detach, 
usually followed by a loop. After executing its detach, the coroutine will become 
suspended until the main program or another coroutine resumes it.

A coroutine example

Here is an illustration of the kind of situation in which coroutines may prove useful. You 
are requested to print a sequence of real numbers, given as input; but every eighth number 
(the eighth, the sixteenth, the twenty-fourth etc.) is to be omitted from the output. 
Furthermore, the output must appear as a sequence of lines, with six numbers per line 
(except for the last line if there are not enough numbers to fill it). So if in denotes the n-th 
input item, the output will start as

i1 i2 i3 i4 i5 i6
i7 i9 i10 i11 i12 i13
i14 i15 i17 etc.
Finally, the output should only include the first 1000 numbers thus determined.
This problem is representative of coroutine use because it conceptually involves 

three processes, each with its specific logic: the input, where the constraint is to skip every 
eighth item; the output, where the constraint is to go to the next line after every sixth item; 
and the main program, which is required to process 1000 items. Traditional control 
structures are not good at combining such processes with widely different constraints. A 
coroutine solution, on the other hand, will work smoothly.
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Following the preceding analysis, we may use three coroutines: the producer
(input), the printer (output) and the controller. The general structure is:

begin
class PRODUCER begin … See next … end PRODUCER;
class PRINTER begin … See next … end PRINTER;
class CONTROLLER begin … See next … end CONTROLLER;
ref (PRODUCER) producer; ref (PRINTER) printer; ref (CONTROLLER) controller;
producer :– new PRODUCER; printer :– new PRINTER; controller :– new CONTROLLER;
resume controller

end
This is a main program, in the usual sense; it creates an instance of each of the three 

coroutine classes and resumes one of them, the controller. Here are the classes:
class CONTROLLER; begin

integer i;
detach;
for i := 1 step 1 until 1000 do resume printer

end CONTROLLER;
class PRINTER; begin

integer i;
detach;
while true do

for i := 1 step 1 until 8 do begin
resume producer;
outreal (producer  last_input);
resume controller

end;
next_line

end
end PRINTER;
class PRODUCER; begin

integer i; real last_input, discarded;
detach;
while true do begin

for i := 1 step 1 until 6 do begin
last_input := inreal; resume printer

end;
discarded := inreal

end
end PRODUCER;
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Each class body begins with detach to allow the main program to proceed with the 
initialization of other coroutines. Procedure outreal prints a real number; function inreal
reads and returns the next real on input; the extract assumes a procedure next_line that 
goes to the next line on input.

Coroutines fit well with the other concepts of object-oriented software construction. 
Note how decentralized the above scheme is: each process minds its own business, with 
limited interference from the others. The producer takes care of generating candidates 
from the input; the printer takes care of the output; the controller takes care of when to 
start and finish. As usual, a good check of the quality of the solution is the ease of 
extension and modification; it is indeed straightforward here to add a coroutine that will 
check for end of input (as requested by an exercise). Coroutines take decentralization, the 
hallmark of O-O architectures, one step further.

The architecture could be made even more decentralized. In particular, the processes 
in the above structure must still activate each other by name; ideally they should not have 
to know about each other except to communicate requested information (as when the 
printer obtains last_input from the producer). The simulation primitives studied below 
allow this; after that, the solution is to use a full concurrency mechanism, such as 
described in an earlier chapter. As you will remember, its platform-independence means 
that it will work for coroutines as well as true parallelism.

Sequencing and inheritance

Even if it does not use coroutine mechanisms (detach, resume), a Simula class may have 
a body (a sequence of instructions) in addition to its features, and so may take on the 
behavior of a process in addition to its usual role as an abstract data type implementation. 
When combined with inheritance, this property leads to a simpler version of what the 
discussion of concurrency called the inheritance anomaly, to which Simula, thanks to its 
limitation to single rather than multiple inheritance and coroutines rather than full 
parallelism, is able to provide a language solution.

For a class C let bodyC be the sequence of instructions declared as body of C and 
actual_bodyC the sequence of instructions executed for every creation of an instance of C. 
If C has no parent, actual_bodyC is just bodyC. If C has a parent A (it can have at most one) 
then actual_bodyC is by default the sequence of instructions

actual_bodyA; bodyC

In other words, ancestors’ bodies are executed in the order of inheritance. But this 
default may not be what you want. To supersede it, Simula offers the inner instruction 
which denotes the heir’s body, so that the default policy is equivalent to having an inner
at the end of the parent’s body. If instead you write the body of A as

instructions1; inner; instructions2

then (assuming A itself has no parent) the execution of C will execute not its bodyC as 
written in the class but its actual_bodyC defined as

instructions1; bodyC; instructions2
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Although the reasons for this facility are clear, the convention is rather awkward:

• In many cases descendants would need to create their instances differently from their 
ancestors. (Remember POLYGON and RECTANGLE.)

• Bodies of descendants, such as C here, become hard to understand: just reading 
bodyC does not really tell you what the execution will do.

• In addition, of course, the convention would not transpose easily to multiple 
inheritance, although this is not an immediate concern in Simula.

Such difficulties with inner are typical of the consequences of making objects 
active, as we found out when discussing concurrency.

Almost all object-oriented languages after Simula have departed from the inner 
convention and treated object initialization as a procedure.

Simulation

True to its origins, Simula includes a set of primitives for discrete-event simulation. It is 
no accident, of course, that the first O-O language was initially meant for simulation 
applications; more than in any other area, this is where the modeling power of the object-
oriented method can illustrate itself.

A simulation software system analyzes and predicts the behavior of some external 
system — an assembly line, a chemical reaction, a computer operating system, a ship… 

A discrete-event simulation software system simulates such an external system as 
having, at any time, a state that can change in response to events occurring at discrete 
instants. This differs from continuous simulation, which views the state as continuously 
evolving. Which of these two modeling techniques is best for a given external system 
depends not so much on whether the system is inherently continuous or discrete (often a 
meaningless question) as on what models we are able to devise for it.

Another competitor to discrete-event simulation is analytical modeling, whereby 
you simply build a mathematical model of the external system, then solve the equations. 
This is a very different approach. With discrete-event simulation, you run a software 
system whose behavior simulates the behavior of the external system: to get more 
significant results, you will increase the length of the period that you simulate in the 
external system’s life, and so you will run the simulation longer. This is why analytical 
models are usually more efficient. But many physical systems are too complex to admit 
realistic yet tractable mathematical models; then simulation is the only possibility.

Many external systems lend themselves naturally to discrete event simulation. An 
example is an assembly line, where typical events may include a new part being entered 
into the line, a worker or machine performing a certain operation on one or more parts, a 
finished product being removed from the line, a failure causing the line to stop. You may 
use the simulation to answer questions about the modeled physical systems: how long 
does it take (average, minimum, maximum, standard deviation) to produce a finished 
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product? How long will a given piece of machinery remain unused? What is the optimum 
inventory level? How long does it take to recover from a power failure?

The input to a simulation is a sequence of events with their occurrence times. It may 
come from measurements on the external systems (when the simulation is used to 
reconstruct and analyze past phenomena, for example a system failure); more commonly, 
it is produced by random number generators according to some chosen statistical laws.

A discrete-event model must keep track of external system time, also called 
simulated time, representing the time taken by external system operations such as 
performing a certain task on a certain part, or the instants at which certain events such as 
equipment failure will occur. Simulated time should not be confused with the computing 
time needed to execute the simulation system. For the simulation system, simulated time 
is simply a non-negative real variable, which the simulation program may only increase 
by discrete leaps. It is available in Simula through the query time, managed by the run-
time system and modifiable through some of the procedures seen next.

Feature time and other simulation-specific features come from a library class 
SIMULATION, which may be used as parent by another class. Let us call “simulation 
class” any class that is a descendant of SIMULATION.

In Simula, you may also apply inheritance to blocks: a block written under the form 
C begin … end has access to all the features declared in class C. SIMULATION is often 
used in this way as parent of a complete program rather than just a class. So we can also 
talk of a “simulation program”.

First, SIMULATION contains the declaration of a class PROCESS. (As noted earlier, 
Simula class declarations may be nested.) An instance of PROCESS represents a process 
of the external system. A simulation class can declare descendants of PROCESS, which 
we will call “process classes”, and their instances just “processes”. Among other 
properties, a process may be linked to other processes in a linked list (which means that 
PROCESS is a descendant of the Simula equivalent of class LINKABLE). A process may 
be in one of the following four states:

• Active, or currently executing.

• Suspended, or waiting to be resumed.

• Idle, or not part of the system.

• Terminated.

Any simulation (that is to say, any instance of a descendant of SIMULATION) 
maintains an event list, containing event notices. Each event notice is a pair 
<process, activation_time>, where activation_time indicates when the process must be 
activated. (Here and in the rest of this section any mention of time, as well as words such as 
“when” or “currently”, refer to simulated time: the external system’s time, as available 
through time.) The event list is sorted by increasing activation_time; the first process is 
active, all others are suspended. Non-terminated processes which are not in the list are idle.
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An event list

Procedure hold is 
part of the SIMU-
LATION class.
The basic operation on processes is activation, which schedules a process to become 
active at a certain time by inserting an event notice into the event list. Apparently for 
syntactical reasons, this operation is not a call to a procedure of class SIMULATION, but 
a specific instruction using the keyword activate or reactivate. (A procedure call would 
seem to be a more consistent approach; in fact the standard defines the semantics of 
activate through a fictitious procedure text.) The basic form of the instruction is

activate some_  process scheduling_clause

where some_  process is a non-void entity of type conforming to PROCESS. The optional 
scheduling_clause is of one of

at some_time
delay some_  period
before another_  process
after another_  process

The first two forms specify the position of the new event notice by its activation time 
(the sorting criterion for the event list); the new activation time is max (time, some_time)
in the at form and max (time, time + some_  period) in the delay form. The new event 
notice will be inserted after any other already present in the list with the same activation 
time, unless you specify prior. The last two forms specify the position with reference to 
another process in the list. A missing scheduling_clause is equivalent to delay 0.

A process may activate itself at a later time by specifying itself as the target process 
some_  process. In this case the keyword should be reactivate. This is useful to represent 
an external system task that takes some simulated time — but of course no computer time. 
So if you want to simulate a task that a worker takes three minutes (180 seconds) to 
perform, you can let the corresponding process worker execute the instruction

reactivate worker delay 180

This case is so common as to justify a special syntax, avoiding explicit self-reference:

hold (180)

with exactly the same effect.

As you may have guessed, processes are implemented as coroutines; the simulation 
primitives internally use the coroutine primitives that we have reviewed. The effect of 
hold (some_  period), for example, may be approximately described (in syntax similar to 
the notation of this book but extended with resume) as

p1

7:26

p7

8:32

p2

9:57

p4

9:57
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Exercise E35.2, 
page 1139.

The Simula notation 
this C, used within a 
class C, is the equiv-
alent of Current as 
used in the rest of 
this book.
-- Insert new event notice into event list at position determined by its time:
my_new_time := max (time, time + some_  period)
create my_reactivation_notice  make (Current, my_new_time)
event_list  put (my_reactivation_notice)

-- Get first element of event list and remove it:
next := event_list  first; event_list  remove_first

-- Activate chosen process, advancing time if necessary:
time := time   max (next  when); resume next  what

assuming the following declarations:

my_new_time: REAL; my_reactivation_notice, next: EVENT_NOTICE
class EVENT_NOTICE creation make feature

when: REAL -- i.e. time
what: PROCESS
make (t: REAL; p: PROCESS)

do when := t; what := p end
end

If a process becomes suspended by reactivating itself at a later time, execution will 
resume the first suspended process (the one with the earliest reactivation time) and, if its 
reactivation time is after the current time, correspondingly advance the current time.

As this example shows, the simulation primitives, although based on the coroutine 
primitives, belong to a higher level of abstraction; whenever possible it is preferable to use 
them rather than relying directly on coroutine mechanisms. In particular you may view 
hold (0) as a form of resume through which you let the underlying event list mechanism 
pick the process to be resumed, rather than specifying it explicitly.

A simulation example

Process classes and the simulation primitives provide an elegant mechanism for modeling 
external-world processes. Consider as an illustration a worker who may be asked to do 
either one of two tasks. Both may take a variable amount of time; the second requires 
switching on a machine m, which takes 5 minutes, and waiting for the machine to do its job.

PROCESS class WORKER begin
while true do begin

“Get next task type i and task duration d ”;
if i = 1 then

activate m delay 300; reactivate this WORKER after m;
end;
hold (d)

end while
end WORKER
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The operation “get next task type and task duration” will usually obtain the requested 
value from a pseudo-random number generator, using a specified statistical distribution. 
The Simula library includes a number of generators for common statistical laws. The type 
of m is assumed to be some process class MACHINE representing the behavior of 
machines. All actors of a simulation will be similarly represented by process classes.

Simula: an assessment

Like Algol 60 before it, Simula has made its contribution less by its commercial success 
than through its intellectual influence. The latter is everywhere; both in theory (abstract 
data types) and in practice, most of the developments of the past twenty years are children 
or grandchildren of the Simula ideas. As to the lack of widespread commercial success, a 
number of reasons can be invoked, but the most important one by far is as regrettable as 
it is obvious: like a few major inventions before it, Simula came too soon. Although a 
significant community immediately recognized the potential value of the ideas, the 
software field as a whole was not ready.

Thirty years later, as should be clear from the preceding overview, many of these 
ideas are as timely as ever.

35.2  SMALLTALK

The ideas for Smalltalk were laid out around 1970 at the University of Utah by Alan Kay, 
then a graduate student and part of a group that was particularly active in graphics, when 
he was asked to look at an Algol 60 compiler that had just been delivered to the department 
from Norway. Poring over it, he realized that the compiler actually went beyond Algol and 
implemented a set of notions that seemed directly relevant to Kay’s other work. The 
supported Algol extension was, of course, Simula. When Kay later joined the Xerox Palo 
Alto Research Center (PARC), he used the same principles as the basis for his vision of an 
advanced personal computing environment. The other two principal contributors to the 
early development of Smalltalk at Xerox PARC were Adele Goldberg and Daniel Ingalls.

Smalltalk-72 evolved into Smalltalk-76, then Smalltalk-80, and versions were 
developed for a number of machines — initially Xerox hardware but later industry-
standard platforms. Today Smalltalk implementations are available from several sources.

Language style

As a language, Smalltalk combines the influence of Simula with the free, typeless style of 
Lisp. The emphasis is on dynamic binding. No type checking is performed: in contrast 
with the approach emphasized in this book, the determination of whether a routine may be 
applied to an object only occurs at run time.

This, by the way, is not the standard Smalltalk terminology. A routine is called a 
“method” in Smalltalk; applying a routine to an object is called “sending a message” to 
the object (whose class must find the appropriate method to handle the message).
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“Metaclasses”, 
page 168.
Another important feature that distinguishes the Smalltalk style from what we have 
studied in this book is the lack of a clear-cut distinction between classes and objects. 
Everything in the Smalltalk system is an object, including the classes themselves. A class 
is viewed as an instance of a higher-level class called a metaclass. This allows the class 
hierarchy to encompass all elements in the system; at the root of the hierarchy is the 
highest-level class, called object. The root of the subtree containing only classes is the 
metaclass class. The arguments for this approach include:

• Consistency: everything in Smalltalk follows from a single concept, object.

• Environment effectiveness: making classes part of the run-time context facilitates 
the development of symbolic debuggers, browsers and other tools that need run-time 
access to class texts

• Class methods: it is possible to define methods that apply to the class rather than to 
its instances. Class methods may be used to provide special implementations for 
standard operations like new which allocates instances of the class.

An earlier discussion considered the arguments for other, more static approaches, 
showing different ways to obtain the same results.

Messages

Smalltalk defines three main forms of messages (and associated methods): unary, keyword 
and binary. Unary messages express calls to routines without parameters, as in

acc1 balance
which sends the message balance to the object associated with acc1. This is equivalent to 
the notation acc1  balance used in Simula and this book. Messages may, as here, return 
values. Keyword messages represent calls to routines with arguments, as in

point1 translateBy: vector1
window1 moveHor: 5 Vert: –3
The use of upper-case letters in the middle of a word, giving identifiers such as 

translateBy, is part of the established Smalltalk style. Note how the message name is 
collapsed with the keyword for the first argument. The corresponding syntax in Simula or 
our notation would have been point1  translate (vector1) and window1  move (5, –3).

