

OBJECT SUCCESS

A Manager’s Guide
to Object Orientation,

its impact on the corporation,
and its use for reengineering the

software process

Bertrand Meyer
ISE Inc.

Santa Barbara, California

THE
OBJECT-ORIENTED

SERIES
D. COLEMAN, P. ARNOLD, S. BODOFF,
C. DOLLIN, H. GILCHRIST, F. HAYES

AND P. JEREMAES
Object-Oriented Development:

The Fusion Method

S. COOK AND J. DANIELS
Designing Object Systems

B. HENDERSON-SELLERS
A Book of Object-Oriented Knowledge

B. HENDERSON-SELLERS AND J. EDWARDS
BOOKTWO of Object-Oriented Knowledge:

The Working Object

H. KILOV AND J. ROSS
Information Modeling: An Object-Oriented Approach

P. KRIEF
Prototyping with Objects

K. LANO AND H. HAUGHTON
Object-Oriented Specification Case Studies

J. LINDSKOV KNUDSEN, M. LÖFGREN,
O. LEHRMANN MADSEN AND B. MAGNUSSON

Object-Oriented Environments:
The Mjølner Approach

M. LORENZ
Object-Oriented Software Development:

A Practical Guide

M. LORENZ AND J. KIDD
Object-Oriented Software Metrics

B. MEYER
An Object-Oriented Environment:

Principles and Applications

B. MEYER
Eiffel: The Language

B. MEYER
Reusable Software:

The Base Object-Oriented Component Libraries

B. MEYER
Object Success:

A Manager’s Guide to Object Orientation,
its Impact on the Corporation,

and its Use for Reengineering the Software Process

B. MEYER AND J.-M. NERSON (eds)
Object-Oriented Applications

D. MANDRIOLI AND B. MEYER (eds)
Advances in Object-Oriented Software Engineering

G. POMBERGER AND P. BLASCHEK
An Object-Oriented Approach to

Software Engineering

R. RIST AND R. TERWILLIGER
Object-Oriented Programming in Eiffel

P.J. ROBINSON
Hierarchical Object-Oriented Design

R. SWITZER
Eiffel: An Introduction

K. WALDÉN AND J.-M. NERSON
Seamless Object-Oriented Software Architecture:

Analysis and Design of Reliable Systems

R. WIENER
Software Development Using Eiffel:
There Can Be Life Other Than C++

(Various editors)
Proceedings of TOOLS Conferences, 4 to 16:

Technology of Object-Oriented Languages and Systems

About this version (March 2023)
This book, Object Success: A Manager’s Guide to Object Orientation, its Impact on the Corporation
and its Use for Reenginering the Software Process, was published in 1995 by Prentice Hall (today part
of Pearson Education, Inc.) as part of its Object-Oriented Series, edited by the author.
The book is being released for free access on the Web, with the kind permission of the original
publisher. It remains copyrighted material; please do not duplicate the PDF, or make it available on
another site, but refer potential readers to this page:

bertrandmeyer.com/success

The text is republished identically, with minor reformatting and addition of some color. (There is only
one actual change, a mention of the evolution of hardware resources, on page 136, plus a reference to a
later book added to a bibliography section on page 103.)
It is fully hyperlinked: clicking entries in the table of contents and index, and any element in dark red
such as the page number above, will take you to the corresponding place in the text.
The book has some outdated elements, but its core concepts remain applicable. Note in particular:

• The introduction of a number of principles that went radically against conventional software
engineering wisdom and were later included in agile methods. See Agile! The Good, the Hype
and the Ugly, Springer, 2014, book page at agile.ethz.ch.

• As an important example, the emphasis on the primacy of code. Numerous occurrences of the
argument throughout the text. (Also, warnings about over-emphasizing analysis, design and
other products, although unlike “lean development” the text definitely does not consider them to
be “waste”. See the “bubbles and arrows of outrageous fortune”, page 80.)

• In the same vein, the emphasis on incremental development.
• Yet another agile-before-agile principle: Less-Is-More principle (in “CRISIS REMEDY”, page

133).
• An analysis of the role of managers (chapters 7 to 9) which remains largely applicable, and I

believe more realistic than the agile literature’s reductionist view of managers.
• A systematic analysis of what “prototyping” means for software (chapter 4), distinguishing

between desirable and less good forms.
• Advice on how to salvage projects undergoing difficulties or crises (chapters 7 and 9).
• A concise exposition of OO concepts (chapter 1 and appendix).
• A systematic discussion of software lifecycle models (chapter 3), including the “cluster model”.

See new developments on this topic in my recent “Handbook of Requirements and Business
Analysis”, Springer, 2022, book page at bertrandmeyer.com/requirements.

• More generally, important principles from which managers (and developers) can benefit today
just as much as at the time of publication.

Copyright Bertrand Meyer, 1995, 2023.

https://bertrandmeyer.com/success
https://agile.ethz.ch/
https://bertrandmeyer.com/requirements

Interactive
Software Engineering Inc.

Mr. Cuthbert D. Highbrows III
President and Chief Executive Officer
The Cresus-Midas Group International
One Cresus-Midas Crescent
Boston, MA 01431

April 15, 1995

Dear Cuth:
Please find enclosed the report on “Objects for Business” that you commissioned from our
company. As you will see, I have retitled it Object Success to emphasize how a Fortune 500
corporation such as CMGI can profit from object technology to re-engineer its business
process. It relies on two decades of experience in developing object-oriented tools, libraries
and applications, teaching the method in both industrial and academic environments, and
providing management and technical consulting to many O-O projects around the world.
You may recall that during our first conversation on this subject last summer you asked:
“What’s all this object stuff about?”. I replied, perhaps a bit brashly: “It is not about objects;
it is about abstraction”. You remarked that with the possible exception of TV preachers you
hadn’t heard of anyone ever getting rich by selling abstractions, and you challenged me to
produce a report that would enable any high- or middle-manager at Cresus-Midas to relate
to object technology in terms of his or her career. You also encouraged me to respect no
sacred cow; “debunk” is one of the words I remember.
Well, here it is. Because “objects” are a technical topic I have included just enough
technical material to enable a serious discussion, but most of the text is about economic and
managerial issues. Please distribute this as widely as you wish to your management.
By separate mail I am sending you the invoice for this work, according to our contract. By
the way — I hate to bother you with this, but could you check that we get paid diligently
this time? We have not yet been reimbursed for our expenses in connection with the
previous report, and the purchasing department is all on voice mail and does not return our
calls. Thanks for devoting your attention to this matter.
I hope this report will enable Cresus-Midas to gain from object technology the competitive
edge that it amply deserves. Preparing this report has been a greatly rewarding experience;
I especially enjoyed all the interaction with you and your superb staff. You sure know how
to surround yourself with the best people in the business.
I hope there will be further opportunities to collaborate. Please do not hesitate to contact
me should you wish to expand this work or simply to discuss it.

Yours sincerely,

Bertrand Meyer

Object-Oriented Excellence
270 Storke Road Suite 6 Goleta CA 93117 USA— Telephone 805.685.1006 — Fax 805.685.6869

Contents

Chapter 1: Object frenzy 1
 WHAT IS IT REALLY ABOUT? 2
 QUALITY VERSUS PRODUCTIVITY? 3
 EXPECTATIONS AND REALITY 4
 BIBLIOGRAPHY 5

Chapter 2: The ten key O-O concepts 7
 THE GOALS 7
 CONCEPT ONE: ARCHITECTURE 9
 CONCEPT TWO: CLASSES 9
 CONCEPT THREE: INSTANCES 10
 OBJECTS, CLASSES, AND PROPER TERMINOLOGY 10
 CONCEPT FOUR: RESTRICTED COMMUNICATION 12
 CONCEPT FIVE: ABSTRACTION 13
 INFORMATION HIDING AND THE MANAGER 14
 CONCEPT SIX: DESIGN BY CONTRACT 15
 CONCEPT SEVEN: INHERITANCE 17
 CONCEPT EIGHT: POLYMORPHISM AND DYNAMIC BINDING 19
 POLYMORPHISM, DYNAMIC BINDING AND YOU 20
 CONCEPT NINE: STATIC TYPING 21
 CONCEPT TEN: AUTOMATIC MEMORY MANAGEMENT 22
 SEAMLESSNESS 23
 OBJECT-ORIENTED LANGUAGES 24
 IMPLEMENTATION ASPECTS 27
 OBJECT-ORIENTED ENVIRONMENTS 27
 OBJECT-ORIENTED ANALYSIS 31
 THE NEW ROLE OF ANALYSIS 34
 OBJECT-ORIENTED DATABASES 35
 NETWORKS AND OBJECT REQUEST BROKERS 36
 BIBLIOGRAPHY 37

Chapter 3: The object-oriented lifecycle 39

 WHAT USE FOR LIFECYCLE MODELS? 39
 THE WATERFALL MODEL 40
 IN FAVOR OF THE WATERFALL 40

All entries are hyperlinks to the corresponding chapters and sections

CONTENTS x
 THE DOWNSIDE OF THE WATERFALL 43
 THE WATERFALL AND QUALITY MANAGEMENT 43
 IMPEDANCE MISMATCHES 46
 THE ESCHERFALL 46
 TOWARDS A BETTER MODEL 48
 SEAMLESSNESS 48
 REVERSIBILITY 49
 THE NOTION OF CLUSTER 51
 CONCURRENT ENGINEERING 52
 THE STEPS 54
 PROJECT MANAGEMENT AND STEP ORDERING 55
 RISK MANAGEMENT AND DYNAMIC RECONFIGURATION 57
 BIBLIOGRAPHY 59

Chapter 4: But what about prototyping? 61

 A BORROWED TERM 61
 PROTOTYPING IN SOFTWARE 62
 THE POTEMKIN APPROACH TO SOFTWARE DEVELOPMENT 64
 THROWAWAY PROTOTYPING VERSUS QUALITY 65
 SHIPPING THE PROTOTYPE 66
 DISTINGUISHING THE VARIANTS 66
 THE SECOND-SYSTEM EFFECT 68
 PROTOTYPING AND FAILURE 68
 THE BELATED VOICE OF REASON 69
 PROTOTYPING FOR REUSABILITY? 70
 PROTOTYPING FOR SOFTWARE: AN ASSESSMENT 71
 BIBLIOGRAPHY 71

Chapter 5: Managing the transition 73

 PLANNING 73
 GOING ALL THE WAY 76
 INITIAL TRAINING 76
 WHAT TO TEACH FIRST 77
 THE BOOSTER SHOTS 77
 SECOND-LEVEL COURSES 78
 TRAINING THE MANAGERS 79
 CHOOSING TRAINERS AND CONSULTANTS 79
 REUSABILITY CONSULTANTS 82
 PILOT PROJECTS 82
 A FAILURE 84
 A SUCCESS STORY 85
 CHOOSING THE RIGHT PEOPLE 87
 TECHNOLOGY EVOLUTION AND PEOPLE 88

CONTENTS xi
 ELITISM? 89
 TWO CAVEATS 91
 SOFTWARE QUALIFICATIONS AND THEIR EVOLUTION 93
 FOSTERING A GRASSROOTS PHENOMENON 95
 WHAT TO DO WITH THE OTHERS? 95
 A SUMMARY OF TRANSITION PRINCIPLES 96
 APPENDIX: INTERPRETING THE QUESTIONNAIRE 97
 BIBLIOGRAPHY 103

Chapter 6: Nature and nurture: Making reuse succeed 105

 THE TWO VIEWS OF REUSE 105
 WHY REUSABILITY? 106
 STACKS OR CUSTOMERS? 108
 LEARNING BEFORE JUMPING 109
 ORGANIZING FOR REUSABILITY 110
 THE TWO MYTHS OF SOFTWARE REUSABILITY 111
 CHASING THE RIGHT HORSE 112
 THE LIBRARY 113
 THE REPOSITORY 115
 THE TWO PATHS TO PRODUCING REUSABLE SOFTWARE 116
 ARGUMENTS FOR NATURE AND FOR NURTURE 117
 THE MÉTHODE CHAMPENOISE 119
 MERGING THE TWO APPROACHES 120
 THE FATE OF CLASSES 122
 GENERALIZATION TASKS 122
 THE ROLE OF GENERALIZATION 125
 GENERALIZATION AND THE LIBRARY 126
 THE EVOLUTION OF THE LIBRARY 127
 FUNDING FOR REUSABILITY 127
 THE DISCIPLINE OF REUSABILITY 128
 EXERCISE: WHAT ARE THESE PEOPLE DOING WRONG? 129
 BIBLIOGRAPHY 130

Chapter 7: The manager’s role, 1: Fundamentals 131

 RISK MANAGER 132
 DEADLINE KEEPER 132
 INTERFACE WITH THE REST OF THE WORLD 132
 PROTECTOR OF THE TEAM’S SANITY 133
 CRISIS REMEDY 133
 HARDWARE RESOURCES 135
 BIBLIOGRAPHY 137

CONTENTS xii
Chapter 8: The manager’s role, 2: Technical manager 139

 THE MANAGER AS CLUSTER DIVIDER 139
 THE MANAGER AS INTEGRATOR 140
 THE MANAGER AS DEMO KEEPER 141
 THE MANAGER AS METHOD ENFORCER 142
 MENTOR AND CRITIC 143
 CHIEF PROGRAMMER TEAMS 143
 BIBLIOGRAPHY 144

Chapter 9: The manager’s role, 3: Non-technical manager 145

 MEETINGITIS 146
 ABOUT COMMUNICATION TOOLS 147
 MONDAY MORNING CONSULTING FROM COMPUTERWEEK 149
 180° DEGREE TURNS 149
 PANIC CRISES 150
 WHAT THE NON-TECHNICAL MANAGER CAN DO 150
 THE DEBUGGER THAT WOULD HAVE COST AN ARM AND A LEG 151
 COSTS AND BENEFITS 152

Appendix: O-O: the technology 155

 THE ARCHITECTURE 155
 INSTANCES AND OBJECTS 156
 THE FATE OF FUNCTIONS 156
 FUNCTIONS IN THE TRADITIONAL VIEW 158
 AN UNEQUAL TREATY 160
 RELATIONS BETWEEN CLASSES 161
 INFORMATION HIDING 164
 ASSERTIONS AND DESIGN BY CONTRACT 166
 APPLICATIONS OF ASSERTIONS 168
 INVARIANTS 170
 GENERICITY AND INHERITANCE 170
 INHERITANCE TECHNIQUES 172
 MULTIPLE INHERITANCE 175
 TYPING 176
 DEFERRED FEATURES AND CLASSES 178
 GARBAGE COLLECTION 180
 OBJECT-ORIENTED LANGUAGES AND IMPLEMENTATION 180
 OBJECT-ORIENTED ANALYSIS 180

1

Object frenzy

The February 7, 1994, issue of ComputerWorld — the weekly hope of data processing
executives who try to figure out where their industry may be going — is a typical one in all
respects. It has the usual mix of announcements and counter-announcements: Apple plans
to emulate Windows on its planned new machines; IBM plans to introduce a symmetrical
multiprocessing workstation; Digital plans to introduce a four-processor superserver and,
in a separate story, plans to add clustering software; Novell plans to release a foundation
application development environment.

And “objects” are on almost every page.

One company has “an object-oriented framework that monitors Unix systems”.
Another is planning a “hybrid object/relational database”. Some developers are said to
voice concerns about Microsoft’s “Object Linking and Embedding”, for which they must
develop “little chunks of code, in the form of objects, that allow developers to, for
example, insert a spreadsheet into an application”. Competing “object frameworks” from
Hewlett-Packard and SunSoft will not be able to interoperate until an outfit that calls itself
the “Object Management Group” releases its planned 2.0 document. Computer Associates
International’s planned “CA-Visual Objects for Windows” recently entered beta testing.
SunSoft plans to add “object class libraries” from Next Step to its “Distributed Objects
Everywhere” project.

What is the typical MIS executive to do under such a deluge? How does one
distinguish the product from the plan, the serious from the fanciful, the concept from the
buzzword, the ware from the vapor?

Not easy. But if ObjectSpeak confuses you, do not despair: you are not alone. People
who have been practicing object technology for years feel just as dizzy, and in fact some of
those who invented the concepts do not necessarily fare much better. Objects may be
Distributed Everywhere, in the press at least, but it is not always clear what all this means
for the software manager who has deadlines to meet and customers to please.

This book is intended for such people. It explains in simple terms what object
technology is about and, just as importantly, what it is not about. It presents the technology
(mostly in chapter 2 and the Appendix) but talks more about what it means for corporations

OBJECT FRENZY §1 2
in terms of profits, costs, workflow, team organization, long-term plans and short-term
effects. It shows the promises of object technology but also explores the areas of risk. In
short, it is a pragmatic, down-to-earth presentation what the technology means from an
enterprise perspective; it discards object frenzy and discusses the business of objects.

WHAT IS IT REALLY ABOUT?

The first step to find out when assessing a new device or a new technology is what it is
trying to solve. An Espresso machine is not for hashing potatoes.

For object technology it is particularly important to define precisely what we are
looking for. Over the years successive waves of newcomers have been sold on the merits of
object orientation in widely different ways, each of which was dominant for two or three
years. Here is a partial list with approximate dates:

• As an Artificial Intelligence technique (1980-82).

• As an environment for developing fancy user interfaces (1983-86).

• As a prototyping mechanism (1987-88).

• As a way to modernize the C programming language (1989-90).

• As a tool for analysis and design (1991-92).

• As a mechanism for exchanging some data over a computer network (the latest craze,
well reflected in the above ComputerWorld extracts: 1993-?).

Seeing this, a casual observer might be tempted to ask “Sure, and does it make coffee
too?” This would in fact be unfair since object technology, remarkably, is in fact applicable
in all the ways mentioned. But none of them captures the essence of the technology; instead
they all are consequences of its main properties.

What the object-oriented method really addresses is at the same time more mundane
and more far-reaching than any of the above: object orientation is a software engineering
technique.

Software engineering here is simply defined as the study of methods and tools that can
be used to produce quality practical software. (The term, although perhaps imperfect, is the
accepted one. We will have the opportunity to discuss how much the “engineering” part of
it is appropriate; for the moment please accept the name as a shorthand for the definition just
given.) Two key aspects of this definition are the role of quality and the emphasis on
practical software — software that is meant for operational use and is developed under the
usual economic and organizational constraints of industrial environments.

Object orientation provides a set of powerful concepts to address some of the most
pressing problems of software quality. Its most exciting contribution affects in particular
the following aspects of quality:

QUALITY VERSUS PRODUCTIVITY? 3
• Reliability — the ability to produce bug-free systems (and systems that work the first
time around).

• Extendibility — the ability to produce software that can be adapted at reasonable
effort when external requirements or technical constraints change.

• Reusability — the ability to build a system from pre-existing parts, and to make sure
that its own parts can serve again for future developments.

• Portability — the ability to produce software that can be moved to various hardware-
software platforms at no undue cost.

• Efficiency — the ability to produce high-performance software.

As anyone with experience in the software industry knows, these are among the most
pressing needs that the field currently faces, and it is exciting to know that one specific
approach to software construction has so much to offer to approach them.

QUALITY VERSUS PRODUCTIVITY?

In the past thirty years, before object technology captured the attention of the software
industry, many ideas had been introduced to improve the state of software, from general
concepts (starting with structured programming as early as 1968) to specific methods,
languages and tools. In most cases the arguments for these approaches emphasized
productivity. The goals listed above for object technology, and for software engineering in
general, emphasize quality. Does this mean that we must forsake the idea of improving
software productivity through object-oriented techniques?

No. Typical productivity is unsatisfactory in today’s software development —
software just costs more to develop and maintain than it should — and object technology
can help improve it considerably. The question, however, is to set the right priority.

Many tools are available that make it possible to produce software faster. But that is
not the major problem facing the software industry; a more important matter is what
happens after a first version has been produced. As discussed more extensively in the
following chapters, this is where most of the software efforts and costs go. So the concern
for quality is not exclusive of the concern for productivity: the best way to decrease
software costs is to ensure that products are of good quality in the first place. In the words
of K. Fujino, a Vice President of NEC Corporation of Japan, “when quality is pursued,
productivity will follow” (quoted in the book by Ghezzi et al., see the bibliography at the
end of this chapter).

Such productivity benefits are not immediate. What about the short term? Our
experience at ISE and that of our customers indicates that a group that masters object
technology has a considerable edge — when it comes to putting out a product to market
quickly and effectively— over one using traditional approaches. The effects on
productivity are almost as impressive as those on quality.

But the qualification given is essential: the team must master object technology. This
normally will not apply to the first project undertaken by a team; as with any new
approach, some productivity will be lost because of the need to come to terms with an

OBJECT FRENZY §1 4
unfamiliar approach, a new language, new tools; inevitably, some mistakes will be made
and some time will be lost, negating some of the advantages of the approach.

Whether the positive contributions will yield an immediate productivity improvement
anyway, or whether the initial difficulties will supersede them for the first project — that is
impossible to say in the general case. Soon after, the productivity advantages of object
technology should become obvious anyway. But for anyone in charge of introducing the
approach into a company these observations suggest a key rule (which will also influence
the proper handling of pilot projects, studied in chapter 5): be sure to advertise object
technology for its true contributions.

Promoting the approach for its quality benefits may make the initial sell a bit tougher,
because productivity is what most corporate executives — tired of the costs and delays that
software typically evokes for them — will want to hear about. But it avoids the risk of a
backlash if the first project does not immediately show a tenfold increase in productivity. It
defines the right mindset for object success within the corporation: focusing on producing
software that is of much higher quality than before. And it can only yield pleasant surprises
when the productivity benefits do become visible.

EXPECTATIONS AND REALITY

The claims routinely made on behalf of object technology suggest two caveats and a
counter-caveat.

Caveat 1: the quality factors listed above are not all that matters for software
engineering, and indeed object orientation leaves some aspects untouched — neither better
nor worse than what they were before.

Caveat 2: for those issues that the technology does address, it does not solve them; it
simply helps progress towards a solution. Software construction is a tough problem, and
one should not expect miracles.

But if overselling object orientation is absurd it would be equally wrong to use this
observation as a reason to dismiss the technology. Perhaps the most damaging contribution
here is an often quoted article by Fred Brooks (see the reference at the end of this chapter)
which completely missed the originality of object technology, treating it as just another
potentially interesting idea. The article’s title, No Silver Bullet, was immediately seized by
anyone who had a vested interest in maintaining the software status quo, and whenever a
company or university starts considering object-oriented methods you can expect some
well-meaning soul to circulate photocopies of that article.

This leads us to the counter-caveat: do not hype the technology, but do no
underestimate its potential. If practiced seriously and competently, it can yield tremendous
improvements in the software process and the resulting products. When we come to
studying experiences from actual object-oriented projects, we will encounter, in chapter 5,
a quote from the manager of a large, commercially successful object-oriented project: “OOP
holds more promise than the current hype would have us believe” (see page 87).

Most managers know the risk of embracing new ideas too soon; good managers also
know the risk of embracing them too late.

BIBLIOGRAPHY 5
BIBLIOGRAPHY

Fred P. Brooks: No Silver Bullet: Essence and Accidents of Software Engineering, in
Computer (IEEE), 20, 4, April 1987, pp. 10-20

A general discussion of the difficulty of software development, with a cursory review
(a few paragraphs each) of various techniques for approaching the problem, such as
time-sharing (hardly a breakthrough in 1987), expert systems, automatic
programming, unified programming environments, Ada and object-oriented
programming, leading to the breathtaking conclusion that there is no instant solution
and that what we need most is bright designers.

Carlo Ghezzi, Mehdi Jazayeri, Dino Mandrioli: Fundamentals of Software Engineering,
Prentice Hall, 1991.

A comprehensive introduction to modern concepts of software engineering

2

The ten key O-O concepts

To introduce object technology successfully into an organization, you must, even if you are a
manager rather than a software professional, have a basic understanding of what the method is
about: what aspects of software construction it affects, and what aspects it leaves unchanged.

Because you are probably eager to get to the managerial aspects analyzed in the
following chapters, the more technical part of the discussion has been kept for the end of
this book — the Appendix, starting on page 155. The present chapter focuses on ten ideas
that stand at the center of object technology. It also touches on a few complementary points
such as the role of O-O languages, O-O databases and O-O analysis. Except for a couple of
extracts illustrating the look-and-feel of major O-O languages, this chapter shows no actual
software texts; but it will equip you with enough technical background to follow the non-
technical discussions of subsequent chapters. I do hope that it will pique your interest,
leading you to read the Appendix (which contains a few actual software examples) and
perhaps, later on, some of the more in-depth books cited in the bibliography.

As everything else in this book, the discussion will study the ideas as seen through a
manager’s eyes. One of the most remarkable properties of the method is indeed how close
some of its principal metaphors — client, supplier, contract, dependency, decentralization,
information hiding... — are to the concepts of business life. These analogies are
particularly important to managers, and the discussion will emphasize them throughout.

THE GOALS

Before exploring our Ten Key Concepts let us take a closer look at the goals of the
technology introduced in the previous chapter. We saw the major quality factors that the
method is meant to improve: reusability, extendibility, reliability, portability and
efficiency. For the first four, where the method’s contribution is the most significant, the
ultimate incentive is really the same, summarized by a general observation:

THE BASIC ISSUE OF SOFTWARE CONSTRUCTION

If you think writing software is difficult, try rewriting software.

THE TEN KEY O-O CONCEPTS §2 8
The largest part of the software industry’s efforts — 60% to 80% according to various studies
— is devoted not to producing software systems but to modifying them after they have
already been put together. Developers have a cynical saying — “there is never time to do it
right, but there is always time to do it over” — to describe this situation. The preceding
statement of the Basic Issue is more constructive, and points to the basic problem: modifying
or correcting existing software is much more costly than getting it right in the first place. To
solve this issue we need coordinated progress on all the cited quality fronts:

• Making software more reliable means decreasing later efforts at rewriting it to correct
errors. Object technology will help through techniques such as static typing, Design by
Contract, assertions, exception handling and garbage collection.

• Making software more extendible means decreasing later efforts at rewriting it to
accommodate changes in requirements, design decisions or implementation
techniques. This is perhaps the area where the contribution of object technology is
the most stunning. Extendibility is a sore point of traditional methods; they tend to
produce intricate software structures, where modules are so interdependent that a
modification anywhere may trigger a chain reaction of changes throughout the
system. In contrast, the decentralized architecture of object-oriented systems allows
you to change your mind without being punished too hard for your hesitations.

• Making software more reusable means that you can avoid rewriting variants of
software elements that you or others have written before. Some cases are trivial: any
method will let you reuse a software element to solve a problem identical to what the
element originally addressed. The significant issues of reusability arise when you try
to reuse an element to cover a similar but slightly different need. This is where object
technology will make a difference, by allowing you to combine reuse with adaptation.

• Making software more portable means decreasing the effort needed to adapt it to a
new operating system or to a new hardware architecture.

All this also illustrates the positive effect of quality on productivity, discussed at the end of
the preceding chapter: fewer errors, easier changes, more reuse and more portable systems
will all help decrease software development costs.

The techniques sketched in the rest of this chapter and the Appendix help reach these
goals. Some of them may look surprising at first, especially since it is not the role of this
book to go into detailed technical justifications (which may, however, be found in some of
the books quoted in the bibliography). These techniques, as well as many of the concepts
discussed in later chapters, all address the Basic Issue of software construction.

Among the goals listed, one deserves repeated emphasis: reliability. One of the most traumatic
aspects of developing software and (particularly) managing its development, is the problem of errors.
Software engineering textbooks do not talk much about this aspect; yet errors, or bugs as they are
more commonly called, plague the whole process. Particularly vexing is the ever-present possibility
that an unexpected bug will suddenly come up and cause days or weeks of aggravation. In my
experience with the version of object technology that we use, progress on that front has been one of
the most rewarding confirmations of the validity of the approach. Bugs remain, but they tend to be
design bugs: forgotten cases, results of incorrect reasoning, wrong assumptions about the
environment. The low-level bugs, which can at times make traditional programming nightmarish, all
but disappear — with one exception: the small and decreasing part of our software that we must keep
written in C as an interface to other tools, accounting for a disproportionate share of the development
problems. In the part that is truly object-oriented, the reliability benefits, and the way they affect the
software process, would by themselves provide enough justification for using this technology.

CONCEPT ONE: ARCHITECTURE 9
CONCEPT ONE: ARCHITECTURE

Everything other than architecture — fancy development environments, networking,
analysis, databases — is either supporting technology or a consequence.

The architecture of a software system is defined here as its organization into coherent
pieces, or modules, and the description of how these modules interact with each other. A
useful software engineering concept is the distinction between programming-in-the-small,
covering the atomic constituents of programs, such as instructions, expressions and the
like, and programming-in-the-large, covering the high-level groupings of these elements.
The architecture of a system comprises its in-the-large properties.

Why the focus on architecture? The reason may be found in the goals that have been
defined for object technology. To make software extendible and reusable what will count
most is the flexibility of its structure and the autonomy of its modules. To make it reliable,
you will also need to ensure that the architecture is as simple as possible. Complexity is the
fiercest enemy of reliability.

CONCEPT TWO: CLASSES

For a long time, people who build software were told to decompose their systems
according to the division into operations, often known as the systems’ functions. For
example an MIS (Management Information Systems) application would be decomposed
into parts corresponding to such functions as

Print invoice for international customer

The object-oriented approach reverses this perspective. Instead of functions the method
focuses on data abstractions, also called classes. A class describes a type of data, specified
abstractly through its external properties. For example:

• An MIS system may have a class CUSTOMER describing the abstract notion of
customer, known through its abstract properties.

• A computer-aided design (CAD) system may have a class ENGINE, covering the
notion of car engine described through whatever properties are meaningful to the
CAD system.

 ARCHITECTURE PRINCIPLE

Object technology primarily affects the architecture of software systems.

 CLASS PRINCIPLE

Each basic unit of an object-oriented software system, called a class, is
deduced from one of the types of data relevant to the application.

THE TEN KEY O-O CONCEPTS §2 10
• An electronic funds transfer (EFT) system may have a class TRANSACTION covering
the notion of EFT transaction known through its abstract properties — amount,
duration, sender, receiver, how to start it, how to find out when it is terminated.

• Or, to use an example where the target domain is computer-related, an operating
system (OS) may have a class DEVICE covering the notion of device as handled by
the OS.

If instead of ten concepts this chapter had to select just one, this would be it: the notion of
class, with all that follows from it, defines object technology.

“But what about objects?”, you may be thinking. No, you have not missed anything;
the word has not yet appeared (except as part of the obligatory “object-oriented”). Objects
will come soon; despite appearances they do not play a central role in the method.

CONCEPT THREE: INSTANCES

A class describes a certain general category, for example the abstract notion of customer,
engine, transaction, device or list. An instance of that class is a data structure representing
one specific representative of that category — for example a specific customer, engine,
transaction, device or list. For example an instance of class ENGINE is a particular engine,
or more precisely its computer representation in the form of a data structure used by our
CAD program at some point during one of its executions.

This is where objects fit in:

OBJECTS, CLASSES, AND PROPER TERMINOLOGY

Before going on to Concept Four let us take a closer look at the last few concepts. It is
important to avoid two common confusions: confusion between software objects and
physical objects; and confusion between objects and classes.

The first confusion is fostered by the terminology. The word “object” should not fool
us: the objects we are talking about are computer data structures; they are not real-world
objects. For example an instance of class CUSTOMER is not a customer — remember that
according to the Instance Principle our software can create such instances, and we are not

 INSTANCE PRINCIPLE

It must be possible for a object-oriented software system, during its
execution, to create an arbitrary number of data structures conforming to the
description provided by a given class. Such data structures are called
instances of the class.

DEFINITION: OBJECT

An object is an instance of a class.

OBJECTS, CLASSES, AND PROPER TERMINOLOGY 11
Dr. Frankenstein! What we will create is much more boring than a real customer, but also
more directly related to the purposes of software engineering: a data structure, to be stored
in the memory of a computer, that describes our software’s view of a certain customer.

There is an explanation, if not an excuse, for the confusion. Object technology
provides a powerful modeling technique precisely because it is able to map concepts from
the external system being modeled — be it the operation of a company, an industrial design
process, the transfer of money over a network or the structure of a computer system — to
software concepts. This mapping reduces the gap (the impedance mismatch, as it is called
in a later chapter) between problem and solution, that is to say, between the eventual users
of our software systems and their developers; this follows in particular from the presence
of classes that model external concepts, such as CUSTOMER and the like, which are
particularly precious for object-oriented analysis.

An example at the end of this chapter — the sketch of a class describing the notion of vat in a
chemical plant — will illustrate the technique (see page 25 and “OBJECT-ORIENTED
ANALYSIS”, page 31).

That object technology achieves such realism in modeling is one of its most attractive
properties — which should not, however, lead us to confuse the model and the modeled.
Following Magritte and his famous painting of a pipe, entitled Ceci n’est pas une pipe
(“this is not a pipe”), we can look at a CUSTOMER object, that is to say an instance of class
CUSTOMER, and assert:

For the other frequent confusion — that between object and class — there is neither excuse
nor acceptable explanation other than general sloppiness. A class is the software
description of a general category of data structures, for example the notion of list; an object
is one particular instance of that category, for example one list. This also means that they
belong to entirely different universes. A class appears in the text of the software; an object
is a computer data structure — in the end, a collection of zeros and ones — that exists at in
the memory of a computer at some time during the execution of the software.

If we make the analogy with objects in the common, non-software sense of this term
(remembering once again that this is only an analogy, and that software objects are
something else than the tangible objects of daily life!), confusing classes with objects
would mean confusing an abstract notion such as COMPANY_EMPLOYEE with one
particular employee in your company — a specific instance of the concept, such as Jill
whom you met this morning at the coffee machine.

All this seems rather obvious, but must be explained because the less careful part of
the object-oriented literature unfortunately kindles the confusion. As a result one hears
people asking for “reusable objects”, meaning of course reusable classes; what is slated for
reuse is the software, not one particular execution-time memory record. It is just as
incorrect to say that modules in object-oriented development are based on objects: in a
payroll system, you might have a class EMPLOYEE, providing the software view of the
“employee” data abstraction; but few organizations would want a payroll program that has
a module for Jill, one for you, and one for every other employee of the company!

Ceci n’est pas un customer.

THE TEN KEY O-O CONCEPTS §2 12
This is more than being fussy. The object-oriented approach includes its share of
intellectually challenging ideas; if we do not get the simple, unambiguous concepts right
we are not likely to understand the advanced ones. And the confusion can be quite
troublesome. When journalistic announcements mention (as they frequently do nowadays)
the possibility for some software on a network to use “objects” elsewhere on the network, it
is often hard to find out what people really mean: an operation on a machine executing an
operation on an object (in the proper sense of the term) handled by another machine? Or the
possibility to download classes (that is to say, software) from another machine?

The now established terminology for talking about the technology — object-oriented
— does not help. In principle something like “class-based” or even “abstraction-based”
would be better, but of course it would be futile by now to try to change such a widely
accepted name. This book will rely on the usual terminology; for a bit of variety it will
alternate between “object orientation”, “the object-oriented method” and “object
technology”, with little semantic difference between these expressions. (Once or twice I
might even let slip by such négligé phrasing as “Introducing objects into an organization”.)
What counts, however, is to avoid any confusion when discussing technical issues.

CONCEPT FOUR: RESTRICTED COMMUNICATION

The conceptual integrity of a software system’s structure, which largely determines its
quality (remember the first principle: object technology is primarily about software
architectures) critically depends on controlling the amount of communication that can
occur between modules.

Restricting such communication — that is to say, the degree to which each may
depend on others — will be essential for ensuring extendibility, reusability and reliability:

• For extendibility, dependencies mean that a change to a module may require changes
to the modules on which it depends — then to those on which they depend, and so on.

• For reusability, dependencies mean that we cannot reuse a module without also
having access to all the other modules on which it depends directly or indirectly.

• For reliability, dependencies mean potential inconsistencies and interface problems,
a major source of hard-to-find bugs.

Traditional software construction techniques have failed to limit dependencies. The result,
as already noted, is intricate architectures where a module may depend on many others, as
in a castle of cards where removing any piece will cause the entire edifice to collapse. This
is the primary reason for the lack of extendibility of much of today’s software: changes
requested by customers are much more difficult to carry out than they should be. The
famous “application backlog” of the MIS industry is largely a consequence of this

OBJECT-ORIENTED COMMUNICATION PRINCIPLE

In a pure object-oriented approach, only two relations are permitted between
classes: client and heir.

CONCEPT FIVE: ABSTRACTION 13
situation: if developers spend all their time painstakingly making changes to existing
applications, they have no time for new ones.

At the programming language level, one of the worst causes of undue dependency is the global
variable mechanism, which enables a module to declare a variable that many other modules, or
even all other modules, can also access and set. This facility introduces tight coupling between
modules and squelches any hope for decentralized software architectures.

In contrast, the object-oriented method, when fully applied, will bar global variables
and only permit two relations: client and heir. A class is a client of another — its supplier
— when it relies, for its own needs, on facilities made available by the supplier. A class is
an heir of another — its parent — when it extends its facilities (the notion of inheritance is
explored further in a subsequent section).

That is all there is to inter-module communication in proper object-oriented software
construction. Classes are autonomous software elements; their dependencies on each other,
if any, are explicit, and limited to the two kinds just described.

The choice of terms from the business world is of course not arbitrary. In the same
way that a company cannot do everything by itself but must rely on a network of suppliers
to satisfy its own clients, each class will concentrate on a well-defined job and go through
other classes for everything else. To a business person, the notion of client-supplier
relationship will immediately evoke the need for contracts and, sure enough, the
construction of client-supplier systems will rely on Design by Contract, a concept
introduced later in this chapter.

CONCEPT FIVE: ABSTRACTION

The Data Abstraction Principle is key to ensuring extendibility, reusability and reliability.
It holds that when a class of our software needs to use another as supplier it refuses to do so
in terms of the supplier’s internal properties; all that it permits itself to know is the
operations, or features, that the supplier class has officially made available to its clients,
and the officially advertized properties of these features.

Examples of features include, in a class CUSTOMER, operations that will provide the
address of a customer, change that address, or record a sale made to the customer. In
general, any operation that clients of a class may need to apply to instances of that class
will be part of the features of the class.

What matters here is both what we exclude and what we include in a class description:

• A typical class will have many internal properties besides its official features; for
example class CUSTOMER will need to include a description of the fields contained
in every customer record. With traditional methods, client classes may rely on such

DATA ABSTRACTION PRINCIPLE

To make a class usable by other classes, the object-oriented method uses as
sole description of the class the list of operations applicable to the
corresponding instances.

THE TEN KEY O-O CONCEPTS §2 14
details for their own needs. The result: any change in the internal properties of a class
(as happens all the time in software development) can affect many other classes — a
major source of instability and impediment to extendibility. By removing such low-
level details of a class from the clients’ view, we shield them from irrelevant supplier
changes. This policy is known as information hiding; it directs the designer of any
class to specify which of its properties will be accessible to its clients, and which
ones — the secrets of the class — will be reserved for internal use.

• What we do include to describe a class is, rather than data descriptions, a specification
of the applicable operations. A customer is an object to which operations such as
change of address, recording a sale and others listed in the class are applicable. This
list of operations entirely defines the class.

This technique of defining a type of objects solely by what you can do with them has deep
consequences on the way you will build software in the object-oriented method. It
continues the tradition of abstraction promoted by mathematics and other sciences, but
goes further. It can be expressed by a concise general rule:

Here the analogies with business life are almost too crying to warrant any further comment.
A successful organization needs to take this cold, abstract view all the time when dealing
with other organizations; it must concentrate on the essentials of any relationship — on
what the partners can bring to its own business.

INFORMATION HIDING AND THE MANAGER

The terms “information hiding” and “secrets” can be misleading. In spite of its name, the
principle of information hiding (which the Appendix explores in more detail in
“INFORMATION HIDING”, page 164) is not primarily about preventing the client authors
from knowing the internal details of a supplier. The aim is to avoid forcing them to know
these details.

In other words information hiding is not intended to restrain client authors but to help
them; although of direct interest to managers, it is not a management tool but a development
technique, whose primary purpose is to limit the amount of information that developers
must learn about their suppliers when writing their own software. Without information
hiding, using a module requires knowing many of its internal details; this is a huge obstacle
to software reusability, since the work needed to reuse a library may be discouraging.