Binary messages, similar to the infix functions of Ada and the notation of this book, 
serve to reconcile the “everything is an object” approach with more traditional arithmetic 
notations. Rather than

2 addMeTo: 3

most people, at least from the older generations who learned arithmetic before object 
technology, still prefer to write 2+3. Smalltalk’s binary messages permits this latter form 
as essentially a synonym for the former. There is a snag, however: precedence. The 
expression a + b ∗ c means (a + b) ∗ c. Smalltalk developers can use parentheses to re-
establish standard precedence. Unary messages take precedence over binary messages, so 
that window1 height + window2 height has the expected meaning.
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Exercise E35.5, 
page 1140. See 
“Keeping the origi-
nal version of a 
redefined feature”, 
page 555.
In contrast with Simula and the language of this book, Smalltalk classes may only 
export methods (routines). To export an attribute, you must write a function that gives 
access to its value. A typical example is

x | |
↑ xx

y | |
↑ yy

scale: scaleFactor | |
xx <– xx ∗ scaleFactor
yy <– yy ∗ scaleFactor

Methods x and y return the values of the instance variables (attributes) xx and yy. The 
up arrow ↑ means that the following expression is the value to be returned by the method 
to the sender of the corresponding message. Method scale takes an argument, scaleFactor. 
The vertical bars | | would delimit local variables if there were any.

Inheritance is an important part of the Smalltalk approach, but except for some 
experimental implementations it is limited to single inheritance. To enable a redefined 
method to call the original version, Smalltalk allows the developer to refer to the object 
viewed as an instance of the parent class through the name super, as in

aFunction: anArgument |…|
… super aFunction: anArgument …

It is interesting to compare this approach with the techniques based on Precursor and 
repeated inheritance.

All binding is dynamic. In the absence of static typing, errors resulting from sending 
a message to an object that is not equipped with a proper method to handle it will cause 
run-time failure, rather than being caught by a compiler.

Dynamic typing also renders irrelevant some of the concepts developed earlier in 
this book: Smalltalk does not need language support for genericity since a generic 
structure such as a stack may contain elements of any type without any static coherence 
checks; neither are deferred routines meaningful, since if the software includes a call x f
(the equivalent of x  f ) there is no static rule requiring any particular class to provide a 
method f. Smalltalk provides, however, a run-time mechanism to raise an error if a class 
C receives a message corresponding to a method whose effective definitions only appear 
in proper descendants of C. (In the rest of this book, C would be a deferred class, and 
instances would only be created for non-deferred descendants of C.) For example, we 
could implement rotate in a class FIGURE by

rotate: anAngle around: aPoint | |
self shouldNotImplement

The method shouldNotImplement is included in the general class object and returns 
an error message. The notation self denotes the current object.
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Environment and performance
Much of Smalltalk’s appeal has come from the supporting programming environments, 
among the first to include innovative interaction techniques (many of them devised by 
other Xerox PARC projects around the time of the original Smalltalk development) which 
have now become commonplace: multiple windows, icons, integration of text and 
graphics, pull-down menus and use of the mouse as a pointing and selecting device. Such 
staples of current O-O environment tools such as browsers, inspectors and O-O debuggers 
trace some of their roots to Smalltalk environments.

As with Simula, all commercial implementations support garbage collection. 
Smalltalk-80 and subsequent implementations are also renowned from their libraries of 
basic classes, covering important abstractions such as “collections” and “dictionaries”, 
and a number of graphical concepts. 

The lack of static typing has proved a formidable obstacle to the efficiency of 
software systems developed in Smalltalk. Although modern Smalltalk environments, no 
longer solely interpretative, provide some mechanisms for compiling methods, the 
unpredictability of run-time target types deprives most Smalltalk developers of a number 
of crucial optimizations that are readily available to compilers for statically typed 
languages (such as setting up arrays of functions references and hence ensuring constant-
time resolution of dynamic binding, as discussed in the chapter on inheritance). Not 
surprisingly, many Smalltalk projects have reported efficiency problems. In fact, the 
common misconception that object technology carries a performance penalty can be 
attributed in part to experience with Smalltalk environments.

Smalltalk: an assessment
Smalltalk was instrumental in associating interactive techniques with the concepts of 
object technology, turning the abstract objects of Simula into visual objects that became 
suddenly comprehensible and appealing to a larger audience. Simula had impressed 
programming language and programming methodology experts; Smalltalk, through the 
famous August 1981 issue of Byte, dazzled the masses.

Considering how dated the concepts of Smalltalk appear today, the commercial 
success that it enjoyed in the early nineties is remarkable. It can be partly attributed to two 
independent a contrario phenomena:

• The “try the next one on the list” effect. Many people who were initially drawn to 
object technology by the elegance of the concepts were disappointed with hybrid 
approaches such as C++. When looking for a better embodiment of the concepts, 
they often went to the approach that the computer press has consistently presented 
as the pure O-O approach: Smalltalk. Many a Smalltalk developer is indeed someone 
who “just says no” to C or C-like development.

• The decline of Lisp. For a long time, many companies relied on Lisp variants (along 
with Prolog and a few other approaches grounded in Artificial Intelligence) for side 
projects involving quick development of prototypes and experiments. Starting in the 
mid-eighties, however, Lisp largely faded from the scene; Smalltalk naturally 
occupied the resulting vacuum.
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The last observation provides a good idea of the scope of the Smalltalk approach. 
Smalltalk is an excellent tool for prototyping and experimentation, especially when visual 
interfaces are involved (it competes in this area with more recent tools such as Borland’s 
Delphi or Microsoft’s Visual Basic). But it has largely remained uninfluenced by later 
developments in software engineering methodology, as attested by the absence of static 
typing, assertion mechanisms, disciplined exception handling, deferred classes, all of 
which are important for mission-critical systems — or simply any system whose proper 
run-time behavior is important to the organization that has developed it. The performance 
problems noted above do not help.

The lesson is clear: it would not in my opinion be reasonable today for a company to 
entrust a significant production development to Smalltalk.

35.3  LISP EXTENSIONS

Like many other pre-O-O languages, Lisp has served as the basis for several object-
oriented extensions; in fact many of the earliest O-O languages after Simula and Smalltalk 
were Lisp-based or Lisp-like. This is not surprising, since Lisp and its implementations 
have for many years offered mechanisms that directly help the implementation of object-
oriented concepts, and have taken much longer to find their way into mainstream 
languages and their environments:

• A highly dynamic approach to the creation of objects.

• Automatic memory management with garbage collection.

• Ready implementation of tree-like data structures.

• Rich development environments, such as Interlisp in the seventies and its 
predecessors in the previous decade.

• Run-time selection of operations, facilitating the implementation of dynamic binding.

The conceptual distance to O-O concepts is, then, shorter if you start from Lisp than 
if you start from C, Pascal or Ada, so that the term “hybrid” commonly used for O-O 
extensions of these languages, such as the C-based hybrids which we will review in the 
next sections, is less appropriate for extensions of Lisp.

Artificial Intelligence applications, the prime application of Lisp and Lisp-like 
languages, have found in O-O concepts the benefits of flexibility and scalability. They 
have taken advantage of Lisp’s uniform representation for programs and data to extend the 
object-oriented paradigm with notions such as “meta-object protocol” and “computational 
reflection” which apply some of the O-O principles not just to the description of run-time 
structures (objects) but also to the software structure itself (classes), generalizing the 
Smalltalk concept of metaclass and continuing the Lisp tradition of self-modifying 
software. For most developers, however, these concepts are a little far-off, and they do not 
blend too well with the software engineering emphasis on a strict separation between the 
static and dynamic pictures.
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Three main contenders were vying for attention in the world of O-O Lisp in the 
eighties: Loops, developed at Xerox, initially for the Interlisp environment; Flavors, 
developed at MIT, available on several Lisp-oriented architectures; Ceyx, developed at 
INRIA. Loops introduced the interesting concept of “data-oriented programming”, 
whereby you may attach a routine to a data item (such as an attribute). Execution of the 
routine will be triggered not only by an explicit call, but also whenever the item is accessed 
or modified. This opens the way to event-driven computation, a further step towards 
decentralizing software architectures.

The unification of the various approaches came with the Common Lisp Object 
System or CLOS (pronounced C-Los by most people), an extension of Common Lisp 
which was the first object-oriented language to have an ANSI standard.

35.4  C EXTENSIONS

Much of the late nineteen-eighties transformation of object technology from an attractive 
idea into an industrial practice can be attributed to the emergence and tremendous 
commercial success of languages that added object-oriented extensions to the stable stem 
of a widely available non-O-O language, C. The first such effort to attract widespread 
attention was Objective-C; the best known today is C++.

The language styles reflect two radically different approaches to the problem of 
“hybrid” language design, so called because it combines O-O mechanisms with those of 
a language based on entirely different principles. (Examples of hybrids based on 
languages other than C include Ada 95 and Borland Pascal.) Objective-C illustrates the 
orthogonal approach: add an O-O layer to the existing language, keeping the two parts as 
independent as possible. C++ illustrates the merged approach, intertwining concepts from 
both. The potential advantages of each style are clear: the orthogonal approach should 
make the transition easier, avoiding unexpected interferences; the merged approach 
should lead to a more consistent language.

Both efforts capitalized on the success of C, which had rapidly become one of the 
dominant languages in the industry. The appeal to managers was obvious, based on the 
prospect of turning C programmers into O-O developers without too much of a culture 
shock. The model (evoked by Brad Cox) was that of the C and Fortran preprocessors such 
as Ratfor which, in the seventies, enabled part of the software community to become 
familiar with concepts of “structured programming” while continuing to work in familiar 
language frameworks.

Objective-C

Designed at Stepstone Corporation (originally Productivity Products International) by Brad 
Cox, Objective-C is a largely orthogonal addition of Smalltalk concepts onto a C base. It 
was the base language for the NEXTSTEP workstation and operating system. Although 
obscured in part by the success of C++, Objective-C has retained an active user community.
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As in Smalltalk, the emphasis is on polymorphism and dynamic binding, but current 
versions of Objective-C have departed from the Smalltalk model by offering static typing 
as an option (and for some of them, somewhat surprisingly, static binding as well). Here 
is an example of Objective-C syntax:

= Proceedings: Publication {id date, place; id articles;}

+ new {return [[super new] initialize]}

– initialize {articles = [OrderedCollection new]; return self;}

– add: anArticle {return [contents add: anArticle];}

– remove: anArticle {return [contents remove:anArticle];}

– (int) size {return [contents size];}

=:

Class Proceedings is defined as heir to Publication (Objective-C supports single 
inheritance only). The braces introduce attributes (“instance variables”). The next lines 
describe routines; self, as in Smalltalk, denotes the current instance. The name id denotes, 
in the non-statically typed variant, a general class type for all non-C objects. Routines 
introduced by +, known as “class methods” as in Smalltalk, are meant for the class; this is 
the case here with the creation operation new. Others, introduced by –, are normal “object 
methods” that send messages to instances of the class.

Stepstone’s Objective-C is equipped with a library of classes initially patterned after 
their Smalltalk counterparts. Many other classes are also available for NEXTSTEP.

C++

Originally designed by Bjarne Stroustrup at AT&T Bell Laboratories (an organization 
previously renowned, among other accomplishments, for its development of Unix and C), 
C++ quickly gained, starting around 1986, a leading position for industrial developments 
aiming to obtain some of the benefits of object technology while retaining compatibility 
with C. The language has remained almost fully upward-compatible with C (meaning that 
a valid C program is also, in normal circumstances, a valid C++ program).

Early C++ implementations were simple preprocessors that removed O-O constructs 
to yield plain C, based on techniques sketched in the preceding chapter. Today’s 
compilers, however, are native C++ implementations; it has in fact become hard to find a 
C compiler that is not also a C++ compiler, requiring the user who just wants a basic C 
compiler to turn on a special “no C++ constructs” compilation option. This is a measure 
among many of the success of the approach. Compilers are available from many sources 
and for many platforms.

Originally, C++ was an attempt at providing a better version of C, improved in 
particular through a class construct and a stronger form of typing. Here is a class example:
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“The C++ approach 
to binding”, page 
513.
class POINT {
float xx, yy;
public:

void translate (float, float);
void rotate (float);
float x ();
float y ();

friend void p_translate (POINT∗, float, float);
friend void p_rotate (POINT∗, float);
friend float p_x (POINT∗);
friend float p_y (POINT∗);

};

The first four routines are the normal, object-oriented interface of the class. As 
shown by this example, the class declaration only shows the headers of these routines, not 
their implementations (somewhat as in the output of the short command studied in earlier 
chapters). The routine implementations must be defined separately, which raises questions 
of scope for both compilers and human readers.

The other four routines are examples of “friend” routines. This notion is peculiar to 
C++ and makes it possible to call C++ routines from normal C code. Friend routines will 
need an extra argument representing the object to which an operation is applied; this 
argument is here of type POINT∗, meaning pointer to POINT.

C++ offers a rich set of powerful mechanisms:

• Information hiding, including the ability to hide features from proper descendants.

• Support for inheritance. Original versions supported single inheritance only, but now 
the language has multiple inheritance. Repeated inheritance lacks the flexibility of 
sharing or replicating on a feature-by-feature basis, which from the discussion of 
these topics seemed quite important. Instead, you share or duplicate an entire feature 
set from the repeated ancestor.

• Static binding by default, but dynamic binding for functions specified as virtual; the 
C++ approach to this issue was discussed in depth in an earlier chapter.

• A notion of “pure virtual function”, which resembles deferred features.

• Stricter typing than in traditional C, but still with the possibility of casting.

• Usually no garbage collection (because of the presence of casts and the use of 
pointers for arrays and similar structures), although some tools are available for 
suitably restrained programs.

• Because of the absence of automatic memory management by default, a notion of 
destructor for taking care of object disposal (complementing the constructors of a 
class, that is to say its creation procedures).
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• Exception handling, again not part of the original definition but now supported by 
most compilers.

• A form of assignment attempt, “downcasting”.

• A form of genericity, “templates”, which suffers from two limitations: no 
constrained genericity; and, for reasons unclear to a non-implementer, a considerable 
burden on compile-time performance (known in the C++ literature as the template 
instantiation problem).

• Operator overloading.

• An assert instruction for debugging, but no assertions in the sense of support for Design 
by Contract (preconditions, postconditions, class invariants) tied to O-O constructs.

• Libraries available from various suppliers, such as the Microsoft Foundation Classes.

Complexity

The size of C++ has grown considerably since the language’s first versions, and many 
people have complained about its complexity. That they have a point is illustrated, among 
many possible examples, by this little excerpt from a pedagogical article by a recognized 
C and C++ authority, chair of the C standards committee of the American National 
Standards Institute and author of several respected C++ books as well as the Dictionary of 
Standard C, from whom I was at some point hoping to learn the difference between the 
C++ notions of reference and pointer:

While a reference is somewhat like a pointer, a pointer is an object that 
occupies memory and has an address. Non-const pointers can also be made to 
point to different objects at run time. On the other hand, a reference is an alias 
to an object and does not, itself, occupy any memory. Its address and value are 
the address and value of the object to which it is aliased. And while you can 
have a reference to a pointer, you cannot have a pointer to a reference or an 
array of references, nor can you have an object of some reference type.
References to the void type are also prohibited.

References and pointer are not interchangeable. A reference to an int cannot,
for example, be assigned to a pointer to an int or vice versa. However, a 
reference to a pointer to an int can be assigned a pointer to an int.

I swear I tried to understand. I was almost convinced I got the hang of it, although 
perhaps not being quite ready for the midterm exam yet. (“Give convincing examples of 
cases in which it is appropriate to use: (1) A pointer only. (2) A reference only. (3) Either. 
(4) Neither. No notes or Web browsers allowed”.) Then I noticed I had missed the start of 
the next paragraph:

From what we have seen so far, it may not be obvious as to why references 
indeed exist.
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Oh well. Proponents of C++ would undoubtedly state that most users can ignore such 
subtleties. Another school holds that a programming language, the principal tool of 
software developers, should be based on a reasonable number of solid, powerful, perfectly 
understood concepts; in other words, that every serious user should know all of the 
language, and trust all of it. But it may be impossible to reconcile this view with the very 
notion of hybrid language — a notion which in the case of C++ irresistibly evokes Liszt’s 
transcription of Schubert’s admirable Wanderer Fantasy: add a full symphony orchestra, 
and keep the piano.