The absence of a strict information hiding policy is also one of the principal reasons
why traditionally built software shows so little extendibility: if modules that use a module
A may rely on any of its properties, then changing anything in A may require changing
many other components of the system architecture. Information hiding, then, is not a
matter of authoritarianism; it is a matter of survival for the developers of large systems —
and especially for those who will maintain these systems.

SELFISHNESS PRINCIPLE

Tell me not what you are; tell me what you can do for me.

CONCEPT SIX: DESIGN BY CONTRACT 15
The question remains of whether to permit client developers to know the secret parts
of their supplier classes. Unlike information hiding, this is a management issue. It has no
absolute answer. If the source form is available, you may or may not let client developers
access it. This is not a momentous decision if the language environment that you use
enforces information hiding in the proper sense of the term, that is to say if it lets supplier
authors define what is exported and what is secret, and physically prevents client classes
from using secret features.

When working in such an environment with developers who master the technology I
have found that it is not particularly useful to add a strict secrecy discipline. Client authors
will not, as a rule, want to read about secret details; that would simply mean adding to the
mass of information that they must digest. But in some cases they may need this
information. In particular there is always the possibility that the official documentation
about a class has accidentally omitted some important piece of information.

These observations help understand the effect of an information hiding policy on the
manager’s role. The manager’s major task is not to enforce information hiding on the client
side; this will be ensured through technical rather than managerial means (by using the
proper language and tools) and you may or may not let client authors find out about secret
details. The more significant responsibilities for the manager are on the supplier side:
making sure that any developer who writes a class that will be used by others carefully
defines what is exported and what is not, and produces accurate interface documentation.

The last point is crucial. What can kill information hiding is not an occasional
unwarranted client incursion into secret details; it is the inadequacy of supplier-side
documentation, which would compel client authors to go look into secret information when
they should not need to and, in most cases, do not want to. After a while the result would be
— as when a society has too many absurd or unenforceable laws, bringing about a general
disregard for all laws — to make developers distrust the principle of information hiding
and revert to the use of global variables and other techniques that introduce intricate and
sneaky dependencies between modules, defeating extendibility, reusability and reliability.

We will encounter a similar observation in the discussion of reusability, when noting that the
difficult problems there are not on the side of the reusers, or consumers, but on the side of the
authors of reusable modules, or producers. See “CHASING THE RIGHT HORSE”, page 112.

CONCEPT SIX: DESIGN BY CONTRACT

To make client-supplier relations effective and to produce reliable software, we have to
make sure, as in business relations, that the terms of the communication have been
precisely established. To achieve this, authors of classes will try to associate with every
applicable feature a contract: a detailed statement of what the feature offers to the clients,
and what it requires from them in order to work properly.

CONTRACT PRINCIPLE

Whenever possible, the use of supplier features by a client class should be
governed by a precise description of the mutual benefits and obligations.

THE TEN KEY O-O CONCEPTS §2 16
As any contract between humans or companies, the contract of a feature will list
mutual obligations and benefits. As is also usual, the obligations for one of the parties map
into benefits for the other. Client obligations (supplier benefits) are conditions that the
client must meet before calling the feature, to ensure proper execution of the feature; they
are called preconditions. Client benefits (supplier obligations) are results that the feature
must ensure; they are called postconditions.

Assume for example a system for managing the Frequent Flyer program of an airline
(actual work around such a system serves as background for a later presentation; see “THE
NOTION OF CLUSTER”, page 51). One of the classes in the system could describe the
notion of MEMBER, modeling the notion of program member. One of the features could be
promote_to_top_tier, corresponding to a change of status applicable to very frequent
travelers. The contract for this feature could look like the following:

Design by Contract is a powerful metaphor that runs through the object-oriented method.
It makes it possible to design software systems of much higher reliability than ever before;
the key is understanding that reliability problems (more commonly known as bugs) largely
occur at module boundaries, and most often result from inconsistencies in both sides’
expectations. Design by Contract promotes a much more systematic approach to this issue,
by encouraging module designers to base communication with other modules on precisely
defined statements of mutual obligations and benefits, not on vague hopes that everything
will go right.

Such a view is particularly attractive to a manager. Information hiding provides the
only possible means to remain in control of a large development; Design by Contract enables
management to understand what each component of a development is trying to achieve
without having to delve into the details of the component. As in business life, you use client-

promote_to_
top_tier

OBLIGATIONS BENEFITS

Client

(Satisfy precondition:)
Only call the feature for a
member that has flown at least
80,000 kilometers in the
current calendar year, and
whose membership is in good
standing.

(From postcondition:)
Ensure that letter with
coupon for 10,000
kilometers has been
mailed to member, and
that member is now set up
to enjoy top tier privileges
and promotions.

Supplier

(Satisfy postcondition:)
Mail letter with coupon for
10,000 kilometers, and set up
membership information to
include top tier privileges and
promotions.

(From precondition:)
Simpler processing thanks
to the assumption that
proper conditions apply
(enough kilometers flown,
good standing).

CONCEPT SEVEN: INHERITANCE 17
supplier relationships to get the job done, information hiding to ensure that each group
concentrates on (and minds) its own business, and precisely worded contracts to avoid
misunderstandings and disappointments.

Object-oriented languages should support these ideas by offering assertions that
enable software writers to include the terms of software contracts (preconditions,
postconditions, and also another construct known as the class invariant and explained in
the Appendix) in the software text itself. Such assertions help write the software right in
the first place; they provide a powerful mechanism for quality assurance, testing and (if
errors remain) debugging; and they also serve as the basic documentation tool for object-
oriented software, in particular reusable library classes.

CONCEPT SEVEN: INHERITANCE

Building our systems out of classes describing data abstractions means that we may end up
with many classes representing variants of the same basic notions. Inheritance allows us to
organize them into well-structured hierarchies.

The Frequent Flyer system again provides an excellent example of why we need
inheritance. The supporting software may have classes for the various kinds of “award”
handled by the Frequent Flyer program. An award is an individual benefit that a program
member will get from the program, by redeeming miles. It can be a free ticket or an
upgrade — for the airline itself or for a partner airline; it can also come in the form of free
car rentals, free hotel stays, or other benefits provided by the airline’s partners.

In object-oriented software construction this notion of award will yield a class, since
it is a proper data abstraction characterized by features; the features applicable to an
AWARD object may include operations such as:

• redeem: an operation that enters all the information necessary to record that the award
has been redeemed.

• mileage_value: an operation that returns the number of miles required for the award.
• method_of_delivery: an operation that returns information about how the award is to

be made available to its recipient (pick up at a counter, normal mailing, express mail).
• cancel: an operation that cancels the award.

Because of the varieties of award kinds, we should probably use several classes:
AWARD to describe the general notion, but also others such as AIRLINE_AWARD,
PARTNER_AWARD, NONFLIGHT_AWARD and so on. Without inheritance these classes
would probably have many similar or identical features; such redundancy would contradict
the goal of reusability. With inheritance we can organize them in a proper structure
reflecting their commonalities and differences:

INHERITANCE PRINCIPLE

Object-Oriented software construction makes it possible to organize related
classes so as to take advantage of their commonalities and to keep the class
structure understandable and manageable.

THE TEN KEY O-O CONCEPTS §2 18
On the figure and in the rest of the discussion, “airline award” means an award providing travel
on the airline itself. Awards may also be available for travel on other airlines but they will appear
under “Partner Flight Award”.

Such an organization provides many advantages. It helps developers master the
potential complexity of a software system, offers a sophisticated form of reusability, and
opens the way to a whole new set of powerful software engineering techniques such as
polymorphism and dynamic binding, reviewed next.

What is particularly interesting in the kind of reusability supported by inheritance is
its flexibility. With more traditional mechanisms, such as subroutine libraries, you either
reuse a component exactly as it is, or do your own development. Such inflexibility is not
acceptable in software, where one frequently encounters the need to adapt to a new context.
Inheritance gets us out of this reuse or redo dilemma. If a class inherits from one of its
parents a feature whose original version is not adapted to new class’s context, it can change
the feature; this is called a redeclaration. For example the redeem operation may be
different from the default mechanism for awards provided by partners; then class
PARTNER_AWARD may redeclare feature redeem. This is graphically represented by the
appearance of this feature with a + sign next to the class on the above figure. But the class
can keep other features inherited from AWARD unchanged.

This ability to reconcile reusability with adaptability is one of the distinctive
properties of the object-oriented method.

Also notable is the openness of the mechanism. Nowhere will the description of a
class such as AWARD indicate what variants are available for the corresponding notion. The
text of a class lists its parents (the classes from which it inherits); it never lists its heirs (those
which inherit from it directly or indirectly). As a result, the architecture is open: it is always
possible to add a new descendant to a class without affecting existing clients. This
fundamental property is suggested on the preceding figure by the extra arrow and three dots

AIRLINE_

AWARD

PARTNER_

...

redeem

AWARD AWARD

TICKET UPGRADE PARTNER_

AWARD

NONFLIGHT_
AWARD

CAR_
RENTAL

HOTEL_
STAY

FLIGHT_

...

cancel
mileage_value
method_of_delivery

Class

Inheritance

redeem+

AN INHERITANCE HIERARCHY

CONCEPT EIGHT: POLYMORPHISM AND DYNAMIC BINDING 19
below NONFLIGHT_AWARD, standing for all the new kinds of non-flight partner award
that might later be added as the airline markets its lucrative Frequent Flyer program to new
partners in various industries.

CONCEPT EIGHT: POLYMORPHISM AND DYNAMIC BINDING

Polymorphism is the ability to combine objects of different types into the same structure (a
more precise definition appears in the Appendix). For example we may have a list of
awards to be handled during a certain day; the objects of that list may be instances of
different although related classes, such as TICKET, UPGRADE, CAR_RENTAL etc. Such a
list is said to be polymorphic, that is to say many-shaped:

Dynamic binding governs the processing of polymorphic structures. Assume that (as
will probably be the case) various descendants of AWARD redeclare feature redeem in
different ways, even though the figure on the preceding page only shows one such
redeclaration, in class PARTNER_AWARD. The software may include instructions that
apply this operation to every element of the list, using the general scheme

[O-O SCHEME]

for_every_element a apply redeem to a

Dynamic binding here means that if the list traversal encounters objects a of various types,
which will indeed be the case for the polymorphic list pictured above, it will automatically
apply the appropriate version of redeem in each case: for an instance of class TICKET, the
version of redeem redeclared for that class; for an instance of UPGRADE, the version
redeclared in class UPGRADE; and so on. What is great about this scheme is that dynamic
binding is entirely automatic: the software developers do not need to worry about adapting
every feature application to the exact type of the target object; the object-oriented
implementation mechanisms take care of everything.

To understand the power of this technique it suffices to think of how one would try to
obtain an equivalent result in a non-object-oriented approach. The software would have to
be peppered with decision structures of the form

POLYMORPHISM AND DYNAMIC BINDING PRINCIPLE

Object-oriented software construction makes it possible to build structures
made of objects of different although related types, and to ensure that every
operation will automatically adapt to the type of its target object.

Instance of
 UPGRADE

Instance of
 TICKET

Instance of
 CAR_RENTAL

Instance of
 TICKET

A POLYMORPHIC LIST OF “AWARD” OBJECTS

THE TEN KEY O-O CONCEPTS §2 20
[NON-O-O SCHEME]
if my object represents a ticket award then apply the ticket version of the feature
elseif it is an upgrade object then apply the upgrade version
else ... Many more cases ...

In the text of non-object-oriented systems you will encounter this kind of construction at
every street corner. It is a software engineering disaster. Not only is it heavy and tedious to
write; even more importantly, it is the same for all operations that manipulate a certain
polymorphic structure, meaning that if you add just one variant to the existing classes — a
new kind of frequent flyer award, for example, hardly an unlikely event in the history of the
software! — you will have to update all the elements of client software that manipulated
award objects. No wonder traditional software systems are so hard to extend and
maintenance accounts for such a high share of software costs.

In contrast, using the “O-O SCHEME” based on dynamic binding, you add a new
class to the inheritance structure, possibly with its specific version of redeem, and that is
all. Dynamic binding will take care of automatically applying the new mechanism to the
relevant objects.

Dynamic binding may be viewed as the ultimate in abstraction and information
hiding. It means that you can ignore some details not just until later stages of software
construction but until the last possible moment — execution time.

POLYMORPHISM, DYNAMIC BINDING AND YOU

The ideas just studied are particularly relevant to the way managers see and do their job. It
is often necessary for a high-level manager to give directives of the form

“Review the security procedures for every plant”
or

“Determine the annual bonus for every employee”
or

“Start shareholder, analyst and press actions for the new product announcement”.

In all such cases, the directives, to be effective, must rely on the understanding that many
of the requested actions have a number of possible variants, and that each affected unit will
select the variant applicable to it. Each type of plant will have different security measures;
each type of employee will have different bonus formula; and the public relations actions
will be different for a shareholder, a Wall Street analyst and a journalist.

With old-style management, Headquarters kept a set of detailed instructions for every
possible case in every possible branch of the company, similar to the complex if... then...
elseif... elseif... sets of directives of old-style software architectures as illustrated in the
preceding “NON-O-O SCHEME”. Modern management gives more autonomy to
individual units, making them responsible for implementing their specific variants of
individual directives as long as they fit in the general plan defined by the corporation.

This is exactly what we obtain with redefinition, polymorphism and dynamic
binding. One way to define the general plan is through assertions, which define the

CONCEPT NINE: STATIC TYPING 21
common framework within which each unit is free to define the variations that work best
for its own context. Design by Contract is once again the guiding principle: as long as the
terms of the contract are defined and accepted, it does not matter what technique each party
uses to meet these terms.

The effect of object technology on the architecture of software systems is a
delocalization of intelligence: instead of a central, all-encompassing center that decides
everything for everyone, we try, in the interest of extendibility and reusability, to empower
each module with enough information and processing power to deal with the requests
addressed specifically to it. This evolution mirrors the evolution of the many excellence-
seeking companies that aim for collective success by making each unit responsible for
achieving its specific goals within a common general framework

The combination of client-supplier relations, polymorphism, Design by Contract and
dynamic binding also evokes the normal business procedure of farming out some
operations to contractors: you rely on some other company to do some work for you
(client-supplier relation); for safety and flexibility, you give yourself the possibility of
going to any one of several such contractors (polymorphism); you let each contractor do
the job according to its own procedures and mode of operation (dynamic binding) as long
as it meets the contractually specified obligations (Design by Contract). Note the
importance of the last point: without specifications that guarantee consistency of the results
from various suppliers, it would be very difficult to benefit from the flexibility afforded by
the choice of supplier.

CONCEPT NINE: STATIC TYPING

The concern here is reliability. With the power of polymorphism and dynamic binding, a
potential risks exists of execution-time disasters. What if the execution tries to apply a
feature such as redeem to an object that has no such feature, for example an instance of
class MEMBER (you cannot redeem a member of the Frequent Flyer program!) or CITY?

The solution is, in its basic form, straightforward. For any entity of the software text
that represents execution-time objects, you must include a declaration that specifies the
possible types (classes) for the associated objects. For example you may declare a certain
entity as being of type AWARD. Then a feature application on the entity is valid only if it
uses a feature of that class. If not, the tools of the environment, for example the compiler,
will produce an error message, forcing the developers to correct the inconsistency.

Without polymorphism and dynamic binding, the static typing policy might be too
constraining. But the combination of these mechanisms yields the right mix of flexibility
and safety. By declaring an entity as being of type AWARD, you restrict its possible

STATIC TYPING PRINCIPLE

Object-oriented software construction should make it possible to associate a
type with every entity of the software text, so as to enable compilers or other
tools to check, before execution, that objects will always be able to execute
the operations applied to them during execution.

THE TEN KEY O-O CONCEPTS §2 22
execution-time values, excluding for example objects of type MEMBER or CITY, but
thanks to polymorphism you still leave a lot of manoeuvering room: the attached objects
may be of any type that is a descendant of AWARD, for example TICKET, CAR_RENTAL or
any new variant that may be added tomorrow or ten years from now.

The combination of static typing and dynamic binding is particularly powerful.
“Static” here means done before any execution is attempted, whereas “dynamic” means
done at execution time; “typing” means the verification of consistency, whereas “binding”
means the association of a feature name (such as redeem) with an actual feature, such as the
redeeming operation for ticket awards. The verification is done as early as possible, prior to
execution; but the binding is done as late as possible, during execution. Static typing means
a static guarantee that at least one feature will be applicable; dynamic binding means that
in all execution-time cases the right feature will be applied.

Not all O-O languages are statically typed. The most famous example of a dynamically
typed language is Smalltalk, where the preceding discussion does not hold: type declarations
are not required, so that a wrongly used feature will produce a run-time error — “message
not understood” — usually causing the application to terminate abnormally. Although
perhaps defensible for research or experimentation software, dynamic typing has always
struck me as unacceptable for production systems; bugs should be fixed by the software team
at the time of development, not passed on to end-users of the product (such as Frequent Flyer
program personnel). Many studies have confirmed what every software manager knows
intuitively: the later an error is detected, the more costly it will be to fix; and the cost grows
exponentially. Static typing is a way to catch bugs before they have the time to catch you.

CONCEPT TEN: AUTOMATIC MEMORY MANAGEMENT

For this last concept on our list we are entering the area of implementation support for object-
oriented development. But the memory management mechanism is not a little internal detail;
it is a key part of the supporting technology, which makes the more highbrow stuff possible.
Some presentations of object technology, especially those which focus on analysis, sneer as
such lowly details, or ignore them totally. This is about as useful as describing the operation
of a car and concentrating solely on the external components — steering wheel and pedals —
and forgetting to mention that none of this would be very useful without an engine and gas.

The execution of an object-oriented system tends to create many objects; some of
these objects will eventually become unreachable from the active ones and hence useless.
Good implementations of object-oriented languages address this problem by providing an
automatic memory management mechanism, or garbage collector, that periodically looks
for unreachable objects and reclaims their memory. Without this facility it is difficult to
write realistic O-O applications.

MEMORY MANAGEMENT PRINCIPLE

An object-oriented environment should automatically take care of
reclaiming the memory used by objects that are not accessible any more to
the execution of a system.

SEAMLESSNESS 23
Modern garbage collectors can make themselves quite unobtrusive: they are
triggered only once in a while, and do not interrupt the application for perceptible amounts
of time. Without them, developers would have to devote a large part of their efforts to
cleaning up their memory usage. Not only is this manual memory management tedious; it
is also error-prone, as the software can all too easily free an object even though some
remote part of the application still has a reference to it. This can cause some horrendous
bugs — all the more difficult to track that the cause of the error is often far removed from
its intermittent manifestation.

One may compare the role of automatic garbage collection in O-O development to
that of automatic register allocation in normal high-level programming. Once upon a time,
programmers had to devote considerable effort to allocating the machine’s registers to the
variables of their programs. With the advent of high-level languages and compilers, this
burden was removed from programmers so that they could use their astuteness to solve
problems more directly relevant to their customers. Garbage collection is one more step in
this continual effort to free developers’ energy for truly constructive goals.

SEAMLESSNESS

Where do the Ten Key Concepts just seen belong? Are they “programming” notions, in the
restricted sense of the term (implementation)? Do they affect the design level? Or can they
be applied to analysis, that is to say to the abstract study of a system’s requirements?

The answer: all of the above. The same ideas will permeate the entire software
construction process. It would be a mistake, in particular, to understand them as
implementation techniques only. The client and inheritance relations, governed by
contracts, can exist between analysis classes describing models of objects from external
physical systems, such as a class MEMBER in a Frequent Flyer system; between design
classes describing software architecture decisions, for example a class SESSION in an
interactive text processing system; and between implementation classes describing choices
of data structures and algorithms, such as a class LINKED_LIST.

One exception: the last principle, Memory Management, addresses an implementation issue,
although as noted that issue is essential to make the other aspects of the technology possible.

Seamlessness means more than just being able to use similar ideas at various levels.
Object technology reduces the traditional differences between analysis, design and
implementation. Instead of rigidly separated phases the method promotes a continuous view
of software development where the various activities follow each other seamlessly.

This property is one of the principal innovations of object technology. It is one of the
concepts that a manager in charge of supervising the introduction of O-O development
must understand, since in addition to its technical consequences it has a considerable effect
on the software process, on team organization, and on the definition of jobs.

These aspects will be explored in the rest of this book, especially in the study of the
object-oriented lifecycle in the following chapter; see in particular “SEAMLESSNESS”,
page 48. They can be summarized by a simple principle:

THE TEN KEY O-O CONCEPTS §2 24
OBJECT-ORIENTED LANGUAGES

To implement an object-oriented design, you will need an object-oriented language. (It is in
principle possible to translate the design to a traditional language, but this means doing the
work of an O-O language compiler yourself, not a very attractive idea. See the
“Seriousness Principle”, page 76.) Let us briefly review the major offerings in this area. I
have been actively involved with one of them (Eiffel) and hence cannot claim to be an
unopinionated observer, but this does not preclude giving an overview of the major
features of each approach.

Object-oriented languages, and the whole O-O field, got their start in the nineteen-
sixties with the publication in 1967 of Simula, a simulation language that was also a
general-purpose O-O language. It is impressive to see how many of the basic ideas were
there. In the past ten years a number of O-O languages have appeared; three of them have
attracted the most attention:

• Smalltalk.
• C++.
• Eiffel.

Smalltalk, whose first versions predated those of the other two, was instrumental in
making object-oriented ideas appealing to a large audience through the quality of its user
interface. The language has been widely used for experimentation and prototyping (see the
discussion of this term in chapter 4). But its lack of static typing, assertions and multiple
inheritance make its use dubious for production-grade software. Typing in particular is an
issue: as noted above, it is not safe, in serious, mission-critical applications, to have to wait
until run time to find out whether a feature is applicable to an object, and see the application
crash if one infrequent case has been forgotten. Smalltalk has also been criticized for the
performance of the code that its implementations generate. It does, however, provide an
attractive introduction to object-orientation through the power of its environment, and in
the nineteen-eighties succeeded magnificently at a task that Simula had failed to achieve:
making object-oriented ideas visible and attractive to a large community.

C++ is the result of extending the C language with a number of O-O constructs. It is
particularly attractive to companies that have a major investment in C and hope for a smooth
transition to object-oriented development. The C heritage also makes it difficult to obtain
the full benefits of the method; garbage collection, for example, is usually not supported in
C++, and the type system is hybrid, mixing C concepts with those of object technology and
preventing a full application of static typing principles. C++ has recently come under intense
criticism for its complexity; the C++ extract on page 26, which deals with manual
implementation of memory management facilities, is typical of the difficulty of reading C++
code, due in particular to the use of many low-level, machine-oriented constructs inherited

SEAMLESSNESS PRINCIPLE

Object-oriented ideas are meant to be applied to all steps of software
development, including analysis, design, implementation and maintenance,
and to decrease the gaps between these steps.

OBJECT-ORIENTED LANGUAGES 25
from C, such as * (giving the content of a memory address) and & (giving the address of a
variable), of which it is easy to include an occurrence too few or too many. But C++ may be
credited for having brought object-oriented concepts to the masses; it is a transition
technology that has been helpful to many people with a C background.

Eiffel, whose syntax is used in the examples of the Appendix, is an attempt to keep
the advantages of both of the previous approaches without their limitations. From C++ it
retains the ability to produce highly efficient code, whose performance is comparable to
that of programs written in such traditional languages as C and Fortran, and to interface
easily with existing code (all current Eiffel compilers generate C output). Like Smalltalk it
uses a “pure-O-O” approach uncompromised by hybridization with non-O-O languages.
Among the innovations of Eiffel are assertions, a carefully designed view of inheritance (in
particular to address multiple inheritance), and a strict approach to static typing. Eiffel has
been widely used in applications with high reliability and efficiency requirements, such as
telecommunications, CAD-CAM, banking (in particular the challenging area of options
and derivatives trading). It is also popular with universities for teaching programming and
other software topics at all levels. The following extract, taken from a later discussion of
the use of object-oriented notations for analysis, is typical of the look and feel of Eiffel
texts. It is extracted from a specification of the notion of vat for a chemical plant; the
require, ensure and invariant clauses are assertions, expressing the contracts.

deferred class VAT inherit

TANK

feature

fill
-- Fill the vat.

require
in_valve ? open; out_valve ? closed

deferred
ensure

in_valve ? closed; out_valve ? closed; is_ full
end

 [Other features: is_ full, is_empty, empty, in_valve, out_valve,
 gauge, maximum ...]

invariant

is_ full = (gauge >= .97 * maximum) and (gauge <= 1.03 * maximum)

end

AN EIFFEL EXTRACT
(For details on the example see page 181.)

THE TEN KEY O-O CONCEPTS §2 26
// These classes implement the necessary logic
// for building reference counted objects
// and the associated pointers.

class counted {

friend class Rptr;

int nreferences;
// number of references to this object

addRef ()

{ nreferences++; }

delRef ()
{

if (--nreferences)
delete this;

}

public:

Counted ()
{ nreferences = 0; }

~Counted();
} ;

Class RPtr_base {
 protected:

Counted *ptr;
RPtr_base()

{ ptr = 0;]

RPtr(RPtr& r)
{ ptr = r.ptr;
 if(ptr) ptr–>addref();
 return *this;
}

RPtr(Counted *tp)

{ ptr = tp;
 if(ptr) ptr–>addref();
 return *this;

}

~RPtr()
{ if (ptr) ptr–>delref(); }

RPtr& operator=(RPtr& r)

{ if (ptr) ptr–delref();
 ptr = r.ptr;
 if(ptr) ptr–>addref();
 return *this
}

RPtr& operator=(Counted *tp)
{ if (ptr) ptr–>delref();
 ptr = tp;
 if(ptr) ptr–>addref();
 return *this
}

} ;

#define RPtr (T) name2 (Rptr_,T)

#defineMakeRPtr (T)

class RPtr (t) : public RPtr_base {

Counted *ptr;
 public:

RPtr(T) ()
: RPtr_base()
{ }

RPtr(T) (RPtr(T)& r)

: RPtr_base(r)
{ }

RPtr(T) (T *tp)

: RPtr_base ((Counted *) T)
{ }

~RPtr (T) ()

{ }

RPtr(T)& operator=(RPtr(T)& r)
{ *((RPtr_base *) this) = r; }

RPtr(T)& operator=(T *tp)

{ *((RPtr_base *) this) =
(Counted *) tp; }

T& operator *()

{ assert(ptr); return *((T *) ptr); }

operator T *()
{ return (T *) ptr; }

int operator !()

{ return !ptr; }
};

A C++ EXTRACT
(From: J. S. Shapiro, A C++ Toolkit, Prentice Hall, 1991, pp. 222-223; reprinted with permission.)

IMPLEMENTATION ASPECTS 27
IMPLEMENTATION ASPECTS

To use an object-oriented language you will need the appropriate tools. O-O languages are
either directly interpreted or compiled into machine code.

An increasingly popular approach is to use a compiler that instead of directly
generating machine code uses C as an intermediate language: the O-O compiler generates
C output and relies on a C compiler to obtain an executable result. This technique is used by
many C++ compilers and all current Eiffel compilers. It presents a number of advantages:

• C is a sort of universal assembly language, implementations of which are available on
most platforms. This facilitates portability.

• The use of C as implementation vehicle also facilitates interfacing O-O applications
with existing software, for example graphics or database tools, many of which use C.

• C compilers are adept at handling many optimizations.

Once compiled, whether into C or something else, an object-oriented application will
need a set of facilities for memory allocation, garbage collection, signal handling and
interfacing with the operating system. Providing these facilities is the task of the run-time
system, which must be linked with the application to permit its execution.

OBJECT-ORIENTED ENVIRONMENTS

The object-oriented paradigm provides a number of ideas that can be fruitfully applied to
development environments, as was first brilliantly illustrated by Smalltalk.

A word of caution here: the marketing appeal of the word “object-oriented” has led to
its over-use and devaluation, almost to the point of absurdity; some tools, it would seem,
base their claims to object orientation on having gained a few icons and pull-down menus.
But in fact the notion of object-oriented environment is a serious one, resulting from
applying O-O ideas to the interaction between software developers and their tools.

To help you get a feel for these concepts here are a few examples from a recent
development in the field, the ISE Eiffel environment (running on Windows, Unix, VMS
etc.).

Where traditional environments have function-based tools — a compiler, a
debugger, a pretty-printer, a CASE (Computer-Aided Software Engineering) program
generator and so on — an object-oriented environment will have tools based on data
abstractions: a class tool, a feature tool, a system tool, a project tool. Each one of these
tools is based on one of the data abstractions of interest to developers: classes, features,
systems, projects.

The screen shot at the top of the following page shows a class tool. The tool has been
targeted to a particular class, STRING (a library class). It shows an extract of the class text,
written in Eiffel. (This figure and the ones that follow it are reprinted courtesy of ISE.)

THE TEN KEY O-O CONCEPTS §2 28
Various formats are applicable to the class, represented by the bottom row of icons. For
example the icon labeled represents the short form (the basic interface documentation
for a class, see page 169); the icon labeled represents the ancestors — the inheritance
structure that leads to the class.

Two of the available formats are shown on the adjacent page:

• If you click on the Ancestors format icon the tool will switch to a format that
shows the ancestor inheritance structure:

• Or you can click on the Routines format to obtain a list of some of the features of
the class, each with the indication of the class from which it comes in the inheritance
hierarchy.

A CLASS TOOL IN TEXT FORMAT

OBJECT-ORIENTED ENVIRONMENTS 29
A CLASS TOOL IN ANCESTORS FORMAT

A CLASS TOOL IN ROUTINES FORMAT

THE TEN KEY O-O CONCEPTS §2 30
The transposition of O-O development concepts to the environment itself is clear: in the
same way that a typical O-O operation applies an operation to a target object, here each
tool is targeted to a development object — the class STRING in the example. Similarly, the
formats at the bottom of the window are the equivalent of the query features (see page 158)
applicable to the instances of a class; they make it possible to obtain various kinds of
information about the class. There are also commands, which can change the status; for
example the Project tool will have a Compile button to perform a quick recompilation of
the current project.

It is also interesting to see how such an object-oriented environment addresses the
browsing problem. Developers will often need to explore the structure of an O-O system,
to find relatives of a class (heirs, parents, clients, suppliers) and properties of its features.
Older environments provided a tool, the browser, to perform that task. But, like a
subroutine in traditional software decomposition, a browser is a function-oriented tool.
Instead, we can use the object-oriented facilities outlined above to provide browsing
without a browser. Under the formats shown, everything is clickable: you can mouse-click
on the name of any class, feature or other developer object, and drag-and-drop it to the
appropriate tool to find out more information. For example, looking at the first few lines of
the last figure, you can click on the name of any one of the classes RESIZABLE, INTEGER,
BOOLEAN and so on, and drag-and-drop it either to a different class tool or to the given
class tool (so as to retarget it to the given class). You can also click on a feature such as
resizable to bring up a feature tool targeted to that feature:

Among the format buttons in the bottom row of the feature tool you will find the Ancestor
Versions format which enables you to trace the history of the feature through the
inheritance hierarchy:

A FEATURE TOOL IN TEXT FORMAT

OBJECT-ORIENTED ANALYSIS 31
Here as elsewhere all the class and feature names are clickable. This provides a
powerful hypertext-like mechanism for exploring the various developer objects and the
many transmutations to which they are subjected in the object-oriented software
development process.

The key to the flexibility and ease of use of these mechanisms is the way they apply
O-O principles not just to the software being developed, but also to the process of
producing it interactively. The facilities that have just been sketched are only a basic
subset; the environment provides many further mechanisms, all fitting in the same
framework, for such activities as compiling, interactive debugging and others. A high-level
analysis and design tool (EiffelCase) provides the equivalent for the earliest stages of
software construction.

OBJECT-ORIENTED ANALYSIS

An application of object technology has attracted much attention in the past few years:
object-oriented analysis, which uses concepts of data abstraction and inheritance to model
problems before (or without) attempting to build software solutions.

The object-oriented method is attractive here because of its modeling power. Kristen
Nygaard, one of the designers of Simula, coined the aphorism to program is to understand.
A consequence is that many of the O-O mechanisms initially devised (by Nygaard and
others) to facilitate programming also facilitate understanding and hence modeling, even if
the process stops there rather than continuing with the programming of a software system.

A number of methods have been devised to take advantage of this strength of object-
oriented ideas; the bibliography lists some of them. In many cases, however, you do not
need much more than what has already been introduced in this chapter. Combining the
ideas of data abstraction, classes, information hiding, client-supplier relationships,
classification through inheritance and contracts yields a powerful method for modeling
external systems, long before thinking about any design or implementation decision.

A FEATURE TOOL IN ANCESTORS VERSION FORMAT

THE TEN KEY O-O CONCEPTS §2 32
The Eiffel example given on page 25 provides a good example of this approach. It
shows the use of inheritance to express classifications — a VAT in a chemical plant being
described through inheritance as a special case of a TANK — and of contracts to state the
input and output conditions on the corresponding operations; here for example is the
contract for the operation that fills a vat, represented in the class by feature fill:

People trained in conventional approaches, for whom “analysis” connotes imprecise
descriptions relying on the infamous “bubbles and arrows” of Structured Analysis and
similar methods, might react to the class text of page 25 by crying: “This is a program text,
not analysis!”. Such a reaction, however, is unfounded. Nothing in that extract has
anything to do with implementation. The extract would be easy to explain to someone who
went to high school around 1930, but lived with an Amazonian tribe ever since and never
heard about computers, let alone software — but knows about chemical plants and vats. It
is a pure conceptual description.

To make these techniques attractive to a wide range of users it is often desirable to
provide other representations as well. This is where the bubbles and arrows come back:
graphical views of object-oriented analysis models, deduced from specifications such as
the one for VAT, can be helpful to support discussions with customers and prospective
users. The following screen shot shows an example of such a graphical system description,
produced by the EiffelCase tool in the ISE Eiffel environment.

fill OBLIGATIONS BENEFITS

Client

(Satisfy precondition:)
Input valve must be open, and
output valve closed.

(From postcondition:)
Get the vat in a state in
which it is full, with the
valves in the proper
positions.

Supplier

(Satisfy postcondition:)
Fill vat and leave the valves in
the proper positions.

(From precondition:)
No need to worry about
initial cases in which input
valve is closed or output
valve open.

OBJECT-ORIENTED ANALYSIS 33
Even then the formal version (such as the text of page 25) should serve as the reference of
last resort if you need to answer precise questions about the specification, such as “is a vat
considered full if its gauge shows 96.5%?”. Graphical descriptions are widely and properly
praised for their expressiveness, but they are not the appropriate tool when precision is the
goal. In such cases, essential to the quality of the eventual system, you need formal text. So
if both a graphical and a textual versions of the object-oriented model are available, two-
way tools should be available to enable the seamless translation of graphical input into a
text form and, conversely, the production of graphics from text. Support for the first
direction is common in CASE tools; the reverse facility is more challenging and has only
recently become available, in products such as EiffelCase.

O-O ANALYSIS CASE TOOLS: A SYSTEM STRUCTURE DIAGRAM
(with feature and class tools)

EiffelCase output; reproduced by permission of ISE.

THE TEN KEY O-O CONCEPTS §2 34
THE NEW ROLE OF ANALYSIS

Object technology does not just affect how to do analysis, but also the very nature of the
analysis process, although this point seems to have been missed by much of the current
O-O analysis literature. Conventional views of the software process, such as the waterfall
model discussed in the next chapter, rely on the assumption, explicit or not, that the
initial statement of user requirements is sacred. Software developers are not supposed to
discuss the requirements; they are supposed to implement them! Object technology’s
emphasis on reusability, however, changes this outlook; it becomes permitted, even
encouraged, to come up with alternative suggestions in response to a requirements
document:

Assume that you are in charge of software developments in a company, and that by using
O-O techniques you have been able, over the past months or years, to produce a pool of
reusable components. You may have been officially asked to do this; or, more commonly,
you may have acquired components from outside sources, and quietly growing some of
your own components out of actual developments done in response to earlier customer
requests, using techniques of generalization described in a later chapter (see “THE
MÉTHODE CHAMPENOISE”, page 119).

Whatever the case, you now have these components at your disposal. Then if a new
customer request comes in (whether from an in-house user or from the outside), possibly
complex and over-ambitious, you may be able to reply with a counter-proposal: a suggestion
for a solution that, although slightly different from the customer’s requirements as initially
stated, may be built by reusing, adapting and complementing existing components, much
faster and possibly at a fraction of the cost of implementing the original idea.

What matters in the end, of course, is customer satisfaction; only the customers will
decide what is acceptable and what is not. They may well reject your suggestion as being
too far from what they need. Such a reaction does not mean, however, that you are back to
business as usual; it means the start of a negotiation. Their original request may have been
too baroque; your original response may have been too simplistic; you should talk. After a
few rounds of proposals and counter-proposals you may reach an acceptable middle
ground — a specification that is powerful enough to meet their needs, and realistic enough
to enable effective development based at least in part on the reusable components and tools
that you have already accumulated. To summarize:

THE FIRST PRINCIPLE OF OBJECT-ORIENTED ANALYSIS

It is all right to talk back to customers.

THE SECOND PRINCIPLE OF OBJECT-ORIENTED ANALYSIS

In a corporate environment that fosters object-orientation and reuse, analysis
becomes a negotiation process.

OBJECT-ORIENTED DATABASES 35
If you consider the practice of software development, this idea is not really new: whatever
the theory may have been in traditional software engineering textbooks and official
company policies, some kind of haggling has always been necessary to reconcile the
desirable with the doable. Object technology goes further by making this process official
and associating it with reuse. This is but one area where the technology does not just give
us better tools to tackle the traditional problems of software engineering, but partly
changes the problems themselves.

It is striking to see, once again, how the object-oriented method brings to software
development the techniques, practices and thought patterns of business life. Negotiation,
like many others concepts encountered in this chapter — contracts, centralization versus
decentralization, the need to delegate tasks, the separation between a strategy and its
implementation — is typical of these ideas, familiar to a business person, which with
object technology find a clear and fruitful application to the technical problem of
developing software for quality and productivity.

OBJECT-ORIENTED DATABASES

Another area that has been influenced by O-O ideas is databases.

Until then, aside from a few strongholds of hierarchical approaches (IMS in the IBM
mainframe world) and network models, the undisputed victor was the relational model,
which established its dominance in the nineteen-eighties. Relational databases hold data in
the form of tables of records. Each record is made of a number of fields; the field types are
the same for all records in a table. The join operation makes it possible to combine data
from two tables, yielding another table; the projection operation makes it possible to select
a subset of the field types of a table, yielding a simpler table.

Relational databases have been particularly effective for applications that manipulate
possibly large quantities of data with a relatively simple structure. The reason why the
structure must remain simple is that the relational model does not support, in the
normalized” form, records whose fields may be references to other records. It is possible to
emulate references by introducing, for each type of object that may be the target of a
reference, a field type containing an integer or some other key that uniquely identifies each
record, and relying on joins and projections. But this is clumsy for anything beyond the
simplest reference structures.

Object-oriented databases use a more advanced data model, based on some of the
ideas described in this chapter, in particular abstraction and inheritance, and on the concept
of object identification (each object in the database is assigned a unique identifier).

Not surprisingly, O-O databases were first used in areas such as Computer Aided
Design which require sophisticated modeling techniques. In the model for the design of a
new product, say a car, a large number of components will be connected through numerous
dependencies: the car has many parts, such as its engine; each part may have further
components, such as an engine’s carburetor; a component has an associated deadline,
budget and person in charge; the person in charge is an employee that has a rank, salary and
supervisor; and so on. Relational databases do not offer such flexibility.

THE TEN KEY O-O CONCEPTS §2 36
Object-oriented databases are now spreading to other application areas such as
banking and finance. It is fair to note, however, that even though the technology is
progressing fast it has not yet reached the level of refinement of either its counterparts in
the software development world (O-O languages, tools and environments) or its
predecessors in the database world (relational databases with their mechanisms for
concurrency, integrity control, rollback etc.).

For companies that have large data needs and are going into object-oriented software
development, the question then arises of what data model to use. The answer depends on
the context:

• If you are manipulating data with a relatively simple structure, or data created and
still accessed by relational tools, you may be better off with a library that provides an
interface between an object-oriented environment and a relational database. A
number of such libraries are available, some for C++, some for Eiffel, some for
Smalltalk; ISE’s EiffelStore, for example, currently supports Oracle and Sybase. The
natural mapping is to associate a relational record with an object, and a table with a
class.

• If, however, your data structure is more complex, and you can define it as you please
— that is to say, you are not tied to a mass of pre-existing relational data — then an
object-oriented database, or the persistence mechanism of your object-oriented
language (such as Eiffel’s STORABLE facility), may be the way to go.

A number of companies have recently introduced a solution that attempts to yield the
best of both worlds: hybrid databases, which retain a number of relational mechanisms
while adding object-oriented concepts.

NETWORKS AND OBJECT REQUEST BROKERS

A final aspect of the technology deserves to be mentioned. With the growth of networks
and distributed computing, the industry has increasingly been looking for simple ways of
exchanging structured data between different processes. The abstraction mechanisms of
object-oriented programming can help.

Environments such as Apple’s Macintosh have addressed a simple form of this goal
of application interoperability by providing standardized formats that allow various
applications to use common data; the standard example is a word processor integrating data
from a spreadsheet. But much more is needed. At the other extreme you find the Unix
operating system, where the only generally accepted standard is text, forcing every
application to define its own communication formats — so that, not surprisingly, little or
no communication is by default possible between tools originating from different
suppliers.

Object technology appears promising here because of its emphasis on abstraction: to
enable an effective form of interaction between applications, whether they reside on the
same machine or run on different processors, communicating through abstract class
interfaces is preferable to techniques that would be based on lower-level standards such as
text formats. This is the idea behind object request brokers.

BIBLIOGRAPHY 37
At the time of writing two standardization efforts have attracted attention:
Microsoft’s OLE (Object Linking and Embedding) and a proposal called CORBA
(Common Object Request Broker Architecture), whose CORBA 1 version is not platform-
independent while the CORBA 2 version, which promises interoperability between
platforms, is still under discussion. Related efforts include the OpenDoc multi-document
architecture, driven by a group of hardware and software companies.

All this evokes the famous comment that “standards are great — that’s why there are
so many of them”. One can hope the situation will stabilize, enabling object technology to
provide another key benefit to the computer industry.

BIBLIOGRAPHY

[The books marked with an asterisk * in this bibliography and those of subsequent chapters
are part of Prentice Hall’s Object-Oriented Series, to which this book also belongs.]

A general introduction to object-oriented concepts may be found in my Object-
Oriented Software Construction* (Prentice Hall, 1988, revised edition to appear in 1995),
which discusses the intellectual background for the method, and presents O-O techniques
in light of the software quality factors listed in the present chapter. If you prefer smaller
volumes, see A Book of Object-Oriented Knowledge* by Brian Henderson-Sellers
(Prentice Hall, 1991), notable for its full-page viewgraphs which readers are invited to
reproduce for talks introducing O-O concepts to their companies. Other introductions
include Object-Oriented Methods by Ian Graham (Addison-Wesley, second edition, 1994),
whose coverage is particularly broad.

Two books are, like the present one, specifically targeted towards managers rather
than software developers: David Taylor’s Object-Oriented Technology: A Manager’s
Guide (Addison-Wesley, 1992) and Ivar Jacobson’s The Object Advantage: Business
Process Reengineering with Object Technology (Addison-Wesley, 1994).

The concept of Design by Contract is discussed in Object-Oriented Software
Construction and also in the article Applying “Design by Contract”, in Computer (IEEE),
25, 10, pages 40-51, October 1992.

The principles of designing libraries are explored in my book Reusable Software: The
Base Object-Oriented Component Libraries* (Prentice Hall, 1994), which introduces a
general-purpose taxonomy of the fundamental structures of computing. The environment
illustrated in this chapter and its design principles are presented in An Object-Oriented
Environment: Principles and Application* (Prentice Hall, 1994).

Here are the basic references on the object-oriented languages mentioned in this
chapter: on Smalltalk, Smalltalk-80: The Language and its Implementation by Adele
Goldberg and David Robson (Addison-Wesley, 1983); on C++, The C++ Programming
Language by Bjarne Stroustrup (Addison-Wesley, second edition, 1993); on Eiffel, Eiffel:
The Language* (Prentice Hall, 1992). The Objective-C language, another O-O extension
of C, is described in Object-Oriented Programming: An Evolutionary Approach, Second
edition by Brad J. Cox and Andrew J. Novobilski, Addison-Wesley, 1990.

THE TEN KEY O-O CONCEPTS §2 38
Several introductory books are available on object-oriented databases. See for
example Won Kim’s Introduction to Object-Oriented Databases, MIT Press, 1990.
Techniques for combining object-oriented development with a relational database
management system are studied in the book by Waldén and Nerson cited next.

On O-O analysis there is also an abundant literature. Closest to the view presented in
this chapter is the BON method (Business Object Notation), a “second-generation”
analysis and design method described in Seamless Object-Oriented Software Architecture:
Design and Analysis of Reliable Systems* by Kim Waldén and Jean-Marc Nerson, Prentice
Hall, 1995.

Among earlier texts on analysis one of the most popular is Ivar Jacobson’s Object-
Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992,
introducing the notion of “use cases” as a way to detect scenarios that will help define the
final architecture. Also widely used is Object-Oriented Modeling and Design by James
Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen
(all then of General Electric), Prentice Hall, 1991, introducing the OMT method which
combines O-O concepts with ideas from entity-relationship modeling. Yet another
influential book is Designing Object-Oriented Software by Rebecca Wirfs-Brock, Brian
Wilkerson and Laura Wiener, Prentice Hall, 1990.

Other notable contributions include the MOSES method, presented in BOOKTWO of
Object-Oriented Knowledge: The Working Object* by Brian Henderson-Sellers and Julian
Edwards, Prentice Hall, 1994, which also contains a survey of the field; the work of Haim
Kilov and James Ross, presented in their Information Modeling: An Object-Oriented
Approach*, Prentice Hall, 1994, establishing a link with information modeling and relying
on the notion of contract; and Hewlett-Packard’s Fusion method, introduced in Object-
Oriented Development: The Fusion Method* by Derek Coleman et al., Prentice Hall, 1994,
which relates the analysis task to the subsequent phases of software development. See also
Designing Object Systems* by Steve Cook and John Daniels, Prentice Hall, 1994,
describing the Syntropy method.

Additional analysis books include Object Lifecycles: Modeling the World in States by
Sally Shlaer and Steve Mellor (Prentice Hall, 1992); Object-Oriented Analysis by Peter
Coad and Edward Yourdon (Prentice Hall, 1990); Object-Oriented Analysis and Design
with Applications by Grady Booch (Addison-Wesley, 1994); and Object-Oriented Analysis
and Design by James Martin and James J. Odell, Prentice Hall, 1992. As the concentration
of publication dates indicates, this is a very active field.

3
The object-oriented
lifecycle

Object technology affects the very organization of software development. In particular, it
puts into question the traditional models of the software lifecycle, whether theoretical or
actually applied.

Let us examine these traditional models and then see how O-O development leads to
a new approach, the cluster model, which retains the advantages of the earlier models
while allowing object technology to reach its full bloom.

WHAT USE FOR LIFECYCLE MODELS?

First it is useful to reflect on the role of models. If you look up the word model in a
dictionary, you will find two separate meanings:

• A model can be, especially in science, an abstracted version of reality, as in “The
relativistic model of space and time explains phenomena that do not fit the
Newtonian model”. This is the meaning of model that the Oxford English Dictionary
gives as “a summary, epitome or abstract”.

• Or it can be an ideal, often far ahead of the reality, as in “She is a model for all of us to
follow”. The OED calls this “a perfect exemplar of some excellence”.
A model is descriptive in the first case, prescriptive in the second. One thinks of La

Bruyère’s famous characterization of the two great dramatists of the seventeenth century,
both of whom can be said to present models of humanity in their plays: Racine paints men
as they are, Corneille as they should be.

Lifecycle models, which sprang into existence in the early nineteen-seventies, have
been used in both descriptive and prescriptive roles. This will also be true of the
replacement presented later in this chapter.

One should not attach too much value to such models. Producing software is neither
cooking nor alcoholism recovery; no 12-step program can be expected to guarantee

THE OBJECT-ORIENTED LIFECYCLE §3 40
success. But if applied with reason models are a precious management tool. In their
prescriptive role they enable the project manager to ensure an orderly process and to plan
activities, resource allocations and personnel assignments. In their descriptive role, they
help assess progress and detect a delay before it becomes a crisis.

THE WATERFALL MODEL

The obligatory starting point for discussions of lifecycle model is the so-called waterfall
model, first proposed by W. W. Royce from the US Air Force in a 1970 paper and
popularized among others by the articles and book of B.W. Boehm, then at TRW. Although
many variants of this model exist, they all more or less resemble the general scheme shown
on the facing page.

The waterfall divides the software construction process into a number of successive
steps. In the variant shown by the figure, the role of these steps is as follows:

• The feasibility study explores whether or not to build a software system. Obviously
the following steps will only take place if the resulting decision is positive.

• Requirements analysis determines what functions the system must satisfy.

• Specification yields a more precise and formal version of the requirements; the results
of the previous steps are meant to be understandable by customers (future users),
whereas the specification is intended for software people.

• Global design defines the architecture of the system: its division into modules and the
overall organization of its data structures.

• Detailed design yields a precise description of each module and data structure.

• Implementation produces the actual software text and data structures.

• Validation & Verification (often called V&V for short) checks the adequacy of what
has been developed. The traditional distinction is that validation assesses whether the
system addresses the requirements (“is it the right system?”) whereas verification
assesses internal consistency (“is the system right?”).

• Distribution gets the software to its users.

The exact division into steps may vary, but one principle always applies: the development
team is not supposed to start a step before the preceding step has been completed, its results
validated, and the corresponding documents accepted. For example you should not embark
on the design phases until the specification has been successfully finished.

The waterfall model also includes a rule (suggested by the up and down arrows that
give the model its distinctive graphical appearance and its name) that any changes to
already approved results must be limited to the immediately preceding step.

IN FAVOR OF THE WATERFALL

Although it will soon be clear that the waterfall model is not adapted to modern software
development, it is important to realize that not everything is wrong with it.

IN FAVOR OF THE WATERFALL 41
FEASIBILITY
STUDY

REQUIREMENTS
ANALYSIS

SPECIFICATION

IMPLEMEN-

DISTRIBUTION

GLOBAL
DESIGN

DETAILED
DESIGN

TATION

SOFTWARE LIFECYCLE: THE WATERFALL MODEL

VALIDATION &
VERIFICATION

PROJECT TIME

THE OBJECT-ORIENTED LIFECYCLE §3 42
First, one should keep in mind when and why the waterfall model was introduced. It was a
reaction against an all too prevalent model, or non-model, of software development: what
can be called the code it now, fix it later approach, where programmers do not use any
systematic organization but go to implementation right away without devoting much
attention to analysis or design; this almost inevitably leads to many rounds of debugging
and rewriting. (A note for the younger members of our audience: here we are talking about
software practices of a time long past. Of course nothing of the sort can be observed in
today’s software world.) The contribution of the waterfall model was to carry loud and
clear the message that software development is serious business and must follow
professional engineering practices.

In particular the model has introduced two sound ideas, which we must retain: the
emphasis on upstream activities (analysis, specification, design), favoring abstraction and
avoiding too much early preoccupation with implementation details; and the inclusion of a
separate Validation and Verification step, meant to ascertain that the software meets its
objectives.

Perhaps paradoxically, another contribution of the waterfall is what it does not
include. The model implicitly indicates that some software development activities,
important though they may be, should not be handled as separate lifecycle steps. For
example there is no documentation step; this suggests — correctly — that we should treat
documentation as an activity to be carried out throughout the lifecycle.

Finally, the following arguments in favor of the waterfall model (made by B.W.
Boehm in his book Software Engineering Economics) are worth considering:

• The activities identified by the waterfall’s steps are necessary.

• The order in which the waterfall schedules these activities is the right one.

On the first point it seems hardly debatable that any non-trivial project will need some kind
of feasibility study, some analysis, some design and so on. One qualification, though: in O-
O development the middle steps, design and implementation, tend to be collapsed into just
one step. More on this later; but with this reservation we may consider that Boehm’s first
argument essentially holds.

As to the second argument, what better order could we find than the waterfall’s? Few
software engineering professors would teach that the ideal sequence of events is to
implement, then distribute, then design, then validate, then do the analysis if any time is
left (even if such an ordering is not unheard of in the history of real software projects).

So if the activities are essentially appropriate and so is their order, what can be wrong
with the waterfall model?

As will turn out, quite a few things.

THE DOWNSIDE OF THE WATERFALL 43
THE DOWNSIDE OF THE WATERFALL
The first major problem with the waterfall model is its lack of support for requirements
change. The model implicitly assumes that at the end of the second phase (requirements
analysis) the requirements are frozen; all that remains is to refine and implement them.
Such an assumption only has a remote connection with the reality of software
development. It would be a remarkable project indeed — worth reporting to the press —
that would not experience any requirements change. In practice, as you start designing and
implementing the system, as you start putting early versions in the hands of users, you get
better ideas as to what it should be doing. To avoid anarchy, this process of frequent change
should be carefully managed and controlled; but denying or ignoring change does not help.

The second limitation is the model’s lack of support for software maintenance
(defined as whatever comes after the first official release of a product). True, some variants
of the model, such as the one in Boehm’s book, include a last step labeled “operations and
maintenance”. But this looks like lip service: whereas all of the previous steps denote
different activities, going into maintenance mode means doing more of the same — more
analysis, more design, more implementation, more V & V. Since a number of studies of
where the money goes in software construction suggest that 50% to 80% of software costs
are spent on maintenance activities rather than upfront development, we may expect more
help from the lifecycle model in understanding and controlling this activity.

Also dangerous is the highly synchronous nature of the waterfall process: like the
regiments in an 18th-century army, the various parts of a project must all march at the same
speed, since the model prescribes specifying the whole system, then designing the whole
system, and so on. Effective software management is more like guerrilla warfare: to do a
proper job, the manager needs mechanisms for quick dynamic reconfiguration in case some
part of the project is delayed, or proceeds faster than expected. This point will deserve
further attention (see “RISK MANAGEMENT AND DYNAMIC RECONFIGURATION”,
page 57).

The fourth deficiency, perhaps the most obviously damaging, is the tardy appearance
of the main product of software development: software — or, to use a more mundane term,
code. Although the software lifecycle also has other products (analysis documents, design
reports, user documentation, operating procedures, database schemata...), what really
counts in the end, what will bring profit if the project succeeds and layoffs if it fails, is
code. Code is to our industry what bread is to a baker and books to a writer. But with the
waterfall code only appears late in the process; for a manager this is an unacceptable risk
factor. Anyone with practical experience in software development knows how many things
can go wrong once you get down to code: a brilliant design idea whose implementation
turns out to require tens of megabytes of space or minutes of response time; beautiful
bubbles and arrows that cannot be implemented; an operating system update, crucial to the
project, which comes five weeks late; an obscure bug that takes ages to be fixed. Unless
you start coding early in the process, you will not be able to control your project.

THE WATERFALL AND QUALITY MANAGEMENT

One more problem with the waterfall — the last one for this review, although others could
undoubtedly be added — is also a major concern for any good manager. It has to do with a
fundamental requirement of modern engineering: quality management.

THE OBJECT-ORIENTED LIFECYCLE §3 44
With its rigid division into steps, which corresponds to a division into specialties, the
waterfall leads to a corresponding division of labor:

This is really the waterfall picture again, reduced to its bare essentials to show the division
into teams used, again with some variants, by many companies.

What better recipe could one use to ensure non-quality? No one besides the manager
has a global view of the product.

The result is easy to predict, and was brilliantly described, more than twenty-five
years ago, by a famous computer cartoon reproduced on the adjacent page.

Unfortunately I do not know the exact origin of this picture; if you do, please send it to me, but
only if your source is older than 1970, since my colleague Jacques André from IRISA has a copy
dating back to that time. All I know is that it is as relevant today as it was at the time of its first
publication, even if the names of the steps may have to be adapted somewhat.

Such a situation is the natural consequence of the division of labor shown in the above
figure. If or rather when something goes wrong, the analyst can put on dignified airs and
say: “All my bubbles and arrows were perfect; every bubble had at least one in arrow and
one out arrow; every arrow came from a bubble and went to a bubble. If there is a bug, ask
the implementation team. To tell you the truth, I am not surprised. They always mess up my
work. What do you expect? These coders don’t know how to think.”

Analysts

Designers

Imple-

Testers

Customer

menters

QUALITY CONTROL IN THE TRADITIONAL APPROACH?

THE WATERFALL AND QUALITY MANAGEMENT 45
3

 IMPEDANCE MISMATCHES

As Management
requested it.

(Pre-1970 cartoon; origin unknown)

1

5

2

As Programming
developed it.

What the user wanted.

As
Operations

As Systems
designed it.

4

6

As the Project Leader
defined it.

installed it.

THE OBJECT-ORIENTED LIFECYCLE §3 46
But go to an implementer and you will hear something like: “Sorry, I did my best. I do
remember that specification document, though. It was riddled with ambiguities and
inconsistencies. It happens all the time: they just give me those messy specs and expect me
to fix them. What can I do? After all, I’m just a coder, that’s what they tell me all the time.
Go ask the designers. Now can I get back to work? A customer says there’s a memory leak
in the socket routine for 64-bit architectures, and I’d better figure out what’s wrong.”

This kind of piecemeal approach to industrial production is what brought other
industries to their knees, most famously the US automobile industry before it finally came
to its senses in the mid-90s. It favors a finger-pointing, buck-passing atmosphere where no
one feels responsible for quality. Not surprisingly, quality will not be there.

As other industries (at least those which survived) have painfully learned, often from
the Japanese, the only way to obtain quality is to make every team member feel personally
responsible for the quality of the resulting product. This idea is the transposition to
software of total quality management. It will require a radically new approach to the
software lifecycle, where the primary decomposition technique will be orthogonal to the
waterfall’s division into steps.

IMPEDANCE MISMATCHES

The obstacles to quality that have just been analyzed derive from what may be called the
“impedance mismatches” of the waterfall model. As in an electrical circuit whose
components have incompatible impedances, the various steps in the waterfall cause
interface problems at each step through the process.

We should look instead for a scheme that makes the various steps as compatible as
possible, focusing on the similarities rather than on the differences. This will lead us, later
in this discussion, to explore further the principle of seamlessness, previewed in the
previous chapter, which plays a central role in the object-oriented process model.

THE ESCHERFALL

Because of all the difficulties mentioned above, the waterfall model is little more than a
pleasant fiction. Rather than the one-directional flow which the model prescribes, the
reality is often a cyclical process that irresistibly evokes the picture appearing on the
adjacent page, which was drawn with remarkable prescience (as if he had penetrated the
moods of the software industry) by the Dutch artist M.C. Escher and which we may in his
honor call the Escherfall model.

The Escherfall in fact evokes lifecycle variants found not only in some less-than-
optimal practices of the software industry but also in software engineering theory.
Introduced by Boehm as a potential replacement for the waterfall, the spiral model of
software development is a form of iterated waterfall, presented graphically as a spiral of
which each revolution represents an analysis-specification-design-implementation
sequence — hence the name. Although this idea corrects some of the deficiencies of the
waterfall, one cannot in good faith recommend it for object technology, if the focus is on
improving productivity and obtaining quality products.

THE ESCHERFALL 47
When we look at prototyping we will have to contend again with the strange idea that if
you are not sure about a strategy for solving a problem then the solution is to apply it two or
more times. But that is for later.

M.C Escher: Waterval (Waterfall),
October 1961.

The Escherfall

THE OBJECT-ORIENTED LIFECYCLE §3 48
TOWARDS A BETTER MODEL

Enough for now about the deficiencies of the traditional approach, either in its imagined
form, the waterfall, or its more realistic variants such as the Escherfall. Is there a better
way?

We need a model that does away with the rigidity of the traditional approach, but
retains an orderly approach to software construction. The answer is known as the cluster
model of the software lifecycle and is based on several ideas:

• Seamlessness.

• Reversibility.

• The notion of cluster, which gives the model its name.

• A better integration of design and implementation.

• A new activity: generalization.

SEAMLESSNESS

The waterfall approach emphasizes the differences that exist between successive steps in
the lifecycle. This leads to the impedance mismatches pointed out above and, as noted, is a
major impediment to the quality of the resulting product.

In contrast, the object-oriented approach emphasizes the fundamental unity of the
software development process. From analysis to design, implementation and maintenance,
the same issues arise, the same techniques apply, the same mental patterns recur. The
method downplays the inevitable differences by providing a unifying framework and a
single notation that will accompany the software developer from the beginning to the end
of the software process.

This central property of the object-oriented method will be reflected in the graphical
representation of the lifecycle model. It will still be useful to distinguish between various
project activities; assume that these are analysis, design, implementation and maintenance
(although the actual division into phases, defined below, will be somewhat different). A
traditional view would use a representation of the form

A

D

I

M

REVERSIBILITY 49
Instead the object-oriented view illustrates the succession of phases through a graphical
convention, used below in the diagrams representing the cluster model, which emphasizes
the continuity of the process:

This illustration shows the successive steps not as new endeavors that break with the past
(the previous steps), but as successive increments, successive variations on the same
theme. Its shape is that of a stalactite, and like a stalactite it builds up (or rather down, but
who are we to quibble?) by repeated accretions.

This property is essential to understand the nature of properly applied object-oriented
software development. Instead of a succession of separate products, the O-O developer
works on a single product, starting from a high-level, abstract view of that product, and
then refining it until all its aspects have been properly handled, including the most
mundane details of implementation, efficiency and machine adaptation.

A note is in order here to warn the reader that some of the object-oriented literature, in particular
a number of books on object-oriented analysis, take a more timid view and may still leave the
impression that analysis, design and implementation are separate tasks. Such presentations often
describe “hybrid” approaches in which some object-oriented ideas are introduced on top of
earlier approaches such as entity-relationship modeling. Laudable as it may be to introduce new
concepts in an evolutionary fashion, it is hard to accept that approaches which renounce
seamlessness deserve the O-O label.

REVERSIBILITY

A companion property of seamlessness is reversibility: the idea that the software
construction cycle is not always one way, from analysis to design and implementation, but
that ideas encountered late in the process can and should influence the earliest stages.

To managers trained in the waterfall culture, this is a subversive idea: it means that
programmers can be permitted to change the definition of the system’s functionality! But
for people who have learned to practice object technology well, there is nothing scary.

Whatever software theories may say, some good ideas will only become clear when
you have an implementation. What then are the manager’s possible responses?

 I

 D

 A

 M

THE OBJECT-ORIENTED LIFECYCLE §3 50
One can deny this process and forbid the programmers from questioning
specifications. This is what happens in organizations that apply rigid waterfall principles,
and a strict division of labor such as the one shown on page 44. The result: in addition to
the problems discussed above (poor quality resulting from impedance mismatches), the
product is likely to suffer from restricted functionality. The manager should not expect,
too, to keep competent software developers very long: the best ones will sooner or later
migrate en masse to a company whose management is more receptive to good ideas. (See
also “COSTS AND BENEFITS”, page 152.)

One can be more flexible and accept late changes. But if the lifecycle model does not
explicitly support this process, you run the risk of ending up with major discrepancies
between the results of analysis, design and implementation. How can you guarantee that
program changes will be reflected in the analysis and design documents?

In a seamless development process, there is a single product for each component of the
software. It contains elements addressing all levels of abstraction, from analysis to
implementation. So even for a late change you will be able to update all the affected elements.

This emphasis on reversibility suggests an adaptation of the pictorial representation
of step sequencing in the lifecycle, using dotted arrows to show the possible feedback of
later phases on results obtained previously:

For simplicity and readability, the cluster lifecycle diagrams appearing later in this chapter
will not show the dotted backward arrows. But you should consider that they are there,
representing the reversible nature of the object-oriented lifecycle, which entitles any step
to cause changes that will be reflected in all the earlier steps.

It would be a mistake to confuse this approach with what was labeled the Escherfall above (see
page 47) or with the spiral model. Instead of a continuous cycle repeating the same steps,
reversibility leads us to consider that we work on a single product, seamlessly enriched as we
learn more about our system and add new elements to it.

 I

 D

 A

 M

THE NOTION OF CLUSTER 51
THE NOTION OF CLUSTER

With the waterfall, you were supposed to perform each activity on the whole system:
specification of the full system, design of the full system and so on.

The result is an all or nothing process: either you get everything right, or you get
nothing. For a manager preoccupied with risk, this is not acceptable. Too many things can
go wrong; too many things will go wrong. Individual failures are a normal part of project
development. It is unacceptable to let any such failure derail the overall process.

In the cluster model, we divide the system into a number of parts called clusters. A
cluster may also be called a subsystem or, in some cases, a library. It is a set of classes large
enough to provide a major component of the system but small enough to be managed by a
small group of people. A typical cluster will have 5 to 40 classes, and will be developed by
1 to 4 people.

To give another view of size limitations, a cluster must be simple enough to enable a single
person, if need be (for example at maintenance time), to understand all of it after at most a few
weeks of work. In a large software system, it is impossible for a single person to comprehend
everything; at best a person can be familiar with the basic decisions taken throughout the system.
The cluster level marks the threshold up to which it must still be possible for one person to
master all the details.

Here is an example drawn from a task in which ISE was involved: the design of a Frequent
Flyer system for a major airline. Some of the clusters, and some representative classes for
each cluster, looked like this:

In the cluster model, we will try to keep a sequential scheme but not for the system as a
whole, as that would be far too monolithic. Instead, once the division into clusters has been

Example cluster Representative classes

MEMBERSHIP MEMBER
BENEFICIARY
STATUS

OPPORTUNITIES BONUS
REDEMPTION
AWARD

TRAVEL ROUTE
SEGMENT
SERVICE
BUSINESS_CLASS
FIRST_CLASS

SPACE_TIME CONTINENT
TIME_ZONE
PERIOD

THE OBJECT-ORIENTED LIFECYCLE §3 52
done, we apply a mini-lifecycle to each cluster. The resulting process is a form of
concurrent engineering illustrated by the figure on the adjacent page.

CONCURRENT ENGINEERING

To read the cluster lifecycle illustration, you need to realize that both the left-to-right and
top-to-bottom directions represent increasing time. No, you do not need to learn a new
theory of physics; we will return to a linear time scale shortly. The figure’s two time axes
simply mean that the model specifies a partial ordering of activities rather than a single
possible order. The partial ordering is the following rule: if step A appears above B and to its
left (or at the same horizontal position), then A must be executed before B. If they are at the
same vertical position and A is to the left of B, A must be executed first or they may happen
concurrently. This leaves the project manager much flexibility as to the precise order in
which things will happen, and explicitly allows various activities to occur at the same time.

I have found that some people have difficulty understanding this lack of a single
ordering in the picture. Usually they are managers who are so accustomed to linear models
of their work as to be reluctant to accept a scheme where they have to find their own
itinerary, step by step, for each project. If you are in this category please accept that what
you will lose in the simplicity of the theory you will regain in its adaptation to the reality of
software project management. The world is not linear; neither is software development.

Here then is how to read the picture. The process begins with a feasibility study; here
there is nothing original, since any project must start by asking whether there is really a
need for a new software development. The answer may well be no: perhaps a previous
project has yielded a system that is good enough for the current need; perhaps you can just
buy a product off-the-shelf; perhaps you do not need a software system, but simply a better
organization of your company or certain manual procedures.

Assuming some software development is needed (even if it largely relies on reuse
and adaptation of existing software), the next step is to divide the project into clusters.
More below on how and by whom this should be done.

These first two steps, feasibility study and division into clusters, are the only
synchronous, waterfall-like components of the cluster model. After that we switch to a
concurrent engineering mode. There are only two ordering constraints, corresponding to
the horizontal and vertical dimensions on the picture:

• Each cluster defines a mini-lifecycle, whose activities occur in the order shown by the
figure: cluster and class specification, design-implementation, V&V, generalization.

• Clusters are started in the order given: for any i, the first step (specification) of cluster
i + 1 cannot start earlier than the first step of cluster i.

Within these global constraints you will, as the project leader, find your own scheduling,
which depends on your staff resources, on the difficulty of the various tasks involved, and
on your customers’ requirements. Project management becomes a navigation through the
cluster diagram; a sequence of scheduling decisions that will bring the two-dimensional
time chart of the cluster model illustration back to the normal form of sequencing — which
is of course one-dimensional. So on the subsequent figures the time scale will be linear
(from top to bottom), but will allow for parallel activities along the horizontal dimension.

CONCURRENT ENGINEERING 53
FEASI-
BILITY
STUDY

DIVI-
SION
INTO
CLUS-
TERS

THE CLUSTER MODEL
OF THE SOFTWARE LIFECYCLE

PROJECT TIME

PROJECT TIME

Cluster 2

Cluster n

Cluster 1

V & V

 Design-
Implementation

Specification

Generalization

V & V

 Design-
Implementation

Specification

Generalization

V & V

 Design-
Implementation

Specification

Generalization

THE OBJECT-ORIENTED LIFECYCLE §3 54
One of the consequences of this concurrent engineering approach is the possibility of
cluster divergence. Although information hiding, Design by Contract and other object-
oriented principles help limit the risk, you should be careful to avoid letting clusters
become incompatible with each other even though they individually appear satisfactory.
The solution is simple: frequently perform an integration that will bring everything
together. The Integration Principle discussed in a later chapter (“THE MANAGER AS
INTEGRATOR”, page 140) provides a precise guideline.

THE STEPS

The cluster model includes the following steps for the mini-lifecycles associated with each
individual cluster.

The specification step identifies the classes and defines their official interfaces.

There is no fundamental difference between the words specification and analysis, only a cultural
difference reflecting the Continental Divide that runs through the software community, both
industrial and academic: people who think of themselves as “computing scientists” tend to speak
of specification where people who would describe their field as “information systems” or “MIS”
would refer to analysis. The rest of this discussion uses the term specification because it is more
precise, but analysis would be adequate too.

Design-implementation fills in the class specifications by adding the operational aspects.
In contrast with the traditional model, there is no need in object-oriented development to
separate design from implementation. All that differs is the level of abstraction: design
addresses the general structure of the solution, implementation finishes the details. With a
good object-oriented language and a competent development team, there is never a time
when you can say “design is over now, we go to implementation”; you proceed
imperceptibly from the abstract to the concrete, and back when needed.

Both design and implementation are forms of programming in the noblest sense of
the term. All that changes is the abstractness of the machine that you program.
Implementation means programming the available computer; design means programming
a more abstract machine (except in Eiffel, where it is the same machine).

The “available computer” that we program at the implementation stage is in fact already
abstract: programming the physical computer would mean writing a machine program, and who
writes machine code or even assembly language these days? The abstract machine that you
program is defined by the combination of hardware, operating system, compiler for the chosen
programming language and development tools.

Validation & Verification plays the same role as in older approaches. The concern for
quality and the practice of quality assurance must apply throughout the project; but there
remains the need for a step officially devoted to assessing the result against the objectives.

Generalization is a new step, with no equivalent in traditional methods. It is
applicable to companies that are serious about applying the reusability goal to their own
developments. The purpose of the generalization step is to extract from the project those
program elements that hold the best promise of reusability, and transform them into
reusable components, according to the following definition:

PROJECT MANAGEMENT AND STEP ORDERING 55
The presence of the generalization step raises several questions: Why a separate step if we
apply reusability concerns throughout the process? Would it be preferable to have a
separate team (the library group) take care of generalization, rather than letting each
project generalize its own project-specific developments? What technical activities does
generalization involve in object-oriented development?

These questions are so essential to the full implementation of object-oriented
techniques as to deserve a chapter of their own — chapter 6, which discusses how to make
reusability succeed.

In particular, if your reaction to the concept of generalization has been to note that one should
think about reusability from the start, not devote a specific part of the process to it, be sure to
read “THE ROLE OF GENERALIZATION”, page 125, which shows that both of these
approaches are necessary but none is sufficient. On the precise activities required by
generalization, see “GENERALIZATION TASKS”, page 122.

What counts for the moment is that a company that is serious about object technology and
reusability should consider generalization as important a component of its project lifecycle
as specification, design-implementation and V&V.

PROJECT MANAGEMENT AND STEP ORDERING
Central to the cluster model is the existence of many different ways to perform the
linearization of the two-dimensional scheme — of many different paths through the maze
that will take you from start to successful finish.

To show various possibilities, the remaining figures of this chapter have a one-
dimensional time axis rather than the two-dimensional structure of the initial cluster
illustration of page 53. They correspond to possible linearizations of the general cluster
scheme. The appearance of two activities at the same vertical level on one these figures
indicates that these activities are meant to be executed concurrently.

Two extreme cases, shown by the figure appearing on the next page, are worth noting:

• At one end, you can decide for a purely synchronous approach: specification of all
clusters, then design-implementation of all clusters, and so on. The resulting model is
close to the waterfall, with a few differences such as the fusion of design and
implementation steps and the introduction of a generalization step. Such a scheme, for
which we may perhaps coin the term clusterfall model, may be found in organizations
having large development groups and a strong waterfall-oriented tradition.

• The opposite variant focuses on one cluster at a time: do cluster 1 from beginning to
end, then cluster 2 and so on. This scheme, which may be reasonable for example
with a very small team (one person or just a few), may be called the trickle model —
a trickle being what remains of the waterfall at times of drought.

DEFINITION: PROGRAM ELEMENT, SOFTWARE COMPONENT
A program element is a module that is a part of some software system.
A reusable component is a module that has a value of its own, independently
from the system for which it may have been originally defined, so that it may
be included in a library and used in many different applications.

THE OBJECT-ORIENTED LIFECYCLE §3 56
Most of the time, however, the task scheduling policy will lie somewhere between the
clusterfall and the trickle. You start a few clusters, and then whenever a minicycle step is
completed you may decide to proceed to the next step, to resume another cluster that had
temporarily been stopped, or to start one of the remaining fresh clusters. Each decision is a
function of your resources, of the speed at which you are able to proceed, of the difficulties
encountered, and of your assessment of the various risks involved.

The figure on the adjacent page shows an example of such a scheduling, with its mix
of sequential and concurrent activities. Unlike the earlier figures this one assumes that the
various clusters may proceed at different speeds — as they usually will in practice.

(2) The Trickle model

(1) The Clusterfall model

FEASIBILITY STUDY

PROJECT TIME

Cluster 1 Cluster 2 Cluster n

Cluster 1

Cluster 2

Cluster n

DIVISION INTO CLUSTERS

FEASIBILITY STUDY

DIVISION INTO CLUSTERS

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

TWO EXTREME VARIANTS OF THE CLUSTER MODEL

RISK MANAGEMENT AND DYNAMIC RECONFIGURATION 57
RISK MANAGEMENT AND DYNAMIC RECONFIGURATION

For project managers one of the major advantages of the cluster model is its flexibility,
which gives them the indispensable tools of risk management.

With the waterfall the project is at the mercy of any unforeseen circumstance. If the
analysis of any single part is delayed by one day, the whole process may be delayed by one
day, and the people in charge of subsequent phases — the designers, the implementers, the
QA team — will be idle for one more day. If it were possible to predict effort with
reasonable accuracy this might be acceptable. But no such prediction is possible in
software development.

With all the talk about “software engineering” it is easy to forget that any ambitious
software development project involves a component, smaller or larger, of research. The
engineering component is definitely there, making a software project similar in some
respects to the construction of a bridge or of an integrated circuit. But in every serious
project that I have seen this engineering component was significantly less than 100%. Any
such project has to solve problems that have not been solved before. When you build a

EXAMPLE CLUSTER SEQUENCING

PROJECT TIME

Cluster 1 Cluster 2

Cluster 5

Cluster 3
Cluster 4

FEASIBILITY STUDY

DIVISION INTO CLUSTERS

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization

V&V

Design-
 impl

Specifi-
cation

Genera-
lization V&V

Design-
 impl

Specifi-
cation

Genera-
lization

THE OBJECT-ORIENTED LIFECYCLE §3 58
bridge, you more or less know what to expect: with similar terrain and requirements, bridge
B will take about the same effort as bridge A; using your training and experience, and some
allowance for various possible delaying factors, you can roughly predict the necessary
effort. Not so with software.

The development of a cluster often incurs delays due to problems that had not been
foreseen, or are more difficult than had been expected. The reverse also happens: a
particular development may proceed faster than planned.

This unpredictability sets the limit of analogies with bridge building and other engineering
professions, bringing instead the image of the mathematician, the theoretical physicist, or other
researchers. It is one of the defining properties of software construction, maddening at times —
but also part of what makes this discipline so attractive to those who practice it. After all, the
term hacker (in its original sense of a programmer fanatically devoted to the trade) was coined à
propos software development, not road construction or circuit design. No offense is meant here
to these engineering specialties and their sisters; many mechanical, chemical and electrical
engineers are undoubtedly passionate about their jobs. But the grip that programming holds on
so many of its practitioners’ minds seems unique, and it is probably due in part to the
unpredictability of software development and the frequent appearance of seemingly new
problems.

Modern software techniques, in particular the systematic approach to reuse promoted by
object technology and by this book, can reduce the unpredictability but not eliminate it —
at least not in the near future. For the manager this causes one of the major sources of risk
in software projects: the risk that a task will proceed significantly slower or faster than
planned and destroy the elegant PERT or Gantt charts that were so carefully devised at the
beginning of the project.

Here the cluster model provides considerable help. By allowing more than one
itinerary through the set of obligatory steps pictured on the figure of page 53, the model
allows dynamic reconfiguration of the software management process. If a task relative to
a certain cluster proves harder than expected, you can decide on the spot to divert resources
that had been earmarked for other clusters, either by delaying the start of a new cluster, or
by postponing a certain step for a cluster whose initial steps have already been started.
Conversely, if a task is completed faster than expected, you can start a new cluster earlier,
or proceed faster with a cluster already in progress.

Without this kind of flexibility, the project leader is as helpless as a judge who must
work under mandatory sentencing guidelines. The cluster model enables you to do your
real job as a manager, taking your responsibilities and making your own reasoned
decisions. Of course, not everyone likes having to make tough decisions, which may help
explain why people have for so long clung to the Waterfall.

BIBLIOGRAPHY 59
BIBLIOGRAPHY

Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

A classic — the first book to examine the economic aspects of software construction;
the best presentation of the traditional model of software engineering. Frustrating at
times for a reader of the nineteen-nineties because of its restricted view: Boehm’s
approach to software is what may be called the TRW model — on day one you get
500 million dollars from the Air Force and a requirements document, and the aim of
the game is to deliver something two years later without squandering too much of the
money. Well, I am exaggerating a bit, but someone who was not familiar beforehand
with the software industry would not know from the book that there is such a thing as
a mass market of software or a microcomputer industry (both of which, of course,
were many times smaller in 1981 than they are today). Do not look for the notion of
“product” or for a discussion of reuse. The presentation is all about one-of-a-kind
developments, usually huge, and usually for very rich customers. If you are
wondering whether to price your latest visual e-mail tool at $14.95, $19.95 or $24.95
(how much for Shipping & Handling?), this is not the place to look at for guidance;
but if you are thinking of building your own Coordinated Western Hemisphere
Ballistic Missile Control System you might find a tip or two (three billions? or shall
we go for four?).

Despite these quibbles I still find Software Engineering Economics to be a must read
for any software manager. It is filled with figures and reports from actual projects. Its
COCOMO model, although based on some controversial premises (lines of code as
an a priori estimate of a system’s size), is one of the most serious efforts so far to
classify the sources of cost in software development. I am eagerly waiting for a
second edition that will integrate the changes in software technology since the
nineteen-sixties.

Kim Waldén and Jean-Marc Nerson: Seamless Object-Oriented Software Architecture...*

(See full reference on page 38.) Among the books on object-oriented analysis, this is
the one that (with Henderson-Sellers and Edwards, also cited on page 38) most
emphasizes seamlessness; it also explores the notion of reversibility in depth.

On the cluster model:

The model was discussed at some length in my article The New Culture of Software
Development: Reflections on the Practice of Object-Oriented Design, in TOOLS 89
(Technology of Object-Oriented Languages and Systems), Angkor/SOL, Paris,
November 1989, pages 13-23.