C++: an assessment

C++ leaves few people indifferent. The eminent author Grady Booch lists it, in a “Geek 
Chic” interview, as his programming language of choice. Then, according to Donald 
Knuth, it would make Edsger Dijkstra “physically ill to think of programming in C++”.

C++ here could use the answer of Junia to Nero in Racine’s Britannicus:

I have neither deserved, in all humility, 
         Such excess of honor, nor such indignity.

Disappointment with C++ indeed follows from exaggerated hopes. Earlier 
discussions in this book have carefully analyzed some of the language’s more 
controversial design choices — especially in the areas of typing, memory management, 
inheritance conventions and dynamic binding — and shown that better solutions are 
available. But one cannot criticize C++ as if it were the be-all and end-all of object-
oriented languages. What C++ has attempted, and achieved beyond anyone’s dreams, was 
to catch a particular moment in the history of software: the time at which a large part of 
the profession and its managers were ready to try object technology, but not ready to shed 
their current practices. C++ was the almost magical answer: still C enough not to scare 
the managers; already O-O enough to attract the forward-looking members of the trade. In 
seizing the circumstance, C++ was only following the example of C itself, which, fifteen 
years earlier, was another product of coinciding opportunities — the need for a portable 
machine-oriented language, the development of Unix, the emergence of personal 
computers, and the availability of a few decommissioned machines at Bell Labs. The 
merits of C++ lie in the historic boost it gave to the development of object technology, 
making it presentable to a whole community that might not have accepted the ideas under 
a less conventional apparel.

That C++ is not the ideal object-oriented language, a comment regularly made by 
authors and lecturers in the field, and obvious enough to anyone who has studied the 
concepts, should not obscure this contribution. We must not indeed look at C++ as if it 
were destined to remain a major tool for the software engineering community well into the 
twenty-first century, as it would then be overstaying its welcome. In the meantime C++ 
has admirably played its role: that of a transition technology.



SIMULA TO JAVA AND BEYOND:  MAJOR O-O LANGUAGES AND ENVIRONMENTS  §35.5 1136

ComputerWorld, vol. 
30, no. 29, 15 July 
1996, page 122.

See “Remote execu-
tion”, page 955.
35.5  JAVA
Introduced by a Sun Microsystems team, Java gained considerable attention in the first 
few months of 1996, presented as the way to help tame the Internet. According to 
ComputerWorld, the number of press mentions of Java in the first six months of 1996 was 
4325 (which we may multiply by 2 or 3 since this was presumably the US press only); as 
a point of comparison, Bill Gates was mentioned only 5096 times.

The principal contribution of Java is in implementation technology. Building on 
ideas already present in many other O-O environments but taken here to a new level, Java 
execution rests on a bytecode (a low-level, portable interpretable format) whose 
specification is in the public domain, and a widely available virtual machine to interpret 
bytecode programs. The virtual machine is simply a program, for which versions are 
available for many different platforms, and can be downloaded freely through the Internet; 
this enables almost anyone to execute bytecode programs produced by almost anyone else. 
Often you do not even have to download anything explicitly: the virtual machine is built 
in tools such as Web browsers; and such tools will be able to recognize references to a 
bytecode program, for example a reference embedded in a link on a Web page, so that they 
will then automatically download the program and execute it on the spot.

The explosion of the Internet has given this technology a great momentum, and Sun 
has been able to convince many other major players to produce tools based on this 
technology. As the bytecode is largely separate from the language, it stands a good chance 
of becoming a medium of choice for compiler output, regardless of what the source 
language is. Compiler writers for such notations as O-O extensions of Pascal and Ada, as 
well as the notation of this book, have not been slow to recognize the opportunity for 
developing software that will run without any change, and without even the need to 
recompile, across all industry platforms.

Java is one of the most innovative developments in the software field, and there are 
many reasons to be excited about it. Java’s language is not the main one. As an O-O 
extension of C, it has missed some of the lessons learned since 1985 by the C++ 
community; as in the very first version of C++, there is no genericity and only single 
inheritance is supported. Correcting these early oversights in C++ was a long and painful 
process, creating years of havoc as compilers never quite supported the same language, 
books never quite gave accurate information, trainers never quite taught the right stuff, and 
programmers never quite knew what to think.

Just as everyone in the C++ world has finally come up to speed, Java is starting along 
the same road. The language does have one significant benefit over C++: by removing the 
notion of arbitrary pointer, especially to describe arrays, it has finally made it possible to 
support garbage collection. For the rest, it seems to take no account of modern software 
engineering ideas: no assertion support (in fact, Java went so far as to remove the modest 
assert instruction of C and C++); partial reliance on run-time type checking; a confusing 
modular structure with three interacting concepts (classes, nested packages, source files); 
and ever the cryptic syntax bequeathed from C, with such lines as the following typical 
examples from the designers’ book on the language:
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String [] labels = (depth == 0 ? basic : extended);

while ((name = getNextPlayer()) != null) {

exhibiting side-effect-producing functions as a way of life, use of = conflicting with the 
tradition of mathematics, semicolons sometimes required and sometimes illegal etc.

That the language is uninspiring should not, however, detract from the contribution 
that Java technology has already made to portable software development. If it can 
eventually solve its current efficiency problems, Java could, through its bytecode, become 
the closest approximation (built from software rather than hardware, although “Java 
chips” have also been announced) to one of the oldest dreams of the computer industry: a 
truly universal machine.

35.6  OTHER O-O LANGUAGES

The languages reviewed so far are some of the best known, but by no means the only ones 
to have attracted significant attention. Here are a few other important contributions, which 
would each deserve a separate chapter in a book entirely devoted to object-oriented 
languages, and to which you can find references (books and Web pages) in the 
bibliographical section:

• Oberon is Niklaus Wirth’s O-O successor to Modula-2, part of a more general project 
which also involves a programming environment and even hardware support.

• Modula-3, originally from Digital Equipment’s research laboratory, is another 
modular language with class-like record types, also starting from Modula-2.

• Trellis, also from DEC Research, was among the first to offer both genericity and 
multiple inheritance.

• Sather, drawing in part from the concepts and notation of the first edition of this 
book, especially assertions, has the benefit of a public-domain implementation; its 
pSather version provides an interesting concurrency mechanism.

• Beta is a direct descendant of Simula, designed in Scandinavia with the collaboration 
of Kristen Nygaard (one of Simula’s original authors). It introduces the pattern
construct to unify the concepts of class, procedure, function, type and coroutine.

• Self is based not on classes but on “prototypes”, supporting inheritance as a relation 
between objects rather than types.

• Ada 95 was discussed in the Ada chapter.

• Borland Pascal and other O-O extensions of Pascal were cited in the discussion 
of Pascal.
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35.7  BIBLIOGRAPHICAL NOTES

Simula

[Dahl 1966] describes an initial version of Simula subsequently known as Simula 1. The 
current Simula, long known as Simula 67, was initially described by [Dahl 1970], which 
assumed Algol 60 as a basis and only described the Simula extensions. A chapter in the 
famous Structured Programming book of Dahl, Dijkstra and Hoare [Dahl 1972] brought 
the concepts to a wider audience. The language description was revised in 1984, 
incorporating the Algol 60 elements. The official reference is the Swedish national 
standard [SIS 1987]. For an account of Simula’s history by its designers, see [Nygaard 
1981].

The best known book on Simula is [Birtwistle 1973]. It remains an excellent 
introduction. A more recent text is [Pooley 1986].

Smalltalk

References on the earliest versions of Smalltalk (-72 and -76) are [Goldberg 1976] and 
[Ingalls 1978].

A special issue that Byte devoted to Smalltalk [Goldberg 1981] was the key event 
that brought Smalltalk to prominence long before supporting environments became 
widely available. The basic reference on the language is [Goldberg 1983], serving both as 
pedagogical description and reference; complementing it is [Goldberg 1985], which 
describes the programming environment.

For a good recent introduction to both the Smalltalk language and the VisualWorks 
environment see [Hopkins 1995]; for an in-depth treatment see Lalonde’s and Pugh’s two-
volume set [Lalonde 1990-1991].

The story of Simula’s original influence on Smalltalk (the “Algol compiler from 
Norway”) comes from an interview of Alan Kay in TWA Ambassador (yes, an airline 
magazine), exact issue number forgotten — early or mid-eighties. I am indebted to Bob
Marcus for pointing out the connection between Lisp’s decline and Smalltalk’s resurgence.

C extensions: Objective-C, C++

Objective-C is described by its designer in an article [Cox 1984] and a book [Cox 1990] 
(whose first edition dates back to 1986). Pinson and Wiener have written an introduction 
to O-O concepts based on Objective-C [Pinson 1991].

There are hundreds of books on C++. For a personal account of the language’s 
history by its designer, see [Stroustrup 1994]. The original article was [Stroustrup 1984]; 
it was extended into a book [Stroustrup 1986], later revised as [Stroustrup 1991], which 
contains many tutorial examples and useful background. The reference manual is 
[Ellis 1990].
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Ian Joyner has published several editions of an in-depth “C++ critique” 
[Joyner 1996] available on a number of Internet sites and containing detailed comparisons 
with other O-O languages.

Lisp extensions

Loops: [Bobrow 1982]; Flavors: [Cannon 1980], [Moon 1986]; Ceyx: [Hullot 1984];
CLOS: [Paepcke 1993].

Java

In the few months that followed the release of Java, many books have appeared on the 
topic. Those by the designing team include: [Arnold 1996] for a language tutorial, 
[Gosling 1996] as the language reference, and [Gosling 1996a] about the basic libraries.

A discussion about Java’s lack of assertions in the style of this book (that is to say, 
supporting the principles of Design by Contract), conducted on Usenet in August 1995, 
appears at http://java.sun.com/archives/java-interest/0992.html. 

Other languages

Oberon: [Wirth 1992], [Oberon-Web]. Modula-3: [Harbison 1992], [Modula-3-Web]. 
Sather: [Sather-Web]. Beta: [Madsen 1993], [Beta-Web]. Self: [Chambers 1991], [Ungar 
1992]. 

EXERCISES

E35.1  Stopping on short files

Adapt the Simula coroutine example (printer-controller-producer) to make sure that it 
stops properly if the input does not have enough elements to produce 1000 output 
elements. (Hint: one possible technique is to add a fourth coroutine, the “reader”.)

E35.2  Implicit resume    

(This is a exercise on Simula concepts, but you may use the notation of the rest of this book 
extended with the simulation primitives described in this chapter.) Rewrite the producer-
printer example in such a way that each coroutine does not need to resume one of its 
colleagues explicitly when it has finished its current job; declare instead the coroutine 
classes as descendants of PROCESS, and replace explicit resume instructions by hold (0)
instructions. (Hints: recall that event notices with the same activation time appear in the 
event list in the order in which they are generated. Associate with each process a condition 
that needs to be satisfied for the process to be resumed.)
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E35.3  Emulating coroutines  

Devise a mechanism for emulating coroutines in an O-O language of your choice (such as 
the notation of the rest of this book) that does not provide coroutine support. (Hint: write 
a resume procedure, implemented as a loop containing a conditional instruction with a 
branch for every resume. Obviously, you may not for this exercise use the concurrency 
mechanism of chapter 30, which among other applications supports coroutines.) Apply 
your solution to the producer-printer-controller example of this chapter.

E35.4  Simulation  

Using the notation of this book or another O-O language, write classes for discrete-event 
simulation, patterned after the Simula classes SIMULATION, EVENT_NOTICE, 
PROCESS. (Hint: you may use the techniques developed for the previous exercise.)

E35.5  Referring to a parent’s version

Discuss the respective merits of Smalltalk’s super technique against the techniques 
introduced earlier in this book to enable a redefined routine to use the original version: 
Precursor construct and, when appropriate, repeated inheritance.



Part G: 
Doing it right
O Freunde! Nicht diese Töne! 
Sondern laßt uns angenehmere anstimmen 

Und freudenvollere.

Ludwig van Beethoven, finale of the Ninth 
Symphony: prelude inserted before the text of 
Schiller’s Ode to Joy. 
 
(Translation: see beginning of next chapter.)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part G will briefly present an environment that seeks combines the most productive 
ideas developed in this book and makes them practically available.
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An object-oriented environment 
he diagram is on 
age 1149.
L ate into Beethoven’s Choral Symphony, a baritone breaks the stream of astounding but 
until then purely instrumental sounds to awake us to something even grander:

O my friends! No more of these tunes! 
Let us strike up instead 
Some more pleasant and joyful ones.
After reviewing in the preceding chapters some of the common approaches to O-O 

development, we should similarly end with a perhaps more modern and comprehensive 
approach (with no intended disparagement of the others; after all the Ninth’s first three 
movements, before it goes vocal, already were pretty decent stuff.)

This chapter presents an environment (ISE’s) that relies on the principles developed 
in the rest of this book, and makes them available concretely to O-O software developers. 
A complete diagram of the environment appears later in this chapter; some of the principal 
components are included for trial purposes in the CD-ROM attached to this book.

The purpose of this presentation is to put the final touch to our study of object 
technology by showing how environment support can make the concepts convenient to use 
in practice. A caveat: nothing in this discussion suggests that the environment discussed 
below is perfect (in fact, it is still evolving). It is only one example of a modern O-O 
environment; others — such as Borland’s Delphi to name just one — have met wide and 
deserved success. But we need to explore one environment in some depth to understand the 
connection between the method’s principles and their day-to-day application by a developer 
sitting at a terminal. Many of the concepts will, I hope, be useful to readers using other tools.

36.1  COMPONENTS
The environment combines the following elements:

• An underlying method: the object-oriented method, as described in this book.
• A language, the notation presented in this book, for analysis, design and 

implementation.
• A set of tools for exploiting the method and the language: compiling, browsing, 

documenting, designing.
• Libraries of reusable software components.

The next sections sketch these various elements, except for the first which, of course, 
has been the subject of the rest of this book.
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36.2  THE LANGUAGE
The language is the notation that we have devised in part C and applied throughout the 
book. We have essentially seen all of it; the only exceptions are a few technical details 
such as how to represent special characters.

Evolution
The first implementation of the language dates back to late 1986. Only one significant 
revision has occurred since then (in 1990); it did not change any fundamental concepts but 
simplified the expression of some of them. Since then there has been a continuous attempt 
at clarification, simplification and cleanup, affecting only details, and bringing two recent 
extensions: the concurrency mechanism of chapter 30 (concretely, the addition of a single 
keyword, separate) and the Precursor construct to facilitate redefinition. The stability of 
the language, a rare phenomenon in this field, has been a major benefit to users.

Openness
Although a full-fledged programming language, the notation is also designed to serve as 
a wrapping mechanism for components that may be written in other languages. The 
mechanism for including external elements — the external clause — was described in an 
earlier chapter. It is also possible, through the Cecil library, for external software to use the 
O-O mechanisms: create instances of classes, and call features on these objects, through 
dynamic binding (but of course with only limited static type checking).

Of particular interest are the C and C++ interfaces. For C++, a tool called Legacy++ 
is available to produce, out of an existing C++ class, a “wrapper” class that will 
automatically include the encapsulation of all the exported features of the original. This is 
particularly useful to developers whose organizations may have used C++ as their first 
stop on the road to object orientation in the late eighties or early nineties, and now want 
to move on to a more complete and systematic form of the technology — without 
sacrificing their investment. Legacy++ smoothes the transition.

36.3  THE COMPILATION TECHNOLOGY
The first task of the environment is, of course, to let us execute our software.

Compilation challenges
Developed over many years and bootstrapped through several iterations, the compilation 
technology is an answer to a set of challenges:
C1  • The efficiency of the generated code must be excellent, comparable to what 

developers could obtain by using a classical language such as C. There is no reason 
to pay a significant performance price for O-O techniques.

C2  • The recompilation time after a change must be short. More precisely, it should be 
proportional to the size of the change, not to the size of the entire system. The 
crucial compilation concern, for developers working on a possibly large system, is 
the need to perform changes and see the results immediately.
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The Frozen 
and the Melted
C3  • A third requirement, which appeared more recently, is quickly becoming 
important: the need to support the fast delivery of applications through the Internet 
to users or potential users, for immediate execution.