The original ideas came from an article of Cyrille Gindre and Frédérique Sada, first
available in French in 1987, which described and discussed an early successful
object-oriented project at Thomson-CSF. An English version was published as A
Development in Eiffel: Design and Implementation of a Network Simulator in the
Journal of Object-Oriented Programming, vol. 2, no. 2, May 1989, pages 27-33.
Both this article and The New Culture... also appear, slightly revised, in the book
Advances in Object-Oriented Software Engineering*, eds. Dino Mandrioli and B.
Meyer, Prentice Hall, 1992.

4

But what about
prototyping?

It is commonly believed that object-oriented development favors or even implies
prototyping; this is indeed one of the buzzwords commonly associated with the method.
But if you do not remember encountering it in the previous chapter, it is not that you have
missed anything. It is simply that it was not there, and for a good reason: prototyping has
nothing to do with object technology.

We must of course explore this point a bit deeper. As it often turns out, analyzing a
bad idea and trying to understand why it is bad provides insights into what we should really
be doing. And we will discover an unexpected application of the idea of prototyping to
software engineering — the only one that really makes sense, but also the only one that
none of the available literature seems to have hit upon so far.

A BORROWED TERM

The first task is to find out what the term “prototyping” really means. One of the major
problems in assessing this notion is indeed that it is often poorly defined if at all. And it is
likely that if the first paragraph above made you scream that the author was crazy and
throw the book on the floor then you have a different definition of what a prototype means.
(The rest of this chapter assumes that you picked up the book in a still usable condition.)

Is it appropriate to talk about prototypes in software? After all, this is not a new term
but one with a long history in other industries — mechanical, electrical, electronic. In those
areas a prototype is a fully functional product, which only differs from the final product
through either (sometimes both) of two properties:

• The prototype has been custom-built, whereas the final product is intended to be
mass-produced. This may be called a mass-production prototype.

• The prototype works on a smaller scale than the final product. This may be called a
reduced-scale prototype.

THE OBJECT-ORIENTED LIFECYCLE §4 62
An example of mass production prototype is a prototype for a new car. An example of
reduced-scale prototype is a water-processing plant using a new process, but capable of
processing a few cubic meters a day rather than the thousands of cubic meters necessary to
handle the water needs of a big city.

In both cases the designers expect that the prototype, although intended to provide all
the needed functions, may still contain a few defects, whereas the discovery of defects in
the final product would be a much graver event. The purpose of prototyping is precisely to
extirpate defects at much less effort than for a product which is already produced in large
numbers with the consequent investment in machinery and processes (mass-production
prototype), or has been built to full scale at great expense (reduced-scale prototype).

In both cases, too, no one expects the prototype to be kept: once it has fulfilled its
purpose by allowing the testing of a number of hypotheses, it will simply be discarded. A
car manufacturer will not recycle the prototype of a new car into the mass production
process; and it is hard to imagine that a water processing company, having built a prototype
plant capable of handling the water needs of a village, would move the plant to Tokyo and
expand its facilities so as to process the water for eight million people.

 How does this traditional notion of prototype transpose to software construction?
Simple question, simple answer: there is no direct equivalent. This applies to both cases:

• Mass-production prototypes would be meaningless in software since the duplication
process (diskettes, CDs, manuals) is the easiest and cheapest part of the problem —
and usually is not even considered part of the software engineering process.

• As for reduced-scale prototypes, it is indeed wise to try a software system on a small
scale (for example testing a communication system on three local computers before
you use it on a wide-area network), but this is not prototyping: if the techniques used
(software architecture, algorithms, data structures, use of hardware resources) scale
up, possibly after some tuning, the initial software and the final version are
essentially the same. If the techniques do not scale up, the whole initial effort may
have been wasted. All it will have taught you, for a rather expensive price, is that the
approach used is not adequate. This is a failed experiment, not a prototype.

In view of all this, it is surprising that anyone should ever use the word “prototyping”
for software development. So we have to look further.

PROTOTYPING IN SOFTWARE

Software people do talk about prototyping, of course. What do they actually mean?

 Closer examination reveals that in software the term is used, or misused, with four
possible meanings:

1 • In some cases, it simply denotes an experiment. You want to know if a certain user
interface idea will please your users; if a certain algorithm will be faster than another;
if you can tune the organization of a large data structure to reduce paging. You just try
the idea and examine the result. This technique may simply be called
experimentation.

PROTOTYPING IN SOFTWARE 63
2 • In a somewhat related use of the term, pilot projects serving to try out a new method
(such as the object-oriented method) or new tools are sometimes called prototypes.
Such projects, although often small, are for real, and are intended to yield useful
products. The major difference with a non-pilot project is that some of the usual
constraints may be removed; for example the hardware may be different from what is
usually imposed. There is also the implicit recognition that the pilot project is more
likely to fail than a normal development. But such projects are not prototypes in any
ordinary sense of the term; one does intend to keep the results. This discussion will
refer to them under the name pilot projects. (A section of this book is devoted to the
issue of how to choose and plan pilot projects in the transition to object technology;
see “PILOT PROJECTS”, page 82.)

3 • Some people also use the term “prototyping” in a quite different sense: to denote a
development process where you build a certain self-contained part of the system first,
and add subsequent elements later. For example you may want to start by
implementing the major functionalities but with a very crude user interface, or even
no user interface at all (the functionalities being accessible only from other software
elements); then you add new functionalities, including one or more user interfaces.
This technique is sometimes called “incremental prototyping”, but it really has
nothing to do with prototyping in any meaningful sense of the term; we may call it
incremental development.

4 • What is probably the most common use of the word “prototyping” covers something
quite different again: the suggestion that before building the final version of a system
you should build a provisional one, learn from the results, and then restart from
ground zero. This is often known as throwaway prototyping; the phrase “rapid
prototyping” is often used. (In my experience, “slow prototyping” is often a more
accurate a posteriori description of the method, but people do not know that
beforehand.) This last case corresponds, in standard engineering disciplines, to
mockups. Unlike a prototype, a mockup is not a temporary version of the final
product; it often does not employ the same materials, and is not adequate for normal
use. It merely serves to test a number of hypotheses regarding the product and its
construction process. This is exactly what throwaway prototypes are about.

The first three techniques clearly have a place in the software development process.
Experiments can be necessary to answer questions that are not amenable to analytical
treatment. Pilot projects are a sensible way to try out a new approach and study how to
adapt it to the context of a specific company. Incremental development makes it possible to
proceed in stages and obtain partial solutions along the way — less and less partial as the
development progresses. This idea is essential to reducing risk and played a central role in
the cluster model as discussed in the previous chapter.

All these ideas are fine, and if your view of prototyping corresponds to any one of
them, there is nothing wrong with it, although one may quibble with the terminology. It is
dangerous to use a well-established term in a meaning that is radically different from the
accepted one. The simple and precise terms experiment, pilot project and incremental
development are the appropriate ones to characterize the three techniques discussed.
Calling them “prototyping” only creates confusion.

THE OBJECT-ORIENTED LIFECYCLE §4 64
THE POTEMKIN APPROACH TO SOFTWARE DEVELOPMENT

The real trouble is with the fourth and most common use of the word prototyping: mockups
(for which the rest of this chapter will continue to use the term “throwaway prototype”
because it is more common in the literature). Prototyping in this sense is one of those ideas
which have come to be considered so obviously good that people tend to skip any rational
analysis of whether it actually contributes anything.

The most often quoted line about throwaway prototypes comes from Fred Brooks’s
popular collection of essays, The Mythical Man-Month. (Brooks was the chief architect of
OS/360, and the book draws on the lesson of that experience.) Brooks offers the advice

Plan to throw one away; you will, anyhow.

 This argument contains its own negation: what is so magical about the number one? If we
expect the first attempt to fail, how do we know that the second will succeed? Should we
plan to throw two away, or three, or four?

But the flaw in this approach is more fundamental. Throwaway prototyping assumes
that by dropping a number of requirements we can develop software that will teach us
something useful. This ignores the whole reason why software development is difficult: the
need to reconcile a whole set of quality requirements.

Good software must be correct, robust, efficient, reusable, extendible, portable, easy
to use, easy to learn, self-protecting, rich in functions. Individually, these requirements
may be tough; but collectively they are even tougher. Often, they conflict with each other:
efficiency, which suggests specialization, fights portability and reusability, which suggest
generalization; ease of use fights self-protection; richness of functions fights ease of
learning. Much of the hard work in building a software system involves reconciling these
goals or, when they cannot be fully reconciled, finding acceptable tradeoffs.

If you focus on one or just a few of the requirements, the task becomes much easier.
This is typically what we do for a throwaway prototype: we sacrifice efficiency, or ease of
use, or extendibility, or portability, or some of the richer functionality, so as to get
something out quickly. But when we get that result and it is successful we may just be
fooling ourselves, and our financial backers too: how do we know that the effort has helped
us in any way towards the final product? Perhaps we were able to produce an easy-to-use
system only because we removed the efficiency requirement, or an efficient system only
because we removed the portability requirement.

If that is the case we will just have wasted our time and their money. When we start
the real product we will have gained nothing; we may in fact have made the real
development longer by encouraging it to use solutions that were appropriate for the
throwaway prototype, but will not work for the real thing because of the constraints that we
had ignored.

The most effective step I know towards a solution is the one so strongly emphasized in this book,
together with other object-oriented techniques: reuse. To handle difficult software projects, one
should rely, as much as possible, on existing software components, which previous efforts have
developed, validated and repeatedly improved.

THROWAWAY PROTOTYPING VERSUS QUALITY 65
Throwaway prototyping evokes the memory of Prince Grigori Aleksandrovitch
Potemkin, Field Marshall and secret husband of Catherine the Great of Russia, who in
order to please his Empress during the Crimea expedition of 1787 would have workers
repaint the façades, and only the façades, in the villages she was due to visit. People try
prototyping precisely because the development of an ambitious system seems so difficult.
But this is a mirage. Prototyping will only delay the day of reckoning; it is part of the
problem, not of the solution.

THROWAWAY PROTOTYPING VERSUS QUALITY

The worst aspect of throwaway prototypes is that they discourage professionalism and
quality.

Software quality is largely (although not only) in the details. To produce good
software, you must think about myriad cases — everything that could go wrong, every
novice who will press a meaningless sequence of keys, every user who will not have read
the manual (or will not even know that there is a manual), every other software product that
will be used in connection with yours, every strange hardware configuration, every
potential bug in the supporting platform. This task of getting everything right to the last dot
on the last i is hard, unglamorous, sometimes tedious. Every step of the effort achieves only
a little improvement of the eventual product; but together these steps will make a world of
difference — the difference between so-so software and a quality product.

Developers will only make this effort if they feel it is worthwhile; for a throwaway
prototype, they usually will not. Why bother if the whole thing is going to be discarded
anyway? Why spend your evenings and weekends thinking about elegant solutions? Why
worry about hundreds of little features, often tricky or boring, that might turn a decent
sketch into a successful product? Let the next team take care of that!

I once observed an enthusiastic team being told by a freshly hired manager that, by
the way, what they were building would only be used as a throwaway prototype, and a new
development would take over. The reaction was predictable: morale, productivity and
quality plummeted at once. No one was interested any more.

A cynic would derive the following advice from these observations: even if you are using
throwaway prototyping, never tell the developers.

Even if the manager succeeds in keeping the development team interested, throwaway
prototyping raises a major risk management issue. The task of the manager, as noted in the
previous chapter, is to focus on risk areas and, for this purpose, to make sure that the tough
problems get all the attention they deserve early in the project. With throwaway
prototyping, the reverse will occur. A team that knows that its job is not “for real” will
naturally be tempted to work on the parts that have the highest GSR (Glitz-to-Sweat Ratio),
those which produce the most impressive effect for the least possible work. Obscure
foundational elements (parts that would form the spine of a real production system, but
require long work for little immediately visible effect) will be put aside. The danger exists,
then, of producing a beautiful prototype for a system that cannot realistically be built, or
can only be built at a considerable cost which the prototyping effort does not reveal.

THE OBJECT-ORIENTED LIFECYCLE §4 66
Prototyping, in this case, almost becomes a form of cheating. The team makes an
impressive presentation of the prototype with the unspoken implication that its best
features can be transposed to a real system; but there is no proof of this implication:

SHIPPING THE PROTOTYPE

Cheating sometimes works. With a flashy prototype, you might actually convince
someone! If that someone happens to be in a decision-making position, you might find
yourself a victim of the famous curse, “May you get what you hope for!”: after a successful
demo, you may be expected to deliver what you have shown.

One of our customers, from a large bank, once told me about such a case in one of their
company’s earlier projects. An impressive throwaway prototype was put together and shown
to the CEO. The CEO was duly impressed; everyone was happy. A week later, a major
business newspaper carried an interview of the CEO, where the product was announced as
imminent — a key tool in the company’s competitive strategy. It was too late to educate
higher management about the difference between reality and make-believe in software
development: orders were already starting to come in! A crash project had to be put together
to try to build a product. Needless to say, that project took many months to complete, and a
lot of people, managers and developers alike, went through pretty rough times.

Flashy demos are not the only incentive for shipping a throwaway prototype. There
may be budget restrictions, which make it unlikely that the full project can be funded at the
level originally planned, and lead the purse string holders to suggest that perhaps we
should just deliver what we already have; there may be the urge to ship something in
response to market demand or competition; there may be the feeling that enough money
has already been spent — rapid prototyping is always prototyping, but is not always rapid.

If the pressures succeed and you do ship the prototype, the result is usually
disastrous. A product that was never meant to be delivered ends up on the customers’
desks. For all the reasons discussed above, the quality will generally be unacceptable.

DISTINGUISHING THE VARIANTS

Considering the possibility that we might be asked to ship the prototype, and the
consequences of such an event, provides a good opportunity to help distinguish between
the various kinds of development scheme to which the term “prototyping” is commonly
applied. The preceding sections have focused on mockups, or throwaway prototypes.
Earlier in this chapter we encountered three legitimate techniques that are often mistakenly
characterized as prototyping: experiments, pilot projects and incremental development. It
is illuminating to transpose the above question, “Is there a risk that we could be tempted to
ship the prototype?”, to each of these techniques:

THE PROTOTYPING RULE

A successful prototype proves only one thing: that you can
produce a prototype.

DISTINGUISHING THE VARIANTS 67
• For an experiment, the question would not arise: an experiment only addresses a
specific property of the eventual system; the goal may be to help elicit some of the
requirements from the users, to assess what kind of user interface they would like, or
to try some implementation techniques. But no one would think of shipping the
experiment, as it would be useless by itself. This observation actually provides a
practical test to distinguish whether a certain suggested scheme is an experiment
(legitimate) or a throwaway prototype (useless or harmful).

• For a pilot project, not only is it acceptable to ship the result, but that is what you
expect to do; if you cannot, it means the pilot project has failed. A pilot project is not
meant to be thrown away; it is, as noted, similar to a normal project in most respects,
although it has a secondary goal (testing some technological solution) along with its
primary one (building a system), and may have a somewhat higher expectation of
failure than usual.

• In incremental development, you may in some cases discuss the possibility of
shipping the project’s partial results at some intermediate point — what in a later
chapter will be called the “current demo” (see “THE MANAGER AS DEMO
KEEPER”, page 141). But unlike a throwaway prototype, a partial version is not
make-believe; it is the real thing, only incomplete. Whether you can ship it as an
advance version to an impatient customer or hot prospect simply becomes a question
of how much of the final functionality you believe you have implemented, and how
close, in your opinion, the implemented part is to its final form — if it is too
immature, it could cause the reverse of the intended effect.

It is particularly important to avoid the confusion between throwaway prototypes and
experiments. A typical example, often used to promote prototyping, arises in the area of
user interfaces: this is the case in which you try out several user interface ideas before the
system is built; often you will involve future users in the evaluation process, with the added
benefit that you get them interested early. But this is a simple user interface experiment, not
a prototype! The difference is the same as between a Potemkin village and the stage set for
The Bartered Bride (which also represents a village): in the second case, no one is
pretending that there is anything behind the façades.

Such user interface experiments are bound to become more and more mundane affairs anyway.
Modern object-oriented tools make it possible to devise powerful user interfaces with relatively
little effort; they can be applied either when the system’s main functionality has already been
implemented, or ahead of that functionality.

Similarly, the use of small operational models to help users define what they want is not
prototyping. This is a “what if...?” form of requirements analysis: when discussing the
planned system with future users, you do not just give them abstract descriptions but show
them actual scenarios, possibly with the help of computer simulation tools that display a
more realistic view of what you have in mind. Although not a substitute for rational
analysis and careful design, such techniques are often useful. But in no way can they be
called prototyping; they are experiments meant to help design small individual aspects of
the envisioned system.

THE OBJECT-ORIENTED LIFECYCLE §4 68
THE SECOND-SYSTEM EFFECT

In debunking throwaway prototyping it is useful to note the contradiction that exists
between the “plan to throw one away” dictum and another, more perceptive observation
appearing elsewhere in Brooks’s Mythical Man-Month and relating to a phenomenon that
he calls the Second System Effect.

The Second System Effect occurs after the success of the first major project
undertaken by a developer or a team in a certain area. Often, that first project was carried
out under limited resources and tight deadlines; the novelty of the task naturally demanded
caution and restraint. As a result, the developers had to limit themselves to the essentials —
and come up with a compact, economical, cogent design.

If the project is successful (perhaps because of these very limitations, although at the
time one usually feels that success was achieved in spite of them), the team may be asked to
produce a new, enhanced system; with vastly increased resources, and a matching increase
in arrogance, they end up developing a product — the Second System — that is huge and
baroque, being loaded with “frills and embellishments” that may actually render it
unpleasant or impossible to use. IBM’s OS 360, for example, was a Second System for
most of its designers.

This analysis is confirmed by the evolution of many systems that start out small and
elegant, only to be overtaken by fat (also known in programmers’ lore as creeping
featurism) and, in more than a few cases, succumb to an overdose of cholesterol.

But how then can one suggest to “throw one away”? Surprisingly enough (since the
two ideas appear within pages of each other in Brooks’s classic book) no one in the
software engineering literature seems to have pointed out the contradiction between this
precept and the reality of the Second System Effect.

PROTOTYPING AND FAILURE

Does the rejection of throwaway prototyping mean that it is never appropriate to discard a
temporary result and restart from scratch?

Of course not. Software developers and managers make mistakes. When you have
tried something and it does not work, the best solution may indeed be to admit your failure,
throw everything to the wastebasket, and start again on a fresh basis, hoping that the
experience has made you wiser. (At ISE we have certainly had our share of such false starts
and wasted attempts.)

But there is a difference between starting afresh when you recognize failure, and
planning to fail the first time! The first decision simply demonstrates the courage to own
up to your mistakes; the second, relying on the vague hope that failing once will make the
second attempt succeed, is no more than a sloppy development practice and
encouragement to postpone thinking about the difficult problems.

THE BELATED VOICE OF REASON 69
The manager should always be ready to recognize a dead end, but should never start a
project with the intention of discarding its result.

THE BELATED VOICE OF REASON

“Plan to throw one away” is often quoted in the software literature; it is hard for example to
open an issue of IEEE Software that does not extol the virtues of prototyping. In the object-
oriented community too, regrettably, many trainers and speakers go around citing Brooks’s
original advice with all due reverence.

What no one seems to have noticed is that the original author of that advice now
knows better.

I was amused to read in a Usenet on-line forum a report about a lecture given in
November 1991 at the Swiss Federal Polytechnic Institute in Zürich (ETH) by Fred P.
Brooks. The theme of the lecture was “The Mythical Man-Month Revisited” and it offered
Professor Brooks an opportunity to reflect on the ideas first published in his book sixteen
years before. The talk’s parts were: Introduction; Where I was wrong; Where the world has
changed; Positions I still hold strongly; What I have learned new. According to the
summary posted on the comp.software-eng newsgroup (an electronic forum on software
engineering issues) on 13 February 1993 by René Schaad from ETH Zürich, here is some
of what Brooks had to say as part of the Where I was wrong section:

“Plan to throw one away”: I would now recommend this for bad teams only. I
now suggest that you make schedules based on your team’s previous experience.
My new approach: incremental software engineering, in other words build a
small functionally limited but working system and then expand it.

It is hard to imagine a clearer rejection of the reliance on throwaway prototyping for
software development.

The comment that throwaway prototyping can still be used by “bad teams” is a little bewildering,
as if implying that a bad team will become good the second time around. Note that the above is
only a summary of notes taken by one of the attendees to the talk, and that Brooks may have been
more specific in his presentation. Perhaps by “bad” he really meant “inexperienced with the
technology being used for the project”.

While Brooks himself has realized the dangers of throwaway prototyping, many
people have not learned yet, and continue to spread this irresponsible encouragement to
poor project management.

THE PROTOTYPING PRINCIPLE

Prototyping is always an admission of failure.

THE OBJECT-ORIENTED LIFECYCLE §4 70
PROTOTYPING FOR REUSABILITY?

As noted at the beginning of this chapter (“A BORROWED TERM”, page 61), the term
“prototyping” is used in software with meanings that bear little connection to its
conventional use in engineering. In object technology, however, one activity comes
remarkably close to traditional prototyping — although it is not commonly identified as
prototyping.

One of the traditional forms of prototype analyzed earlier was the mass-production
prototype, defined as “custom-built, whereas the final product is intended to be mass-
produced”. This was dismissed as having no equivalent in software, where the mass-
production process is trivial and is not really a software engineering task.

But wait a minute! If we embrace object technology and adopt its focus on reuse and
libraries, then we do have a mass-production process, or something that looks remarkably
like it. The equivalent of a custom-built product is what was called a program element in
the discussion of the cluster lifecycle model (see “THE STEPS”, page 54): a module that is
tailored to the needs of a particular application. The equivalent of a mass-produced artifact
is a reusable module meant to be used by many applications: what was called a software
component and contrasted with program elements.

Before releasing a reusable library to the world, you will want to try its components
on a number of specific projects. As will be discussed in more detail in the chapter on reuse
(see the A Posteriori Principle, page 117), no class is reusable until it has been reused; the
first few attempts at reuse may uncover limitations or deficiencies of the class for its
intended role as component of a widely distributed library.

Here prototyping in the mass-production sense has a direct software counterpart. If
words taken from ordinary language and applied to software are to have any meaning at all,
this is what we can legitimately call prototyping: prototyping a library by trying its
components on a few specific developments. This is not so different from the process of
trying a few prototypes of a new airplane model on test flights before you start building
many instances for delivery to airlines.

The analogy is not perfect: as noted, non-software prototypes are meant to be
discarded, whereas if we find some deficiency in a reusable class we will improve the
class, not throw it away. But it is a closer analogy than any of the standard uses of
prototyping discussed above.

Unfortunately we will have to refrain from using the word “prototyping” in this
sense, as it would conflict with by now well-established uses of the term, mostly in the
throwaway sense. But the preceding observations should help you understand where the
real analogies are between software and other forms of engineering, as opposed to cases
where imported terminology is just a source of confusion and mistakes.

PROTOTYPING FOR SOFTWARE: AN ASSESSMENT 71
PROTOTYPING FOR SOFTWARE: AN ASSESSMENT

It is useful to summarize this discussion of one of today’s most popular software ideas.
Here are the main points to remember:

• The word “prototyping” as applied to software is misleading (except in the meaning
just discussed, which is not generally accepted). It should be avoided altogether.

• Small experiments in various areas, meant to test specific hypotheses, are useful in
software development as in any technical development.

• Pilot projects are often useful to evaluate new technology. They should have the same
focus on quality as normal projects.

• Incremental software construction is an excellent technique. It is a central part of the
cluster model of object-oriented development.

• Mockups (throwaway prototypes) are a waste of time and effort, and directly
contradict the goal of software quality.

• The only area of object-oriented software development which evokes a clear analogy
with prototyping is the activity of trying out candidate software components in
various applications while preparing them for release as part of a reusable library.

One last comment. Why has throwaway prototyping come to be associated with
object orientation? The idea of such a close connection can be traced to some of the object-
oriented literature of the nineteen-eighties which often advocated throwaway prototyping.
The reason was largely circumstantial, resulting from the limitations of early O-O systems
(which lacked static typing and could not generate efficient code). The connection has
come to be accepted as a fact by many people. But this should not mislead us. All four
combinations are possible: O-O with prototyping, non-O-O without prototyping and so on.
The view that the two concepts are closely related is the result of specific circumstances in
the development of the field. On further analysis the connection just fades away.

The original “plan to throw one away” dictum is dangerous advice, encouraging
useless developments, false expectations and waste of resources. That it is so widely
revered makes it all the more harmful.

BIBLIOGRAPHY

Fred P. Brooks: The Mythical Man-Month, Addison-Wesley, 1974.

A series of short essays on software engineering and project management, based on
Brooks’s experience as lead designer of IBM’s OS 360. Widely considered a classic (how
many other computer books from 1974 are still selling?). Two seminal ideas that it
introduced are the Second-System Effect (see page 68 in the present chapter) and the so-
called Brooks’s Law (which will be discussed in “CRISIS REMEDY”, page 133).

5
Managing the transition

Starting to develop software with the object-oriented method, although not a complete
change of context, is a major technology advance, with many managerial and technical
implications. To be successful, you must proceed with your eyes open, and plan. This
chapter should help you make all the right moves.

The discussion will cover planning for the move to object technology, training
developers and managers, evaluating potential trainers and consultants, choosing pilot
projects, and staffing object-oriented projects.

PLANNING

Perhaps the most important aspect of planning for the use of object technology is to know
what your goals are. Filling in the questionnaire of the following two pages will help you
understand what you are seeking from object technology, and where you now stand.

A few explanations. Question 1 will help you assess your goals. Question 2 addresses
your current exposure to object technology; note that use of object-oriented analysis and
design with no continuation to implementation and maintenance does not count, but use of
object-like approaches such as Ada does. Level 2.5 takes into account the use of hybrid
languages, but only if object-oriented techniques were used, since it is possible for
example to use a C++ compiler but program in the C subset of the language, which does not
qualify as object-oriented experience. If you are at level 2.7 or 2.8, you started the
transition already quite some time ago, but some of the lessons of this chapter should still
be useful.

If you answer “yes” to 3.2, your choices will be constrained by the choices of your
software providers. If you answer “no” to both 3.1 and 3.2, you have both in-house and
external developments, and unless you can keep them independent you will need to think
about the consistency between your choices and those of your providers.

At the end of this chapter you will find a discussion of how to use the results (see
“APPENDIX: INTERPRETING THE QUESTIONNAIRE”, page 97). The reason for
postponing this interpretation to the chapter’s end is to encourage you to fill in the answers
first, without knowing the intended interpretation.

MANAGING THE TRANSITION §5 74
THE OBJECT SUCCESS QUESTIONNAIRE

1 What are your major goals in considering object technology?
Rate these reasons in order of decreasing value to you, starting with 1 for the most
important. If one of them does not apply to your case, do not rate it. Before answering
make sure you have read all the reasons listed. Disregard letters in brackets, such as [A].
[A] 1.1 __ Following the general evolution of the software industry.
[D] 1.2 __ Reducing maintenance costs.
[E] 1.3 __ Reducing debugging time.
[F] 1.4 __ Benefiting from external libraries of reusable components.
[B] 1.5 __ Benefiting from an advanced development environment.
[D] 1.6 __ Making the resulting software easier to modify.
[A] 1.7 __ Remaining compatible with the evolution of some of your business partners

(such as customers, suppliers, hardware vendors, software houses).
[C] 1.8 __ Quickly producing partial experimental versions (“prototypes”) of new

products, to assess some of their properties before starting the final versions.
[F] 1.9 __ Capitalizing on your software efforts by making the results more reusable.
[B] 1.10 __ Improving time-to-market for new products.
[E] 1.11 __ Preventing the appearance of bugs.
[B] 1.12 __ Decreasing software development costs.
2 What is your company’s current exposure to object technology?

Choose one (the highest number that applies):
2.0 - Novice level.
2.1 - Some people have general knowledge about object technology, but no one

has had any significant practice.
2.2 - Some people have used object-like technology, for example by

programming in Ada and using associated design techniques, in earlier
projects — either within the company or elsewhere.

2.3 - Some people have used object technology in earlier projects that included
implementation in an object-oriented language (not just analysis or design)
but the company has not completed any such project.

2.4 - The company has successfully completed at least one small project (300 classes or less)
using object-oriented techniques in an object-oriented language.

2.5 - The company has successfully completed at least one significant project
(more than 300 classes), using object-oriented techniques, in a hybrid
object-oriented language such as C++ or CLOS.

2.6 - The company has successfully completed at least one significant project (as
defined above) in a pure object-oriented language such as Eiffel or
Smalltalk.

PLANNING 75
THE OBJECT SUCCESS QUESTIONNAIRE
(continued)

2.7 - The company has been developing software using object-oriented
techniques in a pure object-oriented language for two or more years, and
has successfully completed a number of significant projects with it.

2.8 - Same as 2.7, but for five or more years.
3 What is your company’s current software process?

3.1 - Does your company develop most of its software itself?
3.2 - Does your company subcontract most of its software to an outside source

(software house, MIS department of the parent company)?
3.3 - Do you have a recommended software process model? (Circle one.)

3.3.1 No standard process model.
3.3.2 Waterfall or similar.
3.3.3 Spiral.
3.3.4 Prototyping-based.
3.3.4 Cluster.
3.3.6 Other ____________.

3.4 - What techniques dominate your software process? (Circle one or more.)
3.4.1 No systematic software technique.
3.4.2 Structured analysis.
3.4.3 Merise.
3.4.4 JSD/JSP.
3.4.5 Modular (“object-based”, as in Ada-oriented approaches).
3.4.6 Object-oriented.
3.4.5 Other ____________.

3.5 - What is the most common type of qualification among your software
developers? (Circle one or, for a more precise answer, give percentages for
each category. “Computing science education” includes formal training in
programs whose possible official names include such variants as computer
science, computer engineering and information systems.)
3.5.1 No university-level education.
3.5.2 University-level education but not in computing science.
3.5.3 B.S. or equivalent (about 4 university years) in computing science.
3.5.4 Masters’ degree or equivalent (5 or 6 years) in computing science.
3.5.5 PhD in computing science.
3.5.6 Other ____________.

From: Object Success: A Manager’s guide to Object Orientation, its impact on
the corporation, and its use for reengineering the software process, Prentice
Hall. © Bertrand Meyer, 1995. Reproduction of this page and the preceding one
for use by companies and individuals is permitted with mention of the source
and copyright. Republication requires a permission.

MANAGING THE TRANSITION §5 76
GOING ALL THE WAY

A general advice may be given to any business considering the use of object-oriented
techniques:

If you are still unsure about the introduction of objects into your company, you might be
tempted for your first project to use O-O analysis only. Don’t. That would not teach you
anything significant. The object-oriented method is meant to be applied seamlessly to an
entire project, using an object-oriented language.

Not everyone is ready to undertake an O-O project, even if it is only a pilot project. If
you are not ready, wait. But if you do it, do it all the way, and do it well.

INITIAL TRAINING

To succeed you will need to train the people involved in the transition. This includes not
just the software developers but also the managers.

Let us first look at developer training. (For the complementary part of the training
program see “TRAINING THE MANAGERS”, page 79.) The discussion will assume a
group of professional software developers, all with some experience, although they may not
have used object-oriented techniques before. It will only consider the question of training in
an industrial environment; the matter of how and where to integrate object orientation in a
university curriculum is also important but belongs elsewhere (see the discussion of the
Object-Oriented Curriculum article in the bibliography to this chapter, page 103).

Training competent software developers in object technology should be a matter of
weeks, not months. Initial training, in particular, should not take more than two weeks. If
you are offered a program requiring developers to be trained for any longer initial period
before they can start writing O-O software, there is probably something wrong with either
the trainers or the variant of object technology that they are promoting.

A typical initial training program will include the following two basic courses:

• Introduction to object technology (at ISE we call this course Object-Oriented
Software Construction after the name of the textbook that we use): two to three days.

• Hands-on O-O practice: two to four days.

In our experience this is enough to get started. With some object-oriented languages you
will need an extra language-specific course, two or three days.

We mostly use Eiffel, for which an elementary language course is not needed; the language
follows directly from the method, with a light syntactical baggage. So we teach the notation as
part of the above two courses. We offer an “Advanced Eiffel” course for people who have
already gained some experience — although here too the emphasis is less on language per se
than on advanced object-oriented techniques.

 SERIOUSNESS PRINCIPLE
If you decide to use object orientation, even for trial purposes, apply the
method all the way: from analysis to design, implementation and maintenance.

WHAT TO TEACH FIRST 77
WHAT TO TEACH FIRST

The above list does not include object-oriented analysis. It is a common misconception that
one should teach that topic first. It should be included in the curriculum at some stage, and
will find a place later in this discussion; but starting with it will lead to disaster. The
reasons are not hard to understand:

• The well-understood part of object technology is design and implementation. O-O
analysis is an immature field, with many contradictory approaches, none of which
has proved itself on a large scale. (As an example the second edition of one of the
best known books advocates a method that significantly differs from the one
promoted in the first, and its author is now announcing a merge with a formerly
competing approach.) In fact, at the time of writing, the second-generation methods,
which at last are showing some signs of a systematic, scientific approach, have only
started to come out. In contrast, O-O design and implementation, although still a new
area, is better understood and backed by successful practical experience.

• For many software developers trained in traditional approaches the key innovation of
object technology will be the ideas of seamlessness and reversibility: the realization
that you can handle an entire software development, from initial concept to full
operation, as a single thread relying on the same techniques and the same notation,
and that downstream activities can provide feedback on analysis and design. If you
teach them O-O analysis, they will just look at it as a replacement for structured
analysis or any other analysis technique they were previously using, then do business
as usual for the rest of the development, leaving in the impedance mismatches that
characterized earlier approaches. Put more bluntly: they will not get it.

• More generally, it is possible to understand object technology without understanding
O-O analysis; but no one can claim to know the technology who does not know how to
implement object-oriented software. The proof of the pudding is in the implementation.

THE BOOSTER SHOTS

Regardless of how big your initial training budget is, a rule applies: you should not spend
more than 50% of it on the initial courses. The rest should be earmarked for later sessions
meant in part to cover more advanced topics but, even more importantly, to go over the
initial material again.

In fact the advice that can be given to companies that inquire about training goes
further:

THE INITIAL TRAINING SEQUENCE

Take the initial training courses.
Then try your hand at object-oriented development.
Then take the initial training courses.

MANAGING THE TRANSITION §5 78
To some customers, not surprisingly, this will first look like a marketing ploy to make them
buy the same thing twice. But that is not the point. The reason for suggesting a duplicate
session of the initial courses is that in many cases the first session will only succeed in
setting the right mood; only after having practiced the technology, or tried to practice it,
will the trainees really understand what the issues are, so that the second session will
succeed in getting the concepts through for good.

This problem is particularly acute in today’s object-oriented scene, because of what
may be called the mOOsak phenomenon. It is a rare software person these days who has
not been exposed to some kind of description of object orientation. The people you are
training will feel familiar with the background object music (the mOOzak), and recognize
some of the words as they fly around their ears: object, class, polymorphism, dynamic
binding, multiple inheritance... As you teach the concepts the first time, the risk exists that
the trainees will not grasp the full implications of these concepts and how they can affect
their own software. Not that the initial training is unnecessary: it defines the context, and
gets people started. But it is not sufficient.

The second time around, the students will have started to grapple with the concrete
issues of building O-O software — the ones that arise all the time when you start solving an
actual software problem, although they may seem simple or academic when you are
listening to a presentation or doing a preset exercise: do I need a class for this concept, or
should I just add a feature to an existing class? Is this inheritance link appropriate, or
should I just use the client relation? Gee, in C I would declare a global variable here, but
what can I do in a language that does not have global variables? How do I best integrate
this piece of existing software into my design? Am I overusing multiple inheritance for this
class? Should I use a multi-branch instruction or rely on dynamic binding? This structure
does not look like anything we saw in class, but is it OK anyway?

The first iteration can teach students the solutions. In the second session, they will
understand what the problems were.

SECOND-LEVEL COURSES

After the initial training, taken once or twice, some more courses may be useful. Here is a
sampling of titles for such courses, each with an estimate of the duration:

• Using the Base libraries (2-3 days).

• Using graphical libraries (2-3 days).

• Intermediate O-O design techniques (2 days).

• Advanced O-O design techniques (2 days).

• Mastering inheritance techniques (2 days).

• GUI (Graphical User Interface) development (2-3 days).

• Object-oriented analysis techniques with case studies (3 days).

• Interfacing objects with databases (2 days).

• Configuration management for object-oriented software (1 day).

TRAINING THE MANAGERS 79
• Designing libraries of reusable components, with a case study. (This course should
focus on a technical area relevant to the company’s work, and falls somewhere
between training and consulting.)

These titles are only examples, and most companies will need only a subset of the courses.
Not all courses need be taken by all developers.

TRAINING THE MANAGERS

The above courses, introductory or more advanced, were meant for technical developers. If
your organization is seriously considering the use of object-oriented techniques, you must
also train the managers.

Two kinds of session will be useful here: courses for project managers; and courses
for other managers, in particular senior executives, who will not lead projects themselves
but whose views and decisions will affect projects that may use object-oriented
development.

Consider the second category first. It is essential to involve higher management in
the training. (If you have a budget for two courses only, one of them should be a course for
the senior managers.) These will not be very long sessions; senior executives do not have
much time anyway — being busy is part of the job description. But even a one-day
awareness seminar will go a long way towards ensuring that the technology is introduced
in the right way, and expectations properly set. The topics should be some of what this
book covers, for example:

• The benefits: what to expect, and what not to expect.

• Effect on quality and productivity.

• Effect on the software process.

• Role of reuse.

Project leaders will need specific training too. They must of course be familiar with the
basics of the technology; for this they can share some of the training with the developers. A
course on the topic “Managing object-oriented projects” is also appropriate.

CHOOSING TRAINERS AND CONSULTANTS

There are now many companies offering object-oriented training, and also many
consultants in the field. Any organization will have its own criteria for selecting the
offerings that suit it best. But general advice can be given in the form of two rules.

The first rule helps make sure you get your money’s worth:

OBJECT-ORIENTED RESPONSIBILITY PRINCIPLE
Never hire an object-oriented consultant who will only accept to consult for
the analysis and design phases, or a trainer who will only take care of
teaching analysis and design.

MANAGING THE TRANSITION §5 80
Unfortunately, you will find many consultants and trainers that refuse to stay on for the
implementation phase. Usually the excuse takes the form of grandstanding: the person’s or
company’s time is really too precious, and their competence too high, to be wasted on trifling
details of implementation. What? Me, program?

Do not believe a word of this, and look elsewhere for help. Even if you are in the
market for an analysis course, you will want trainers that offer the rest of the curriculum as
well; and even for help at the analysis level only, you want consultants who, if asked to, are
ready to continue all the way down to implementation.

Why is the Object-Oriented Responsibility Principle so important? The reason is that
you need people who are willing to stand for the result of their work. Someone who does
only analysis has an all too easy role: one can produce a stunning analysis document with
hundreds or thousands of pretty-looking bubbles and arrows, use it to impress a lot of
people (at least a lot of non-programmers), and get paid handsomely. But it is very difficult
at that stage to know how good the result really is. The only significant test, as noted, is a
successful implementation. Only when developers grapple with the task of building a
working software product will you know whether the analysis was any good. So if you are
hiring people to help you with the analysis you must make sure that they are prepared to
stay around when the value of their contribution gets really put to the test. Strategists who
run away at the first sign of enemy fire will not help you win the battle.

In a recent column in the Los Angeles Times, the president of MIT was lamenting that
social values have become perverted in the US, with all the bright students wanting to
become lawyers — lots of rewards, little risk — rather than engineers. Since the place of
lawyers in society is not part of the topics of this book, we do not need to discuss the merits
of such a complaint. But it definitely helps explain why, when in the mid-eighties object
technology started reaching beyond its original circle, so many consultants all of a sudden
discovered the true vocation of their lives: object-oriented analysis — all fun, no trouble;
all sizzle, no steak; the bubbles and arrows of outrageous fortune.

It actually happened in two stages. First there was a brief time of panic: when it seemed that
object technology was about programming, a number of analysis consultants, worried that they
might be forced to go back to real work, went on the offensive against the method, using
elaborate technical arguments to show that it was flawed. But then a miracle occurred: someone
came up with the idea of object-oriented analysis — spelling relief, and a return to business as
usual.

What is wrong here is not object-oriented analysis, or doing consulting and training in this
important area, but the idea of refusing to take any responsibility for the rest of the software
process.

This could be called the Casanova stance. To simplify a bit, the first half — the first
thousand pages — of the memoirs of Giacomo or Jacques Casanova, Chevalier of
Steingalt, cover Casanova’s youth in the seventeen-forties, his travels throughout Europe,
and his adventures with numerous young women, some of whom entrusted to his care by
their unsuspecting fathers. The second thousand pages show him going through many of
the same cities in the seventeen-sixties, meeting not just his former friends but also their
handsome children — who, often enough, look stunningly like him. It is a delightful book,
although not the most moral one, as it is generally held now as then that someone who
fathers children should also take some responsibility for them.

CHOOSING TRAINERS AND CONSULTANTS 81
A modern manager who hires analysis-only (or analysis-and-design only)
consultants or trainers for his project acts as an eighteenth-century father who engages
Jacques Casanova as a preceptor to his only daughter.

This discussion highlights once again the place of analysis and design in object
technology, so different from their role in earlier approaches. Many consultants and their
clients, and much of the O-O analysis and design literature, still follow the pre-object
paradigm, repainted with object colors: a waterfall-like view that considers analysis and
design as separate, self-contained steps, meant to produce documents that will serve as a
basis for the following steps. With those earlier approaches the consultants would help
their customers do, for example, “structured analysis” and “structured design”, and then let
someone else handle the implementation. Now they expect to be doing “object-oriented
analysis and design” and then run away (like Casanova when he left Venice for Corfu in
May of 1744) while someone else takes care of the lowly task of actually producing
running software.

At best this approach might yield better analysis and design documents; but however
you look at it, you cannot call it object technology. Object technology implies
seamlessness; it implies departing from the waterfall model and moving to a continuous
software process in which software is built by successive iterations of the same document;
it even implies, as we saw in an earlier chapter, the disappearance of any clear-cut
difference between design and implementation. That is why you want your trainers and
consultants, including those who specialize in the early tasks of the software process, to
master the rest of that process too, and to be prepared, if you ask them, to continue working
on the consequences of their advice.

The second rule for choosing trainers and consultants will help apply the right
selection criteria. With the explosion of interest in the object-oriented method it is not
surprising that many people now claim to be experts in the field. You will need to sort out
these claims to select the people who are best prepared to help you.

The usual criteria will apply: how impressive the person’s or company’s résumé is;
education; previous participation in similar applications; breadth of experience;
demonstrated understanding of the technology; mix of management and technical
expertise; references provided by previous customers; your personal rapport with the
candidates; articles published, books, talks at conferences.

All this is useful here as it would be when you hire consultants and trainers in any
technical area. But there is something special about expertise in the object-oriented field:

Reusable software construction is the achievement that, more than anything else,
distinguishes the object-oriented method from anything before it. Until you have built a
successful library you cannot claim to be an authority in the field.

OBJECT-ORIENTED EXPERTISE PRINCIPLE
No one is an expert in object technology who has not played a major role in
the development of a successful object-oriented library of reusable software
components.

MANAGING THE TRANSITION §5 82
“Successful” here means actually reused on a broad scale, by teams far removed from
the original library builders. The discussion of reusability (see “LEVELS OF MODULE
REUSABILITY”, page 118) will distinguish four levels of reusability for a component; the
expression “a successful object-oriented library”, as used in the Object-Oriented Expertise
Principle, denotes a library that has reached level 4, at which it must have been used in
systems produced by people that have no direct contact with the authors.

The Object-Oriented Expertise Principle will make your life easier; as you start
applying it, the pool of candidates will quickly shrink.

REUSABILITY CONSULTANTS

The topic of consultants suggests another observation. Companies that undertake object-
oriented projects may need to use consultants in the usual ways: technical tasks such as
analysis, design and implementation; management consulting.

But there is also another, more novel use for consultants, at least those who satisfy
the Object-Oriented Expertise Principle. If you are serious about reuse and interested in
developing your own reusable software (that is to say, ready to move to what the discussion
of this topic in chapter 5 will call the producer’s view of reusability), then you can rely on
the reusability competence of object-oriented consultants to help you produce your own
components.

This scheme can yield a fruitful collaboration between a group that has the
application domain expertise (your group) and another that has application-independent
expertise in building reusable software — the consultants.

PILOT PROJECTS

A company that is considering adopting object technology on a more or less broad scale
will usually want to try it first on a few selected projects — the pilot projects. What is the
best way to select and plan the pilot projects?

The usual advice is to avoid choosing something too big, based on the risk argument:
avoiding to bet the house on new ideas. But you should also look at the other side of the
issue. If you choose a pilot project that is too small, the risk is not what happens if it fails;
in fact, for a small enough project, you may succeed with any approach. The risk is what
happens in case of success: the pilot project and its success may not teach you anything.
You will not know whether the success is due to the technology that you are trying, or to the
small size of the problem.

A pilot project must teach you something. Hence the rule:

THE PILOT PROJECT PRINCIPLE
If you are using an example project to evaluate object technology, choose a
project whose potential results will be useful to the company, so that its
success or failure will be felt.

PILOT PROJECTS 83
For success to mean anything, you must be prepared to take the risk of failure. Not every
company is ready to take this risk. If you are not, it is better not to undertake a pilot project
now; a risk-free project would not be meaningful enough. In such a case it is better to avoid
wasting any money or resources on the pilot project; wait for whatever time it takes to
change the circumstances and make your company object-aware enough to undertake a
serious effort.

The Pilot Project Principle has another justification. A pilot project is not just meant
to ascertain success or failure. Of course if you have reached a stage at which you are
willing to devote resources to such a project you must have a feeling that object technology
can work for you, and you expect success. You need to test this prediction, but you will
want the project to yield more than a yes or no answer. If it does succeed it should help you
understand how to use object technology; it should set a precedent; and it will show an
example that will entice other projects to follow the same path. These are further reasons
for selecting a significant project. The project should produce results that the company
needs, so as to catch the attention of other groups and make them want to profit from the
same benefits. This may be stated as a corollary to the Pilot Project Principle:

“Killer App” (for Application) is programmerese for a system which no one has done
before and which will dazzle everyone. The observation behind the Killer App Principle is
well known to anyone who has been responsible for pushing software methods or ideas in a
company: although it is all right to preach, the best way to convince people is still to show
them miracles. By preaching you can win over a few apostles (a dozen or so, according to
some studies, seems to be a typical success rate); but perform a few miracles and your
following will grow much faster.

Sometimes a Killer App can be quite modest. A long time ago, while trying to promote modern
software engineering techniques in a large company, I wrote, for circumstantial reasons, an
efficient sorting routine, and put it into the company’s library. To a recent computing science
graduate, this was a one-hour effort — applying second-year CS techniques — and I did not
think much about it. I was stunned to see how much it impressed the programming staff: having
had little formal computing science training, they were used to techniques that would sort an
array of n elements in time proportional to n2, whereas mine used n log (n) time, as I had been
taught. On large arrays the difference is tremendous; my little exercise meant that some
problems previously thought intractable were now becoming routine! But the most interesting
consequence was that afterwards many people who until then had paid no attention to my
exhortations about programming methodology started to listen quite carefully. I had shown that I
was capable not just of giving advice (the most common ability in the world) but also of doing
things they could not do.

The lesson is, I think, a general one. To succeed, consultants, advisors and technology
champions (“evangelists” as Apple Computer calls them) should do more than consult, advise,
champion and evangelize. They should use the power of example to show directly what can be
done. More generally, whenever you preach methods you should also teach techniques.

THE KILLER APP PRINCIPLE
For a pilot project, select, if possible, a project whose results will provide
new and highly visible services to the corporation.

MANAGING THE TRANSITION §5 84
A FAILURE

To illustrate the problems associated with pilot projects, it is useful to look at two examples.
The first is a failure; the second (discussed in the next section) is a success. Both projects
have been described in the literature; both used Eiffel, so that the comparison is meaningful.

The failure was a large project at Cognos, documented in a number of presentations
by Burton Leathers of Cognos and his article in SOOPS: Symposium on Object-Oriented
Programming Emphasizing Practical Applications, Marist College, Poughkeepsie, New
York, 14-15 September 1990, pages 66 to 80. Cognos is a Canadian software house which
around 1988 decided to replace part of its existing technology by a newly designed object-
oriented product. The experience reads like a case study about how not to manage a
software project:

• In a few weeks the company went from a handful of O-O gurus to more than 120
object-oriented developers.

• In spite of the magnitude of the project and the novelty of the technology (this was
1989) no consulting was ever sought from the O-O vendor, and no training except for
a two-day session late in the project.

• Instead of using the standard version of the O-O tools, Cognos decided to obtain a
source license and start modifying them. Quoting Burton Leathers: The availability
of the compiler source and the presence of some very capable compiler people
[Cognos had previously tried to develop its own O-O language, and failed] led us to
make changes to the compiler because it was easier than having [the vendor] make
them. This was a terrible trap. Indeed it was: after a few weeks it made it impossible
for the vendor to provide technical support! In addition it also made it impossible
after a while to let Cognos benefit from updates to a technology which at the time
was still quickly evolving.

• Management expectations were not properly set.

• The commitment to object technology, initiated the technical people, was accepted by
upper management, but did not have an upper-management champion.

• Goals were unrealistic. Quoting again from Burton Leathers’s article: In the
“Mythical Man-Month”, Brooks notes that [...] nine women cannot produce a child
in a month. This did not deter management at Cognos from attempting the software
engineering equivalent. By setting an unjustifiable final delivery date, management
were obliged to create schedules which had inherently serial activities proceeding in
parallel. It was this schedule telescoping which meant that the debugger was
completed after the bulk of the code had been created and the source control and
configuration management tools and procedures were not in place until long after
they were desperately needed.

It is hard to think of how one could have accumulated more management mistakes in a
single project. Yet development was proceeding. The inevitable happened, however:
concerned that the new product was not advancing fast enough, and that the old one was
losing market share, the company’s higher management decided to cancel the advanced
project and to bring developers back to improving the old product.

A SUCCESS STORY 85
This example has often been quoted as an argument against object technology, or
Eiffel, or both. But to anyone who reads Leathers’s article the conclusion will be obvious:
the failure had little to do with technical issues; it was one of management and planning.

The lesson of the Cognos experience is clear:

A SUCCESS STORY

From the Cognos case it might seem that the best approach to implementing object
technology is prudence and patience.

This would be a wrong inference. Although some companies will prefer to go slowly,
for others a fast, bold, well-planned move to object orientation may be a unique
opportunity to gain a decisive edge over their competition. The Bytex case provides a good
illustration.

The following discussion of the Bytex project is primarily based on an interview of
Roger Osmond, the project manager, by Rock Howard in Eiffel Outlook, vol. 2, no. 4, Nov.-
Dec. 1992. Some elements have also been taken from talks given by Mr. Osmond at several
TOOLS conferences (Technology of Object-Oriented Languages and Systems).

Bytex is a Westboro (Massachusetts) company providing advanced networking
solutions specializing in “hubs” that connect local area networks — a multi-billion-dollar
market. In late 1989 Bytex, then primarily a provider of electronic matrix switches for wide
area networks, found itself in a difficult situation. The difficulty was not market share,
since Bytex was the principal player in its field, doing a little under $40 million annually,
and continuing to increase its dominance; it was the market itself. It is not too hard to guess
that a company focusing in 1989 on networking for mainframe computers did not show
exciting growth prospects. The risk existed of slowly becoming a $0 million company.

It seemed more desirable to become a $80-million company quickly. But how?
Clearly the competition had not waited. Some bold move was required.

Bytex decided to build a new workstation-oriented system: an “Intelligent Switching
System”, based on a “smart hub” that allows a network manager to set up multiple Local
Area Networks within a single hub. The major competitive advantage of this solution is
that a customer who changes a network configuration — and customers tend to change
configurations all the time! — does not need to perform any physical re-wiring: the
reconfiguration will entirely be done under software control. The time and effort saved by
not having to re-wire cables is an enormous benefit for the customer. This approach also
enhances network reliability and availability because the least reliable components of the
network, the cables and their connectors, become inert — once wired, they do not need to
be manipulated again.

O-O SOFTWARE ENGINEERING PRINCIPLE
Using object-oriented techniques and an object-oriented language is not a
substitute for good project management and the application of software
engineering principles.

MANAGING THE TRANSITION §5 86
Because of the time pressure, the quality requirements and the complexity of the job,
Bytex decided to use object technology. There was little object experience in the company;
conventional wisdom might have suggested a phased approach, with successive pilot
projects of increasing scale. Instead, the company moved fast. But in contrast with the
Cognos case the project was carefully planned and prepared. Independent consultants were
brought from the outside to help select a language and tools. Once the selection was made,
the Bytex team received the proper training. Then they went ahead.

The result: in 1991 Bytex began shipping the new product. In the following years
sales of that product doubled each year, and moved beyond what the core product had
yielded at its peak. Bytex has since been involved in two significant mergers, making it
part first of a $220-million company and then of a $2-billion one. Its technical leadership
and ability to deliver ambitious, quality products were key ingredients to these mergers.

As to the original project, the Series 7700 Intelligent Switching System: the 7700 was
named “Product of the Year” by LAN Magazine; it was chosen as a “Hot Product” in the LAN
area for Data Communications magazine; the same magazine gave it its Tester’s Choice
Award in 1993.

As the product was being prepared, object-oriented ideas played a key role in
bringing it to market quickly and responding to customer demand. When a pre-release was
unveiled in March 1991, interest from customers was favorable but included many
suggestions for additional capabilities. Object technology allowed the developers to add
significant new features in cycles of as little as 4 to 6 weeks, impressing customers as well
as the marketing and sales departments with the responsiveness of Engineering.

After the first official release in the Fall of 1991, updates continued at a regular rate,
all made possible by the flexibility of the product’s object-oriented architecture: support for
six new card types, a new hub type, Token Ring monitoring capability, and many others.

Like many similar projects, the development had to interface with existing C code, but
the technique of keeping the O-O and C parts separate and communicating through official
interfaces was preferable to that of using a C extension. In the interview, published a year and
a half after the first official release, Osmond noted the importance of choosing a pure rather
than hybrid approach to object-oriented software construction: “If Bytex had chosen C++
for this project the development team would still be coding for the first release”.

A study of the article reveals interesting differences with the Cognos case. The
project started with half a dozen software engineers and grew only to slightly over a dozen:
in other words Bytex avoided inflating the team. Also, the project was started on the
initiative of the then Vice President of Engineering (Dr. Michael Mancusi, now General
Manager of Bytex), who “played the key role of Product Champion and convinced upper
management to back the project [...] Management commitment for OOT was an implicit
part of the project from the beginning”. This helped set the expectations right. Another
supporter in higher management was Joseph E. Massery, then Director of Software
Engineering (now Vice President of Engineering). In fact, although Roger Osmond notes
that there were some unrealistic expectations, one of his slides at the TOOLS USA 94
conference read:

CHOOSING THE RIGHT PEOPLE 87
Here are some of the lessons of the Bytex project:
• Although not a substitute for good software engineering practices (as stated above by

the O-O Software Engineering Principle), object technology can, for a team applying
these practices, make the difference between commercial success and failure.

• It is also essential to know what you expect from object orientation. (The questionnaire
given at the beginning of this chapter and discussed at the end should help.)

• One of the main contributions of the technology, when applied well, is the flexibility
of the resulting software architectures, which in a highly competitive market can give
a company the edge by enabling it to provide extremely fast response to strategic
customer requirements.

• Management awareness and support is crucial. This last advice, highlighted by the
difference between our two case studies, yields a principle of its own:

If you are promoting object technology into your company, it is your responsibility to teach
upper management about its “intent and scope”, emphasizing in particular that its major
contribution affects quality more than short-term productivity improvements.

The Bytex example also holds a lesson about the proper pace of moving to object
technology. Although conventional wisdom suggests going slowly, fortune will smile to
the competent bold.

CHOOSING THE RIGHT PEOPLE

For the pilot projects, and later for others that will use object-oriented techniques, you will
need to be careful about team selection. Here is a list of desirable qualities:

OOP holds MORE promise
than the current hype would have us believe.

MANAGEMENT CHAMPION PRINCIPLE
Before undertaking object-oriented development on any significant scale, be
sure to have a committed champion in upper management, who understands
the intent and scope of the technology.

THE IDEAL O-O DEVELOPER PROFILE

• Ability to abstract.
• Ability to adapt to new modes of thinking.
• Well organized.
• Experience with as many areas of computing as possible.
• Experience with as many approaches to computing — programming

languages, software development methods — as possible.
• Experience at all levels of the software process: analysis

(specification), design, implementation, maintenance.

MANAGING THE TRANSITION §5 88
You will want people who have a strong ability to abstract. Object technology, as noted
several times already, is not about objects but about abstraction. You need people who are
able to see the concept behind the examples, the general behind the specific, the essential
behind the auxiliary.

You need team members who can adapt to new modes of thinking. Object technology
makes it possible, in a very flexible way, to encapsulate reasoning patterns into software
schemes. Those who apply it should be able to learn new patterns fast.

They should also be well organized. Object-oriented development relies on
systematic techniques and multi-person collaboration through standardized interfaces. We
want excellent software developers, but not of the “lone and messy genius” type.

Look for people with experience in many areas. The gods of objects will smile upon
the person who can spot the recurrence of patterns encountered in previous work. Object
technology is the quintessential generalist approach, where barriers between areas of
specialization fall. As usual, you will need experts in individual fields (in fact, the
technology helps them refine and apply their expertise); but you do not want narrow-
minded programmers who have only heard about one area of development.

The quest for generalists means that you should be looking for team members having
experience with many approaches to computing. The object-oriented method is the cuckoo
of the software world, always ready to deposit its eggs into another bird’s nest. If you
identify a useful mode of computing, often from another approach or area — functional
programming à la Lisp, Logic programming à la Prolog, database programming, entity-
relationship modeling — you can write O-O classes that will encapsulate that mode and
apply it to your developments. To benefit from this versatility of the method, you should
look for people who already know as many of these approaches as possible.

Finally, the seamless character of O-O development, one of the leitmotive of this
book, should be a major boost to your projects. This means that you will have little use for
analysts (specifiers) who cannot design or code, or for coders who cannot do design or
analysis. You need people who have experience at all levels of the software process and
whom you can solicit for all the intertwined activities of the cluster lifecycle. Here too you
are not rejecting experts: some people will give their truly outstanding performances at the
specification stage, others are brilliant at implementation. But all should be familiar with
the entire process, and be able to help at every step.

The theme of the last few items of advice was the same: we want generalists, not
narrow-minded specialists. As noted, expertise in specific areas is of course precious, but it
must not come at the expense of mastery of the big picture. The team members must possess
a broad set of skills. This changeover from specialists to generalists is actually a larger
trend, affecting many industries and spotted in a recent influential article in The Economist.

TECHNOLOGY EVOLUTION AND PEOPLE

How do the above requirements affect the evolution of the software profession? A
comparison with other technological changes will help understand the answer.

One of the aims of moving to object technology is to increase productivity; in plain
English, this means doing more and better work with fewer people.

ELITISM? 89
The history of technology shows two kinds of productivity advance. In both kinds,
some jobs are rendered obsolete; automation does not really mean that we replace people
with machines, rather that we replace people who did a certain job with other people who
operate machines doing that job (or more commonly a different job replacing the earlier
one). The two kinds of advance differ in the nature of the new jobs:

1 • In cases of the first kind, the new jobs require less qualification than the old ones.
This happens when a technology evolution makes a whole set of skills useless, so that
the replacement tools can be operated by people without the extensive training and
experience that were previously required. The evolution of the automobile industry,
and of other transportation industries before it, contains many examples of this kind.
More recently, Computer-Aided Design tools have all but eliminated the need for
professional draftsmen.

2 • In cases of the second kind, the new jobs require more qualification than the old.
There is still an economical advantage to the move, however, since even though the
new specialists are usually paid more there will be far fewer of them. The evolution of
farming in industrialized countries is typical of this category.

Changes brought about by object technology are of the second type. Expect to need
fewer people — this is the productivity gain — but with a higher average qualification.

Some situations may seem to belong to case 1; for example, much of the expertise gained in
older methods, languages and operating systems may suddenly become unneeded. But such
expertise often involved knowledge that was rather low-level, although sometimes very detailed.
Not so long go, for example, trade magazines carried many job offers for programmers fluent in
IBM’s OS 360 Job Control Language; who is hiring JCL programmers today?

ELITISM?

A certain tone of elitism may seem to resonate from the previous comments. This is a
possible criticism, and it must be addressed.

First, we are not requiring geniuses. The qualities that we seek are largely about
openness, flexibility, ability to reason at a high level of abstraction, willingness to learn
new thought patterns. These are skills that can be nurtured. Indeed in ISE’s experience one
of the rewards of having taught object-oriented ideas to so many people for many years and
in many different environments has been to discover that individuals with extremely
diverse backgrounds can become O-O masters. In our practice they have included software
developers with computing science degrees from world-class universities, but also PhDs in
theoretical physics, as well as old-time COBOL, FORTRAN or even BASIC programmers,
self-trained software developers with little formal education, and former managers who
late in their careers discovered the beauties of technical work.

Differences in technical abilities will remain, however; in fact software development
seems to exacerbate them. Numerous studies have confirmed what every software manager
knows informally: that individual differences between programmers are huge. It is not
uncommon to see one person succeed where eight had previously failed. Some published
studies show ratios of 20 to 1 in programmer capability, between people of similar
backgrounds occupying similar positions in the same organization.

MANAGING THE TRANSITION §5 90
Software managers, naturally, will try to use the people that are at the higher end of
this scale.

How does object technology affect this discussion? Here too we can relate the
discussion to a more general distinction in the history of technological advances, with two
cases that parallel the ones introduced in the preceding section:

1 • In some cases, a technology breakthrough reduces differences between individual
practitioners of the trade, enabling everyone to handle tasks that were previously
reserved for the best experts. To take a low-tech example, anyone that has a good
washing machine can now produce results that only the best domestics could achieve,
with much effort, in less automated times. Another example is computerized taxi
dispatching; on a recent trip to Paris, an experienced taxi driver whom I was
complimenting on his fancy on-board computer system went into a bitter complaint
of how this had ruined the business: what with every newcomer being now in the
same league as the old-timer who previously could get the best business by relying on
long-accumulated knowledge about the fastest routes, arrival patterns in railway
stations, and likely times of traffic congestion.

2 • In other instances, however, the advance has the inverse effect — providing the best
experts with ways to increase their existing advantage. The ethnographer Claude
Lévi-Strauss tells of introducing writing to an Amazonian tribe; the chief immediately
saw the benefits of this invention and confiscated it for his exclusive use, as a way to
reinforce his power.

Object technology can make everyone more effective, and as such can benefit the
most qualified developers as well as the least qualified ones. But it does not benefit
everyone equally. This is the kind of technology advance that, like writing for Amazonians,
tends to help most those who are already at the forefront. Give object-oriented computing
to an average programmer, and the programmer will become a little better. Give it to a top
programmer, and the results may be a superb improvement in quality and productivity.
Everyone gets better; but some get more better than others.

One may complain that this is unfair; but then life is unfair. And we should not forget
that the primary aim of software development is not to make life easy for software
developers, but to satisfy the users (and potential victims) of the resulting software.

In a panel at a Unix conference, responding to someone who complained that object
technology is readily picked by the best developers who use it to their advantage, but can
leave others behind, Bill Joy (the designer of Berkeley Unix and cofounder of Sun
Microsystems, who is known for speaking his mind) retorted: “Good! Then at least the
software will be written by the good programmers”. This is right to the point. Software
quality and productivity are not just the pet peeves of technical perfectionists: they hold the
key to customer satisfaction, and in many cases to the protection of human property and
human safety.

The issue remains of how best to employ people other than the top software
developers; it will be discussed later in this chapter (see “WHAT TO DO WITH THE
OTHERS?”, page 95). Important as its social consequences may be, however, it must leave
precedence to the fundamental issue of software engineering: how to produce the best
possible software in the best possible way.

TWO CAVEATS 91
TWO CAVEATS

The advice given so far about how to select people for object-oriented projects was
centered on positive characteristics. Some negative advice (about whom not to hire) must
also be included.

The first one addresses a particular type of background. As noted above, it is not
possible to specify a single profile that would be required for object success, and software
developers with widely different work experience, not necessarily the most prestigious,
have turned out to be excellent O-O developers. But one special category justifies a
cautious attitude if you are hiring people for an O-O project:

A “C hacker” is someone who has had too much practice of writing low-level C software
and making use of all the special techniques and tricks permitted by that language.

Why single out C? First, interestingly enough, one seldom hears about Pascal
hackers, Ada hackers or Modula hackers. C, which since the late nineteen-seventies has
spread rapidly throughout the computing community, especially in the USA, typifies a
theology of computing where the Computer is the central deity and its altar reads
Efficiency. Everything is sacrificed to low-level performance, and programs are built in
terms of addresses, words, memory cells, pointers, manual memory allocation and
deallocation, unsafe type conversions, signals and similar machine-oriented constructs. In
this almost monotheist cult, where the Microsecond and the Kilobyte complete the trinity,
there is little room for such idols of software engineering as Readability, Provability and
Extendibility.

Not surprisingly, former believers need a serious debriefing before they can rejoin
the rest of the computing community and its progress towards more modern forms of
software development.

The above principle does not say “Stay away from C hackers”, which would show
lack of faith in the human aptitude to betterment. There have indeed been cases of former C
hackers who became born-again O-O developers. But in general you should be cautious
about including C hackers in your projects, as they are often the ones who have the most
trouble adapting to the abstraction-based form of software development that object
technology embodies.

The second rule addresses a general issue rather than a specific category of people:

Like the preceding one, this principle is not an absolute rule but a guideline to be applied
with moderation (otherwise, you could use it repetitively to bring down the number of
project participants to zero, not a very useful result). But it does state an important

PRUDENT HIRING PRINCIPLE
Beware of C hackers.

“FEWER MAY BE BETTER” PRINCIPLE OF HIRING FOR
OBJECT-ORIENTED PROJECTS

When in doubt, abstain.

MANAGING THE TRANSITION §5 92
observation: in staffing a project, especially at the beginning, and especially with a new
and ambitious technology, bigger is not necessarily better.

According to a recent New York Times article that reported on a study of couples over
a long period, the originally less intelligent or cultivated partner in a marriage tends, along
the way, to reach the level of the other. Whether this assertion is indeed true for marriages
will be left for other authors to decide; but in my experience it seldom applies to software
projects. What seems more applicable there is the Bad Apple theory: one person can damage
the whole project by slowing others down, asking them frequent questions that detract them
from their own priorities, producing software that will later be found inadequate and will
have to be redone, or infecting the rest of the group with contagious non-enthusiasm.

The consequence for the manager is that you should refrain from adding people who
are not essential or not at the right level. This rule is especially applicable to your first O-O
projects, and to the initial stages of all projects, where it is especially crucial to ensure
consistency and solidity of the overall design. Within a project, the same rule applies to
individual clusters: to start a good broth, use few cooks.

The chapter on the role of managers will come back to these issues, discussing in particular why
it may be necessary, when attempting to rescue a troubled project, to remove people (see
“CRISIS REMEDY”, page 133).

Some circumstances justify taking a less strict attitude. If at some advanced stage of a
successful project you notice that certain extra functionalities, of which no one in the team
has the time to take care, would make the end product more attractive, then it may be
reasonable to add a few people, possibly less experienced, to the team. This assumes that
the project is well under control; that it is already meeting or poised to meet its essential
requirements; that the new functionalities can be implemented without too much
interaction with the rest of the development; and that it would not be a catastrophe to ship
the product without these functionalities.

In all other cases, and especially at the beginning of a project or cluster, you should
be very wary of making the group bigger. As Brooks noted many years ago, the number of
potential interactions in a group of size n grows not as n but as n2. It is surprising how much
you can achieve with a group of 4 to 10 talented, enthusiastic object-oriented developers.
And if the developers are not enthusiastic or not talented, using more of them is not going
to help.

As a rule of thumb, a pilot project — if it is really a pilot project, rather than a
development such as the Bytex example which is a major corporate endeavor but happens
to be the first significant one in the company to use object-oriented techniques — should
not need more than half a dozen developers. (This was actually the Bytex project size for
many months.) At the other end of the spectrum, it is a rare object-oriented effort that needs
more than twenty developers; such projects do exist, of course, but they should not be
undertaken lightly:

SOFTWARE QUALIFICATIONS AND THEIR EVOLUTION 93
One may object that these requirements should apply to all projects, above or below 12
developers. But a dozen people seems to be the approximate limit beyond which it is simply
impossible to survive without them.

The good news is that with a team of that size made of competent and enthusiastic O-O
developers, a good O-O language, a good O-O environment, sound software engineering
practices, and a good manager, you can quickly achieve results that more traditional
approaches could not even dream of, even with a team many times as big.

SOFTWARE QUALIFICATIONS AND THEIR EVOLUTION

The observations made earlier in this chapter on elitism and the role of technology changes
in software suggest a reflection on the evolution of the software profession.

In spite of appearances, the observation that we will need more qualified people does
not contradict the often advertised “move to end-user computing”. Object-oriented ideas
are indeed at the forefront of the methods that make it possible to give “end-users” (that is
to say, people who rely on software systems but are not computing professionals) more
power to control and adapt the systems that they use. But every time we lower the
requirements on end-users of our systems, we must raise the requirements on the authors of
these systems, as expressed by the following rule:

This rule also reflects the evolution of the software profession, which is no longer a single
occupation but rather a spectrum of competence levels.

Twenty-five years ago, being able to program a computer in, say, FORTRAN or
COBOL, was a professional qualification sufficient to land you a job. Not any more.
Nowadays many an eighteen-year old with a personal computer at home has logged in as
many hours of programming, or some form of it, as a professional programmer used to do
in the first few years of a career.

LARGE O-O PROJECT PRINCIPLE
No company should undertake an object-oriented project involving more
than 12 developers except under the following conditions:

• In-depth mastery of the object-oriented method (preferably backed by
previous successful projects).

• Availability of excellent project management expertise.
• Adherence to strict and clearly specified software engineering practices.

EASE-OF-USE PRINCIPLE
An easier-to-use system is harder-to-design.

MANAGING THE TRANSITION §5 94
Instead of the old situation what we now see, as illustrated by the figure, is a whole
range of degrees of competence:

The category at the far left covers the rapidly dwindling part of the population that does not
use computers. Continuing from left to right, a pure end-user is someone who uses the
computer and the programs it runs as mere tools, with little idea of how the computer
works and no influence over what the programs do. Next, power users are able to change
the behavior of their software. They usually started out as pure end-users, but curiosity led
them to lift the hood and find out what was going on inside; they often know more about
programming than what a typical “professional” programmer did in 1970. (In the same
way, a science-inclined high-school student knows more mathematics and physics, in some
areas at least, than Descartes, Pascal or Newton.) Then we find those engineers from other
disciplines who are not computing scientists by training or job description but are
sometimes programmers by the reality of their day-to-day work. The next category
includes “average” programmers, who can produce code in a programming language,
sometimes several, but have not been involved in high-level design or system architecture.
Then the best designers. Finally, the software equivalent of chip designers in the hardware
industry: the people who write the building blocks on which everyone else relies —
operating systems, networking software, compilers, general-purpose libraries of reusable
software components. The competence requirements that are (or should be) imposed on
this last group of software professionals are commensurate with the trouble that will ensue
if they leave a deficiency in any one of their products.

The evolution of the software industry raises a major problem for the middle
categories and in particular for the one labeled “Average Programmers”, which the figure
shows highlighted and with a question mark hanging over its future. As the industry
progresses, this group will increasingly be under attack from both left and right. Progress in
basic tools and reusable components means that many tasks that previously required a
programmer can now be addressed by using general-purpose tools or assembling reusable
components. Combined with the increased role of computing in general education and the
wide availability of personal computers, this also implies that more and more of the
programmers’ tasks can be handled by nonprofessionals — the people to the left of the
Average programmers on the figure.

Although some of this evolution would have occurred anyway, object technology
accelerates and reinforces it. Like the industrial revolution of the eighteenth and nineteenth
centuries, it is not so much harming workers as favoring certain categories of workers
over others.

Troglodytes
and computer
illiterates

Pure end users

Power users

Non-software
engineers

Average
Programmers

Top designers

Authors
of fundamental
tools

A SPECTRUM OF SOFTWARE ABILITIES
?

FOSTERING A GRASSROOTS PHENOMENON 95
Here the threatened group is the middle one, Average Programmers. The technology
helps the groups on both the left and right parts of the figure: it enables the people on the
right (the most competent software specialists) to produce ever more powerful tools and
components that will enable the people on the left (non-computing professionals) to solve
many problems that previously required professional programmers. Because of the Ease-
of-Use Principle, the advanced groups on the right need not worry about the rise of end-
user computing: to build products that will give ever more power to ever less computing-
savvy users, we need ever more expert specialists. But this is all to the detriment of the
Average Programmers, who will find themselves sandwiched between users with
increasingly sophisticated tools and experts with increasingly valuable skills.

The concrete short-term inference, for a manager, is that you should aim for the best
software people in your organization.

Actually this should not be too difficult. Object technology naturally attracts the best
software developers; they will besiege you to let them join the project.

FOSTERING A GRASSROOTS PHENOMENON

The last comment will have reminded you — as a good manager you definitely know
this — that a technology change such as the move to object orientation cannot be fully
imposed from the top. Even if the initial impulse comes from higher management, success
can only come if the people most affected by the change commandeer the technology and
transform the original top-down initiative into a bottom-up movement.

Knowing how to produce such a reversal is part of standard managerial skills. In the
case of object technology, this will be made easier by the attraction that this technique
holds for the most competent developers. It is interesting to see how quickly such people
embrace the ideas: you start showing object orientation to them, let them play a little with a
good O-O environment, and they are hooked for the rest of their lives. Never will they want
to go back to anything else.

The pilot projects should take advantage of this phenomenon by relying on a
combination of the best technology — the O-O method with a shining language and
environment to support it — and the most enthusiastic and competent people. This
explosive cocktail can start the reengineering of the software process of your company —
and lead you to Object Success.

WHAT TO DO WITH THE OTHERS?

As noted above, the relatively high requirements defined for object-oriented developers do
not mean we are looking for geniuses. Many people will be able to make the transition.

But, let us face it, as with any significant technical evolution some people will just
not follow. What should you do with them?

The question comes up regularly in industry forums. I once heard from Adele
Goldberg of Smalltalk fame (at a panel at Object Expo at which we were both speaking, in
New York in June of 1992) the suggestion of using the less object-literate people as testers
for the work of the best object-oriented developers.

MANAGING THE TRANSITION §5 96
This idea makes me uneasy: would we use the less advanced engineers, in a nuclear
plant or aircraft factory, as safety engineers? In software like elsewhere, quality assurance
(done in particular at the “Validation & Verification” step of the cluster model) is a crucial
task; it is meant to ensure that the software satisfies all quality requirements: that it is bug-
free, efficient, easy to use, consistent with user expectations. Such a job clearly requires
people at the highest level of expertise.

The problem arises out of conflicting social pressures, pitting the needs of a
business’s longtime employees against those of its shareholders and customers. As such it
has no perfect solution, but one approach at least seems preferable to the one just
mentioned. To understand it, consider again the pictorial illustration of the scale of
available skills (page 94) and the evolution that it reflects.

For the rightmost part of the scale — the development of fundamental tools and
mission-critical systems — what is needed is the most capable people, period. (Reusable
software components, in particular, should be produced by the best developers.)
Accusations of elitism do not weigh very much against the potential consequences of the
reverse policy, which range from delivering sloppy products and displeasing customers to
causing life-threatening accidents, as bad software can do. The primary goal of software
development is not to provide employment to existing software staffs; it is to ensure that
the systems that control many aspects of industrial societies, from air traffic control to
mail-order business, will work correctly and efficiently. If a malfunction in your software
kills someone or brings one of your customers to bankruptcy, the defense that you tried to
be kind to the faithful veterans of your programming group will not help you much in
court.

But with the switch to reuse-based software development we can in some cases at
least have a job for the less expert people: assembling these top-quality components and
combining them in various ways. To assemble components, one needs to understand the
essential aspects of the technology and to work on the basis of abstract interface
descriptions; but the required skills are nowhere close to those it takes to build the
components.

Here too object technology bring to the software world a phenomenon that has been
apparent for many years in the hardware field: a division of labor between a relatively
small number of leading-edge producers of basic components, and a larger group of
engineers who essentially work on assembling systems from components produced by the
first category.

This scheme seems to provide enough flexibility to accommodate the variety in
levels of professionalism and depth of object-oriented expertise that characterizes the
software community.

A SUMMARY OF TRANSITION PRINCIPLES

This chapter has given numerous pieces of advice meant to help the managers of
companies that are considering moving to object technology, whether on a small scale or
with high ambitions. It is useful to summarize these precepts in concise form. This is the
purpose of the table which follows.

APPENDIX: INTERPRETING THE QUESTIONNAIRE 97
APPENDIX: INTERPRETING THE QUESTIONNAIRE

The questionnaire that appeared at the beginning of this chapter is meant to help you
understand your goals in moving to object technology, and find out where you are now, so
that you can properly plan for the move and set proper expectations. The answers will also
provide some guidance as to the kind of object-oriented environment that is most
appropriate for your needs.

For convenience the questionnaire is reproduced in the next two pages.

The purpose of question 1 is to let you state what your aims are. There is more than
one possible reason to be attracted to object technology. Many people will find the goals
listed to be all desirable, but “All of the above” is not an option; you are requested to sort
these goals in order of decreasing importance to you. In evaluating the answers, what will
matter is the letters in brackets associated with your top choices.

If [A] dominates these choices, you are essentially driven by the search for

THE OBJECT SUCCESS RULES
FOR A HAPPY TRANSITION TO OBJECT TECHNOLOGY

• If you decide to use object orientation, even for trial purposes, apply the method all the
way: from analysis to design, implementation and maintenance.

• To learn object-oriented software construction: Take the initial training courses. Then
try your hand at object-oriented development. Then take the initial training courses.

• Train the managers, not just the developers.
• Never hire an object-oriented consultant who will only accept to consult for the

analysis and design phases, or a trainer who will only accept to teach analysis and
design.

• No one is an expert in object technology who has not played a major role in the
development of a successful object-oriented library of reusable software
components.

• If you are using an example project to evaluate object technology, choose a project
whose results will be useful to the company, so that its success or failure will be felt.

• For a pilot project, select, if possible, a project whose results will provide new and
highly visible services to the corporation.

• Using object-oriented techniques and an object-oriented language is not a substitute
for good project management and the application of software engineering principles.

• Beware of C hackers.
• In hiring developers for O-O projects: When in doubt, abstain.
• Do not undertake an object-oriented project involving more than 12 developers except

with: in-depth mastery of the method; availability of excellent project management
expertise; adherence to strict and clearly specified software engineering practices.

MANAGING THE TRANSITION §5 98
THE OBJECT SUCCESS QUESTIONNAIRE
(reproduced from pages 74-75)

1 What are your major goals in considering object technology?
Rate these reasons in order of decreasing value to you, starting with 1 for the most
important. If one of them does not apply to your case, do not rate it. Before answering
make sure you have read all the reasons listed. Disregard letters in brackets, such as [A].
[A] 1.1 __ Following the general evolution of the software industry.
[D] 1.2 __ Reducing maintenance costs.
[E] 1.3 __ Reducing debugging time.
[F] 1.4 __ Benefiting from external libraries of reusable components.
[B] 1.5 __ Benefiting from an advanced development environment.
[D] 1.6 __ Making the resulting software easier to modify.
[A] 1.7 __ Remaining compatible with the evolution of some of your business partners

(such as customers, suppliers, hardware vendors, software houses).
[C] 1.8 __ Quickly producing partial experimental versions (“prototypes”) of new

products, to assess some of their properties before starting the final versions.
[F] 1.9 __ Capitalizing on your software efforts by making the results more reusable.
[B] 1.10 __ Improving time-to-market for new products.
[E] 1.11 __ Preventing the appearance of bugs.
[B] 1.12 __ Decreasing software development costs.
2 What is your company’s current exposure to object technology?