The first two requirements, in particular, are hard to reconcile. C1 is usually 
addressed through extensive compiler optimizations that make the recompilation and 
linking process prohibitively long. C2 is well served by interpretive environments, which 
execute software on-the-fly with little or no processing, but to obtain this result they must 
sacrifice execution-time performance (C1) and static type checking.

The Melting Ice Technology

The compilation technology that deals with the preceding issues, known as the Melting Ice 
Technology, uses a mix of complementary techniques. Once you have compiled a system, 
it is said to be frozen, like a block of ice stored in the freezer. As you take out the system 
to start working on it (so the metaphor goes), you produce some heat; the melted elements 
represent the changes. Those elements will not cause a compile-link cycle, which would 
defeat the goal of fast recompilation (C2); the melted code is, instead, directly executable 
by the environment’s execution engine.

The tricky part (for the compiler implementers) is of course to make sure that the 
various components can work together, in particular that frozen code can call melted 
elements — even though it was not known, at freezing time, that they would later be 
melted! But the result is definitely worthwhile:

• Recompilation is fast. The waiting time is typically a few seconds.

• This is still a compilation approach: any recompilation will perform full type 
checking (without undue penalty on recompilation time because the checking, like 
the recompilation in general, is incremental: only the changed parts are rechecked).

YOUR SYSTEM

Execution,
browsing,
symbolic debugging,
documentation…

MELTING

FREEZING

Machine code
(from C code)

FROZEN

MELTED

BENCH

“Bytecode”

THE ENVIRONMENT
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• Run-time performance remains acceptable because for a non-trivial system a typical 
modification will only affect a small percentage of the code; everything else will be 
executed in its compiled form. (For maximum efficiency, you will use the finalization
form of compilation, as explained below.)
As you perform more and more changes, the proportion of melted code will grow; 

after a while the effect on performance, time and space, may become perceptible. So it is 
wise to re-freeze every few days. Because freezing implies a C-compilation and linking, 
the time it takes is typically more on the order of minutes (or even an hour after several 
days of extensive changes). You can start this task in the background, or at night.

Dependency analysis
As should be the case in any modern development environment, the recompilation process 
is automatic; you will simply click on the Melt button of the Project Tool, in the interface 
described below, and the compiling mechanisms will silently determine the smallest set of 
elements that need to be recompiled; there is no need for “Make files” and the notation has 
no notion of “include file”.

To compute what needs to be recompiled, the environment’s tools first find out what 
you have changed, either from within the environment, using its own class editor, or 
through outside tools such as text editors (each class text being stored in a file, the time 
stamps provide the basic information). Then they use the two dependency relations, client 
and inheritance, to determine what else may have been affected and needs recompilation. 
In the client case, information hiding is an important help to minimize propagation: if a 
change to a class only affects secret features, its clients do not need recompilation.

To reduce melting time further, the grain of recompilation is not the class but the 
individual routine.

Note that if you add an external element, for example a C function, a freeze will be 
required. Again this will be determined automatically.

Precompilation
In accordance with the method’s emphasis on reusability, it is essential to allow software 
developers to put together carefully crafted sets of components — libraries —, compile 
them once and for all, and distribute them to other developers who will simply include 
them in their systems without having to know anything about their internal organization.

The precompilation mechanism achieves this goal. A special compilation option 
generates a compiled form of a set of classes; then it is possible (through the Ace file) to 
include a precompiled library in a new system.

There is no limit to the number of precompiled libraries that you may include in a 
new system. The mechanism that combines precompiled libraries supports sharing: if two 
precompiled libraries B and C both rely on a third one A (as with the Vision graphical 
library and the Net client-server library, discussed later, which both rely on the Base 
libraries for data structures and fundamental algorithms), only one copy of A will be 
included provided both B and C use the same version of A.
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The author of a precompiled library may want to prevent his customers from having 
access to the source code of the library (an early chapter discussed the pros and cons of 
this policy). It is indeed possible, when precompiling, to make the source code 
inaccessible. In that case users of the environment will be able, through the visual tools 
described later in this chapter, to browse the short form and the flat-short form of the 
library’s classes, that is to say their interface (public) properties; but they will not be able 
to see their full text, let alone their flat form.

Remote execution
The interpretive code generated by melting — conventionally known as bytecode and 
identified as such on the preceding figure — is platform-independent. To execute 
bytecode, it suffices to have a copy of the environment’s Execution Engine, known as 3E 
and freely downloadable through the Internet.

By adding 3E as a plug-in to a Web browser, it will be possible to make code directly 
executable: if a browser’s user clicks on a hyperlink corresponding to bytecode, 3E will 
automatically execute the corresponding code. This is the remote execution mechanism 
first popularized by Java.

3E actually comes in two flavors, distinguished by the accompanying precompiled 
libraries. The first, secure, is meant for Internet usage; to avoid security risks it only allows 
input and output to the terminal. The second, meant for Intranet (corporate network) 
usage, supports general I/O and other precompiled libraries.

An effort is also in progress to translate the bytecode into Java bytecode, to offer the 
supplementary possibility of executing the result of a development using a Java 
virtual machine.

Optimization
To generate the best possible code — goal C1 of the earlier discussion — frozen mode is 
not sufficient. Some crucial optimizations require having a complete, stable system:

• Dead code removal removes any routines that can never be called, directly or 
indirectly, from the system’s root creation procedure. This is particularly important 
if you rely on many precompiled libraries, of which your system may only need a 
subset; a space gain of 50% is not uncommon.

• Static binding which, as we studied in detail in the discussion of inheritance, should be 
applied by the compiler for features that are not redefined, or non-polymorphic entities.

• Routine inlining, also subject to compiler algorithms.

When you are still changing your system, these optimizations are not applicable, 
since your next editing move could invalidate the compiler’s work. For example by adding 
just one call you may resuscitate a supposedly dead routine; by adding a routine 
redefinition, you cause a statically bound routine to require dynamic binding. Besides, 
such optimizations may require a complete pass through a system, for example to 
determine that no class redefines a certain routine; this makes them incompatible with 
incremental development.
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As a result, these optimizations are part of a third form of compilation, finalization, 
complementing the other two (melting and freezing). For a large system finalization can 
take a few hours; but it leaves no stone unturned in removing anything that will not be 
needed and speeding up everything that is not optimal. The result is the most efficient 
executable form of the system.

The obvious opportunity for finalization is the delivery of a system, for a final or 
intermediate release. But many project leaders like to finalize once a week, at the time of 
the latest integration.

36.4  TOOLS
The figure on the facing page shows the general organization of the environment. The 
environment is of course used to bootstrap itself, and is written in the O-O notation (except 
for some elements of the runtime system, discussed next); this makes it an excellent 
testbed of the technology, and a living proof that it does scale up to large, ambitious 
systems (which, of course, we would not want to develop in any other way!).

Bench and the development process

The centerpiece is Bench, the graphical workbench for compilation, browsing (exploring 
classes and features), documentation, execution, debugging. When developing a system 
you will constantly interact with Bench. For example you can melt the latest version by 
clicking on the Melt button of the Bench’s Project Tool, shown below.

As long as you are melting and freezing you can stay within Bench. When you 
finalize a system — also by clicking on a button, although for this operation and many 
others non-graphical commands are also available — the outcome will be a C program, 
which the environment will compile to machine code for your platform by calling the 
appropriate C compiler. Freezing too relies on C as intermediate code. The use of C has 
several benefits: C is available on just about every platform; the language is sufficiently 
low level to provide a good target format for a compiler; C compilers perform their own 
extensive optimizations. Two further advantages deserve emphasis:

• Thanks to C generation you can use the environment as a cross-development
platform, by compiling the generated C on another platform. This is particularly 
useful for the production of embedded systems development, which typically uses a 
different platform for development and for final execution.

• The use of C as compilation technology helps implement the openness mechanisms 
discussed earlier, in particular the interfaces to and from existing software written in 
C and C++.

Finalized C code, once compiled, must be linked; at this stage it uses the runtime 
system, a set of routines providing the interface with the operating system: file access, 
signal handling, basic memory allocation. 

In the case of cross development of embedded systems, it is possible to provide a 
minimum form of the runtime, which, for example, does not include any I/O.
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High-level tools
At the top of the figure on the preceding page, two high-level generation tools appear.

Build is an interactive application generator based on the Context-Event-Command-
State model developed in an earlier chapter. You can use it to develop GUI (Graphical 
User Interface) applications graphically and interactively.

Case is an analysis and design workbench which provides the ability to reason on 
systems at a high level of abstraction, and through graphical representations. In 
accordance with the principles of seamlessness and reversibility introduced in the 
discussion of the software process, Case allows you both to:

• Devise system structures through graphical interaction — to produce visual 
representations of classes (“yy-bubbles”), specify their relations through client and 
inheritance arrows, and group them into clusters —, relying on Case to generate the 
corresponding software texts in the end (forward engineering).

• Process existing class texts to produce the corresponding graphical representations, 
to facilitate exploring and restructuring (reverse engineering).

Particular attention has been devoted to making sure that developers can freely 
alternate between forward and reverse engineering. In particular, you can make changes 
on either the graphical or the textual form; Case provides a reconciliation mechanism 
which will merge the two sets of changes and, in case of conflicts, take you through a step-
by-step decision process in which you will see the conflicting versions of a feature and 
choose, in each case, the version to be retained. This part of the tool is key to ensuring true 
reversibility, letting developers decide at each stage the level of abstraction and the 
notation, graphical or textual, that they find most appropriate.

The conventions of Case are drawn from the Business Object Notation described in 
an earlier chapter. BON supports in particular the tools’ facilities for abstraction and 
zooming: it is essential, for large systems, to enable developers to work on an entire system, 
on a subsystem, on just a small cluster, choosing the exact level of abstraction they desire.

An example Case screen appears at the top of the facing page, showing a cluster from 
a chemical plant description, the properties of one of its classes (VAT), and the properties 
of one of the features of that class (fill).

36.5  LIBRARIES
A number of libraries appear on the general environment diagram of the preceding page. 
They play a considerable role in the software development process, providing developers 
with a rich set (several thousand classes) of reusable components. They include:

• The Base libraries, about 200 classes covering the fundamental data structures (lists, 
tables, trees, stacks, queues, files and so on). The most fundamental classes make up 
the Kernel library, governed by an international standard (ELKS).

• The graphical libraries: Vision for platform-independent GUI development; WEL for 
Windows, GEL for the GTK graphical framework available among others on Linux.
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“Storable format 
variants”, page 
1038.

A cluster, class 
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under Case

(Here on a Sparc-
station with Motif, 
but versions exist 
for Windows and 
other look-and-feel 
variants.)

“Object-oriented 
re-architecturing”, 
page 441.
• Net, for client-server development, allowing the transferral of arbitrarily complex 
object structures over a network; the platforms may be the same or different (under 
independent_store the format is platform-independent).

• Lex, Parse for language analysis. Parse, in particular, provides an interesting 
approach to parsing, based on a systematic application of object-oriented concepts 
to parsing (each production modeled by a class; see the bibliographical notes). A 
supporting public-domain tool, YOOCC, serves as front-end for Parse.

• Math is a numerical library providing an object-oriented view of the fundamental 
techniques of numerical computation. It is based internally on the NAG library and 
covers a large set of facilities. Some of its concepts were presented in an earlier 
chapter as an example of O-O re-architecturing of non-O-O mechanisms.
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• ObjEdit provides facilities for editing objects interactively during execution.

• Web supports the processing of forms submitted by visitors to a Web site, 
advantageously replacing the Perl or C “CGI scripts” sometimes used for this purpose.

The bottom part of the environment diagram shows libraries used for taking care of 
persistence needs during execution: the STORABLE class and a few complementary tools, 
discussed in earlier chapters, support storage, retrieval and network transmission of object 
structures, self-contained through the application of the Persistence Closure principle; and 
the Store library is the database interface, providing mechanisms for accessing and storing 
data in relational databases (such as Oracle, Ingres, Sybase) and object-oriented databases.

This list is not exhaustive; other components are under development, and users of the 
environment have provided their own libraries, either free or commercial.

A particularly interesting combination is the use of Net, Vision and Store for building 
client-server systems: a server can take care of the database aspects through Store, and of 
the heaviest part the computation (possibly using Base, Math etc.); lean clients that only 
handle the user interface part can rely on Vision (or just one of the platform-specific 
libraries), and include little else.

36.6  INTERFACE MECHANISMS

To support the preceding concepts, the environment provides a visual interface, based on 
an analysis of the needs of developers and of the requirements of various platforms.

This brief presentation will only mention some of the most original aspects of the 
environment. Ample literature (see the bibliographic notes) is available on its other 
facilities; the reader familiar with other modern development environments will have no 
difficulty guessing some of the tools and possibilities not described here.

Platforms

The screenshots that follow were drawn from a session on a Sun Sparcstation, for no other 
reason than convenience. Other platforms supported at the time of writing include 
Windows 95 and Windows NT, Windows 3.1, OS/2, Digital’s VMS (Alpha and Vax) and 
all major brands of Unix (SunOS, Solaris, Silicon Graphics, IBM RS/6000, Unixware, 
Linux, Hewlett-Packard 9000 Series etc.). [2023 note: this list is obviously obsolete, check 
current platform lists. In addition, the environment has evolved to modern standards.]

Although the general concepts are the same on every platform, and the environment 
supports source-code compatibility, the exact look-and-feel adapts to the conventions of 
each platform, especially for Windows which has its own distinctive culture.

The following screenshot shows a set of environment windows during a session. 
Although printed in black and white in this book, the display makes extensive use of 
colors, especially to distinguish the various parts of class texts (the default conventions, 
user-changeable, are keywords in blue, identifiers in black, comments in red).
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Tools
Tools

An environment consists of tools. In many cases those tools are functional tools, in the 
sense of being devoted to functions: a browser tool to browse, a debugger tool to debug, 
a pretty-printer tool to produce formated versions of software texts. A recent environment 
such as Sun’s Java Workshop (as demonstrated in September of 1996) still conforms to 
this traditional pattern; to find the ancestors of a class (its parent, grandparent etc.) you 
start a special “browser” tool.

The disadvantage of this approach is that it is modal: it forces you to select first what 
you want to do, then what you want to do it to. The practice of software development is 
different. During the course of a debugging session, you may suddenly need a browsing 
facility: for example you discover that a routine causing trouble is a redefined version, and 
you want to see the original. If you see that original you may next want to see the enclosing 
class, its short form, and so on. Modal environments do not let you do this: you will have 
to go away from the “debugger tool” to a “browser tool” and restart from scratch to look 
for the item of interest (the routine) even though you had it in the other window.

Here too the object-oriented method provides a better approach. In the same way that 
we learned to trust object types rather than functions to define our software architectures, 
we can base our tools on the type of development objects that developers manipulate. So 
we will have no debugger or browser window, but instead a Class Tool, a Feature Tool, a 
System Tool, a Project Tool, an Object Tool, corresponding to the abstractions that O-O 
software developers deal with day in and day out: classes, features, systems (assemblies 
of classes), projects, and, at run-time, class instances (“objects” in the strict sense).
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Project Tool 
during a 
compilation

A Class Tool in 
default format
A Project Tool, for example, will keep track of your overall project. You use it among 
other applications to perform a Melt , a Freeze or a Finalize; here is a Project Tool 
captured during a compilation, with a progress bar showing the percentage done:

A Class Tool will be targeted to a particular class such as LIST:
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Project and 
Feature Tool 
for debugging

An object and 
its fields 
captured 
during 
execution
A Feature Tool, here attached to a Project Tool as part of a debugging session, shows 
both a feature and the progress of the execution, with mechanisms for step-by-step execution, 
displaying the call stacks (see the local entities’ values in the Project Tool). The Feature Tool 
is targeted to feature call_this_routine of class TEST.

During an execution, you can also see an individual object through an Object Tool:
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See the figure enti-
tled “Pick-and-
throw”, page 534

Typed pick-
and-throw
This shows the various fields of the objects. One of them, guardian, denotes a non-
void reference; you can see the corresponding object by following the link, as we will 
shortly see.

You can of course have as many Class Tools, Feature Tools and Object Tools as you 
like, although there is only one System Tool and one Project Tool during a session.

Retargeting and browsing

Various techniques are available to change the target of a tool, for example to retarget the 
preceding Class Tool from LIST to ARRAY. One way is simply to type the new class name 
in the corresponding field (possibly with wild card characters as in ARR∗, to get a menu 
of matching names if you do not exactly remember).

But you can also used the pick-and-throw mechanism briefly introduced in an 
earlier chapter. If you right-click on a class name, such as CHAIN in the Class Tool 
targeted to LIST

the cursor changes into a pebble of elliptical form, indicating that what you have picked 
is a class. The ellipse corresponds to the form of the class hole ; find the Class Tool 
that you want to retarget (the same or another), and drop the pebble into the hole, by right-
clicking into it, to retarget the tool to the chosen class. For convenience you can actually 
drop it more or less anywhere into the tool, globally considered as a big hole. Rather than 
pick, drag and throw, you can control-right-click on an object — class, feature… — to 
start a new tool of the appropriate type, targeted to the object.

The pick-and-throw mechanism is a generalization of common drag-and-drop. 
Instead of having to maintain the button pressed, however, you work in three steps: the 
first right-click selects the object; you release the button immediately. Then you are in drag 
mode, where moving the mouse will cause the line attached to the original element (as on 
the above figure) to follow the pebble. Finally, you right-click again in the destination 
hole. This has three advantages over common drag-and-drop:

CHAIN[G]
The pebble being dragged
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• Having to keep the mouse button pressed during the whole process, although 
acceptable for occasional drag-and-drop operations such as moving an element in an 
interface builder, can cause considerable muscle fatigue at the end of the day when 
you use it frequently.

• It is all too easy to slacken off the pressure for a split second and drop on the wrong 
place, often with unpleasant or even catastrophic consequences. (This has happened 
to me on Windows 95 while drag-and-dropping an icon representing a file; I 
involuntarily dropped it at a quite unintended place and had a hard time finding out 
what the operating system had done with the file.)

• Common drag-and-drop does not let you cancel the operation! Once you have picked 
an object, you must drop it somewhere; but there may not be such an acceptable 
somewhere if you have changed your mind. With the pick-and-throw mechanism, a 
left-click will cancel the entire operation at any time before throwing.

• Also note that the mechanism is typed: it will only let you drop a pebble into a 
matching hole. There is some tolerance: in the same way that polymorphism lets 
you attach a RECTANGLE object to a POLYGON entity, you can drop a feature 
pebble into a class hole (and see the enclosing class, with the feature highlighted). 
Again the environment’s interaction mechanisms directly apply, for convenience 
and consistency, the concepts of the method. (Here the difference with common 
drag-and-drop mechanisms is not crucial, as some of them do have a limited form 
of typing.)

These, however, are just user interface issues. More important is the role of pick-and-
throw, combined with other mechanisms of the environment, to provide an integrated set 
of mechanisms for all tasks of software development. If you look back at the Class Tool 
targeted to LIST, a deferred class from the Base libraries, you will note a row of format 
buttons (the second row of buttons from the top). They include:

• Class text .

• Ancestors .

• Short form .

• Routines .

• Deferred routines .

and so on. Clicking on one of them will display the class text in the corresponding format. 
For example if you click on Ancestors the Class Tool will display the inheritance structure 
leading to LIST in the Base libraries:
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The ancestry of 
a class
In such a display, as in every other tool display, everything of importance is 
clickable. This means that if for example you notice class CURSOR_STRUCTURE and 
want to learn more about it, you can just right-click on it and use pick-and-throw to 
retarget this tool, or another, to the chosen class. Then you can choose another format, such 
as Short Form. If in that format you see the name of an interesting routine, you can again 
apply pick-and-throw to target a Feature Tool to it. In the Feature Tool, the available 
format buttons include history which shows all the adventures of a feature in the 
inheritance games: all the versions it has in various classes, after renaming, effecting, 
redefinition; and whenever it lists a class or a feature in showing this information, the 
environment will let you pick-and-throw the element.

Similarly, the debugging session shown earlier showed class and feature names in 
various places; to find out information on any of them, just use pick-and-throw. To see an 
object, such as 0X142F18 on the previous example (an internal identifier, by itself 
meaningless but clickable), control-right-click on it to start an Object Tool similar to the 
one we saw, displaying an instance of PERSON. In that tool, all fields are identified by 
their class names — clickable — and references are also clickable, so that you can easily 
explore the run-time data structures, however complex.
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For each of the available formats, you can produce output in various forms such as 
HTML, TEX, Microsoft’s Rich Text Format, FrameMaker MML, troff and so on (a small 
descriptive language enables you to define your own output forms or adapt an existing 
one). The output can be displayed, stored with the class files, or, if you want to produce 
on-line documentation for an entire project or cluster, stored in a separate directory.

These browsing mechanisms do not make any difference between built-in libraries 
and developer-defined classes. If an element of your software uses INTEGER, you can just 
control-right-click or use pick-and-throw to see that basic class in a Class Tool, in any 
available format. (As noted, the author of a precompiled library may elect to make the 
source unavailable, but you will still have access to the short and flat-short forms, with 
usual clickability properties.) This is of course in line with this book’s general principle of 
uniformity and seamlessness, attempting as much as possible to use a single set of 
concepts throughout software development activities.

In contrast, I tried in the aforementioned demo of Java Workshop to get some information 
about a redefined feature of a certain class, picked at random, but was told that there was 
no way the “browser tool” could handle that feature, since it turned out to come from a 
class of the predefined graphical library. The only way to get any information at all was 
to go to another tool and bring up the documentation — which had a one-line description 
of the feature. (INTEGER would probably also not be browsable since basic types are not 
classes in Java.)

The run-time mechanisms, in particular the debugging facilities (single-stepping, 
stop points and so on) all follow from these basic concepts. For example to put a stop point 
on an instruction or a routine you just drag-and-drop the chosen stop point location to a 
Stop Point hole .

Some holes, known as “buttonholes”, double up as buttons. For example clicking on 
a Stop Point hole, treated as a button, will display in the Project Tool information about all 
the currently active stop points; such information being again clickable, you can easily 
remove existing stop points or add new ones to the list.

The systematic application of these techniques makes up a mechanism for 
proximity browsing where everything of interest is hyperlinked — far preferable, in my 
experience, to modal environments which force you to ask at each step “Am I browsing? 
Oh no, I am debugging, so I must start a browser tool. And what tool should I start to 
get the class documentation?”.

You are neither debugging nor browsing nor documenting nor editing; you are using 
and building software, and the tools should let you do what you want on all the objects you 
want, at any time you want.
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36.7  BIBLIOGRAPHICAL NOTES

For an up-to-date summary of the benefits of the environment see [M 1996b], also 
available on line [M-Web] along with many other technical documents and descriptions 
of actual projects.

A collective volume describing a set of industrial applications produced with the 
environment over the years, whose chapters are written by the project leaders in the 
companies involved, was published as [M 1993].

Among the publications that have described various aspects of the environments at 
successive stages of its evolutions are: [M 1985c], [M 1987b], [M 1987c], [M 1988],
[M 1988a], [M 1988d], [M 1988f], [M 1989], [M 1993d], [M 1997].

The reference on the language is [M 1992]. The book Reusable Software [M 1994a]
contains, along with a discussion of library design principles, a detailed description of the 
Base libraries.

Another book [M 1994] presents the environment as a whole. [M 1995c] describes 
the Case analysis and design workbench, and [M 1995e] the Build graphical application 
builder. The interface principles were presented in [M 1993d].

The YOOC compiler generator was developed by Christine Mingins, Jon Avotins, 
Heinz Schmidt and Glenn Maughan of Monash University [Avotins 1995] and is available 
from Monash’s FTP site. The object-oriented parsing techniques of the underlying Parse 
library, initially presented in [M 1989d], are covered in [M 1994a].

The Math library was developed by Paul Dubois and is described in [Dubois 1997].

Many people have participated in the development of the environment. Some of the 
principal contributions are due to Éric Bezault (to whom I am also grateful for 
proofreading parts of this book), Reynald Bouy, Fred Deramat, Fred Dernbach (who built 
the original architecture of the current compiler), Sylvain Dufour, Fabrice Franceschi, 
Dewi Jonker, Patrice Khawam, Vince Kraemer, Philippe Lahire, Frédéric Lalanne, Guus 
Leeuw, Olivier Mallet, Raphaël Manfredi (who established the basis for the current 
runtime system), Mario Menger, Joost De Moel, David Morgan, Jean-Marc Nerson 
(especially for the initial versions), Robin van Ommeren, Jean-Pierre Sarkis, Glen Smith, 
Philippe Stephan (who originated many of the interface principles), Terry Tang, Dino 
Valente, Xavier Le Vourch, Deniz Yuksel. It is impossible to cite even a small part of the 
environment users who also helped through their feedback and suggestions
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Exposing the Language
E  nthusiastically setting out to solve some of the most pressing problems of software 
engineering, this book has developed an ambitious method for developing quality 
systems. Since no method is possible without a supporting notation, we have had to 
devise, as we learned the various components of object-oriented software construction, 
what in the end turned out to be a complete lifecycle language for software analysis, 
specification, design, implementation, maintenance and documentation.

Instead of reading on page one, however, the name of the language that you would 
be using, you have been invited to participate with the author in developing the notation, 
chapter after chapter, notion after notion, construct after construct. And until now that 
language has remained nameless. Why? The reasons were sketched in the preface but may 
deserve some final elaboration.

First, I hope that even though you were warned that the notation already exists and 
is extensively documented in tens of published textbooks, hundreds of articles and 
thousands of Usenet messages, you earnestly accepted the pedagogical convention that 
you participated in its design as you were reading this book. Although this has made life 
a little harder for the author — imagine: having to justify every single construct, instead 
of bringing it to the people down from the top of Mount Sinai — the effort will have been 
worthwhile if it has succeeded in giving you a better understanding not only of what things 
are but of why they must be that way. Second, the convention has enabled us to 
concentrate on the method, not on notational details, making this book useful not just to 
people who will indeed have access to the language through one of the supporting 
commercial environments, but also to those readers who are required to use less complete 
O-O languages such as Smalltalk, C++, Ada 95, Java or Object Pascal, or even a non-
O-O one such as C, Fortran, Pascal or Ada, to which one can apply the emulation 
techniques discussed in earlier chapters.

Fiction or not, the mystery is not very hard to penetrate. Even if you have not looked 
at the back cover of this book or read other works by the same author (including the 
complete language description [M 1992]), just a cursory glance at some of the 
bibliographical references will have revealed all there is to reveal. And books such as this 
one are meant to be not only read but re-read, so the surprise, if any, will not last long.
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Even so, keeping the language name away from the discussion (except for a few 
hints that the alert reader may have noted) has enabled us to concentrate on the method. 
This is a little paradoxical, since one of the language’s principal claims is that, alone 
among O-O languages, it is also a method, avoiding the gap between concept and 
expression, between analysis and design, between design and implementation, which 
plagues common O-O approaches and threatens to defeat some of the principal advantages 
of object technology. Not even the brightest-eyed Java or Smalltalk enthusiast will allege 
that his language of choice is a general-purpose tool for design, let alone analysis; and 
users of popular analysis notations such as OMT know that they must move to something 
else when it comes to producing the actual software. The ambition of the method-notation 
developed in this book is higher: to fulfill one of the main premises and promises of object 
technology, seamlessness, by serving as a faithful assistant that will accompany you 
throughout the software construction process.

Literary conventions have an end, so the time has now come, at the close of our 
extended tour of the beauties of object-oriented software construction, after thanking the 
reader for patiently going along, through all these pages, with the pedagogical pretense of 
an anonymous language, to lift the very thin veil that covered the name of our notation: 
welcome to the world of Eiffel.
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Part H contains the appendices: an overview of some library classes; a discussion of 
genericity versus inheritance; a list of principles and definitions; a glossary; the 
bibliography; and the index.
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Throughout the discussion, we have encountered references to a set of libraries 
collectively known as the “Base libraries”, from which the most fundamental classes are 
grouped into the “Kernel library”.

Reading such classes is a good way to learn more about the method by benefiting 
from the example of widely reused software components, which have been around for a 
long time and continue to evolve.

This page and the next are only the introduction to the appendix; the actual class 
texts, made available in electronic form so as to facilitate browsing, appear on the CD-
ROM accompanying this book.

A detailed presentation of the libraries has been published separately [M 1994a], which 
also describes the theoretical underpinnings — the general taxonomy principles used to 
classify the major data structures of computing science. A few of the basic ideas were 
summarized in the discussion of view inheritance.

Among the most important classes whose concepts were discussed in the previous 
chapters and whose text you will find on the CD-ROM are:

• ARRAY, describing one-dimensional arrays and relying on a flexible and general 
view of this notion (in particular, arrays can be freely resized to any dimension 
during the execution of a system).

• LINKABLE, describing cells of linked structures, chained one way to similar cells.

• BI_LINKABLE, the equivalent for two-way linked cells.

• LIST, a deferred class representing the general notion of list as “active data structure” 
with cursor, without commitment to a particular representation. (The next three 
classes provide specific implementations, using multiple inheritance through the 
“marriage of convenience” technique.)

• ARRAYED_LIST, giving an implementation by an array (whose resizability is 
particularly useful here).

• LINKED_LIST, a one-way linked list implementation, relying internally on class 
LINKABLE.
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• TWO_WAY_LIST, a one-way linked list implementation, relying internally on class 
BI_LINKABLE.

• TWO_WAY_TREE, a widely used implementation of general trees, based on 
TWO_WAY_LIST for its representation and relying on the observation made in 
the chapter on multiple inheritance: if we merge the notion of tree and node, we 
can consider that a tree is both a list (as in TWO_WAY_LIST) and a list element 
(as in BI_LINKABLE).

All these classes, representing containers, are generic, with a single generic 
parameter representing the type of elements.



B  
Genericity versus inheritance
The material that follows, and its appearance in an appendix, deserve some background 
explanation. Part of the original impetus for the work that eventually led to this book was 
a study that I performed in 1984; in preparation for a graduate course that I was to teach 
on “advanced concepts in programming languages”, I compared the “horizontal” module 
extension mechanism of genericity, illustrated by Ada, Z, LPG and other generic 
languages, with the “vertical” mechanism of inheritance introduced by Simula: how these 
techniques differ, to what extent they compete, and to what extent they complement each 
other. This led to an article on “Genericity versus Inheritance” [M 1986], presented at the 
first OOPSLA conference, and to a chapter in the first edition of the present book.

When preparing this new edition I felt that both genericity and inheritance were now 
understood well enough, and their treatment detailed enough in the rest of the book, to 
make the chapter appear too specialized: useful mostly to readers interested in issues of 
language design or O-O theory. So I removed it. But then I found out that a regular flow 
of articles in the software press still showed much puzzlement over the issue, especially 
in the context of C++ for which many people seem to be searching for general guidelines 
on when to use “templates” and when to use inheritance. This means the discussion still 
has its place in a general presentation of object technology, although it is perhaps best 
severed from the main part of the text. Hence this appendix.

The topics reviewed are, in order: genericity; inheritance; how to emulate each of 
these mechanisms through the other; and, as a conclusion, how best to reconcile them.

If you have read carefully the remainder of this book, you will find the beginning of 
this discussion familiar since we must restart with the basics to get a full picture of each 
mechanism, of its contribution, and of its limitations. As we probe deeper and deeper, 
perhaps stepping briefly into a few dead ends along the way, the ideal combination of 
genericity and inheritance will progressively unfold before our eyes, imposing itself in the 
end as almost inevitable and letting us understand, in full detail, the fascinating 
relationship between the two principal methods for making software modules open to 
variation and adaptation.
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This extract and the 
next few are in Ada 
or Ada-like syntax.
B.1  GENERICITY
We begin our review by appraising the merits of genericity as it exists in a number of 
languages, object-oriented or not. Let us rely for convenience on the notations — 
semicolons and all — of the best known non-O-O generic language, Ada (meaning by 
default, as elsewhere in this book, Ada 83). So for the rest of this section we forget about 
O-O languages and techniques.

Only the most important form of Ada genericity will be considered: type 
parameterization, that is to say the ability to parameterize a software element (in Ada, a 
package or routine) by one or more types. Generic parameters have other, less momentous 
uses in Ada, such as parameterized dimensions for arrays. We may distinguish between 
unconstrained genericity, imposing no specific requirement on generic parameters, and 
constrained genericity, whereby a certain structure is required.