Choose one (the highest number that applies):
2.0 - Novice level.
2.1 - Some people have general knowledge about object technology, but no one

has had any significant practice.
2.2 - Some people have used object-like technology, for example by

programming in Ada and using associated design techniques, in earlier
projects — either within the company or elsewhere.

2.3 - Some people have used object technology in earlier projects that included
implementation in an object-oriented language (not just analysis or design)
but the company has not completed any such project.

2.4 - The company has successfully completed at least one small project (300 classes or less)
using object-oriented techniques in an object-oriented language.

2.5 - The company has successfully completed at least one significant project
(more than 300 classes), using object-oriented techniques, in a hybrid
object-oriented language such as C++ or CLOS.

2.6 - The company has successfully completed at least one significant project (as
defined above) in a pure object-oriented language such as Eiffel or
Smalltalk.

APPENDIX: INTERPRETING THE QUESTIONNAIRE 99
THE OBJECT SUCCESS QUESTIONNAIRE
(continued)

2.7 - The company has been developing software using object-oriented
techniques in a pure object-oriented language for two or more years, and
has successfully completed a number of significant projects with it.

2.8 - Same as 2.7, but for five or more years.
3 What is your company’s current software process?

3.1 - Does your company develop most of its software itself?
3.2 - Does your company subcontract most of its software to an outside source

(software house, MIS department of the parent company)?
3.3 - Do you have a recommended software process model? (Circle one.)

3.3.1 No standard process model.
3.3.2 Waterfall or similar.
3.3.3 Spiral.
3.3.4 Prototyping-based.
3.3.4 Cluster.
3.3.6 Other ____________.

3.4 - What techniques dominate your software process? (Circle one or more.)
3.4.1 No systematic software technique.
3.4.2 Structured analysis.
3.4.3 Merise.
3.4.4 JSD/JSP.
3.4.5 Modular (“object-based”, as in Ada-oriented approaches).
3.4.6 Object-oriented.
3.4.5 Other ____________.

3.5 - What is the most common type of qualification among your software
developers? (Circle one or, for a more precise answer, give percentages for
each category. “Computing science education” includes formal training in
programs whose possible official names include such variants as computer
science, computer engineering and information systems.)
3.5.1 No university-level education.
3.5.2 University-level education but not in computing science.
3.5.3 B.S. or equivalent (about 4 university years) in computing science.
3.5.4 Masters’ degree or equivalent (5 or 6 years) in computing science.
3.5.5 PhD in computing science.
3.5.6 Other ____________.

From: Object Success: A Manager’s guide to Object Orientation, its impact on
the corporation, and its use for reengineering the software process, Prentice
Hall. © Bertrand Meyer, 1995. Reproduction of this page and the preceding one
for use by companies and individuals is permitted with mention of the source
and copyright. Republication requires a permission.

MANAGING THE TRANSITION §5 100
compatibility: with an industry trend (1.1) or some of your partners (1.7). In this case one
of your major concerns will be to make sure that your decisions are consistent with theirs.
This may cause some headaches if the majority choices are not the best technical solutions
(a regrettable but not infrequent situation).

If [B] is the dominant characteristic of your answers, then your main goal is
productivity: turning out completed products faster (1.10) or more cheaply (1.12). The
goal of benefiting from better tools (1.5) has been included in this category, even though
the benefits may extend beyond productivity. But even if the [B] answers came from other
questions the quality of the development environment should be a central criterion in your
selection of a variant of object technology. You should also be looking for a language that
is easy to learn, so as to avoid wasting time when you bring newcomers on board.

A [C] in first position, or close to it, indicates a preoccupation with quick
experimentation, perhaps because in the past you have been plagued by systems that did
not match user expectations, or developments whose flaws were not perceived until late in
the projects. This is related to the previous case [B] but not identical, since [B] emphasizes
fast development of finished products, not experiments. Here too the quality of the
environment will play a prominent role; turnaround time (the time it takes to change part of
an existing system, recompile it, and get it ready to run again) is critical. As to the
language, ease of learning may be less important here than conciseness and power of
expression, since you may perhaps prefer to put software experiments under the
responsibility of a small, specialized team, which can initially take some time to get up to
speed but will then be highly productive.

A prominent role for answers of types [D], [E] and [F] signals that your major
concern, rather than productivity, is quality:

• With [D], you are preoccupied with extendibility: you want to be able to integrate
changes quickly (1.6); this may be because you are largely concerned with the costs
of maintenance (1.2).

• With [E], the accent is on reliability: avoiding introducing bugs in the first place
(1.11) or, if bugs do appear, making it easier to correct them (1.3).

• With [F], finally, you have been won over by the promise of reusability: either as a
consumer of existing components (1.4) or for the software of which you are a
producer (1.9). (The discussion of reusability in chapter 6 will examine in detail the
notions of reuse consumer and producer.)

In any one of these three cases, you should use a “pure” version of the object-oriented
approach, not a hybrid one. Only a pure variant will enable you to get the expected quality
benefits. In particular, case [E], reliability, suggests selecting a language with a built-in
assertion mechanism and strong typing. Both for [E] and for [F] the availability of high-
quality libraries of reusable components will be crucial.

Question 2 asks you to rate your group’s proficiency with the method. As noted at the
beginning of this chapter, experience with object-oriented analysis or design does not
count if it did not lead to an object-oriented implementation. The best it can have given you
is better readiness to accept some of the real stuff.

APPENDIX: INTERPRETING THE QUESTIONNAIRE 101
The borderline between “small” and “significant” has been set at 300 classes. This
seems to be the approximate level up to which a group could still get away with an
imperfect use of the object-oriented method, no systematic software engineering principles
— and a fair amount of luck. Beyond that approximate limit luck will not save you. Scale
and complexity require strict professional techniques, and if you are using an object-
oriented language without applying the method you will be overwhelmed by inconsistency
and inefficiency. The questions distinguish between projects using hybrid languages (2.5),
for which it is difficult to ascertain that the group has applied the method thoroughly, and
those using pure O-O languages (2.6 to 2.8), in which you do not really have a choice.

The answer to question 2 indicates in particular how much you may need training and
consulting. If you are at level 2.3 or below, and probably 2.4 too, you should secure the
proper outside help, especially if you are following the Bytex example and going at it on a
large scale.

Question 3 will help you study your current software process. More extensive
questionnaires are available; in particular, the SEI (Software Engineering Institute, an
organization sponsored by the US Department of Defense and located in Pittsburgh) has
widely publicized the “SEI maturity model”, which defines a gradation of levels of
software sophistication, from no rules to a highly formalized process. Question 3 is less
ambitious but perhaps more directly helpful for evaluating how ready you are to embrace
object technology.

A no answer to 3.1 and a yes answer to 3.2 indicate that many of your software choices
are constrained by external partners. If, however, you are the one who pays, you should
make sure that you are comfortable with the decisions taken, since you will have to live with
the results — and possibly maintain them if you change supplier or the supplier fails you.

Inability to answer yes to 3.1 and 3.2 probably means that you have some delicate
choices to make: if you both develop large parts of your software yourself and subcontract
other large parts, you will need a solution that satisfies both your in-house process and your
suppliers.

Question 3.3 asks about your process model. If your model is close but not identical
to one of the well-known models appearing in the statement of the question, circle that one.
If, as many large organizations, you use — or are supposed to use — some adaptation of
the Waterfall (3.3.2), make sure to read chapter 3 in depth and to be prepared for a new
approach to the overall organization of the software lifecycle: more seamless, less clearly
divided into steps; more concurrent, less sequential; focused on producing actual
executable results — code. If you use the spiral model (3.3.4), analyze what this brings
you, and whether it would not be preferable to obtain final code earlier. If you think your
model is based on prototyping, determine what this means in the classification of chapter 4,
and how your current approach fits in with the rest of the object-oriented method.

3.4 addresses whether you use any method. It is a practical question, not a theoretical
one; you should answer with what developers in your group actually do when they have to
solve a software problem, not what they are supposed to do. “No systematic software
technique” (3.4.1) is quite common, so do not be ashamed if that best describes your
approach; you may just have been ahead of earlier methods, and waiting for
object technology!

MANAGING THE TRANSITION §5 102
Structured analysis (3.4.2) is still the dominant technique in the MIS world and some
other parts of the software community. Merise (3.4.3), also focused on information
modeling, is not well known in the US but popular in some countries, in particular France
where it originated. There have been extensive efforts to reconcile both Structured
Analysis and Merise with object-oriented ideas, but the concepts remain remote. In
particular, both of the older methods emphasize the flow of information and the order in
which things happen, whereas the object-oriented approach views both of these aspects as
not deserving early attention since they are subject to change. In my experience, software
developers that have a deeply ingrained practice of these methods are in for a shock when
moving to objects, and usually need retraining, with many practical case studies, before
they really appropriate the new method. JSD/JSP (3.4.4), also known as the Jackson
method, has been popular for years in England and a few other countries; although it
emphasizes order too, it is probably, of the so-called traditional software methods, the one
that best prepares for object orientation, in particular because of its emphasis on
abstraction. Modular methods (3.4.5) are also a good preparation; often developed for use
in connection with Ada, they incorporate some of the object-oriented ideas but not
inheritance and all that follows from this notion.

The statement of the question mentions (in quotes) the term object-based which is sometimes
used to describe modular approaches, as distinct from object-oriented. This terminology is
dubious, since the semantic nuance between “based” and “oriented”, if any, is not striking.
Adding to the confusion, many Ada-like approaches have been presented as “object-oriented”.

The last question (3.5) addresses the educational background of the team that is targeted for
introduction of object orientation. As noted, people with widely different kinds of prior
education can become O-O experts; but they may need various levels and types of
retraining. The discussion of needed skills (see “THE IDEAL O-O DEVELOPER
PROFILE”, page 87) shows what you should investigate: how much each person’s
education has emphasized abstraction, and how broad a spectrum of computing science
topics, if any, it covered. More precisely:

• On the first point, mathematical and scientific education from a good high school and
university, for example the standard scientific curriculum in French schools, is often
the right preparation even if it was not specifically oriented towards computing.
Good mathematicians, and good scientists from disciplines other than mathematics,
will appreciate the object-oriented method for what it is — the application of the
scientific mode of reasoning to software construction — and in general will pick it up
quickly.

• On the second point, nothing matches a computing science education, covering a
broad range of topics in programming languages, algorithms, data structures,
operating systems, databases, some artificial intelligence techniques, and the other
staple ingredients of a solid CS program.

For people who have had this kind of training, the difference between a four-year degree
(3.5.3) and more advanced ones (3.5.4, 3.5.5) may be significant, as the latter typically
require students, in a relatively short time, to master a number of new topics for which
there may not exist single, well-known answers; this is excellent training for much of what
goes on daily in the course of an advanced software project.

BIBLIOGRAPHY 103
If members of the team lack a formal education, they may have made up for it
through their hands-on experience; but do make sure you provide them with enough O-O
training to get the concepts across.

BIBLIOGRAPHY

Roger F. Osmond: Components of Success: Large Project Experience with Object
Technology, in TOOLS 15, (Technology of Object-Oriented Languages and Systems),
Melbourne, Australia, ed. Christine Mingins, Prentice Hall, 1994.

A reflection on the Bytex project discussed in the present chapter; written by the
project’s leader, also covers some of the later developments following from that
project. Loaded with practical advice. A must read for any object-oriented project
manager.

Bertrand Meyer: Towards an Object-Oriented Curriculum, in Journal of Object-Oriented
Programming, vol. 6, no. 2, May 1993, pages 76-81.

This article complements the discussion of industrial training in the present chapter
by studying the use of O-O principles in an academic context. It emphasizes the
applicability of object technology to many of the topics in the software curriculum,
and particularly to the teaching of introductory programming. The method it
advocates for teaching programming is an inverted curriculum where the course is
based on an existing library of reusable components; instead of starting from trivial
examples in a process where ontogeny repeats phylogeny, students are almost from
day one given access to the power of a full-fledged library, which they first use as
pure consumers to build significant applications. Little by little, through a process of
progressively opening the black boxes, they learn how the components are made
internally, how to adapt them to new uses, and how to build their own. An
introductory textbook-cum-software based on these ideas (Touch of Class) is
in preparation. [2022 note: the envisioned textbook appeared as Touch of Class:
Learning to Program Well with Objects and Contracts, Springer, 2009, derived
from teaching the material in 14 consecutive sessions of the Introductory
Programming course at ETH Zurich, details at touch.ethz.ch.]

https://touch.ethz.ch

6
Nature and nurture:
Making reuse succeed

One of the principal promises of the object-oriented method is a degree of reusability far
superior to what the industry has known so far. But reuse will come only to those who
understand the technology and know where to set their expectations.

Exploring practical issues of reusability will enable us to remove common
misconceptions, and to study the details of generalization, the new activity introduced in
the study of the lifecycle, which is so characteristic of a proper application of the method.

One general observation before we immerse ourselves in the delights and pitfalls of
reusable software construction: if reusability is not (or is not yet) your thing, this does not
necessarily mean that something is wrong with you! Important as reusability is among the
potential benefits of the O-O method, it is not the only one, and there are perfectly
legitimate reasons besides it for going to objects — building software faster (the
productivity benefit), making it more reliable and easier to change (the quality benefits).
But you should still read this chapter: it will show how you can benefit from other people’s
reuse efforts, and what to expect when and if you decide to make reusability a central part
of your own plans.

THE TWO VIEWS OF REUSE

The first observation, when assessing how the object-oriented method can help achieve
more reusability, is to understand what we are after. There are two aspects to reuse, and
they should not be confused.

The consumer’s view of reuse applies when an organization decides to base its
software development on existing reusable components. This will be the case, for example,
if you acquire a good object-oriented environment that comes fully equipped with quality
libraries covering such areas as basic data structures, fundamental algorithms and graphics.

The producer’s view of reuse applies to an organization that is devoting reusability
concerns to the software that it develops, making this software or some of its components
general enough to be reusable by other projects.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 106
The normal way to proceed, for a company that is moving to object orientation, is to
start as a consumer of reuse: acquire, study and apply a good reusable library. After a
while, the company will be ready to produce its own reusable software — if that is part of
its aims.

WHY REUSABILITY?

That increasing software reusability is a worthy goal has by now become conventional
wisdom in the software world.

It was not always so. Around 1982, a paper of mine submitted to an IEEE software conference
came back with the referee’s dismissive comment that “reusability” was not a proper English
word. Things have changed: one can surmise that nowadays a submission to an IEEE software
conference might be rejected on the grounds that it does not use this word.

But that an idea is now well received to the point of having almost become a buzzword
does not mean that we should accept it without question. In particular, if you are pushing
object technology in your company it is important to use the right arguments.

Making software reusable holds a number of promises:

As indicated, some of these benefits can be derived from a pure consumer’s view of reuse,
others from becoming a reuse producer.

The most frequently considered argument is number 1 (enhancing productivity): by
reusing software, you have less software to develop, and you can bring your products to
market faster.

Not to be overlooked is point 2 (facilitating maintenance): if others are responsible for
the product, they are also responsible for corrections and adaptations. In an industry which
is often devoting 50% to 80% of its resources to maintenance, this is a precious benefit;
reuse can enable you to devote your efforts to new applications, not to the backlog of
maintaining existing applications. There is of course another, less enticing side: since you
are not fully in control of the software, you depend on someone else to update it when
needed. But anyone who knows the reality of software development — the more successful
software you produce, the more future work you are creating for yourself — will readily
appreciate the advantages of offloading responsibility for the least specific parts of
the development.

ARGUMENTS FOR REUSABILITY

1 • Enhancing productivity (C).
2 • Facilitating maintenance (C)
3 • Improving reliability (C).
4 • Improving efficiency (C).
5 • Improving interoperability (C / P).
6 • Capitalizing on the software investment (P).

(C): Follows from reuse as consumer.
(P): Follows from reuse as producer.

WHY REUSABILITY? 107
Point 3 (improving reliability) is in my experience the most important benefit of reuse.
By relying on reusable software from a reputable source, you gain the expectation that it will
have far fewer bugs than software that has just been developed for the occasion. Not
necessarily because its authors are smarter; not even just because, being in the business of
producing the components (rather than writing software elements that are auxiliary to some
other application) they must have been careful; but also because the components, by their
very nature, will have been exercised by many others before you. In the practice of ISE, this
is probably the major argument for using libraries: any developer in our company can put
together a linked list class rather quickly, but that is not what we do when we need such a data
structure; we rely instead on the corresponding classes from the EiffelBase library, known
to have been satisfactorily used by many people. Roger Osmond of Bytex (see “A SUCCESS
STORY”, page 85) also cited the availability of these libraries as a key success factor.

Point 4 (improving efficiency) follows from the same general observation.
Interestingly, when most people think of the relationship between reusability and
efficiency, they first see the reverse effect: reusability, meaning emphasis on generality,
may render impossible certain optimizations that depend on precise knowledge of
application-specific details. But this is a microscopic view of efficiency. In practice, no one
optimizes every single detail of a 500,000 line program. Much more likely is the risk of
using non-optimal solutions for those numerous aspects of the program that are not
application-specific. For example if you are writing a large switching system your emphasis
will be in optimizing the telecommunications aspects; this is where your team’s expertise
lies. You may not devote as much attention to auxiliary aspects such as data structures. By
relying on reusable solutions for these non-application-specific aspects you benefit from
the expertise of people — the library authors — for whom these components are the
application.

Point 5 (improving interoperability) is due to a feature of good reusable software: it
enforces consistency and compatibility. The book Reusable Software... (see the
bibliography at the end of this chapter) shows how the design of a good library requires a
stringent approach to the consistency of design styles, interface specifications and naming
conventions. Even if you are just a consumer of reuse, this will have an excellent effect, as
the design principles of the library filter over, through a process of osmosis and imitation,
to your own software. This promoted a form of egoless programming: software developed
by different people will tend to follow the same general design and interface conventions,
facilitating interoperability and future evolution.

“Egoless programming” was a slogan of the software management literature of the seventies and
early eighties, and has somewhat passed out of fashion. Taken as an invitation to bridle
programmer creativity, it is a bad idea: programming is a challenging intellectual activity, not a
repetitive production process amenable to Taylor-like standardization. A good manager will
want to encourage creativity, not censor it. But egoless programming remains desirable if we
take it to mean that creativity, far from being suppressed, should be channeled into the areas
where it can bring real benefits— invention of smart technical solutions at all levels, from
specification to implementation — whereas anything that affects the communication between
modules and between developers should be standardized, not left to individual whims.

Finally point 6 (capitalizing on your software investment) is the intended benefit of
reuse in the producer’s sense: making software reusable turns a virtual asset, the knowledge
and experience of your best developers, into a tangible investment — components.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 108
Of these possible benefits, some will be more important to your organization than
others. It is important to know what you are after. In particular, the consumer benefits of
reuse may be sufficient, at least initially, for many companies.

STACKS OR CUSTOMERS?
They say Stacks are trivial. They say Stacks are too abstract. They want to
know when we’ll do something real, like encapsulate an airplane or a
database. Answer: They will never get there if they can’t handle a Stack first.

James McKim, JOOP, July-August 1994 (see the bibliography).
The strategy of starting as a reuse consumer and progressing to reuse producer seems so
obvious that one should not have to justify it. Yet in discussions with many managers from
industry I have found that this simple idea is far from being universally accepted. In
particular, many people seem to think that by switching to object-oriented development
they can start producing reusable software right away. This is nonsense.

Building reusable components is difficult. Reusable object-oriented software must
first be object-oriented software of the highest possible quality, and additionally be
reusable. This is not stuff for the newcomer; the art of producing reusable components is
learned by imitation and hard work.

That was the bad news. The good news is that if you set your expectations right and
begin in earnest as a consumer, you can quickly gain great benefits from reuse; and at some
later point you will be ready to move from student to master — from consumer to producer.

Misplaced and exaggerated expectations often take the form of a request for business
objects. Careless O-O literature seems to have succeeded in convincing a large number of
software managers that they can quickly and painlessly produce reusable components that
directly address the specifics of their business — classes describing their company’s notion
of customer, inventory item, automobile part, soft drink bottle, or whatever the major
concepts are in its line of business. These are business classes, of course, not business
objects; but let us not quibble since this is the least part of the misunderstanding.

Curiously, every discussion of this kind that I have had with managers seems sooner
or later to come down to stacks versus customers. Stop talking to me about your Stack
class, the argument will go; what I want is the Customer “object”. Stacks and Customers
are taken here as representatives of two different categories of potential components:

• Stacks are the usual paradigm for “computing-sciency” stuff, the basic data structures
and algorithms — lists, queues, table, sorting and the like, what we may call
Knuthware in honor of the most famous scholar in this field. More generally, this
category should also include general-purpose components covering such needs as
graphics, user interfaces (windows, widgets, menus, ...), database access, formal
language analysis (lexing, parsing), and others that extend across application areas.

• Customers are taken as the typical example of abstraction that directly covers a
business need.

It would be nice to be able to say: “Yes, you can immediately start writing your reusable
CUSTOMER class, and it will provide you with reuse beyond your wildest dreams”.
Unfortunately, this is not true; nor should this cause any despair, or any claim that “O-O is
not delivering on the reuse promise!”. We need a more cool-headed appraisal.

LEARNING BEFORE JUMPING 109
LEARNING BEFORE JUMPING

The first observation that helps resolve the “Stacks or Customers?” debate has already been
made: one has to start somewhere, and be an apprentice before becoming a expert. You will
not be able to produce reusable components of your own before you have understood a
significant number of existing components by using and studying them. The components
on which you will rely for this process will likely be general-purpose ones (more similar to
STACK than to CUSTOMER), if only because they are the most readily available.

Another reason for focusing on general-purpose components first is that they have
benefited from a better established theory. Knuthware has been studied by computer
scientists for more than three decades. Stacks, for example, are well-known beasts, with
plenty of theory to explain their eating and digesting habits. Business-related animals such
as customers are much less well understood. It is natural, to start with the notions that have
clear and convincing descriptions.

The situation for business classes may actually be worse: perhaps there does not exist
a description of the CUSTOMER abstraction that, in your current understanding of your
business, will be satisfactory to everyone. The marketing department, the accounting
department, the customer service department and the engineering department may all have
their views of what a customer is, and they may not be compatible.

This observation sets the limits of what you can expect from business classes when you
do get ready to consider them: it is useless to try writing reusable components unless the
underlying abstractions are properly understood. This does not mean restricting yourself to
components that are as well defined mathematically as stacks; but there must be enough
accepted knowledge to enable defining and implementing a proper set of abstractions.

Scientists and engineers know this rule well: if you are working in any domain and wish to carry
out actions that will affect the situation in that domain — for example by building engineering
devices if the domain is physics, or by devising investment strategies if your domain is
economics — you need a rational model (or theory) of that domain. For stacks and the like, the
models exist, and may be found in the computing science literature; for a notion such as
customer, models may be possible, but they are not as readily available. Until you have found
such a model, it is as futile to try to build a reusable CUSTOMER class as it would be for an
engineer to try to build a flying machine without a good model of fluid dynamics.

Even if you initially find few business examples that fit these requirements, this is not a
reason to give up on reuse. General-purpose components can already improve the software
development process and products by a considerable factor.

Here then is the first answer to the hurried manager’s imperious “Keep your stacks,
give me my customers!” request: look at the reality of software development in your
company; this will probably reveal that developers spend most of their time dealing not
with the CUSTOMER abstraction but indeed with stacks, queues, lists, hash tables, binary
trees, arrays, as well as graphical objects, database access and operating system interfaces.

When told this, our manager might retort “But that’s precisely what’s wrong! We
don’t have enough of a business focus around here!”. Perhaps true, but not an argument for
dismissing the utility of general-purpose components. In fact, this is an argument for just the
reverse. The reason why programmers spend their time on programming problems — which
the manager considers low-level stuff — rather than business-related software issues may
well be that they have to reinvent and debug the low-level part again and again. By relying

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 110
on reusable components for the aspects that are common to your application and to
thousands of others, you can free the resources and intelligence of your team to work on the
parts that really distinguish your business from others.

So the much maligned general-purpose components — classes STACK, WINDOW
and the like — can be fundamental in enabling the developers to concentrate on the parts of
their software that directly address the company’s business. If for those business-related
elements you are not immediately able to obtain or produce reusable components —
business classes — this does not mean that O-O and reuse have failed you. With a little
more time and experience, you may be able to isolate business abstractions; and in the
meantime, the presence of good general-purpose reusable components might transform
your software development process in ways that you would not even dream of at first, and
enable you to concentrate on the issues of real interest to you and your organization.

This discussion can be summed up by a simple piece of advice:

ORGANIZING FOR REUSABILITY

Assume now that you have done your apprenticeship as a reuse consumer and you are
ready for the real thing — building your own base of reusable components so as to gain the
full benefits of the object-oriented approach.

This can be a smooth and progressive process; but it is important to organize it
appropriately and to avoid a number of common mistakes and misconceptions. Two
ingredients are necessary, neither of which needs to be as grandiose as the names may
initially suggest:

• A reusability policy.

• A reusability manager.

The reusability policy defines the scope and goals of the company’s reusability efforts. It
should be described in a document, the reusability plan. The most important contribution
of the reusability plan is to send a message from management that reuse is considered
important; that beyond the immediate project goals — delivering quality results on time
and within budget — the company also values every contribution that enriches its global
software assets. Concretely, the reusability plan will specify the procedures to be applied
for accepting candidate reusable components, and the people in charge of applying
these procedures.

The reusability manager is the person in charge of advancing the cause of reusability
in the organization, and implementing the reusability policy. Initially this does not have to
be a full-time job, but may be an extra responsibility added to someone’s existing duties.

For a small organization, or one that is only starting a small-scale reusability effort,
having one person (the reusability manager) in charge of the policy will be enough. To

PRAGMATISM IN REUSE PRINCIPLE

Scorn Not The Humble Stack.

THE TWO MYTHS OF SOFTWARE REUSABILITY 111
move on to the next level, you will need a reusability group, reporting to the reusability
manager. Later on in this chapter we will see why its members should not be called
“librarians”, and why their work is actually comparable to that of software developers
working on specific projects.

THE TWO MYTHS OF SOFTWARE REUSABILITY

Among the main obstacles to the improvement of reusability in the software industry are
two misconceptions that are almost universally held by managers in the field:
1• The impression that logistics aspects, such as databases of reusable components, query

facilities, component retrieval systems and network access mechanisms are the most
difficult issues in widening the impact of reuse, or among the most difficult. We will
be so flooded with components, the idea goes, that without elaborate mechanisms we
will spend as much effort finding our way through them as we would developing our
own software using non-reusable solutions.

2• The perception that another major problem is the programmers’ typical reluctance to
reuse someone else’s creations — the famous “Not Invented Here” (NIH) syndrome.

It is impossible to make your organization progress towards reuse if you believe either of
these myths. Let us clear them.

View 1 is absurd. Even if it were true that finding components is hard, this would still
leave all but the first of the benefits studied above — reliability, interoperability and so on.
But that is not even the problem. What can hamper the progress of reuse is the difficulty of
producing reusable components, not the difficulty of organizing them!

Thinking of reuse and focusing on these organizational problems is about the same as
deciding to become a multimillionaire and worrying about how hard it will be to find people
to look after the castle in the Loire valley and the yacht on the Riviera. Sure, good domestics
are hard to come by these days; but comparatively that is the easy part of the problem; should
we not think first about how we will find the money to buy the things in the first place?

View 1 can only be held by people who have no experience of building reusable
software. Anyone who has produced successful components knows the intellectual
challenges that this goal poses. Once you have the components, you must organize them
properly, of course, and make them easily retrievable by whoever may be interested. But
that is the easy part. It is a database problem; the customer database of the average
company contains more information, and more information links, than will ever be present
in the company’s repertory of reusable components over the next twenty years.

One of the distinctive traits of a good engineer and of a good manager is an ability to
separate the difficult problems from the less difficult ones, and to devote the primary
efforts to the first category. In software reuse, the challenge is building the components.
The rest needs to be done carefully, of course, like everything else — like hiring a keeper
for your palace and a skipper for your yacht, once these properties are yours — but will be
nowhere near as hard.

Now for view 2, the myth of the NIH syndrome. It is just as wrong as view 1. The
reason is easy to understand: most programmers are human beings; and very few human
beings like to work hard to reach a goal if they can reach that goal by working less.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 112
Software developers, not surprisingly, react in the same way. Give them good
reusable components, and they will swallow them faster than you can say “Not Invented
Here”, then ask for more. The evidence is there in the non-object-oriented world: the
hundreds of Unix, DOS and Windows utilities that countless people use for their daily
work — tools with strange names such as sed, awk, yacc, lex, perl and many more. Few
people nowadays, for example, write a parser (syntactic analyzer) from scratch in ordinary
circumstances; this task, which was once considered a major software development, is now
routinely addressed by reusable components. In the past few years, the movement has
amplified: dozens of nifty tools have appeared, which you can download from the network
and try for your own development. The good ones spread like wildfire.

So far this phenomenon has mostly affected coarse-grain components such as
operating system utilities, and has not yet reached with the same intensity the level of
software components to be integrated in programs, the reason being the obvious technical
one: quality reusable components require the full extent of object technology, and, as
emphasized in this chapter, require hard work. But the precedent is clear. No competent
developer will develop new software if a good reusable solution is available instead.

There is the occasional exception, of course — the programmer who insists on redoing
everything. A name exists for such people: bad programmers. They are probably the same who
do not comment their programs and use arcane designs that no one else can comprehend or
maintain. Such programmers, unless retrained, have no place in today’s software industry.

Why then this perception of the NIH syndrome? Managers did not completely make
it up. But the reality that it reflects is quite different from the appearances. What you do see
in practice is developers who are leery of reusable components because they have been
burned before. Anything can have gone wrong: a component that did not perform as
advertized, was buggy, poorly documented or too slow, relied on assumptions which did
not transpose to the reuser’s environment, was not flexible enough, only came with object
code and bad customer support... It does not take too many such experiences to become a
fervent nonbeliever in reuse. But that is not the fault of the component consumer; it is the
fault of the components.

CHASING THE RIGHT HORSE

Debunking the two myths of reusability leads to an observation that will guide the rest of
this discussion:

The most common error of managers who become interested in reuse is to think that it is a
consumer issue: that the problem is to convince developers to use reusable components.
With such an approach the reusability policy will mean going out and holding reuse
preaching sessions where developers are exhorted to repent their sins and turn their cheeks
to other people’s software.

REUSE PRIORITIES PRINCIPLE

The difficult issues of reuse are almost entirely producer issues, not
consumer issues.

THE LIBRARY 113
Such an approach is misplaced. Good developers do not need to be told to reuse; they
need to be given good components.

It never hurts, of course, to remind people once in a while of the importance of reuse; but rather
than a reusability policy this is simply part of the normal process of continuous education,
similar to reminding developers to use object technology, apply the company’s or project’s
methodological rules, comment their software properly, leave adequate documentation, and
more generally follow good software engineering practices, of which reuse is but an element.
For an example of a company that has not understood these principles, see “EXERCISE: WHAT
ARE THESE PEOPLE DOING WRONG?”, page 129

The problem is to foster the production of quality reusable components. This is not the only
problem of reuse, but it is the only difficult one. Solve it, and everything else will follow.
The responsibilities are clear:

If you are in charge of promoting reuse within your organization, spending your time chasing
the potential consumers to convince them to reuse more is a betrayal of your mission.
Developers have jobs to do — software to develop. They do it in the best of their abilities. If
they choose a bad solution, their job will not get done and they will be in trouble.

It is not the programmers’ responsibility to listen to your admonitions about
reusability. It is your responsibility to provide them with reusable components so good that
they will not want to program without them.

One case, seen later in this chapter, justifies directing reusability awareness efforts towards
consumers. It arises when the reusability policy has reached a first level of success and teams that
have been using components may be tempted to extend or adapt them in various ways, at the risk
of diverging from the common version. See “THE DISCIPLINE OF REUSABILITY”, page 128.

THE LIBRARY

Because the key to success in reuse is in the producers’ hands, the reusability policy must
carefully define what is acceptable as a reusable component.

A central component of the reusability policy, then, is the specification of a corporate
library that will contain approved reusable components, and of the criteria that govern
approval of candidate components. The responsibility for defining and applying these
criteria rests with the reusability manager.

How strict should the criteria be? Companies that are starting on the path to reuse
often tend to take a lenient attitude, on the grounds that it is hard enough to get developers
to volunteer candidate components, so that the few who do should be encouraged. This
attitude goes against the Reusability Policy Principle: it kowtows to the producers, and as a
result endangers the future of reuse in the company by leading to components of
insufficient quality which, as noted, will put off the potential consumers and make them
distrustful of any reusable solutions. You should instead apply the following rule:

REUSABILITY POLICY PRINCIPLE

The goal of a reusability policy is to satisfy the customers (the potential
reusers of components) by prevailing on the producers (the writers of
components) to do the best possible job.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 114
The criteria must be reasonable but demanding: no company should compromise on the
quality requirements for reusable components. Everything counts: substance, of course
(design decisions, inheritance hierarchies, information hiding) but also form (consistency,
naming, interface style).

Chapter 3 of the book Reusable Software... (see the bibliography at the end of this chapter)
contains a detailed list of reusability rules which can yield your initial set of criteria.

By trying not to put off the consumers, will a strict acceptance policy risk offending the
producers and so put reuse in jeopardy anyway? Normally no. The key is in how you handle
the rejection. “Go home, you fool!” will not gain you any friends. Instead, you should return
to the submitter an evaluation report stating precisely the criteria that caused rejection, and
sketching what should be done to make the components acceptable for inclusion.

Such a constructive answer will encourage submitters to revise and resubmit the
components. It may in fact come to be considered normal that the first version be rejected.
The process of producing good reusable components is always iterative anyway —
especially if you apply the generalization approach, described later in this chapter, which
promotes producing components by extracting some of the best elements of specific (non-
reusable) projects and improving them. An earlier chapter noted that this approach to
reusability is the aspect of O-O development that most appropriately evokes traditional,
non-software notions of prototyping (“PROTOTYPING FOR REUSABILITY?”, page 70).

Setting the stakes high is your only way to guarantee that the library will not disappoint
its intended users. It may mean that the library will initially and for some time have few
components; but that is to be accepted: better a small library than a poor-quality one. In any
case, the policy of starting out as a reuse consumer, described at the beginning of this chapter,
means that you should initially build up the library from components acquired outside, so it
may already be sizable before you accept your first in-house development into it.

Serious acceptance criteria are also a good way to catch the attention of software
developers. Having one’s components accepted into the library should be considered an
honor — a success similar to what happens in other engineering fields when a company
obtains a patent on an invention made by one of its engineers.

The existence of precise library inclusion criteria also helps clarify a question that is
sometimes raised in connection with reuse: material rewards. Some discussions in the
literature suggest offering bonuses to developers who produce reusable components. A few
companies have indeed tried this approach. Is this a good or a bad idea? There is no
absolute answer; what you will decide depends on your management culture and on how it
rewards individual initiative. But on one point the rule seems clear: if you do have such
rewards in place, you should bestow them on the basis of acceptance into the library. If the
criteria are explicit and demanding, the first test of reusability success is to meet them.

The final test, as noted, is actual reuse. For that reason, some companies may prefer incentives
based not just on initial library acceptance but also on the amount of reuse by other projects.

LIBRARY ENTRY PRINCIPLE

No software element should be accepted into the library unless it meets a set
of quality criteria, defined precisely by the organization as part of its
reusability policy.

THE REPOSITORY 115
THE REPOSITORY

A natural objection to the insistence on tight library inclusion criteria is that sometimes a
company may need to ensure the preservation of some software expertise even if the
corresponding components are not of optimal quality. This may happen for various reasons:

• The company may fear losing some of its assets. The concern for preserving software
investment has grown in the past few years as the authors of legacy applications
developed in the sixties and seventies get closer to retirement. (In the computer field
it once seemed that everyone around you was young. Well, some of these people are
not so young any more; in fact computerfolk age and retire like everyone else.) This
understandably makes companies nervous, and it may be tempting to accept a
component into the library simply to avoid the loss of the corresponding expertise.

• In other cases, someone may volunteer a component which is not quite up to the library’s
standard, but for which no resources are available to perform the work needed to bring
it there. You may feel then that an imperfect component is better than no component.

• Yet another typical situation arises from redundant components. The preceding
analysis of the requirements for a library lead us to consider redundancies as
something to be frowned upon. If consumer convenience is what guides our policy,
the presence of two components that address the same need is neither good nor
neutral, but actually bad: instead of selecting one of the alternatives we have
unloaded the choice on the library users. Yet in some cases you might want to keep
alternate components anyway — not knowing which one of the alternatives is better,
or whether they might actually cover subtly different needs.

All these cases seem to provide legitimate reasons for relaxing the rules for library
inclusion. But you must not take such a risk. The library is the officially approved
repertoire of quality components; you cannot afford to endanger its reputation. Caving in to
the producers means alienating your real constituency — the consumers.

The solution, when the need for lesser-grade components becomes too pressing, is to
introduce a second collection of components, separate from the library. Let us call it the
repository. Criteria for inclusion into the repository are much more lax; you may accept
anything that looks reasonable. The repository will be the natural place for components
that may duplicate the functionality of some others or that have only reached at a less-than-
ideal quality level, but that you still want to make available, sometimes only for diplomatic
reasons. What is essential here is to avoid deceptive advertising: whereas the library is the
collection of officially supported components, the documentation for the repository should
clearly state that its components are “Use at Your Own Risk”. This also makes it possible to
use the repository as a purgatory for any future library components that you want to make
available before they have reached perfection.

Some companies have implemented more complex schemes. I have discussed the
issue with the reusability managers of a large aerospace company that has an active
reusability policy. Concerned about the possible loss of valuable contributions (the legacy
problem), that company has set up an extensive matrix to characterize each component’s
status vis-à-vis a number of reusability criteria. A simpler approach seems preferable;
developers will be content with a binary classification: officially approved (the library)
versus non-guaranteed (the repository).

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 116
THE TWO PATHS TO PRODUCING REUSABLE SOFTWARE

On the key notions of reusability policy and library, a number of issues remain to be
addressed: how should you manage the library? How will it evolve over time? Who is
going to pay for all this?

Before we can answer these questions, however, we need to understand the process
of producing components. Without a mechanism that will produce a continuous stream of
new components, there is neither a library nor a reusability policy. As noted, the library
should be initialized with quality components acquired from the outside, which will start
the company on the path to reuse and provide models to follow. But after that how do we go
about producing our own components?

Two approaches are possible:

• The direct approach: you may decide from the start that you need a reusable
component addressing a certain need, and build it accordingly. This process happens
in particular in companies that are officially in the business of producing
components, especially vendors of O-O tools and libraries (such as ISE), and in the
still rare companies which have established a comprehensive library development
effort for their own internal software needs. This may also be called the a priori
approach.

• The indirect approach: in the common situation where a program element has been
produced to meet some immediate requirement rather than for posterity, all is not
necessarily lost for reusability. If similar needs are likely to occur again, the module’s
quality shows good promise, and the company’s software development process
encourages reusability, then the incentives will be there to spend more time making
the module reusable. Generalization, the new step of the lifecycle introduced in
chapter 3 (see the cluster lifecycle diagram on page 53), is this a posteriori process of
producing software components from program elements.

The debate between these two approaches has also been called the “nature versus nurture”
issue (hence the title to this chapter): is reusability an innate trait, or is it acquired? Are
great components born or made?

To avoid any confusion in the discussion, here again is the equivalent terminology
used on each side:

If you are expecting the debate to end up in a reconciliation of the adversaries, you have guessed
right; but that predictable outcome is not the most important point of the discussion which
follows. What matters is to understand what each approach has to bring, and how you can
combine them.