Unconstrained genericity
Unconstrained genericity removes some of the rigidity of static typing. A trivial example 
is a routine (in a language with Ada-like syntax but without explicit type declarations) to 
swap the values of two variables:

procedure swap (x, y) is
local t;

begin
t := x; x := y; y := t;

end swap;
This form does not specify the types of the elements to be swapped and of the local 

variable t. This is too much freedom, since a call swap (a, b), where a is an integer and b
a character string, will not be prohibited even though it is probably an error.

To address this issue, statically typed languages such as Pascal and Ada require 
developers to declare explicitly the types of all variables and formal arguments, and 
enforce a statically checkable type compatibility constraint between actual and formal 
arguments in calls and between source and target in assignments.The procedure to 
exchange the values of two variables of type G becomes:

procedure G_swap (x, y: in out G) is
t: G;

begin
t := x; x := y; y := t;

end swap;
Demanding that G be specified as a single type averts type incompatibility errors, but 

in the constant haggling between safety and flexibility we have now erred too far away 
from flexibility: to correct the lack of safety of the first solution, we have made the 
solution inflexible. We will need a new procedure for every type of elements to be 
exchanged, for example INTEGER_swap, STRING_swap and so on. Such multiple 
declarations lengthen and obscure programs. The example chosen is particularly bad since 
all the declarations will be identical except for the two occurrences of G.
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Static typing may be considered too restrictive here: the only real requirement is that 
the two actual arguments passed to any call of swap should be of the same type, and that 
their type should also be applied to the declaration of the local variable t. It does not matter 
what this type actually is as long as it satisfies these properties.

In addition the arguments must be passed in in out mode, so that the procedure can 
change their values. This is permitted in Ada.

Genericity provides a tradeoff between too much freedom, as with untyped 
languages, and too much restraint, as with Pascal. In a generic language you may declare 
G as a generic parameter of swap or an enclosing unit. Ada indeed offers generic routines, 
along with the generic packages described in chapter 33. In quasi-Ada you can write:

generic
type G is private;

procedure swap (x, y: in out G) is
t: G;

begin
t := x; x := y; y := t;

end swap;

The only difference with real Ada is that you would have to separate interface from 
implementation, as explained in the chapter on Ada. Since information hiding is irrelevant 
for the discussion in this chapter, interfaces and implementations will be merged for ease 
of presentation.

The generic… clause introduces type parameters. By specifying G as “private”, the 
writer of this procedure allows himself to apply to entities of type G (x, y and t) operations 
available on all types, such as assignment or comparison, and these only.

The above declaration does not quite introduce a routine but rather a routine pattern; 
to get a directly usable routine you will provide actual type parameters, as in

procedure int_swap is new swap (INTEGER);
procedure str_swap is new swap (STRING);

etc. Now assuming that i and j are variables of type INTEGER, s and t of type STRING, 
then of the following calls

int_swap (i, j); str_swap (s, t); int_swap (i, s); str_swap (s, j); str_swap (i, j);

all but the first two are invalid, and will be rejected by the compiler.

More interesting than parameterized routines are parameterized packages. As a 
minor variation of our usual stack example, consider a queue package, where the 
operations on a queue (first-in, first out) are: add an element; remove the oldest element 
added and not yet removed; get its value; test for empty queue. The interface is:
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generic
type G is private;

package QUEUES is
type QUEUE (capacity: POSITIVE) is private;
function empty (s: in QUEUE) return BOOLEAN;
procedure add (t: in G; s: in out QUEUE);
procedure remove (s: in out QUEUE);
function oldest (s: in QUEUE) return G;

private
type QUEUE (capacity: POSITIVE) is 

-- The package uses an array representation for queues 
record

implementation: array (0 . . capacity) of G;
count: NATURAL;

end record;
end QUEUES;
Again this does not define a package but a package pattern; to get a directly usable 

package you will use generic derivation, as in
package INT_QUEUES is new QUEUES (INTEGER);
package STR_QUEUES is new QUEUES (STRING);
Note again the tradeoff that generic declarations achieve between typed and untyped 

approaches. QUEUES is a pattern for modules implementing queues of elements of all 
possible types G, while retaining the possibility to enforce type checks for a specific G, so as 
to rule out such unholy combinations as the insertion of an integer into a queue of strings.

The form of genericity illustrated by both of the examples seen so far, swapping and 
queues, may be called unconstrained since there is no specific requirement on the types 
that may be used as actual generic parameters: you may swap the values of variables of 
any type and create queues of values of any type, as long as all the values in a given queue 
are of the same type.

Other generic definitions, however, only make sense if the actual generic parameters 
satisfy some conditions. This form may be called constrained genericity.

Constrained genericity
As in the unconstrained case, the examples of constrained genericity will include both a 
routine and a package.

Assume first you need a generic function to compute the minimum of two values. 
You can try the pattern of swap:

generic
type G is private;

function minimum (x, y: G) return G is begin
if x <= y then return x; else return y; end if;

end minimum;
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Such a function declaration, however, does not always make sense; only for types G
on which a comparison operator <= is defined. In a language that enhances security 
through static typing, we want to enforce this requirement at compile time, not wait until 
run time. We need a way to specify that type G must be equipped with the right operation.

In Ada this will be written by treating the operator <= as a generic parameter of its 
own. Syntactically it is a function; as a syntactic facility, it is possible to invoke such a 
function using the usual infix form if it is declared with a name in double quotes, here 
"<=". Again the following declaration becomes legal Ada if the interface and 
implementation are taken apart.

generic
type G is private;
with function "<=" (a, b: G) return BOOLEAN is < >;

function 0(x, y: G) return G is begin
if x <= y then return x; else return y end if;

end minimum;

The keyword with introduces generic parameters representing routines, such as "<=".

You may perform a generic derivation minimum for any type, say T1, such that there 
exists a function, say T1_le, of signature function (a, b: T1) return BOOLEAN:

function T1_minimum is new minimum (T1, T1_le);

If function T1_le is in fact called "<=", more precisely if its name and type signature 
match those of the corresponding formal routine, then you do not need to include it in the 
list of actual parameters to the generic derivation. So because type INTEGER has a 
predefined "<=" function with the right signature, you can simply declare

function int_minimum is new minimum (INTEGER);

This use of default routines with matching names and types is made possible by the 
clause is < > in the declaration of the formal routine, here "<=". Operator overloading, as 
permitted (and in fact encouraged) by Ada, plays an essential role: many different types 
will have a "<=" function.

This discussion of constrained genericity for routines readily transposes to packages. 
Assume you need a generic package for handling matrices of objects of any type G, with 
matrix sum and product as basic operations. Such a definition only makes sense if type G
has a sum and a product of its own, and each of these operations has a zero element; these 
features of G will be needed in the implementation of matrix sum and product. The public 
part of the package may be written as follows:

generic
type G is private;
zero: G;
unity: G;
with function "+" (a, b: G) return G is < >;
with function "∗" (a, b: G) return G is < >;
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package MATRICES is
type MATRIX (lines, columns: POSITIVE) is private;
function "+" (m1, m2: MATRIX) return MATRIX;
function "∗" (m1, m2: MATRIX) return MATRIX;

private
type MATRIX (lines, columns: POSITIVE) is

array (1 . . lines, 1 . . columns) of G;
end MATRICES;
Typical generic derivations are:
package INTEGER_MATRICES is new MATRICES (INTEGER, 0, 1);
package BOOLEAN_MATRICES is

new MATRICES (BOOLEAN, false, true, "or", "and");
Again, you may omit actual parameters corresponding to formal generic routines 

(here "+" and "∗") for type INTEGER, which has matching operations; but you will need 
them for BOOLEAN. (It is convenient to declare such parameters last in the formal list; 
otherwise keyword notation is required in derivations that omit the corresponding actuals.)

It is interesting here to take a look at the body (implementation) of such a package:
package body MATRICES is

… Other declarations …
function "∗" (m1, m2: G) is

result: MATRIX (m1' lines, m2' columns);
begin

if m1' columns /= m2' lines then
raise incompatible_sizes;

end if;
for i in m1' RANGE(1) loop

for j in m2' RANGE(2) loop
result (i, j) := zero;
for k in m1' RANGE(2) loop

result (i, j) := result (i, j) + m1 (i, k) ∗ m2 (k, j)
end loop;

end loop;
end loop;
return result

end "∗";
end MATRICES;
This extract relies on some specific features of Ada:

• For a parameterized type such as MATRIX (lines, columns: POSITIVE), a variable 
declaration must provide actual parameters, e.g. mm: MATRIX (100, 75); you may 
then retrieve their values using apostrophe notation, as in mm' lines which in this case 
has value 100.
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This extract and the 
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• If a is an array, a' RANGE(i) denotes the range of values in its i-th dimension; for 
example m1' RANGE(1) above is the same as 1 . . m1' lines.

• If requested to multiply two dimension-wise incompatible matrices, the extract 
raises an exception, corresponding to the violation of an implicit precondition.

The minimum and matrix examples are representative of Ada techniques for 
constrained genericity. They also show a serious limitation of these techniques: only 
syntactic constraints can be expressed. All that a programmer may require is the presence of 
certain routines ("<=", "+", "∗" in the examples) with given types; but the declarations are 
meaningless unless the routines also satisfy some semantic constraints. Function minimum
only makes sense if "<=" is a total order relation on G; and to produce a generic derivation 
of MATRICES for a type G, you should make sure that operations "+" and "∗" have not just 
the right signature, G × G → G, but also the appropriate properties: associativity, 
distributivity, zero a zero element for "+" and unity for "∗" etc. We may use the mathematical 
term ring for a structure equipped with operations enjoying these properties.

B.2  INHERITANCE
So much for pure genericity. The other term of the comparison is inheritance. To contrast 
it with genericity, consider the example of a general-purpose module library for files. First 
here is the outline of an implementation of “special files” in the Unix sense, that is to say, 
files associated with devices:

class DEVICE feature
open (file_descriptor: INTEGER) do … end
close do … end
opened: BOOLEAN

end
An example use of this class is:

d1: DEVICE; f1: INTEGER; …
create d1  make; d1  open (f1);
if d1  opened then …
Consider next the notion of a tape device. For the purposes of this discussion, a tape 

unit has all the properties of devices, as represented by the three features of class DEVICE, 
plus the ability to rewind its tape. Rather than building a class from scratch, we may use 
inheritance to declare class TAPE as an extension-cum-modification of DEVICE. The new 
class extends DEVICE by adding a new procedure rewind, describing a mechanism 
applicable to tapes but not necessarily to other devices; and it modifies some of DEVICE’s 
properties by providing a new version of open, describing the specifics of opening a 
device that happens to be a tape drive.

Objects of type TAPE automatically possess all the features of DEVICE objects, plus 
their own (here rewind). Class DEVICE could have more heirs, for example DISK with its 
own specific features such as direct access read.
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Objects of type TAPE will possess all the features of type DEVICE, possibly adapted 
(in the case of open), and complemented by the new feature rewind.

With inheritance comes polymorphism, permitting assignments of the form x := y, 
but only if the type of x is an ancestor of the type of y. The next associated property is 
dynamic binding: if x is a device, the call x  open (f1) will be executed differently 
depending on the assignments performed on x before the call: after x := y, where y is a tape, 
the call will execute the tape version.

We have seen the remarkable benefits of these inheritance techniques for reusability 
and extendibility. A key aspect was the Open-Closed principle: a software element such 
as DEVICE is both usable as it stands (it may be compiled as part of an executable system) 
and still amenable to extensions (if used as an ancestor of new classes).

Next come deferred features and classes. Here we note that Unix devices are a special 
kind of file; so you may make DEVICE an heir to class FILE, whose other heirs might 
include TEXT_FILE (itself with heirs NORMAL and DIRECTORY) and BINARY_FILE. 
The figure shows the inheritance graph, a tree in this case.

Although it is possible to open or close any file, how these operations are performed 
depends on whether the file is a device, a directory etc. So FILE is a deferred class with 
deferred routines open or close, making descendants responsible for implementing them:

deferred class FILE feature
open (file_descriptor: INTEGER) deferred end
close deferred end;

end

Effective descendants of FILE will provide effective implementations of open
and close.

∗
FILE

DEVICE

Inherits from

TEXT_FILE BINARY_
FILE

∗ Deferred
DEVICE BINARY_

FILE

open*
close*
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B.3  EMULATING INHERITANCE WITH GENERICITY
To compare genericity with inheritance, we will study how, if in any way, the effect of each 
feature may be emulated in a language offering the other.

First consider a language such as Ada (again meaning Ada 83), offering genericity 
but not inheritance. Can it be made to achieve the effects of inheritance?

The easy part is name overloading. Ada, as we know, allows reusing the same routine 
name as many times as needed for operands of different types; so you can define types 
such as TAPE, DISK and others, each with its own version of the routines:

procedure open (p: in out TAPE; descriptor: in INTEGER);
procedure close (p: in out DISK);
No ambiguity will arise if the routines are distinguished by the type of at least one 

operand. But this solution does not provide polymorphism and dynamic binding, whereby 
d  close, for example, would have a different effect after assignments d := di and d := ta, 
where di is a DISK and ta a TAPE.

To obtain the same effect, you have to use records with variant fields: define
type DEVICE (unit: DEVICE_TYPE) is

record
… Fields common to all device types …
case unit is

when tape => … fields for tape devices …;
when disk => … fields for disk devices …;
… Other cases …;

end case
end record

where DEVICE_TYPE is an enumerated type with elements tape, disk etc. Then there 
would be a single version of each the procedures on devices (open, close etc.), each 
containing a case discrimination of the form

case d'unit is
when tape => … action for tape devices …;
when disk => … action for disk devices …;
… other cases …;

end case
This uses explicit discrimination in each case, and closes off the list of choices, 

forcing every routine to know of all the possible variants; addition of new cases will cause 
changes to all such routines. The Single Choice principle expressly warned against such 
software architectures.

So the answer to the question of this section is essentially no:

Emulating inheritance
It appears impossible to emulate inheritance through genericity.
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B.4  EMULATING GENERICITY WITH INHERITANCE

Let us see if we will have more luck with the reverse problem: can we achieve the effect 
of Ada-style genericity in an object-oriented language with inheritance?

The O-O notation introduced in earlier chapters does provide a generic parameter 
mechanism. But since we are comparing pure genericity versus pure inheritance, the rule 
of the game for some time, frustrating as it may be, is to pretend we have all but forgotten 
about that genericity mechanism. As a result the solutions presented in this section will be 
substantially more complex than those obtainable with the full notation, described in the 
rest of this book and in later sections. As you read this section, remember that the software 
extracts are not final forms, but for purposes of discussion only.

Surprisingly perhaps, the simulation turns out to be easier, or at least less artificial, 
for the more sophisticated form of genericity: constrained. So we begin with this case.

Emulating constrained genericity: overview

The idea is to associate a class with a constrained formal generic type parameter. This is a 
natural thing to do since a constrained generic type may be viewed, together with its 
constraining operations, as an abstract data type. Consider for example the Ada generic 
clauses in our two constrained examples, minimum and matrices:

generic
type G is private;
with function "<=" (a, b: G) return BOOLEAN is < >

generic
type G is private;
zero: G; unity: G;
with function "+" (a, b: G) return G is < >;
with function "∗" (a, b: G) return G is < >;

We may view these clauses as the definitions of two abstract data types, 
COMPARABLE and RING_ELEMENT; the first is characterized by a comparison 
operation "<=", and the second by features zero, unity, "+" and "∗".

In an object-oriented language, such types may be directly represented as classes. We 
cannot define these classes entirely, for there is no universal implementation of "<=", "+"
etc.; rather, they are to be used as ancestors of other classes, corresponding to actual 
generic parameters. Deferred classes provide exactly what we need:

deferred class COMPARABLE feature
infix “<=” (other: COMPARABLE): BOOLEAN deferred end

end
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deferred class RING_ELEMENT feature
 infix "+" (other: like Current): like Current is

deferred
ensure

equal (other, zero) implies equal (Result, Current)
end;

 infix "∗" (other: like Current): like Current deferred end
zero: like Current deferred end
unity: like Current deferred end

end
Unlike Ada, the O-O notation allows us here to express abstract semantic properties, 

although only one of them has been included as an example (the property that x + 0 = x 
for any x, appearing as a postcondition of infix "+").

The use of anchored types (like Current) makes it possible to avoid some improper 
combinations, as explained for the COMPARABLE example next. At this stage replacing 
all such types by RING_ELEMENT would not affect the discussion.

Constrained genericity: routines

We can write a routine such as minimum by specifying its arguments to be of type 
COMPARABLE. Based on the Ada pattern, the function would be declared as

minimum (one: COMPARABLE; other: like one): like one is
-- Minimum of one and other

do … end
In O-O development, however, every routine appears in a class and is relative to the 

current instance of that class; we may include minimum in class COMPARABLE, argument 
one becoming the implicit current instance. The class becomes:

deferred class COMPARABLE feature
infix "<=" (other: like Current): BOOLEAN is

-- Is current object less than or equal to other?
deferred
end

minimum (other: like Current): like Current is
-- Minimum of current object and other

do
if Current <= other then Result := Current else Result := other end

end
end
To compute the minimum of two elements, you must declare them of some effective 

descendant type of COMPARABLE, for which infix “<=” has been effected, such as
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class INTEGER_COMPARABLE inherit
COMPARABLE

creation
put

feature -- Initialization
put (v: INTEGER)

-- Initialize from v.
do item := new end

feature -- Access
item: INTEGER;

-- Value associated with current object
feature -- Basic operations

infix "<=" (other: like Current): BOOLEAN
-- Is current object less than or equal to other?

do Result := (item <= other  item) end;
end
To find the minimum of two integers, you may now apply function minimum to 

entities ic1 and ic2, whose type is not INTEGER but INTEGER_COMPARABLE:
ic3 := ic1  minimum (ic2)
To use the generic infix "<=" and minimum functions, you must renounce direct 

references to integers, using INTEGER_COMPARABLE entities instead; hence the need 
for attribute item and routine put to access and modify the associated integer values. You 
will introduce a similar heirs of COMPARABLE, such as STRING_COMPARABLE, and 
REAL_COMPARABLE, for each type requiring a version of minimum.

Note that the mechanism of anchored declaration is essential to ensure type 
correctness. If the argument to minimum in COMPARABLE had been declared as a 
COMPARABLE, rather than like Current, then the following call would be valid:

ic1  minimum (c)
even if c is a COMPARABLE but not an INTEGER_COMPARABLE. Clearly, such a call 
should be disallowed. This also applies to the previous example, RING_ELEMENT.

Having to declare features item and put for all descendants of COMPARABLE, and 
hence sacrificing the direct use of simple types, is unpleasant. There is also a performance 
cost: rather than manipulating integers or strings we must create and use wrapper objects
of types such as INTEGER_COMPARABLE. But by paying this fixed price in both ease of 
use and efficiency we do achieve the full emulation of constrained genericity by inheritance. 
(In the final notation, of course, there will be no price at all to pay.)

Emulating constrained genericity (1)
It is possible to emulate constrained genericity through inheritance, by using 
wrapper classes and the corresponding wrapper objects.
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Constrained genericity: packages

The previous discussion transposes to packages. To emulate the matrix abstraction which 
Ada implemented through the MATRICES package, we can use a class:

class MATRIX feature
anchor: RING_ELEMENT do end
implementation: ARRAY2 [like anchor]
item (i, j: INTEGER): like anchor

-- Value of (i, j) entry
do Result := implementation  item (i, j) end

put (i, j: INTEGER; v: like anchor)
-- Assign value v to entry (i, j).

do implementation  put (i, j, v) end
infix "+" (other: like Current): like Current

-- Matrix sum of current matrix and other
local

i, j: INTEGER
do

create Result  make (…)
from i := … until … loop

from j := … until … loop
Result    put ((item (i, j) + other  item (i, j)), i, j)
j := j + 1

end
i := i + 1

end
end

infix "∗" (other: like Current): like Current
-- Matrix product of current matrix by other

local … do … end
end
The type of the argument to put and of the result of item raises an interesting 

problem: it should be RING_ELEMENT, but redefined properly in descendant classes. 
Anchored declaration is the solution; but here for the first time no attribute of the class 
seems to be available to serve as anchor. This should not stop us, however: we declare an 
artificial anchor, called anchor. Its only purpose is to be redefined to the proper 
descendant types of RING_ELEMENT in future descendants of MATRIX (that is to say, to 
BOOLEAN_RING in BOOLEAN_MATRIX etc.), so that all associated entities will follow. 
To avoid any space penalty in instances, anchor is declared as a function rather than an 
attribute. This technique of artificial anchors is useful to preserve type consistency when, 
as here, there is no “natural” anchor among the attributes of the class.
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A few loop details have been left out, as well as the body of infix "∗", but they are 
easy to fill in. Features put and item as applied to implementation will come from the 
library class ARRAY2 describing two-dimensional arrays.

To define the equivalent of the Ada generic package derivation shown earlier

package BOOLEAN_MATRICES is
new MATRICES (BOOLEAN, false, true, "or", "and");

we must first declare the “ring element” corresponding to booleans:

class BOOLEAN_RING_ELEMENT inherit
RING_ELEMENT

redefine zero, unity end
creation

put
feature -- Initialization

put (v: BOOLEAN)
-- Initialize from v.

do item := v end
feature -- Access

item: BOOLEAN
feature -- Basic operations

infix "+" (other: like Current): like Current
-- Boolean addition: or

do create Result  put (item or other  item) end
infix "∗" (other: like Current): like Current

-- Boolean multiplication: and
do create Result  put (item and other  item) end

zero: like Current
-- Zero element for boolean addition

once create Result  put (False) end
unity: like Current

-- Zero element for boolean multiplication
once create Result  put (True) end

end

Note how zero and unity are effected as once functions.

Then to obtain an equivalent to the Ada package derivation, just define an heir 
BOOLEAN_MATRIX of MATRIX, where you only need to redefine anchor, the artificial 
anchor; all the other affected types will follow automatically:
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class BOOLEAN_MATRIX inherit
MATRIX

redefine anchor end
feature

anchor: BOOLEAN_RING_ELEMENT
end

This construction achieves the effect of constrained genericity using inheritance, 
confirming for packages the emulation result initially illustrated for routines.

Unconstrained genericity

The mechanism for simulating unconstrained genericity is the same; we can simply treat 
this case as a special form of constrained genericity, with an empty set of constraints. As 
above, formal type parameters will be interpreted as abstract data types, but here with no 
relevant operations. The technique works, but becomes rather heavy to apply since the 
dummy types do not correspond to any obviously relevant data abstraction.

Let us apply the previous technique to both our unconstrained examples, swap and 
queue, beginning with the latter. We need a class, say QUEUABLE, describing objects that 
may be added to and retrieved from a queue. Since this is true of any object, the class has 
no other property than its name:

class QUEUABLE end

We may now declare a class QUEUE, whose operations apply to QUEUABLE
objects. (Remember that this class is not offered as a paragon of good O-O design: we are 
still voluntarily playing with an impoverished version of the O-O notation, devoid of 
genericity.) Routine postconditions have been left out for brevity. Although in principle 
function item could serve as an anchor, its body will not change in descendants, so it is 
better to use an artificial anchor item_anchor to avoid having to redefine item.

note
description: "First-in-first out queues, implemented through arrays"

class QUEUE creation
make

feature -- Initialization
make (m: INTEGER)

-- Create queue with space for m items.
require

m >= 0
do

create implementation  make (1, m); capacity := m
first := 1; next := 1

end
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feature -- Access

capacity, first, next, count: INTEGER

item: like item_anchor

-- Oldest element in queue

require
not empty

do
Result := implementation  item (first)

end

feature -- Status report

empty: BOOLEAN

-- Is queue empty?

do Result := (count = 0) end

full: BOOLEAN

-- Is representation full?

do Result := (count = capacity) end

feature -- Element change

put (x: like item_anchor)

-- Add x at end of queue

require
not full

do
implementation  put (x, next); count := count + 1; next := successor (next)

end

remove

-- Remove oldest element

require
not empty

do
first := successor (first); count := count – 1

end
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feature {NONE} -- Implementation
item_anchor: QUEUABLE do end
implementation: ARRAY [like item_anchor]
successor (n: INTEGER): INTEGER

-- Next value after n, cyclically in the interval 1 . . capacity
require

n >= 1; n <= capacity
do

Result := (n \\ capacity) + 1
end

invariant
0 <= count; count <= capacity; first >= 1; next >= 1
(not full) implies ((first <= capacity) and (next <= capacity))
(capacity = 0) implies full
-- Items, if any, appear in array positions first, … next – 1 (cyclically)

end
Bounded queue implementations elsewhere in this book rely on the technique of keeping 
one position open. Here, we allocate capacity elements and keep track of count. There is 
no particular reason, other than to illustrate alternative implementation techniques.

To get the equivalent of generic derivation (so as to obtain queues of a specific type) 
you must, as with the COMPARABLE example, define descendants of QUEUABLE:

class INTEGER_QUEUABLE inherit
QUEUABLE

creation
put

feature -- Initialization
put (n: INTEGER)

-- Initialize from n.
do item := n end

feature -- Access
item: INTEGER

feature {NONE} -- Implementation
item_anchor: INTEGER do end

end
and similarly STRING_QUEUABLE etc.; then declare the corresponding descendants of 
QUEUE, redefining item_anchor appropriately in each.

Emulating unconstrained genericity
It is possible to emulate unconstrained genericity through inheritance, by 
using wrapper classes and the corresponding wrapper objects.
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Chapter 17.
B.5  COMBINING GENERICITY AND INHERITANCE
It appears from the previous discussion that inheritance is the more powerful mechanism 
since we have not found a reasonable way to simulate it with genericity. In addition:

• You can express the equivalent of generic routines or packages in a language with 
inheritance, but this requires some duplication and complication. The verbosity is 
particularly hard to justify for unconstrained genericity, which requires just as much 
emulation effort even though it is theoretically simpler.

• Type checking introduces difficulties in the use of inheritance to emulate genericity.

Anchored declaration solves the second problem. (The reader familiar with the 
detailed discussion of typing in an earlier chapter will, however, have noted the potential 
for system validity problems, which we do not need to explore further since they will 
disappear in the solutions finally retained below.)

Let us see how we can solve the first problem by introducing (reintroducing, that is) 
the appropriate form of genericity.

Unconstrained genericity

Since the major complication arises for unconstrained genericity even though it should be 
the simpler case, it seems adequate to provide a specific genericity mechanism for this 
case, avoiding the need to rely on inheritance. Consequently, we allow our classes to have 
unconstrained generic parameters: as we are now (at last) allowed to remember from 
earlier chapters, a class may be defined as

class C [G, H, …] …

where the parameters represent arbitrary types. To obtain a directly usable type you use a 
generic derivation, using types as actual generic parameters:

x: C [DEVICE, RING_ELEMENT, …]

This immediately applies to the queue class, which we can simply declare as

note
description: "First-in-first out queues, implemented through arrays"

class QUEUE [G] creation
… The rest as before, but removing the declaration of item_anchor
      and replacing all occurrences of type like item_anchor by G …

end
We get rid of class QUEUABLE as well as INTEGER_QUEUABLE and other such 

descendants; to have a queue of integers, we simply use type QUEUE [INTEGER], 
manipulating integers directly rather than through intermediate wrapper objects.

This is a remarkable simplification, suggesting that in spite of the theoretical 
possibility of emulating unconstrained genericity through inheritance, it is desirable in 
practice to introduce a generic mechanism into the object-oriented framework.
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Constrained genericity

For constrained genericity we can explore the same general scheme. In the matrix example:

class MATRIX [G] feature
anchor: RING_ELEMENT [G]
…Other features as before …

end
with ring elements now declared as

deferred class RING_ELEMENT [G] feature
item: G
put (new: G) do item := new end
…Other features as before …

end
Using the same a generic parameter in two related classes, RING_ELEMENT and 

MATRIX, ensures type consistency: all the elements of a given matrix will be of type 
RING_ELEMENT [G] for the same G.

We can similarly make class COMPARABLE generic:

deferred class COMPARABLE [G] feature
item: G
put (new: G) do item := new end
 
…Other features (infix "<=", minimum) as before … 

end
The features of the class (infix "<=", minimum) represent the constraints (the with 

routines of the Ada form). The earlier descendants become extremely simple:

class INTEGER_COMPARABLE inherit
COMPARABLE [INTEGER]

creation
put

end
(Note that this is the whole class, not a sketch with features to be added!) The same scheme 
immediately applies to all other variants such as STRING_COMPARABLE.

The technique is indeed fairly simple to apply, leading to one more emulation principle:

Providing unconstrained genericity
Along with inheritance, it is desirable to provide a specific notation for 
declaring classes as generic (unconstrained).
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Exercise 19.5, page 
422 of [M 1988]. 
Later printings men-
tioned that the exten-
sion had been 
integrated into the 
language.
But we are again paying a price: we need to reintroduce wrapper classes such as 
INTEGER_COMPARABLE. This is less shocking than in the earlier solution, because then 
we had to pay that price for the unconstrained case as well, even though it is conceptually 
very simple. Here it seems easier to justify the need for wrapper classes and objects since 
constrained genericity is a relatively sophisticated idea.

Based on these observations, the notation of this book and compilers for it did not 
initially — for a little over two years, late 1985 to early 1988 — have special support for 
constrained genericity. The first edition of this book mentioned the possibility of such 
support, proposing as an exercise the exact design of an appropriate language construct. 
But it did not take very long afterwards to realize that most applications were not ready to 
pay the price of wrapper classes and objects, and to integrate the exercise’s solution into 
the notation; the compilers soon followed.

The notation in question is, of course, the one earlier chapters have used to specify 
constrained genericity, as in

class MATRIX [G –> RING_ELEMENT] …

and

class SORTABLE_LIST [G –> COMPARABLE] …

where RING_ELEMENT and COMPARABLE are the original versions, deferred and non-
generic. As noted in the first presentation of this notation in an earlier chapter, it is a 
remarkable combination of genericity and inheritance, avoiding all the extra baggage of 
earlier solutions:

• We do not need, like Ada, to use routines as generic parameters (with clauses). Only 
types can be generic parameters; this is simple, consistent and easy to learn.

• We do not need any special wrapper classes and objects. If you want a matrix of 
integers, you declare it as MATRIX [INTEGER] and use plain integers to set and 
retrieve its elements; if you want a sortable list of strings, you declare it as 
SORTABLE_LIST [STRING] and use plain strings.

The semantics, as you will remember, is that G represents not an arbitrary type any 
more, but a type that must conform to the constraint (be based on a descendant class). A 
generic derivation such as MATRIX [T] is valid if and only if T is such a type; this is true 
of INTEGER but not, for example, of STRING. Similarly, STRING will inherit from 
COMPARABLE and hence will be acceptable as an actual generic parameter for the class 
SORTABLE_LIST; but this is not true of a class COMPLEX (for complex numbers) which 
has no associated order relation. The symbol –> was chosen, as you will also remember, 
to evoke the arrow of inheritance diagrams.

Emulating constrained genericity (2)
It is possible to emulate constrained genericity through inheritance and 
unconstrained genericity, by using wrapper classes and the corresponding 
wrapper objects.
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As a last detail, you will remember that in this scheme constrained genericity 
becomes the more basic facility: the unconstrained case, as in QUEUE [G], is understood 
as an abbreviation for QUEUE [G –> ANY] where ANY denotes the class that serves as 
ancestor to all developer-defined classes. This has the consequence of defining precisely 
the operations applicable to G: those, coming from ANY, which are applicable to all 
classes, including general-purpose features such as clone, print and equal.

The introduction of constrained genericity provides the final touch to the delicate 
combination of inheritance and genericity detailed in this chapter. I hope that you will find 
the result consistent, elegant, and minimal in the sense that although no component of the 
edifice is redundant (as it should indeed always be immediately clear, for any particular 
circumstance, which of the various possibilities is the appropriate one), removing any one 
of them would lead us to one of the situations that we found unacceptable or unpleasant 
in the earlier sections of this appendix: unacceptable because we cannot do what we want, 
as when we were trying to emulate inheritance with genericity; unpleasant when we could 
do what we want but at the price of such complications as the use of artificial wrapper 
classes and inefficient wrapper objects. The proper combination of inheritance and 
genericity should help make our choices not only acceptable but pleasant too.