APPROACHES TO REU SE: TERMINOLOGY
(Approach 1) (Approach 2)

A priori A posteriori
Direct Indirect
Nature Nurture

ARGUMENTS FOR NATURE AND FOR NURTURE 117
ARGUMENTS FOR NATURE AND FOR NURTURE

The principal argument for the a priori approach can be summed up simply:

Unless you have integrated the concern for reuse early in your design process you have
little chance of being able to turn your program elements into software components later
on. Reusability is not an add-on; it is a culture. The culture of reusability implies a constant
obsession for generality and consistency, and invites software designers, in addition to all
the questions that they have to address, to ask themselves for each new design decision the
two key questions of reusability:

• How do I make this design decision without insulting the past — that is to say, so that
the decision is not only satisfactory for the goal that I am pursuing now but also
compatible with the myriad decisions that have been made (by myself but also by
many others) before?

• How do I make this design decision so that I will not regret it later — that is to say, so
as to make it possible in the future (for myself but also for many others) to make new
design decisions that will be compatible with what I am deciding today?

This is a demanding discipline. Trying to follow it does not guarantee a 100% success rate,
but unless you try you will not go very far on the path to reusable software construction.

To this the a posteriori school might reply with another one-liner:

This principle implies that no software will be reusable the first time around. The
observation is that it is extremely difficult to avoid leaving in your software implicit
assumptions about the environment — assumptions which will be true when you design
and try out the software, but may not hold any more in the environment of potential reusers
working in a different company, a different country, or simply under different intellectual
models of software development.

A PRIORI PRINCIPLE

Reusability cannot be added as an afterthought.

A POSTERIORI PRINCIPLE

No software is reusable until it has been reused.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 118
We may distinguish four levels of reusability for a software module (level 0 achieves
usability but not yet reusability):

Each progression to a new level on this list brings a new set of requirements since it may
reveal hidden assumptions on the environment. Moving to level 1 means removing
dependencies on the original application. At level 2, the people reusing your module are
working in the same company, or at least are intellectually close to you — but they are not
you, so some of your assumptions may turn out not to be valid any more.

When you move to level 3, you start delivering your purportedly reusable software to
people outside of your circle; that may again cause some surprises. At level 3, however,
you still know individually who your customers are.

At level 4, this is not true any more: people know about your software even though
you do not know about them.

The clearest sign is when you get a user report — usually angry — from someone in a faraway
place, about whom you know nothing, complaining about something that does not work as the
user would like it to. Then you know you have succeeded.

The A Posteriori Principle simply asserts that all the a priori precautions in the world will
not guarantee that you can move from each level to the next. Until you have reused the
module in a new development, you have no proof that you can reuse it; until one of your
colleagues has applied it successfully, you have no proof that anyone else can reuse it; until
someone in a completely different environment has been able to rely on it, you have no
proof that it is not tied to a specific way of working; and only when it gets used by some
total stranger will you have full evidence of its reusability.

The implicit lesson of the A Posteriori Principle is of course more pessimistic — the
idea that each such progression from a level of reuse to the next will uncover problems and
require modifications. As you get reports from the field, reflecting the experiences of
people further and further away from you, trying to apply your component to goals further
and further away from yours, you may have to rework it repeatedly until it is truly general.

LEVELS OF MODULE REUSABILITY
0 • Used successfully in one system.
1 • Used in several systems produced by the module’s author.
2 • Used in systems produced by the author’s colleagues.
3 • Used in systems produced by other people, all of whom the author

knows about.
4 • Used in systems produced by people of whom the author has never

heard.

THE MÉTHODE CHAMPENOISE 119
THE MÉTHODE CHAMPENOISE

The indirect approach (nurture) relies on the A Posteriori Principle to produce reusable
software components not out the blue, but by a process of generalizing program elements
drawn from successful applications.

Inferior as it may theoretically seem, the indirect approach deserves careful attention;
for a company that wishes to increase reuse but is not ready to overhaul all its software
development practices, it provides a smoother transition to the role of reuse producer. This
approach would perhaps better be called the méthode champenoise: instead of impatiently
trying to get all the bubbles in at once, we start from a young and immature (but strong and
attractive) blend, and nurture it lovingly until it tastes ripe enough for release.

This approach has a clear advantage over the direct one: because it yields reusable
components only after a detour through program elements, it avoids the risk of producing
modules that look good to the library designer but do not solve anyone’s real problems, or
place unrealistic requirements on the reusers (the future consumers). This is reflected in
two requirements that complement the A Posteriori Principle:

The indirect approach can only work, however, in special conditions. Carbonate bland
white wine and add a fancy label, the result will still be sweet bubbly. In the same way, any
amount of effort applied to ordinary modules is unlikely to yield software components of a
lasting value. As noted above, the production of reusable software requires strict design
principles and a constant concern for consistency. So the indirect approach can only be
successful if it is applied by a group which has acquired an in-depth experience as a reuse
consumer; a group that is aware of the difficulties of reuse, has been extensively using a set
of high-quality libraries, understands the design principles behind these libraries, and is
prepared to design its own software in a manner compatible with these principles even for
modules which at least provisionally will just be program elements. This will later enable
the reusability manager to pick the most interesting of these elements and generalize them
into software components, without having to pay the price of constant redesign.

Things do not proceed otherwise when, at the end of the season, the chief œnologist
takes a walk around the cool high-vaulted limestone cellars to sample the nectar from the
husky oak barrels, separating the year’s ordinary output, soon to be sold as table wine, from
what after much further toil will ultimately become the grands crus millésimés, pride and
profit of the estate.

USEFULNESS PRINCIPLE

No software is reusable unless it is useful.

USABILITY PRINCIPLE

No software is reusable unless it is usable.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 120
 Applied in an organization that thinks about reuse from the start, the indirect approach
has its role along with the direct one. Our experience at ISE confirms the usefulness of
combining the two methods. Much of our work is to develop libraries of reusable
components, naturally following the direct approach (although it never hurts to draw
inspiration from existing program elements addressing similar needs). For developments of
a more traditional nature, those which are initially meant to solve specific problems rather
than to yield reusable components, we have found it fruitful to follow the preceding advice,
fostering what an earlier section of this chapter called the culture of reusability; we
constantly keep in mind the concern for potential reuse by adhering to a consistent set of
design principles, based on the observation and imitation of our libraries. We have also
found that a such a policy does not interfere with the usual constraints and pressures of
specific software development; if anything, it tends to help. Most importantly, it provides a
second source of reusable components, to be derived later through generalization.

The practice of generalization, once an organization has understood the importance
of this task, tends to influence the development of all software, including software meant
from the start to be reusable. You learn not to release components too quickly, because
there is really no way to make sure that a class is reusable until it has been reused; and the
first few attempts at reuse may uncover limitations or deficiencies of the class for its
intended role as component of a widely distributed library.

 So you should not rush. Tokyo and New York may be clamoring for the first batch of
the year’s Beaujolais Nouveau, but the proud vintner knows not to release the production
before it has had the time to age properly in the barrel or the bottle.

MERGING THE TWO APPROACHES

With the policy just described, the opposition between the direct and indirect approaches
fades away. The difference between a program element and a software component becomes
a question of degree, not of nature. Every module is designed under the assumption that it
will eventually become part of a reusable library; but no module is immediately included in
the library. In this meritocracy of modules, no one is born reusable; everyone must
graduate into reusability. Some, of course, graduate faster than others.

This process of continuous improvement of class libraries and their structure, this
search for order where perfection is never reached but evidence of progress is
unmistakable, accounts for some of the most rewarding aspects of object-oriented software
development. Like a good cellar, a good library becomes ever better with age through
improvements both to each individual component and to the overall selection and
organization of components.

 As often in science, the general direction (defeating the second law of
thermodynamics) is from the complex to the simple, from chaos to order. The first version
of a library often includes useless complications, and it is only after further reflection that
one discovers the underlying simplicity — like a mathematician who goes through a messy,
intuitive, indirect and sweaty process to produce a theory or a proof which, once polished
and refined, will look orderly, formal, immediate and effortless.

 This process of refining a library is intellectually satisfying, as you make the result
of your software efforts ever more powerful and elegant; but it is also economically sound,

MERGING THE TWO APPROACHES 121
TIME

REUSABLE SOFTWARE

APPLICATION-SPECIFIC SOFTWARE

DEAD SOFTWARE

?

THE FUTURE OF THE WORLD

Individual class fate

Classes

(BE REUSED OR DIE)

See “THE FATE OF CLASSES”, page 122

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 122
as you augment the value of your company’s software investment — a case of mixing
business with pleasure.

The lifecycle model developed earlier in this book recognizes the role of
generalization by devoting a special step to this activity: generalization.

THE FATE OF CLASSES

The combination of nature and nurture and the central role of generalization in the software
process model affect the very spirit of software development. No longer should we
maintain a clear-cut distinction between reusable and non-reusable software. Instead, we
should treat any good software element as a potential component in the making.

This is the idea that I have tried to push in my own environment and which the figure
on the previous page illustrates.

If you examine the situation at a given point in time by considering a vertical section
of the figure, for example at the time represented by the leftmost vertical axis, you will of
course find, along with the reusable classes already present in the company’s library (top
part of the figure), some non-reusable classes (middle part) built for the specific needs of
ongoing developments, for which reuse was not an immediate design goal.

But if you take the long-term view, that is to say if you pick any one of the non-
reusable classes and follow its evolution along time, it should not be permitted to remain
forever in the shrinking middle area — the limbo of non-reusable classes. Only two
possible fates await such a class in this ideal view:

• If it is good enough, it will at some time fall prey to generalization fever and join the
world of reusable classes in the top area of the figure.

• If not, it will eventually be discarded — end up in the class cemetery in the bottom
area.

GENERALIZATION TASKS

It is now time to take a look at the nature of generalization, this step of the Clusterfall
whose details were left unspecified by the model’s presentation in chapter 3.

Generalization (see “THE STEPS”, page 54) is the process of transforming program
elements into software components. A program element has been developed for a
particular system and will usually be dependent on the context of that system. A software
component can be included in a library and reused by many different systems.

Producing a software component is more difficult than producing a program element,
since the usual quality requirements (the element must be correct, it must be efficient and
so on) must be reconciled with the goal of being useful to many different software
developers in many different contexts. Certain deficiencies which may be tolerable in a
program element, because the developers completely control the context of its usage, will
not pass muster for a software component.

What activities are involved in the generalization step?

GENERALIZATION TASKS 123
Some follow directly from the reusability concern and would be useful with any
reuse-seeking method, object-oriented or not:

• Improving the documentation to make the component usable by consumers that do
not necessarily know the implicit assumptions that guided its original development.

• Improving the robustness of the components, since for library usage, where the client
applications can be of many different kinds, you have less control over possible
abnormal cases.

• Improving their efficiency.

More specific to this discussion is a set of other generalization activities applicable
only in the object-oriented context and intended to improve the module interconnection
structure — especially the inheritance graph, which reflects how the designers understand
the structure of the application domain and are able to classify their knowledge of it.

These activities belong to two related categories: abstracting and factoring.

Abstracting is the late recognition of higher-level concepts. The developers may have
written a class B which covers a useful notion. But they did not recognize that it was
actually a special case of a more general notion A, so that it should have used an inheritance
hierarchy of the form

In a perfect world the developers would first have identified the higher-level abstraction, A,
then its variant B. But the world is not perfect. With a generalization process in place, you
may recognize ex post facto the need for A. It is not as good as having identified it earlier,
but better than not identifying it at all.

Factoring is the case in which you detect that two classes E and F actually represent
variants of the same general notion:

A

B

D

E F

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 124
If you recognize this commonality belatedly, the generalization step will enable you to add
a common parent class D. Here again it would have been preferable to get the hierarchy
right the first time around, but late is better than never.

Abstracting and factoring are typical of the process of continuous improvement
discussed above. Companies that systematically apply these techniques experience a
constant upgrading of the level of abstraction of their library classes, and consequently of
the quality of their software investment.

Textbook presentations of the object-oriented method usually introduce inheritance
as a process that goes from the general to the specific: you are supposed to derive the
highest-level abstractions first, then to add more and more specific variants. If we were all
geniuses, this would perhaps be the case.

Or perhaps not, as there is often more than one possible abstraction behind a concrete
notion. As a simple example, consider the notion of point in a two-dimensional space (as
might arise in graphics software). At least four generalizations are possible:

• Points in arbitrary-dimension space — leading to an inheritance structure where the
sisters of class POINT_2D will be classes POINT_3D and so on.

• Geometrical figures — the other classes in the structure being the likes of FIGURE,
RECTANGLE, CIRCLE and so on.

• Polygons — with other classes such as QUADRANGLE (four vertices), TRIANGLE
(three vertices) and SEGMENT (two vertices), POINT being the special polygon with
just one vertex.

• Objects that are entirely determined by two coordinates — the other contenders here
being COMPLEX_NUMBER and VECTOR_2D.

Although some of these generalizations may intuitively be more appealing than others, it is
impossible to say in the absolute which one of them is the best. The answer will depend on
how your software base evolves and what it will need. So a prudent process in which you
sometimes abstract a bit too late, because you waited until you were sure that you had
found the most useful path of generalization, may be preferable to one in which you might
get too much untested abstraction too soon.

The information hiding part of the object-oriented method helps make sure that
belated abstracting and factoring do not harm existing client software. Consider again the
above schematic cases, but with a typical client class added to the picture:

D

E F

A

B X

THE ROLE OF GENERALIZATION 125
When B gets abstracted into A, or the features of E get factored with those of F into
D, a class X that is a client of B or E (on the picture it is a client of both) will in most cases
not feel any effect from the change. The ancestry of a class — the inheritance structure that
leads to it — does not affect its clients if they are simply applying the features of the class
on entities of the corresponding type. In other words, if X uses B and E as suppliers under
the scheme

b1: B; e1: E;
...
b1 ? some_feature_of_B;
...
e1 ? some_feature_of_E

then X is unaffected by any re-parenting of B or E arising from abstracting or factoring.

From a project management perspective this observation means that in many cases
the producers (the people working on making the software investment more reusable,
either within a project or as part of the reusability group in charge of the library) can quietly
carry out their generalization work without disturbing the consumer part of the business
(the developers whose classes rely on an earlier iteration of the reusable components).

THE ROLE OF GENERALIZATION

Although generalization is clearly essential for any organization preoccupied with reuse, it
is not infrequent, for people who are introduced to the cluster model, to react by criticizing
the presence of a separate generalization step: “Why do we need a specific step? Should we
not instead apply reusability concerns throughout the construction process?”.

Such a comment mistakes a necessary condition for a sufficient one. To obtain
reusable software, it is indeed necessary to instill the culture of reusability into your
company; but it is dangerous to believe that this will be sufficient.

The short-term pressures — the need to deliver something that works now, satisfying
today’s requirements rather than future variations — are so strong that without an officially
planned generalization step developers are constantly tempted to settle for specific
techniques that make it possible to go forward, even if they are not reusable; and
management is constantly tempted, once given a first answer to some software need, to
transfer the developers to the next task without giving them an opportunity to improve the
solution to the current one.

The only way to counter these pressures is to reserve an official step of the lifecycle
for generalization, guaranteeing that long-term reusability concerns are not forgotten in the
whirlwind of day-to-day constraints. Then, whatever shortcuts a project may have to take
in the heat of the moment, some time and resources will be available to clean up your act
once you have met the immediate needs.

The traditional, waterfall-based approach includes neither any incentive for
generalization in the method nor any room for the corresponding step in the lifecycle
model. This is because all the criteria for evaluating success are biased towards the short

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 126
term: a program element is deemed satisfactory if it works — if it correctly fulfills its
specification, is efficient enough, and meets any other project requirements. Why then
would the developers continue working on it? Some managers indeed dismiss such extra
effort as unneeded or even harmful perfectionism; from a short-term project management
perspective, it lowers productivity since it increases the cost for no immediately visible
improvement to the product.

Only in a software process emphasizing long-term concerns — the culture of
reusability — will it be clear that a program element that works may still warrant further
work, since it might be too context-specific to serve again in future developments. To
justify the presence of a generalization step in the lifecycle model, you need this long-term
perspective.

These observations show once again the need to treat the a priori and a posteriori
policies as complementary rather than contradictory. To get reusable components, you
must make the concern for reuse pervasive in all phases of the software development
process, not only in the generalization step. But instilling the reusability culture, if
necessary, is not sufficient because of the short-term pressures of the corporate world. Even
with the best of intentions, even if reusability is part of the goals at every step in the
process, you will also need the extra step of generalization, during which reusability is the
only concern.

GENERALIZATION AND THE LIBRARY

There remains to clarify the relationship between generalization and the reusability policy.
As defined earlier in this chapter, this policy states the existence of a library, and defines
the criteria for accepting candidate components into the library. The library extends across
individual projects; its scope is the entire organization. But we also saw the need for a
generalization step in each project, meant to derive components. Who then is responsible
for defining what becomes a component: the reusability manager (custodian of the library)
or individual project managers (promoters of generalization)?

Here too the answer will be: both. As with the nature-nurture debate, both sets of
efforts are necessary, but neither is sufficient by itself:

• The components coming out of a project, even after generalization, may not yet be
context-free enough for reuse by other projects. Even if they are, they still need
project-independent qualification; this is the task of the people in charge of the
library.

• The library group by itself lacks the advantage of application projects: access to a
source of potential components derived from the company’s actual developments.

So the process should be in two steps. Each project, through generalization, derives
candidate components. When they are judged good enough for reuse on a broader scale, the
project submits them to the library group. This is where the qualification process takes
place; as noted earlier, getting acceptance will often require a few iterations, as the
candidate components may have to go through one or more rounds of uplifting before they
meet the library’s acceptance criteria.

THE EVOLUTION OF THE LIBRARY 127
THE EVOLUTION OF THE LIBRARY

When a component gets accepted into the library, a change of ownership takes place. The
component no longer belongs to the project; it has been taken over by the library.

For the project, this is good news, of course; as mentioned at the beginning of this
chapter (see point 2 in the table of page 106), one of the advantages of reusability is that
you can rely on someone else to take care of maintenance. Once a component becomes part
of the library, the reuse group is entrusted with its future evolution. (This will require from
the original developers the discipline of using the common version, rather than continuing
to develop their own variants; see “THE DISCIPLINE OF REUSABILITY”, page 128.)

This process of ownership transfer is one of the characteristic properties of the culture
of reusability. It provides one more justification for the advice of setting the stakes high for
component acceptance (the Library Entry Principle, page 114): if you are the reusability
manager, you will be in charge of maintaining accepted components; so you had better make
sure that what you accept will be of good quality.

If the process is successful, the number of components in the library will grow and
with it the work that is necessary to keep them up to date: fixing bugs reported by reusers,
providing requested extensions, porting to new platforms. This means that the library must
have proper resources at its disposal.

Here it becomes apparent that the word library is not fully accurate to describe the
intended concept — a company’s official repertoire of approved reusable software
components. Libraries in the non-software sense of the term, those containing shelves
where books accumulate dust, are static repertoires; except for the occasional trip to the
bindery, a library book will not change. Software components, in contrast, may change; in
fact, most of them must change since in the software world what does not change usually
does not take long to die of oblivion or obsolescence. So the people in charge of the library
should not be called librarians, as the conservation part of their job is accessory; they are in
fact software developers, and might perhaps receive the (somewhat pompous) job title
reusability engineers. This holds a lesson for management:

What distinguishes the library project is that instead of being directly dedicated to the
company’s customers it supports them indirectly by helping the company’s other projects.
But its other characteristics are those of a normal project — not of a book library.

FUNDING FOR REUSABILITY

The various techniques described in this chapter for promoting the cause of reusable
software will require some resources. The investment should be reasonable — we are
really talking of adding a few percent to the normal costs of software development — and
should repay itself handsomely through the savings and extra quality that reusable
components will bring to the company’s project; but it must come from somewhere.

LIBRARY EVOLUTION PRINCIPLE

Treat the library as a software project.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 128
We must consider two aspects: funding generalization within each project; and
funding the library, especially now that we have identified it as becoming a software project.

For generalization, the budget will come from each project’s own resources. Upper
management may have to exert some pressure here to make sure everyone follows the
rules. A selfish, cynical and ambitious project manager (assuming such exist in your
company) might be reluctant at first: after all, the goal of generalization is to grow, out of
the current project, reusable components that may help other projects, including those
whose managers are also in the race for the next higher-level management position. Here
the software technology chief must ensure that everyone understands the benefits of reuse
(for example that the first beneficiary of generalization will in fact be the original project,
for revisions and enhancements of its own product) and, even more importantly in a less-
than-angelic world, create a level-playing field. The obligations and benefits must be the
same for all projects.

What about funding for the library? There is no universal answer. The library is a
company-wide, project-independent effort; large American and European companies,
which editorials in business magazines (but not their financial report pages) regularly
lambaste for having their eyes set on next quarter’s return, are not known for their
propensity to fund such activities lavishly.

One possible technique is to levy a duty — the reusability tax — on software
projects, as a compensation for the projects’ right to use the library’s components. The
reusability tax comes in the form of a small percentage (one or two percent seems right) of
each project’s budget. It is a tax, not a fee; in the same way that you cannot ask for a refund
of the portion of your personal taxes that went to the police on the grounds that you did not
get mugged last year, the project has to pay the reuse tax whether it uses reusable
components or not. This can be understood as an encouragement to reuse.

The tax idea may be pursued further. With the strict library acceptance criteria
implied by the Library Entry principle, a project that manages to get some of its own
components accepted into the library should receive direct benefits from this success. The
project has presumably taken advantage of previous contributions to the library, for which
it has paid the reusability tax, and now it is contributing back. Hence the idea of organizing
the reusability tax in a way that recalls a European-style Value-Added-Tax: every project
has to pay the reusability tax; those who are able to make a contribution of their own will
receive a partial refund.

THE DISCIPLINE OF REUSABILITY

Before closing on the topic of reusability it is important to examine a potential obstacle to
reuse and how to overcome it. The reason why this obstacle has not come up earlier in this
discussion is that it can only arise after a reusability policy has already achieved some
initial successes.

When projects start reusing software components, the risk exists that, pleased as they
may be with the results, they will see needs for extensions or adaptations, and will start
modifying the components rather than sticking with the official library versions.

Making the components available in source form increases the temptation, but even with binary
components developers may add “wrappers” that extend the component’s functionality.

EXERCISE: WHAT ARE THESE PEOPLE DOING WRONG? 129
The risk is particularly clear with the process described in this chapter for combining
nature and nurture: a project that has had some its generalization-derived components
accepted into the library may not have quite completed, emotionally at least, the transfer of
ownership studied earlier. If the developers find a need for improvement, they may be
tempted to take care of it themselves, rather than asking the library group which is now in
charge of the component.

Such temptations are dangerous. Before you have had the time to think about it, you
may end up with two or more incompatible variants of what used to be a single product.

In our own work at ISE, where we have drawn such tremendous benefits from reusability, this is
the only negative effect that we have encountered: cases (fortunately only two or three serious
ones in ten years of developing reusable software) in which, because the manager was not
looking carefully enough and circumstances were pressing, someone took a reusable component
and started to adapt it in ways that made it diverge from the evolution of the rest of the product.

The inevitable awakening is always painful, as you have no choice but to stop evolution
and merge back the straying streams — tedious work that brings no new functionality,
detracts you from more constructive efforts, and should never have been necessary if
everyone had been more disciplined.

This risk of divergence is a consequence of the very success of a reusability policy:
consumers have become so addicted to their reusable components that they cannot wait to
make them do more. But unless it is properly handled it can damage that success: let too
many variants blossom, and you do not have a library any more. So the project manager
must be vigilant in preaching discipline here.

In the successful implementation of a reusability policy, only at that stage do we have
an opportunity for shifting attention — just for once — from the producers to the consumers.

EXERCISE: WHAT ARE THESE PEOPLE DOING WRONG?

To help you test and apply your understanding of the ideas developed in this chapter, here
is an exercise based on a comment from a participant at a seminar that I gave in Melbourne
(Australia) on some of the topics of this book.

That participant had previously attended a presentation by representatives of a major
multinational corporation — a household name (but not a computer company), which shall
remain nameless here. Someone in that company’s upper management seems to be a
bright-eyed reusability enthusiast, and here is how I was told they are going about it:

He [the speaker at the company’s presentation] said that their reuse policy was
based on the idea that they would aim never to write another line of detail code,
and so the classes developed by the client accounts team would go into their
reuse library, and subsequent teams would be directed to use those classes. He
seemed to recognize that the first team would not necessarily do a good job, but
that they would get better with time, and didn't really explain how he thought
that subsequent teams would get good reuse from this. It may be that he
envisaged revising the library as subsequent problems were identified, but he
didn’t say so.

NATURE AND NURTURE: MAKING REUSE SUCCEED §6 130
His real problem might be uncertainty about who has responsibility for creating
a good class library. He made a number of contradictory remarks. For example
he said that some businesses are banning inheritance because it leads to
uncontrolled expansion of the hierarchy and loss of control by management.
That doesn't seem to fit in with his hopes for the work of the first team, either. I
think I can certainly say that he saw reuse as a consumer problem, and that he
recognized that these consumers would be forced to reuse work that was
designed in the context of one specific application and without a firm
methodology for ensuring that the work would be of a sufficiently general nature
for other uses.
He did say that subsequent programmers wanting to write fresh code for things
already in the reuse library would have to justify their request. I suppose that is
the best indication of where they feel responsibility lies. He definitely had a
strong bias towards management functions. He said that the prime job of the
company was to get the business functions right and ignore the technical details.
I don't think of technical things as “details”.

Based on the above description, the exercise requires that you answer the following
questions:

• Are “the details” relevant to the company’s business?

• Is the library going to be of good quality?

• When developers are forced to use that library, is the resulting software going to be of
good quality?

• If the answer to the previous question is no, who will be blamed?

• (Optional question for extra credit) In this company, what will be the conventional
wisdom about object technology and reusability one year after the above policy has
been put into place?

BIBLIOGRAPHY

Bertrand Meyer: Reusable Software: The Base Object-Oriented Component Libraries*,
Prentice Hall, 1994.

Presents a set of design principles for building quality libraries, and their application
to a set of fundamental libraries — about 150 classes — covering data structures,
algorithms, lexical analysis and parsing.

Ted J. Biggerstaff and Alan J. Perlis, eds.: Software Reusability, Addison-Wesley, 1989
(two volumes).

A collection of articles on various aspects of building reusable software, a few of
which apply O-O ideas.

James C. McKim, Jr.: KISSing, the Joy of Stacks, and USSR, Guest Editorial, Journal of
Object-Oriented Programming, vol. 7, no. 4, July-August 1994, pages 6-8.

A short article that calls the reader’s attention to the usefulness of the stack example
to understand abstraction and other object-oriented principles.

7

The manager’s role, 1:
Fundamentals

A large software project is more similar to a symphony orchestra than to a string quartet:
there must be a leader. This chapter and the next two examine the role of that leader — the
project manager.

In software the term “manager” is not without some ambiguity. The responsibility
can be purely administrative; it can be purely technical; or it can be some combination of
the two. There are almost as many situations as companies — almost as many, in fact, as
projects. This diversity explains why the discussion has been split into three parts. The
present chapter studies the components of the manager’s job that apply to all cases. The
next chapter explores the case of managers who have a strong technical background in
software, whether they contribute some of the software themselves (the Pinchas Zukerman
style) or prefer to remain just managers. The third chapter in this series will study the
special situation of a manager whose background is not in software.

The major managerial responsibilities studied in the rest of this chapter are
summarized by the following list:

MANAGER RESPONSIBILITIES

Risk Manager

Deadline keeper

Interface with the rest of the world

Protector of the team’s sanity

THE MANAGER’S ROLE: FUNDAMENTALS §7 132
RISK MANAGER

The principal role of the project manager is to predict, avoid and handle risk. Risk in a
software project comes from many possible sources:

• Unexpected technical difficulties.

• Late delivery of necessary hardware.

• Bugs in externally acquired software, such as operating systems, compilers,
development tools.

• Unavailability of key project members (resignation, illness or other absence,
reassignment to other projects).

• Company politics.

• Competitive pressure.

For the most part, the techniques for handling such situations are not specific to software.
They involve being enough of a pessimist to imagine the worst possible situations even
when everything seems to go well; identifying the critical path (the steps on which
everything else depends) early in the process; and devising alternative policies well before
the primary policies have failed.

DEADLINE KEEPER

The outside world will expect the manager to announce deadlines and stick to them.
Observing deadlines is tricky business in software development because of the
uncertainties that cloud most software projects.

Software cost models (such as COCOMO, described in Barry Boehm’s book cited on
page 59) can help; but they work best for situations in which there have been many projects
of a similar nature before, resulting in the accumulation of extensive cost data, directly
applicable to the current effort — not your average object-oriented project.

INTERFACE WITH THE REST OF THE WORLD

The project leader serves as primary interface to the rest of the world, in particular upper
management, marketing and customers. This is a delicate role, especially when the team is
using a new technology which may not be fully clear to these other actors. The duties of the
manager here include:

• Making sure that the expectations on both sides are realistic.

• Ensuring that the development team has the full support of the rest of the company.

• Ensuring that the development team is aware of the business priorities and receptive
to the needs of the company and its customers.

PROTECTOR OF THE TEAM’S SANITY 133
PROTECTOR OF THE TEAM’S SANITY

Part of the manager’s interface role is to protect the team from unwanted interference. Here
there is a fine line to walk. On the one hand, you must prevent the developers from going
into stand-alone mode, where they become obsessed with internal technical details and
forget the underlying business problems. But you also know that software development
requires concentration and some protection from the vagaries of daily company life.

Some of the consequences of this role will be probed further in the discussion of the
special dangers that threaten non-technical managers (see “PANIC CRISES”, page 150).

CRISIS REMEDY

Project X, or cluster Y of the project, is in trouble. Deadlines are being missed; designs get
changed; nothing seems to come out. Developers are depressed; those who need the results
— other projects or clusters, customers, higher management — are worried.

Because of your reputation as a great project manager, you are asked for help. What
do you do?

Although each such situation is special, the following advice is applicable in most
cases:

The LIM principle may appear counter-intuitive at first. A crisis context seems to
encourage adding people to the project: everyone wants the project to do more; and
because you are being called to the rescue in a difficult situation, you may indeed obtain
more people if you ask. So the temptation is there.

But consider why the project is in trouble. In most such cases that I have seen, some
(or often all) of the following conditions applied:

1 • Goals were poorly defined (typically, six months into the project, someone starts to
ask “What are we really trying to do?” and no one can agree on the answer).

2 • Goals were too ambitious.

3 • Not everyone in the team was up to speed.

Adding more people is not going to make things better. This is the so-called Brooks’s law
(for the book’s reference, see page 71): Adding more people to a late project makes it later.
Famous as this quote is, managers often forget it, since it is so much easier to add people.

The LIM principle goes further than Brooks’s law by stating that in many cases you
should not only refrain from adding to the team but actually remove team members.

LIM (LESS IS MORE) CRISIS REMEDY PRINCIPLE

To get a project back on track, consider removing people and functionality.

THE MANAGER’S ROLE: FUNDAMENTALS §7 134
Why? Consider in particular problems 2 and 3 above (ambitious goals, team
competence). In every situation of this kind that I have seen, the team consisted of two
groups: (A) a productive kernel of effective people; and (B) a set of less competent
developers. This is usually because problem 3 was a consequence of problem 2: the scope
defined for the project was too broad, so management took the easy road — just adding
people. But then you do not find experienced and well-trained developers (especially
object-oriented developers) just like that, so the level of the additional people was in some
cases so-so. As a result, not only do group B people produce little; they also detract group
A people from doing their own job! The Law of the Bad Apple applies in such cases:
everyone tends to slow down to the level of the least productive participants.

Adding more people would only make the situation worse.

The remedy, then, is to face reality: at this stage it is probably impossible to get the
full expected functionality in the near future. The solution is a concerted attack on both
problem 2 and problem 3:

You must wield your ax in both areas. Cutting the less effective part of the group will free
the others to do their work and do it well. Cutting the less important or more baroque part
of the functionality is required if you want to be able to provide the essential parts.

This approach assumes some courage, but it is the inescapable route in such a
situation. You will be criticized for both decisions:

• The decision to remove some people from the project will make some think that you
have gone crazy. Even in normal circumstances project managers seldom give up
team members, as team size is a measure of status and power; but in addition you are
removing people in a project that is proceeding too slowly? Must be time for
some rest.

• The decision to remove some functionality will start everyone screaming. We can’t do
without a drag-and-drop interface! The marketing guys have already promised
constant database integrity to Cresus-Midas! It has to run on a 2-MB 286 too!

But such criticism should not intimidate you. Those who think you should not let
developers go are welcome to include them in their own projects. As to the screaming
about sacrificed functionality, the answer is easy, in the form of a multiple-choice
questionnaire: Do you prefer: (1) The essential functionality, four months from now. (2)
All of the functionality, four centuries from now. (3) None of the above. (Check one box
only.) This should give the screamers something to think about.

The ingredients for making a development team succeed are no big mystery. The
developers must feel that everyone of their colleagues on the team is competent. They must

APPLYING THE LIM PRINCIPLE

Keep only the core group of most effective developers.

Keep only the core subset of essential functionality.

HARDWARE RESOURCES 135
believe that their assigned task is realistic. They must be free to apply their time to this
task, free of distractions — such as meetings, politics, training novices, making up for the
messes produced by less competent team members. And, more important than anything
else (although partly a consequence of the other conditions) they must see results coming
out regularly — where, as we saw in an earlier chapter, the only really significant results
are elements of code that actually run.

By focusing on the right objective with the right group of people equipped with the
tools and techniques of object technology, you stand a good chance of ensuring these
conditions and restoring the morale of the team members and their faith in the project.
After a while some code will start to appear again. It will perhaps not be much initially as
compared to the magnitude of the task, but it will be running code, and good-quality code.
Enough to show everyone — most importantly the team developers, but also the critics and
the screamers — that you mean business and are going to produce something serious.

Once the project is back on track and has started to produce usable results, it will
always be possible to consider the removed functionality again. At that time you might also
consider adding people: a robust product and project can afford having a few more
developers, working at the periphery to add the extra bells and whistles that might enlarge
the product’s market appeal. But until then — until the core of the software is ready —
including non-essential features and non-essential people would be suicidal.

HARDWARE RESOURCES

For human resources, more can be less. Is this true for other resources, in particular
hardware and software?

No. Here the situation is fundamentally different: software developers should be
given all the tools they need. Stinginess is foolishness.

The extraordinary evolution of the computer industry has made it possible to treat
powerful hardware facilities as a commodity. There is no excuse for letting software
developers fight with insufficient resources, for example by making tape copies of files for
lack of disk space, or sitting in front of their consoles waiting for a compilation to finish
because the CPU is not fast enough.

If there is an area where the manager should not skimp, this is it. Yet one routinely
sees managers who do not hesitate about hiring more team members but will refuse an
extra disk or a faster workstation to those people already on the team.

The goal is not luxury but simply enabling developers to do their jobs properly.
Putting on a developer’s desk a hardware-software mix that costs half of the developer’s
yearly salary already goes a long way.

THE MANAGER’S ROLE: FUNDAMENTALS §7 136
In the statement of this principle, the figures given (for speed and space) represent
minimum values applicable at the time this book was being written. It will not take long
before some of them appear too timid.

Let us look at the various requirements. The personal development workstation is a
clear necessity: the time when programmers had to fight for resources on a time-shared
system is past. 32 Megabytes of memory is the minimum required by many development
tools; soon 64 will be considered indispensable. As for disk space, the price in the US went
below 1 dollar per megabyte as this book was being written, and the downward progression
is continuing. Programmers need space; 1 Gigabyte is the minimum for comfort, and there
is no excuse for denying them this $1,000 or less investment.

The graphical screen makes it possible to use modern development environments.
People in the software business are so opinionated about operating systems that I cowardly
prefer (for fear of offending someone) not to be more specific about what I mean by “modern
operating system”, but you should be able to interpret this phrase for yourself — and almost
all the major OS are catching up quickly anyway. Many developers will need to write
documentation, internal or external, and modern text processing tools supporting both text
and graphics must be available for that purpose; the development workstation can double up
as a text processing workstation. Most people these days will want the text processing
facilities to have an interface of the so-called WYSIWYG (what you see is what you get)
type, compatible with what they expect from the software development environment.

MIPS (Million Instructions Per Second) is a measure of CPU speed — notoriously
imprecise, but giving at least an order of magnitude. Software developers need speed;
waiting for a compilation to complete is not a good use of their time.

Electronic communication tools are becoming increasingly important to software
development:

• Electronic mail is indispensable to get answers to technical questions, send elements
of code, design or specification, and more generally as the basic medium of technical

THE SOFTWARE DEVELOPER’S BILL
OF RESOURCE RIGHTS

• Every software developer shall have a personal development workstation.
• Every software developer’s workstation shall have at least 32 Megabytes

of memory, at least one Gigabyte of disk space, a graphical screen, a
modern operating system, an advanced graphical development
environment, good text processing tools. [2022 note: this is the only
place in the entire book where I feel obliged to make a 2022 comment:
multiply all these numbers by three orders of magnitude!]

• Every software developer’s workstation shall have a CPU offering at least
50 MIPS of computing power.

• Every software developer shall have access to both internal and external e-
mail as well as to network news (for technical groups), FTP and network
browsing tools.

BIBLIOGRAPHY 137
discussion, for managers as well as developers (see “ABOUT COMMUNICATION
TOOLS”, page 147).

• Network news means access to a precious information resource: discussion groups on
many subjects from programming languages (comp.lang.eiffel, comp.lang.smalltalk
and many others), operating systems (such as comp.os.ms-windows) and compiling
techniques (comp.compilers) to advanced computer science topics (comp.
specification) and legal issues.

Network news is a tremendous and essentially free source of information, from
which almost all projects can benefit. You may want to control its use, limiting it for
example to the comp (computers) hierarchy, since it is unlikely that groups such as
rec.food.drink.beer and others in the rec (recreation) hierarchy are essential to your
project; but the benefits provided by legitimate uses more than compensate for the risk that
someone will occasionally abuse the facilities.

Beyond mail and news, electronic communication tools include FTP (File Transfer
Protocol), through which you can transfer files from thousands of sites worldwide that
provide countless free tools, and browsing facilities such as Mosaic enabling you to
explore sites worldwide, using hypertext techniques which take you from site to site on the
so-called World-Wide Web (WWW) as you mouse-click on keywords of interest. Although
these mechanisms have been widely available for a short time only, they are gaining
thousands of new converts daily; companies that are shunning them for any reason
(ignorance, conservatism, misplaced security concerns) are depriving themselves and their
projects of extraordinary opportunities.

Since the author’s company is of course a card-carrying member of all such electronic
communities, this may be the right place to give his WWW access information and electronic
mail:
 Web home page: http://www.tools.com
 Electronic mail address: meyer@tools.com

BIBLIOGRAPHY

Tom de Marco and Tim Lister: Peopleware, Dorset Publishing, New York, 1988.

A useful discussion of the human side of software project management. Includes
harangues for managers who do not understand the special needs of programmers
(private workspace, no interruptions). Focuses on helping managers make a team
“jell”. The book unfortunately succumbs at times to the temptation of demagoguery:
it downplays the tough decisions that every project faces, and instead advises
managers to relax and be nice, as if software development and project management
were all about smiling and letting programmers work from 9 to 5. Yet this is a good
discussion of the specificity of the software profession, and in particular we often
recommend it as background reading for non-technical project managers (whose role
will be studied in chapter 9).

8

The manager’s role, 2:
Technical manager

In addition to the duties that fall on all managers, a technical manager (also called “project
leader” in the rest of this chapter) is responsible for several tasks: division into clusters;
integration; demo keeping; method enforcement; mentoring; pre-official quality assurance.
Let us look at the details.

THE MANAGER AS CLUSTER DIVIDER

The cluster model for the construction of a software system covered in chapter 3 (see the
figure on page 53) includes an initial step labeled “Division into clusters”, devoted to the
identification of the system’s major units. This step is the responsibility of the project
leader. Other people will help, but it is the project leader, as the most senior person on the
team, who should carry the primary burden.

There is no “methodology” for identifying the clusters. Experience with previous
projects (which is of course a primary criterion for being appointed project leader in the
first place) will provide the basic ideas: if you have done a compiler project before, for
example, you will not have trouble identifying such basic clusters as lexical aspects,
parsing aspects, semantics, optimization and so on. Familiarity with libraries of reusable
components, both internally developed and available from the market, is important, as
some clusters may well be based on existing libraries or even be entirely covered by the
components of such a library.