B.6  KEY CONCEPTS INTRODUCED IN THIS APPENDIX
• Both genericity and inheritance aim to increase the flexibility of software modules.
• Genericity is a static technique, applicable in O-O and non-O-O contexts, permitting 

the definition of modules parameterized by types.
• There are two forms of genericity: unconstrained, imposing no requirements on the 

parameters; constrained, requiring parameters to be equipped with specific operations.
• Inheritance permits incremental module construction, by extension and 

specialization. It opens the way to polymorphism and dynamic binding.
• It does not seem possible to obtain the power of inheritance through genericity.
• Pure inheritance can be used to emulate genericity, but at the expense of heaviness 

in expression, performance penalties (mostly space) and type difficulties.
• A good compromise is to combine the full power of inheritance and redefinition with 

genericity, at least in its unconstrained form. This is achieved by permitting classes 
to have generic parameters.

• It is also desirable to provide constrained genericity, which relies on the notion of 
type conformance, itself following from inheritance. Unconstrained genericity can 
then be viewed as a special case, using the universal class ANY as the constraint.

• The resulting construction seems elegant and minimal.

Providing constrained genericity
Along with unconstrained genericity, it is desirable to provide constrained 
genericity by relying on inheritance rules (through the notion of type 
conformance) to define constraints on permissible actual generic parameters.
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B.7  BIBLIOGRAPHICAL NOTES
The material for this chapter originated with an article at the first OOPSLA conference 
[M 1986]. The Trellis language [Schaffert 1986] also offered the combination of multiple 
inheritance with constrained and unconstrained genericity.

EXERCISES
E-B.1  Artificial anchors
The artificial anchor anchor is declared as an attribute of class MATRIX and thus entails a 
small run-time space overhead in instances of the class. Is it possible to avoid this 
overhead by declaring anchor as a “once function”, whose body may be empty since it will 
never need to be evaluated? (Hint: consider type rules.)

E-B.2  Binary trees and binary search trees
Write a generic “binary tree” class BINARY_TREE; a binary tree (or binary node) has 
some root information and two optional subtrees, left and right. Then consider the notion 
of “binary search tree” where a new element is inserted on the left of a given node if its 
information field is less than or equal to the information of that node, and to the right 
otherwise; this assumes that there is a total order relation on “informations”. Write a class 
BINARY_SEARCH_TREE implementing this notion, as a descendant of BINARY_TREE. 
Make the class as general as possible, and its use by a client, for an arbitrary type of 
“informations” with their specific order relation, as easy as possible.

E-B.3  More usable matrices
Add to the last version obtained for class MATRIX two functions, one for access and one 
for modification, which in contrast to item and put will allow clients to manipulate a matrix 
of type MATRIX [G] in terms of elements of type G rather than RING_ELEMENT [G].

E-B.4  Full queue implementations
Expand the queue example by defining a deferred class QUEUE, completing the class of 
this chapter (now called ARRAYED_QUEUE, inheriting from QUEUE and ARRAY, and 
with proper postconditions), and adding a class LINKED_QUEUE for the linked list 
implementation (based on inheritance from LINKED_LIST and QUEUE).
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D  
A glossary of object technology
This glossary provides brief definitions of the principal terms of object technology, 
discussed in detail in the rest of this book. Italics font in a definition marks a term or phrase, 
other than the ubiquitous “class” and “object”, that is itself the subject of another definition.

Abstract class
See deferred class.

Abstract data type (ADT)
A set of mathematical elements specified by listing the functions applicable to all 
these elements and the formal properties of these functions.

Abstract object
An element of an ADT.

Ancestor (of a class)
The class itself, or one of its direct or indirect parents.

Assertion
A formal condition describing the semantic properties of software elements, 
especially routines and loops. Used in expressing contracts. Assertions include in 
particular preconditions, postconditions, class invariants and loop invariants.

Assignment attempt
An operation that conditionally attaches an object to a reference, only if the object’s 
type conforms to the type declared for the corresponding entity.

Asynchronous call
A call which lets its caller proceed before it completes. Antonym: synchronous call.

Attribute
The description of a field present in all the instances of a class. Along with the 
routine, one of the two forms of feature.

Behavior class
A class, usually deferred, describing a set of adaptable behaviors through effective
routines relying on some components (usually deferred features) that may be 
redeclared to capture specific variants of the general behaviors.
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Class
A partially or totally implemented abstract data type. Serves both as a module and as 
a type (or type pattern if the class is generic.)

Class invariant
An assertion which must be satisfied on creation of every instance of a class, and 
preserved by every exported routine of the class, so that it will be satisfied by all 
instances of the class whenever they are externally observable.

Client
A class that uses the features of another, its supplier, on the basis of the supplier’s 
interface specification (contract).

Cluster
A group of related classes or, recursively, of related clusters.

Component
See reusable software component.

Concurrent
Able to use two or more processors. Antonym: sequential.

Conformance
A relation between types. A type conforms to another if it is derived from it by 
inheritance.

Constrained genericity
A form of genericity where a formal generic parameter represents not an arbitrary 
type, but one that is required to conform to a certain type, known as the constraint. 
See constrained genericity.

Container data structure
An object whose primary use is to provide access to a number of other objects. 
Examples include lists, queues, stacks, arrays.

Contract
The set of precise conditions that govern the relations between a supplier class and 
its clients. The contract for a class includes individual contracts for the exported 
routines of the class, represented by preconditions and postconditions, and the global 
class properties, represented by the class invariant. See also Design by Contract.

Contravariance
The policy allowing a feature redeclaration to change the signature so that a new 
result type will conform to the original but the original argument types conform to 
the new. See also: covariance, novariance.

Covariance
The policy allowing a feature redeclaration to change the signature so that the new 
types of both arguments and result conform to the originals. See also: contravariance, 
novariance.

Current object (or: current instance)
During the execution of an object-oriented software system, the target of the most 
recently started routine call.
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Defensive programming
A technique of fighting potential errors by making every module check for many 
possible consistency conditions, even if this causes redundancy of checks performed 
by clients and suppliers. Contradicts Design by Contract.

Deferred class
A class which has at least one deferred feature. Antonym: effective class.

Deferred feature
A feature which, in a certain class, has a specification but no implementation. May 
be declared as deferred in the class itself, or inherited as deferred and not effected in 
the class. Antonym: effective feature.

Descendant (of a class)
The class itself, or one of its direct or indirect heirs.

Design by Contract
A method of software construction that designs the components of a system so that 
they will cooperate on the basis of precisely defined contracts. See also: defensive 
programming.

Direct instance (of a class)
An object built according to the mold defined by the class.

Dynamic
Occurring during the execution of a system. See also run time. Antonym: static.

Dynamic binding
The guarantee that every execution of an operation will select the correct version of 
the operation, based on the type of the operation’s target.

Dynamic typing
The policy whereby applicability of operations to their target objects is only checked 
at run time, prior to executing each operation.

Effect
A class effects a feature if it inherits it in deferred form and provides an effecting
for that feature.

Effecting
A redeclaration which provides an implementation (as attribute or routine) of a 
feature inherited in deferred form.

Effective class
A class which only has effective features (that is to say, does not introduce any 
deferred feature, and, if it inherits any deferred feature, effects it). Antonym: 
deferred class.

Effective feature
A feature declared with an implementation — either as a routine which is not 
deferred, or as an attribute. Antonym: deferred feature.

Encapsulation
See information hiding.
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Entity
A name in the software text that denotes a run-time value (object or reference).

Event-driven computation
A style of software construction where developers define the control structure by 
listing possible external events and the system’s response to each of them, rather than 
by specifying a pre-ordained sequence of steps.

Exception
The inability of a routine to achieve its contract through one of its possible strategies. 
May result in particular from a failure of a routine called by the original routine. Will 
be treated as resumption, organized panic or false alarm.

Exporting a feature
Making the feature available to clients. Exports may be selective (to specified classes 
only) or general.

Extendibility
The ability of a software system to be changed easily in response to different choices 
of requirements, architecture, algorithms or data structures.

Failure
The inability of a routine’s execution to fulfill the routine’s contract. Must trigger 
an exception.

False alarm
Along with resumption and organized panic, one of the three possible responses to 
an exception; resumes the execution of the current strategy, possibly after taking 
some corrective action.

Feature renaming
The attribution, by a class, of a new name to an inherited feature, not changing any 
other property. See also redeclaration.

Field
One of the values making up an object.

Function
A routine which returns a result. (The other form of routine is the procedure.)

Garbage collection
A facility provided by the runtime to recycle the memory space used by objects that 
have become useless. Garbage collection is automatic, that is to say does not require 
any change to the text of the systems whose objects are being recycled.

Generalization
The process of turning specialized program elements into general-purpose, reusable 
software components.

Generating class
Same as generator.

Generator (of an object)
The class of which the object is a direct instance.
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Generic class
A class having formal parameters representing types. Such a class will yield a type 
only through generic derivation.

Generic derivation
The process of providing a type for each formal generic parameter of a generic class, 
yielding a type as a result.

Genericity
The support, by a software notation, for type-parameterized modules; specifically, in 
an O-O notation, for generic classes. Can be unconstrained or constrained.

Heir (of a class)
A class that inherits from the given class. Antonym: parent.

Identity
See object identity.

Information hiding
The ability to prevent certain aspects of a class from being accessible to its clients, 
through an explicit exporting policy and through reliance on the short form as the 
primary vehicle for class documentation.

Inheritance
A mechanism whereby a class is defined in reference to others, adding all their 
features to its own.

Instance (of a class)
An object built according to the mold defined by the class or any one of its proper 
descendants. See also direct instance, proper descendant, generator.

Instance variable
Smalltalk term for attribute.

Interface (of a class)
See contract, abstract data type.

Invariant
See class invariant, loop invariant.

Iterator
A control structure describing preordained sequencing of some actions but not 
defining the actions themselves. Iterators often apply to data structures, such as an 
iterator describing the traversal of a list or a tree.

Loop invariant
An assertion which must be satisfied prior to the first execution of a loop, and 
preserved by every iteration, so that it will hold on loop termination.

Loop variant
An integer expression which must be non-negative prior to the first execution of a 
loop, and decreased by every iteration, so that it will garantee loop termination.

Message
Routine call.
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Metaclass
A class whose instances are classes themselves.

Method
Smalltalk term for routine.

Module
A unit of software decomposition. In the object-oriented approach, classes provide 
the basic form of module.

Multiple inheritance
The unrestricted form of inheritance, whereby a class may have any number of 
parents. Antonym: single inheritance.

Non-separate
Antonym of separate.

Novariance
The policy allowing prohibiting any feature redeclaration from changing the 
signature. See also: contravariance, covariance.

Object
A run-time data structure made of zero or more values, called fields, and serving as 
the computer representation of an abstract object. Every object is an instance of 
some class.

Object identity
A property that uniquely identifies an object independently of its current contents 
(fields).

Object-oriented
Built from classes, assertions, genericity, inheritance, polymorphism and dynamic
binding.

Object-oriented analysis
The application of object-oriented concepts to the modeling of problems and 
systems from both software and non-software domains.

Object-oriented database
A repository of persistent objects, permitting their storage and retrieval on the basis 
of object-oriented concepts, and supporting database properties such as concurrent 
access, locking and transactions.

Object-oriented design
The process of building the architecture of systems through object-oriented concepts.

Object-oriented implementation
The process of building executable software systems through object-oriented
concepts. Differs from object-oriented design primarily by the level of abstraction.

Organized panic
Along with resumption and false alarm, one of the three possible responses to an 
exception; abandons the execution of the current strategy, triggering an exception in 
the caller, after restoring the class invariant for the current object.
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Overloading
The ability to let a feature name denote two or more operations.

Package
A module of non-object-oriented languages such as Ada, providing encapsulation of 
a set of variables and routines.

Parallel
See concurrent.

Parameterized class
See generic class.

Parent (of a class)
A class from which the given class inherits. Antonym: heir.

Persistence
The ability of a software development environment or language to make objects 
persistent and support the retrieval of persistent objects for use by systems.

Persistent object
An object that (through storage in a file or database or transmission across a network) 
survives executions of systems that create or manipulate it. Antonym: transient
object.

Polymorphic data structure
A container data structure hosting objects of two or more possible types.

Polymorphism
The ability for an element of the software text to denote, at run time, objects of two 
or more possible types.

Postcondition
An assertion attached to a routine, which must be guaranteed by the routine’s body 
on return from any call to the routine if the precondition was satisfied on entry. Part 
of the contract governing the routine.

Precondition
An assertion attached to a routine, which must be guaranteed by every client prior to 
any call to the routine. Part of the contract governing the routine.

Predicate
See assertion.

Procedure
A routine which does not return a result. (The other form of routine is the function.)

Processor
A mechanism providing a single thread of computation. May be a physical 
device, such as the CPU of a computer, or a software device, such as a task or 
thread of an operating system.

Program
See system.
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Proper ancestor (of a class)
A direct or indirect parent of the class.

Proper descendant (of a class)
A direct or indirect heir of the class.

Redeclaration
A feature declaration which, instead of introducing a new feature, adapts some 
properties (such as the signature, precondition, postcondition, implementation, 
deferred/effective status, but not the name) of a feature inherited from a parent. A 
redeclaration may be a redefinition or an effecting. See also feature renaming.

Redefinition
A redeclaration which is not an effecting, that is to say, changes some properties of 
a feature inherited as effective, or changes the specification of a feature inherited as 
deferred while leaving it deferred.

Reference
A run-time value that uniquely identifies an object.

Renaming
See feature renaming.

Retrying
Along with organized panic and false alarm, one of the three possible responses to 
an exception; tries a new strategy for achieving the routine’s contract.

Reusability
The ability of a software development method to yield software elements that can be 
used in many different applications, and to support a software development process 
relying on pre-existing reusable software components.

Reusable software component
An element of software that can be used by many different applications.

Reversible development
A software development process that lets insights gained in later phases affect the 
results obtained in earlier phases. Normally part of a seamless development process.

Root class
The generator of a system’s root object. Executing the system means creating an 
instance of the root class (the root object), and calling a creation procedure on that 
instance.

Root object
The first object created in the execution of a system.

Routine
A computation defined in a class, and applicable to the instances of that class. Along 
with the attribute, one of the two forms of feature.

Runtime (noun, one word)
Any set of facilities supporting the execution of systems. See also next entry.
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Run time (noun, two words)
The time when a system is being executed. Also used as an adjective, with a hyphen, 
as in “the run-time value of an entity”. See also dynamic and previous entry.

Schema evolution
Change to one or more classes of which some persistent instances exist.

Seamless development
A software development process which uses a uniform method and notation 
throughout all activities, such as problem modeling and analysis, design, 
implementation and maintenance. See also reversible development.

Selective export
See exporting a feature.

Separate
Handled by a different processor. Antonym: non-separate.

Sequential
Running on only one processor. Antonym: concurrent.

Short form (of a class)
A form of class documentation generated from the class text, showing only interface 
properties of the class. The short form documents the contract attached to the class 
and the underlying abstract data type.

Signature (of a feature)
The type part of the feature’s specification. For an attribute or a function, includes 
the result type; for a routine, includes the number of arguments and the type of each.

Single inheritance
A restricted form of inheritance whereby each class may have at most one parent. 
Antonym: multiple inheritance.

Software component
See reusable software component.

Specification (of a class)
The short form of the class.

Specification (of a feature)
The properties of a feature that are relevant to a client. Includes the name, signature, 
header comment and contract of the feature.

Subcontract
The ability of a class to let some proper descendant handle some of its feature calls, 
thanks to redeclaration and dynamic binding.

Supplier
A class that provides another, its client, with features to be used through an interface 
specification (contract).

Static
Applying to the text of a system, not to a particular execution. Antonym: dynamic.
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Static binding
The premature choice of operation variant, resulting in possibly wrong results and 
(in favorable cases) run-time system crash.

Static typing
The ability to check, on the basis of the software text alone, that no execution of a 
system will ever try to apply to an object an operation that is not applicable to that 
object.

Synchronous call
A call which forces the caller to wait until it completes. Antonym: asynchronous 
call.

System
A set of classes that can be assembled to produce an executable result.

Template
C++ term for generic class (for unconstrained genericity only).

Traitor
A reference to a separate object, associated in the software text with an entity that is 
declared as non-separate.

Transient object
An object that exists only during the execution of the system that creates it. 
Antonym: persistent object.

Type
The description of a set of objects equipped with certain operations. In the object-
oriented approach every type is based on a class.

Type checking, typing
See static typing, dynamic typing.

Unconstrained genericity
A form of genericity where a formal generic parameter represents an arbitrary type. 
See constrained genericity.

Variant
See loop variant.
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