More generally, the cluster divider must have a high-level view of the system, an
ability for systems reasoning, solid industry experience, and a talent for making bright
decisions that integrate other people’s advice — the kind of qualities that we expect to find
in a good technical project manager.

THE MANAGER’S ROLE: TECHNICAL MANAGER §8 140
THE MANAGER AS INTEGRATOR

Once the clusters have been started and the process starts turning out results, one of the
primary tasks of the project manager is cluster integration.

Integration is the process of putting together all the clusters of a project. It provides
an opportunity to check that each cluster meets the assumptions that the others have made
about it, and of correcting any inconsistency detected in the process.

Integration will normally proceed smoothly in a well-managed and well-staffed O-O
project. But it needs to be done carefully because the concurrent engineering nature of the
cluster model raises the risk of clusters diverging — becoming incompatible with each
other. As noted in the discussion of the lifecycle, the method helps: information hiding
protects clusters against internal changes in other clusters on which they depend; and
Design by Contract makes such dependencies explicit by encouraging designers to state
what each module offers to others and expects from others. These techniques, however,
only reduce the divergence risk; they do not eliminate it.

The only solution is a pragmatic one: do not give clusters the time to diverge;
integrate them frequently. More precisely:

Finding the right frequency requires a tradeoff: if you integrate too frequently, you may
disrupt the progress of individual clusters; if you procrastinate, you increase the risk that
some clusters will become incompatible, forcing you to go through a painful reconciliation
process. At a technology buildup stage, when you are repeatedly changing some
fundamental clusters used by many others, you should integrate more frequently; in more
stable states you can afford to wait a little longer from one integration to the next. But in all
cases experience suggests that the four week period given in the Integration Principle is the
limit beyond which you are endangering the success of your project.

At ISE the average has been about one integration every two weeks. We almost never
wait more than three weeks (we did this a few times in the past, and usually regretted it); at
times of frequent change, and just before a major new release, we integrate every week.
The general trend in our recent work has in fact been to bring down the average to one
week, even in the absence of any immediately compelling incentive; one of the reasons for
having such frequent integrations is to make sure, with the help of the proper tools for
version and configuration management, that each integration adds to the project’s baseline
a precise record of what was done, including detailed comments about the changes that
were made since the previous integration and the rationale behind each one of these
changes. If you wait more than a week, some of this information will simply not be
available — the developers may have forgotten why exactly they made a particular
decision. Six months later, when you rummage through the software to try to correct some
new problem, you may regret not having this information available as part of the record.

INTEGRATION PRINCIPLE

The time between successive integrations of all of a project’s clusters
should never be more than four weeks.

THE MANAGER AS DEMO KEEPER 141
With good tools and an experienced development group integration becomes a fast
and relatively painless process, so the argument cited earlier against frequent integrations
(disrupting the progress of cluster development) loses its strength.

Several reasons suggest that a technical project manager should treat integration as a
personal responsibility, even if other team members will assist (especially in a large
project) in carrying out the task:

• Integration requires understanding the entire project.

• To be done properly, integration will also require in-depth knowledge of the object-
oriented method.

• Integration implies communication with all the teams in the project.

• Integration is one of the checkpoints for spotting mistakes and improper design or
implementation decisions.

To these must be added a practical reason: the person in charge of integration is also
the best equipped to maintain a current demonstration version of the project’s eventual
product. This concept is sufficiently important to justify separate examination.

THE MANAGER AS DEMO KEEPER

As more time and resources are spent on a project, various outside parties — higher
management, financial backers, important customers or prospects who “happen” to be
visiting the area, members of the marketing department, managers and developers from
other projects who will need to rely on the results of the current one — will become
increasingly restive and will want to see something that runs. This means that someone
must put together a temporary version of the software under construction, which
incorporates as many elements as possible so as to produce a good impression on people
who see a demonstration.

In the constantly changing environment of a software project, the task of maintaining
a reasonably up-to-date demonstration available at all times is one more burden;
developers are often reluctant to take care of it, as they feel it detracts from the really
serious aspects of the development for the sake of satisfying short-term requests. As with
integration, to which it is closely related, several reasons suggest that the project manager
should treat this task as a personal responsibility:

• The manager is the one who deals with the outside world anyway, interacting with
higher management, marketing and other partners, and shielding the developers from
the resulting pressures.

• The manager is the one who must know, as early as possible, if a mistake has been
made.

• The manager is the one who must decode the developer’s vague assessments of
progress — “it’s almost done” — and translate them from the realm of feelings to the
realm of reality. Uttered by some people, “almost done” means done; coming from
others, it means 20% done. Nothing will help evaluate such assessments better than an
attempt to include the modules into a system that runs, however modest and temporary.

THE MANAGER’S ROLE: TECHNICAL MANAGER §8 142
All this suggests complementing the manager’s role as Integrator by the role of
Demo Keeper.

How justified, by the way, is the developers’ frequent contention, mentioned above,
that preparing demos takes time away from the “real work” and delays the project? It is not
without merit but must be taken with a grain of salt. Although short-term disruptions can
indeed be damaging, especially if they occur often, many a project leader has also
discovered the positive results that can be achieved by the need to demonstrate something
next week. This is a good opportunity to tie up a few loose ends and complete modules that
in theory were finished but in practice did not quite work yet.

This positive influence of the need to get serious for an impending demo could be
called the demo effect. In software folklore, of course, “demo effect” means something
else: a variant of the so-called Murphy’s law, meaning a mysterious tendency of apparently
robust systems to fail just when you are showing them to someone important.

The new form of demo effect has its limitations. If a certain milestone is several
weeks away, no amount of short-term pressure will miraculously enable you to reach it in
two days. But for something that is internally ready or almost ready, the extra work that
follows from a request to put it in presentable form is seldom wasted:

• Cleaning up modules to enable the production of a demo version also makes them
usable by other components of the development.

• In addition, there is the psychological effect: in a long-haul project, where it is so easy
for everyone to get depressed by the knowledge of how much remains to be done, a
successful demo which impresses a few unbiased outsiders by the quality of what has
already been done is the best known morale booster.

• Finally, the ability to produce early runnable versions provides a good opportunity to
spot flaws or omissions that could be much harder to correct if they were detected
only later; this does not delay the development but speeds it up.

THE MANAGER AS METHOD ENFORCER

To build a system the object-oriented way means to follow a precise method, including
both high-level principles (abstraction, information hiding, proper use of inheritance and
the like) and many specific style rules. Everyone in the project should understand the
principles and the rules.

Even with the best of intentions, however, developers may be tempted to stray away
from these rules under everyday pressures. It is the manager’s responsibility to ensure that
this does not happen (and to grant exemptions when appropriate).

This task is consistent with the manager’s role as integrator: integration, which
depends so heavily on module interface standards, is an ideal opportunity to monitor
observance of the rules and take any corrective action as may be needed.

MENTOR AND CRITIC 143
MENTOR AND CRITIC

A project leader who is not just a manager but also a senior engineer will play several
informal roles along with the official ones.

Not all team members will be equally at ease with object technology. They must all
be properly trained, but training by itself is not always sufficient; a technical project leader
can complement it by serving as a mentor. This may involve a bit of hand-holding, much
encouragement, and occasional help in applying what has been taught: in what class should
I include this feature? Should I absolutely reuse this library class, or will it be better if I
write my own variant? Is it OK to have such a flat inheritance hierarchy, or should I try to
introduce more intermediate levels? Is multiple inheritance overkill here?

Another role is related to the task of method enforcement discussed above. If a
formal quality assurance process is in place, in particular if every piece of software
produced by the development team must be approved by a separate qualification team, it is
preferable to avoid experiencing too many rejections in this process. The project leader can
act as the first quality controller, taking a look at submissions before they go out to the
qualification team, and detecting serious deficiencies in time. Rather than risking a formal
rejection, and the damage that it will probably cause to both project schedule and developer
ego, it is better in such a case to ask the developer to work further on the product before
submitting it officially.

These aspects of the manager’s role are facilitated by the abstraction mechanisms of
the object-oriented method, which enable a competent person to examine a chunk of
object-oriented software, get quickly familiar with its essential properties, and focus on
some of its aspects while ignoring irrelevant details.

CHIEF PROGRAMMER TEAMS

If you are familiar with the classical software engineering literature, you may have noted
some analogies between the above ideas and an approach which had its hour of fame in the
nineteen-seventies: chief programmer teams.

The Chief Programmer Team is a team organization applicable to developments that
proceed in a traditional top-down fashion; it is based on a project leader, the chief
programmer, who as the name suggests is competent as a technical developer. The chief
programmer, aside from managing the development, should personally write the most
crucial software elements, those at the top of the top-down hierarchy. Chief programmer
teams are strongly structured, with a hierarchical organization mirroring the tree-like
structure of a top-down program decomposition.

These aspects of chief programmer teams do not transpose to object-oriented
development, which is a bottom-up approach emphasizing reusability and extendibility.
Nor do they fit well with the decomposition into clusters, and more generally with the
cluster model.

Even in a traditional context, many projects that have attempted to apply Chief
Programmer Team discovered the obvious: the demands that a large software project puts
on its manager are so heavy that it is unrealistic to base the development on the assumption

THE MANAGER’S ROLE: TECHNICAL MANAGER §8 144
that the manager will personally write key parts of the software. This would mean making
the schedule hinge on the manager’s ability to perform technical work that, by nature,
requires full-time concentration. Not the best way to minimize risk.

In spite of all these limitations the notion of Chief Programmer Team still provides a
few important ideas. In particular, the view that the project leader should not be just a
manager, but should be technically savvy and ready to take the plunge into development
when needed, is as important today (and as subversive in some companies) as it was when
Chief Programmer Teams were first publicized.

The difference with the Chief Programmer Team approach is that in a large project
the project plan will not assign any parts of the development to the team leader. But this is
not the same thing as saying that the leader should never write software. Opportunities for
occasional intervention abound: adding some “glue” to put together a demo; temporarily
substituting for a team member who has left or is unable to work; taking over when you
find out that someone has messed up some crucial part of the job.

A project leader’s demonstrated ability to program when needed can also change, for
the better, the atmosphere in the project; developers will have more respect for someone
whom they feel to be technically as competent as them (or preferably more competent).
This change reflects the subtle difference that exists between the terms project leader and
manager, even though this chapter and the two enclosing ones use them interchangeably.
To talk about a manager reflects an “us and them” view where the developers belong to one
profession and the managers to another. A manager who is not afraid to roll up shirt sleeves
and have dirty hands once in a while may succeed in being viewed more as one of “us”.
Although this situation is not without some dangers, as will be seen in the next chapter (see
“THE DEBUGGER THAT WOULD HAVE COST AN ARM AND A LEG”, page 151), it
can help the emergence of a true team spirit.

In the sixteenth century, the philosopher Michel de Montaigne, on being presented an
American Indian freshly brought in from the newly discovered continent, asked him what
the privileges of a chieftain were in his people, to which the answer was: “He marches first
to war”. (Four centuries later, the ethnographer Claude Lévi-Strauss posed the same
question to an Amazonian chief, and got the same answer.) Developers, too, will prefer a
marching chief to an armchair general.

BIBLIOGRAPHY

F. Terry Baker: Chief Programmer Team Management of Production Programming, in IBM
Systems Journal, volume 11, number 1, 1971, pages 56-73.

An often referenced article that introduced the notion of Chief Programmer Team.
The presentation of this notion in Fred Brooks’s The Mythical Man-Month (see page
71) is more easily available today.

9
The manager’s role, 3:
Non-technical manager

One of the distinctive properties of the software industry, as compared to long-established
engineering disciplines, is the number of leadership positions filled by people who do not
have a strong technical background in the profession, but were primarily trained as
managers without a specific technical focus, or came from other technical specialties such
as electronics or physics.

This situation may be ascribed, among other reasons, to the relative youth of our field.
Also fostering it is the apparent absence of initial technical barriers: it is easier to acquire a
little hands-on experience in programming than in, say, VLSI design; this may delay the
realization that becoming an expert is as difficult in either of these fields as it is in the other.

Although software people can sometimes be heard to deplore the presence of non-
software specialists at the helm of software endeavors, such a situation is not without its
advantages: it can let software development benefit from management experience
accumulated in older, better-understood disciplines; and it can help ensure that the users’
view does not get forgotten.

In any case we do not need to delve further into the reasons behind this peculiarity of
the software field; nor is it very productive to expatiate on whether its benefits outweigh its
drawbacks. It is simply part of the reality of our field, and we must take it for granted. But
we must also analyze what special requirements it puts on everyone involved — the non-
technical managers, and the technical people who work with them.

What makes this question critical is the amount of damage that can happen if the task
is not properly performed. It is maddening to see, over and again, intelligent and
experienced managers repeat the same mistakes. They do what they should not do, yet they
do not do what they could and should do. I hope that the following observations can help a
few non-technical managers avoid the usual catastrophes, and help a few software
professionals develop a productive relationship with their non-technical bosses.

The first type of advice will cover what not to do — actions that may tempt a
manager but are usually counter-productive. Sometimes the best course of action is no
action at all. After these negative admonitions the discussion will switch to the positive and
describe what special contributions a non-technical manager can make in addition to the
general duties of all managers.

THE MANAGER’S ROLE: NON-TECHNICAL MANAGER §9 146
MEETINGITIS

Like many other arduous professions, management has its occupational diseases. One of
the worst hazards associated with the job is a condition known as meetingitis.

Although not lethal under ordinary circumstances, meetingitis is highly contagious
and places a terrible burden on those closely associated with the sufferer, such as co-
workers, family and personal stockbrokers. The early symptoms, most readily observable
in a recently promoted manager, are a propensity to call meetings for all kinds of reason or,
in the most common strain of the disease, for no reason at all. The sources of the malady
are unknown, although some experts have posited a psycho-somatic explanation (Ur-
managerialität), going back to the hunter-gatherer stage of the species, when the usual way
to claim power over a certain territory, it is alleged, was to take hostages.

The damage may be limited as long as the hostages are other managers; trouble
begins when the meetings involve programmers. Good software developers do not always
take kindly to useful meetings, but they invariably take unkindly to useless meetings.
Having ten competent programmers waste an entire morning in a poorly ventilated room
wastes more than thirty person-hours, since in many cases not much will get done in the
following afternoon. The worst consequence is the pent-up exasperation — “Why don’t
they just let us do our work?”.

The situation can quickly develop into a disaster. The more you take developers away
from their job, the less work gets done. Deadlines slip, the manager worries even more, and
what then is the reaction? Why, convene a meeting, of course — to which even more people
will be summoned for help, including those from the parts of the project that are still doing
all right, although thanks to the meetings that will not last much longer. Soon everyone will
be infected. The more meetings, the more delays; and the more delays, the more meetings.

One of the most important duties of a manager is to help every supervised person
spend as much time and energy as possible on what the person does best for the benefit of
the company. What a good programmer does best is programming. Meetings are a waste of
programmers’ time except in the following circumstances:

• A technical meeting called to resolve a specific technical question, provided the
participants together have all the elements needed for that solution, and each
individual participant has at least one such element to contribute.

• A review meeting called to examine a specific product (analysis, design,
implementation, documentation) of the software development process, according to
well-defined evaluation criteria, provided there is a good reason for performing such
an examination, and no better alternative, such as automatic examination by software
tools, is available. In the software engineering literature this is known as an inspection.

• A one-on-one performance evaluation meeting.

• A seminar where someone makes a technical presentation.

• A meeting to announce a team’s precise goals and objectives for the forthcoming
weeks or months.

ABOUT COMMUNICATION TOOLS 147
Effective meetings tend to fall into two categories: top-down and bottom-up. In the top-
down variant one person (or sometimes two or three speaking with a single voice) do most
of the talking; others can intervene, but mostly to contribute comments or questions. The
last two cases in the preceding list belong to this category. In the bottom-up variant, all
participants, or a substantial subset, are expected to contribute; this can only work if the
number of participants is small. The first two items in the above list belong to this category.

When meetings are justified, they must follow stringent rules. They must be short;
most should take less than one hour, and few should ever last more than two. (After two
hours attention simply wanes and nothing useful happens.) There must be a precise agenda.
It must be clear to every participant what goals the meeting is trying to achieve, so that at
the end everyone knows whether these goals have been reached or not.

Failure to reach the meeting’s goals is not necessarily a catastrophe; it is often simply a sign that
the solution, if any, can only be found outside of the meeting. In such a case it is preferable to
make the situation clear to everyone and cut the meeting at the scheduled time, resisting the
natural temptation to ramble on and on.

A meeting must involve a small number of participants— two to five in most cases;
meetings of the bottom-up category, in particular, cannot be productive with many
participants. A common mistake which can hurt even legitimate meetings is to invite too
many people, usually for fear of offending those who are kept out. But such fear is a poor
advisor. A meeting should only involve the people whose participation is indispensable;
others can be informed and make further contributions through other means.

In every meeting there must be someone in charge of enforcing time constraints and
bringing the discussion back on track when necessary. This does not need to be the person
with the highest managerial rank, nor (for obvious reasons) should it usually be in the top-
down variant be the person who will do most of the talking.

ABOUT COMMUNICATION TOOLS

One of the reasons managers like to convene meetings is that they know the importance of
communication. But alternatives to the meeting exist, which will establish communication
without the penalties of meetings.

One such alternative is the NMM (the Non-Meeting Meeting): all the casual
opportunities afforded by chance encounters in the hallway, around the coffee machine or
the water fountain, at the softball game. It is striking to see how many questions can be
resolved and how many people can be set back on the right track through informal but
focused exchanges of that kind.

Also useful in many cases is electronic mail. Although some managers are still
resisting this modern communication vehicle, there is no excuse for such an attitude since
E-mail these days can be used by everyone, not just techies. It retains and combines the
best aspects of each of the previously available techniques: from face-to-face discussions,
instantaneousness and informality; from the telephone, liberation from the tyranny of
distance; from postal mail, ability to think over outgoing messages for as long as necessary
before sending them, and to read incoming messages at one’s leisure; from the fax,
guarantee that there is a trace of the communication at both the sending and receiving ends,
and ability to forward a received message (to someone else, to your home, to your hotel if

THE MANAGER’S ROLE: NON-TECHNICAL MANAGER §9 148
you are traveling) without forsaking the original copy; from photocopy, production of as
many duplicates as desired; from the printed book, readability and cleanliness of the text,
identical for all copies; from computer technology, ease of modification, and integration
with other tools such as text editors. And all that in most cases at a cheaper cost than with
any other communication mechanism.

Electronic mail works best to discuss specific technical points and to distribute small
chunks of information to a small or large group of people. It is a tremendously powerful
mode of communication. For managing a software project it has the extra advantage that
software developers like it because it is non-disruptive (as opposed to meetings and
telephone calls) and integrates naturally with the rest of their work, with which it shares the
developer’s basic workspace — the screen.

Like anything else, electronic mail has its risks and must be managed properly. A
problem of which the manager must be aware results from e-mail’s original combination of
attributes from verbal and written communication. Like a printed text and unlike a
conversation, an e-mail message stays around for every recipient to peruse; but like a
spoken remark it is often dispatched quickly and without much advance thinking. The
consequences are well known to e-mail veterans: the ease with which people get offended.
The “flame wars” that periodically erupt on network discussion groups are typical of this
phenomenon.

For the manager, the lesson is clear: every group that uses electronic mail as a
common communication mechanism should have strict rules as to what is admissible as
contents of e-mail messages. The rules should state that e-mail is reserved for
announcements, for sharing information, and for the discussion of specific technical
points. They should explicitly forbid any kind of ad hominem attack, and any complaint or
whining of a general nature against co-workers, management or the company.

A manager who has discovered the power of electronic mail may at first balk at the
idea of exerting such censorship. But it is indispensable, and the manager must be ever
vigilant to intervene at the first sign of impropriety. One misguided attack or disgruntled
comment, and soon all the network is abuzz with arguments and counter-arguments. All
work comes to a halt as team members spend their time honing their spears, dressing their
wounds and counting their dead.

What you are censoring as a manager is not disagreement, as electronic mail is
perfectly able to support heated debates between widely different views, as long as they
remain focused on specific technical points. Neither are you denying that personal conflicts
may arise, and that part of the manager’s role is to confront and help resolve them. You are
simply preventing the use of group e-mail for that purpose, because it is not suited to it.

To deal with personal conflicts, you will have to use other techniques, documented in
the generic management literature (assuming you need such advice). And, yes, one of them
may be, once in a while, to convene a meeting.

MONDAY MORNING CONSULTING FROM COMPUTERWEEK 149
MONDAY MORNING CONSULTING FROM COMPUTERWEEK

Together with meetingitis, a typical manager foible is overreaction to the notoriously fickle
analyses of the computer press.

ComputerWeek lands on the manager’s desk and presently the world comes to an end:
a journalist has decreed (with all the authority conferred by a six-month internship) that
Microsoft is in and NEXT is out, or maybe that NEXT is in and Microsoft is out. Worse yet,
the journalist has talked to a few users and has found that, would you believe it, introducing
object technology is not a path strewn with roses. Quick, my telephone! Todd, are you sure
we should be doing this? Look at the story about how Sloppy Burger Inc. lost its ketchup in
trying to implement objects! Sure we don’t want to go back to COBOL, but don’t you think
we could put something together just by using Lotus Notes and a 4GL?

ComputerWeek (a fictitious name) is used here as a symbol for the specialized press.
Old-timers in the field understand the role of these publications — to reflect the buzz and
moods of the computer industry — and have learned not to attach too much significance to
its fashions and counter-fashions; they know that today’s burning topic or product may be
tepid tomorrow, cold next week, and gone next month.

Non-technical managers, however, may actually believe what they read in
ComputerWeek. This need not cause too much damage — unless they use such Monday
morning sources of wisdom as an excuse to turn the project upside down every Monday
afternoon.

180° DEGREE TURNS

The Monday Morning Consulting phenomenon is a special case of a common reaction: the
sudden impulse to reverse earlier decisions. Let’s drop Unix and go to Windows, replace a
database management system by another, revert from a client-server architecture to a
centralized system.

The need for dramatic reversals of earlier policies does arise, of course. Part of what
characterizes a good manager is indeed the courage to admit failures, cut one’s losses, and
restart with a better plan. But such a decision should not be taken lightly: it requires a
technically sound analysis, showing that the present policy is flawed — that is to say, will
probably lead to failure if continued — and that the proposed replacement is better. The
analysis should also take into account the effect of disrupting the current process. Only
after having weighed these various elements can you make an informed choice.

In some cases the choice will be to rescind the previous policy; in others the
conclusion will be that it is better to leave good enough alone, and that (say) the ABC
database management system will do the job even though it might have been better, six
months earlier, to choose XYZ instead.

But nothing is worse than a succession of wide swings of the rudder, not backed by a
proof that the previous decision was flawed. They will leave the team confused,
demoralized, and unwilling in the future to commit to any policy for fear of another reversal.

THE MANAGER’S ROLE: NON-TECHNICAL MANAGER §9 150
PANIC CRISES

Rudder swings may be a consequence of yet another common managerial plague: failure to
protect the project from external crises or, worse yet, amplification of these crises.

Communication between a project and the outside world, especially higher echelons
of management, is not always smooth. When playing golf with another CEO, our CEO
heard that everyone now is using object-oriented databases: why are we still relational? A
major customer threatens to go to the competition unless we provide an intermediate
release now, disrupting all our plans. A large shareholder complains that we are not
focusing on “industry-standard” tools. The legal department, which has just completed the
acquisition of company P, insists that we develop “synergy” by using P’s products even
though our own experts have decided in favor of Q. A Wall Street analyst blasts our Return
On Investment, and we must give the impression of delivering new products faster.

Against such a deluge the manager must act as conduit, filter and umbrella. Conduit,
to ensure that the most important and valuables demands from the outside world get
properly addressed. Filter, to ensure that they reach the developers purified from any
superfluous aspects. Umbrella, to deflect unwanted precipitation.

Instead what you sometimes see is non-technical managers who magnify the outside
world’s crises and, for good measure, add a few of their own making. This is not a very
useful contribution. Managers should help weather the storms, not throw the windows
open.

This part of the manager’s role exists in all disciplines but particularly relevant in
software. Programming — in the broad sense used in this book, encompassing analysis,
design, implementation, maintenance and the other components of a seamless lifecycle —
is a difficult intellectual activity which requires concentration and dedication.
Programmers will not strive in an environment where they always have to deal with the
crisis du jour. Technical managers know this and will respect the developers’ desire to be
shielded from the agitation of the moment. Non-technical managers may not fully
appreciate the need for intellectual calm.

None of this means that managers, technical or not, should be in awe of the
developers and never disturb them. Like everyone else, programmers can get complacent;
they can forget the importance of deadlines, the constraints of product marketing, the needs
of customers, the policies of the company, the order of priorities. The manager is entitled to
intrude from time to time, take a close look, and question what all that concentration and
busy airs have actually produced. And once in a while a real crisis will erupt. But the rest of
the time it is the manager’s duty to make sure that little tempests stay in their teacups.

WHAT THE NON-TECHNICAL MANAGER CAN DO

From all the preceding discussion one might get the impression that non-technical
managers can only bring disaster to a project. But nothing could be further from the truth!
Non-technical managers can be an invaluable resource if they understand their job. One
can even argue that in some circumstances a non-technical manager might do better than a
technically savvy manager.

THE DEBUGGER THAT WOULD HAVE COST AN ARM AND A LEG 151
Indeed what makes it really infuriating to see managers wasting their time in uncalled
actions of the type discussed so far is that when they properly focus their energies they can
bring considerable benefit to a software development team. One of the best things that can
happen to a project is the availability of an outsider with management skills and enough
good sense to know when to stay away and when to intervene.

The principal contribution that such a manager can make is to bring a healthy
business perspective to the development. It is all too easy for technically-inclined people
— programmers, but also managers with a technical background — to lose sight of the
business issues: the customers, the market, the competition, the timing of deliveries, the
relative importance of each product’s various features. Here the non-technical manager can
play several roles:

• Resident skeptic: What does this do for me? Is this feature really worth an extra two
person-months? How many extra copies will it sell?

• Customer advocate: This new facility you are talking about sounds great, but what
about all these calls from Cresus-Midas saying their system crashes every once in a
while for no apparent reason?

• On-site dumbbell: Can you explain again what double-dispatch polymorphism is
about? I know you tried last week but I am afraid I may have fallen asleep. Yet if I
don’t understand it our marketing people may have trouble selling it (you know they
are not much smarter than I am).

What makes these roles so essential is the peculiar nature of software development and
software developers. The character traits of good programmers, already noted in an earlier
chapter, often include perfectionism. Most of the time (when applied to quality, for
example), perfectionism is a positive trait, to be encouraged by the manager. But
occasionally it may mean spending a considerable amount of time on an issue that looks
important and challenging to a developer but is of minor business relevance. In such cases
the contribution of a non-technical manager with good business sense can be essential to
bring everyone back on earth.

THE DEBUGGER THAT WOULD HAVE COST AN ARM AND A LEG

To illustrate cases in which perfectionism can cause more harm than good here is a little
example from ISE’s own experience.

When we were developing our flagship environment, ISE Eiffel 3, the design of the
debugging tools led to a multi-process architecture. The user application is in one process;
the environment, including the debugger, is in another process.

This use of two separate processes was necessary for several reasons. For example, if an
exception occurs during the test execution of a software system under development, the
environment must be able to catch the exception before it is passed on to the application; that
way the environment will be able to provide the user with all its debugging and browsing
facilities, so that the user can understand why the exception occurred, find the corresponding bug
in the software, and correct it. If everything resided in a single process, the exception would
terminate the session — not the kind of debugging aid that you would expect from a software
development environment!

THE MANAGER’S ROLE: NON-TECHNICAL MANAGER §9 152
Once this architecture had been designed and a first version of the implementation
produced, a developer remarked that since the application and the environment used
different processes communicating through a standardized protocol (based on “sockets”)
they did not have to reside on the same machine, or for that matter on machines of
compatible architectures; we had in fact all the necessary mechanisms in place to support
remote debugging, where the application would be running (say) on a Sun in Tokyo and
being debugged on-line from a PC running Windows in Santa Barbara. This looked like a
really nifty idea and the originator of this idea, who had presented it as requiring a fairly
straightforward extension of the basic scheme, was given the go-ahead to implement it.

Then as weeks went by this particular functionality started to take up a growing part
of the development effort and to cause difficulties and extra work in more and more other
components of the system — so much so that at some stage we had to sit down and ask the
obvious question: is it really worth it? The answer was that the extra facility had not been
part of the original specification; had not been announced to customers and prospects
waiting for the new release; had not surfaced in any of the requests from the field. To put it
simply, we had no guarantee that it would sell a single extra copy in the short term.
Although potentially useful in the future, at the moment it was simply delaying the release
and taking away our energy from the features that our customers badly wanted us
to implement.

The conclusion was straightforward enough: we shelved that part of the development
and concentrated on the pressing issues. Not that the idea of remote debugging was bad; it
simply was not worth the consequences — for the time being.

The prudent slogan NRM applies to such cases: Next Release, Maybe.

COSTS AND BENEFITS

The Case of the Debugger That Would Have Cost an Arm and a Leg is a good example of
where a manager with a strong business-oriented and customer-oriented perspective can
make a difference. Technical managers can have this perspective too, of course, but they
are never fully inoculated against the danger of falling in love with an idea just because of
its technical elegance.

The problem is that sometimes technical attraction is a good initial reason to explore
an idea. In particular, it would be wrong to react to the above example by commenting:
“The remote debugging capability was not part of the original specification; it should never
have been considered in the first place. The programmer who came up with this idea should
have been sent back to his original assignment; then the problem would never have
occurred. It is not a programmer’s business to question the specification.” If that was your
reaction when reading the above example, I am afraid you may have been subjected to too
much waterfall-like ideology (“Do the requirements at the beginning, then don’t ever
change them”).

In the seamless approach to software construction fostered by object technology, we
do expect the design and implementation to give us new ideas about the system’s
functionalities. It is not just that we are prepared for such possibilities: we consider them
desirable. This is the idea of reversibility, studied in the discussion of the O-O lifecycle

COSTS AND BENEFITS 153
(see “REVERSIBILITY”, page 49). The software process must be organized so as to
enable the development to benefit from such late ideas for improvement.

A manager of the old school, who believes that analysis is only done by analysts and
that implementers must only implement, will have little success in the world of object-
oriented software development — and should not be surprised if the best programmers
leave, one after the other, for organizations more attuned to the value of input from talented
implementers and to the benefits of a seamless, reversible software construction process
where design and implementation can influence specification, not just the other way
around.

The question, then, is not whether we should accept unplanned developments, input
from the developers, feedback from implementation to analysis, and programmer
perfectionism. These phenomena are natural and in many cases beneficial. The task of the
manager is to distinguish the beneficial cases from the others, by applying business criteria
to evaluate the developers’ technical suggestions and arguments.

This task is representative of the general role of the non-technical manager: bringing
to the project the proper business perspective.

Appendix

O-O: the technology

The previous chapters have emphasized the managerial aspects of object technology.
Chapter 2 presented the essential concepts, but stayed at a high level of generality. Here is a
chance to take a more detailed look, focusing on the area where the approach makes it key
contribution: software development methodology.

Since the discussion covers some of the material summarized and previewed in
chapter 2, you should expect a few repetitions from that earlier presentation.

THE ARCHITECTURE

As noted in the earlier discussion, the object-oriented approach primarily affects the
architecture of software systems, as defined by each system’s organization into coherent
pieces, or modules, and by how these modules interact with each other.

The starting point of object orientation is a general form of software architecture that
is the reverse of the traditional one. Earlier methods told developers to decompose their
systems into modules reflecting the system’s functions. For example a mail-order system
would be decomposed into parts corresponding to invoicing, shipping, billing and others.
Each one of these parts would be further decomposed under the same lines, down to the
level of functions that were simple enough to be implemented by small program modules
known as subroutines, subprograms or (quite to the point) functions. Each subroutine
would take care of a well-defined part of the job, for example

Process new order received through the toll-free number

This idea of function pervaded the entire structure of software systems, and the entire
development process. Even at higher levels of abstraction, during the early phases of
projects — “analysis” and “design” — the emphasis was on identifying steps of the process
under study.

The object-oriented approach reverses this perspective. Instead of subroutines the
method focuses on data abstractions, also called classes. The mail-order system, for
example, might have such classes as CUSTOMER, ORDER and SHIPMENT_RECORD.

How do we use classes? At first they might seem like glorified data types. After all it
is not a novelty to have a program include descriptions of such notions as customer order or

APPENDIX – O-O: THE TECHNOLOGY 156
shipment record. If you are familiar with common programming languages, you will
remember that the “structures” of Cobol, C and PL/I and the “records” of Pascal provide
such descriptions. But there is a big difference: in object-oriented development, classes do
not just yield data descriptions; they also provide the backbone of our software
architectures.

This is where an object-oriented solution will distinguish itself. The classes are not just
data type descriptions scattered across the modules; they are the modules! The mail-order
system will have modules corresponding to the classes listed earlier; an Electronic Funds
Transfer (EFT) system may have modules such as TRANSACTION, CURRENCY, RATE,
corresponding to the application’s major data types. In either example there may also be
more software-specific modules such as LIST, DATABASE_LOCK and HASH_TABLE, each
of which corresponds to a data structure commonly used in programming: lists of elements
of a similar type, for example a list of orders or currencies; temporary locks put on the
database to avoid access conflicts; hash tables, that is to say dictionaries of elements each
identified by a certain key.

This observation leads to a principle of object orientation:

Every module is a type: it is based on a certain data abstraction such as CURRENCY. Every
type is a module. The notion that unites the two traditional concepts, serving both as the
only kind of module and as the only basis for types, is the class.

This notion — class — is, with its consequences, what defines the object-oriented
approach.

INSTANCES AND OBJECTS

A class describes a certain general category, for example the abstract notion of order or
currency. In that category, we may identify specific representatives, for example a specific
engine, transaction, device or list. Such a representative is called an instance of the class.
For example an instance of class CURRENCY is a particular currency, or more precisely its
computer representation in the form of a data structure used in the EFT system.

An object is an instance of a class.

THE FATE OF FUNCTIONS

With the emphasis on types as a basis for modules we have only looked at one half of the
software world: the data part. The object-oriented method focuses on this part to derive the
module structure, using classes such as ORDER, CURRENCY or LIST. But what happens
then to the other half — the functions? We saw that functions do not determine the
architecture; but of course they must still be somewhere: without them our software would
not do anything. We could have a database, perhaps, but not an executable software system.

OBJECT-ORIENTED STRUCTURING PRINCIPLE

A pure object-oriented approach makes no difference between the notions of
module and type. Both are based on the concept of class, or data abstraction.

THE FATE OF FUNCTIONS 157
The answer is simple. The functions are as important as ever, but they must defer to
the data abstractions (the object types) when it comes to defining the architecture. In
traditional, function-based decomposition, you would have found descriptions of data, in
the form of type or structure declarations, as part of the descriptions of functions (the
subroutines). Here it will be the reverse: any function will be part of a class. So each
function is permitted to live, but only if it pleads allegiance to a data abstraction — a class.
The terms of the treaty are rather unequal: the object types own the land, each one of them
ruling over a module; the functions toil for the types.

The types that rule the local module chiefdoms are the classes. Their serfs, describing
functions, may be called features. (You will also encounter the term method. “Feature” is
slightly more general.)

Here is an example.

This view could be extracted from the description of a system for document processing.
Three classes are shown: WORD, PARAGRAPH and PAGE, each represented by an elliptic
bubble (this is a common convention) and corresponding to the software representations of
the corresponding notions. Of course in the actual system there will be far more classes;
and many of them will correspond to data abstractions such as LIST which, rather than
being directly related to tangible notions such as paragraph, are pure software notions.

Next to each class bubble some of the features of the class have been shown. For
example, the features of class WORD, representing operations applicable to any instance of
the class — any object representing a word — include:

• length: indicate the length of the word (the number of characters).

WORD

PARAGRAPH

PAGE

word_count
justified?

space_before
space_after

add_word
remove_word
justify
unjustify
add_space_before
add_space_after

set_font
hyphenate_on
hyphenate_off

height
width

print
set_height
set_width

length
font

QUERIES COMMANDS

SOME EXAMPLE CLASSES AND THEIR FEATURES

APPENDIX – O-O: THE TECHNOLOGY 158
• font: indicate the current font for the word.

• set_ font: change the font to a specified one.

• hyphenate_on, hyphenate_off: turn hyphenation on or off for this word.

The other two classes shown have features with similarly self-explanatory names.

The features are of two kinds: queries and commands. The queries, appearing on the
left of the figure, return information on the properties of an object at a certain instant of the
software’s execution: the length of a word, whether a paragraph is justified, the width of a
page. The features on the right — the commands — can change the object: assign a new
font to a word, add a word to a paragraph, print a page.

FUNCTIONS IN THE TRADITIONAL VIEW

Although the concepts introduced so far are elementary, they already represent a
revolutionary departure from traditional views of software. One of the most significant
innovation is that the method puts commands and queries on an equal footing. Even people
who have used an object-oriented language for a while (without necessarily having
received the corresponding training in the method) sometimes still have trouble grasping
this idea. To understand what it means, consider how a more traditional approach would
handle a notion such as PARAGRAPH in a text-processing system. At the implementation
level (that is to say, in the program itself) you would have a “type declaration” looking
something like this:

-- Warning: this is not an object-oriented software extract!

type PARAGRAPH

record

word_count: INTEGER

justified: BOOLEAN

... Other fields ...

end

This is a description of a type of data structures to be created at execution time, each
with a field that contains an integer value word_count representing the paragraph’s number
of words, another field containing a boolean value justified saying whether the paragraph is
to be justified or not, and possibly other fields.

Where the program needs to manipulate paragraphs it will use variables declared of
the corresponding type, for example

last_ paragraph: PARAGRAPH

FUNCTIONS IN THE TRADITIONAL VIEW 159
representing a data structure which, at some point during execution, might look like this:

Then there will be operations to manipulate such objects. For example the program may
include a subroutine add_word such that a call to that subroutine, written

add_word (last_ paragraph, user_input, 8)

changes the internal data structure to reflect the addition of a new word, given by the
variable user_input, after the eighth word in the paragraph represented by the above object.

Other operations, typically implemented as subroutines, would make it possible to
remove a word (remove_word), set the paragraph to justified mode (justify), set it to
unjustified mode (unjustify).

In this traditional approach, no one would ever think of considering the fields of the
PARAGRAPH objects (word_count, justified) as similar in nature to the operations (add_
word and so on). The fields are part of the data description; the operations are part of the
program — the set of algorithms defined by the software.

This example has been discussed at the implementation level. But the practice of
considering descriptions of the data and of the processing as completely separate pervades
traditional views of software at all levels. Traditional database description techniques, for
example, are purely data-oriented; it has in fact been a central tenet of the database world,
until the advent of object-oriented databases, that one should store, describe and manage
data in a form that is not influenced by its usage. (This is sometimes described by the
catchphrase program-data independence.) In a different area, common methods for
analysis and design, such as entity-relationship modeling and Structured Analysis, also
consider the data and the processing as belonging to different parts of the world. For
example the Data Flow Diagrams (DFD) which constitute the basis of the Structured
Analysis method put the data in nodes of the graph and the processing in edges:

word_count

justified

12

false

Other fields

A DATA STRUCTURE IN TRADITIONAL PROGRAMMING

last_paragraph
(instance of class PARAGRAPH)

APPENDIX – O-O: THE TECHNOLOGY 160
AN UNEQUAL TREATY

In the pre-O-O view, as shown by the preceding examples, we had data structures such as
words and paragraphs — which could be called objects just as legitimately as in the
“object-oriented” approach, showing once again the dangers of this terminology — and we
had operations (processing) such as set_ font and add_word that act on these data.

With object-oriented development, whatever the level — O-O analysis, O-O design,
O-O implementation — the view changes radically. The concept of an operation as a stand-
alone element, separate from the objects, disappears. Instead, every operation is attached to
an object. As a result we make no fundamental distinction between a feature such as word_
count, which classically would have been viewed as describing object fields, and one such
as add_word, which would have been viewed as a piece of the algorithm. We see both as
features applicable to paragraph objects (instances of the class PARAGRAPH).

These observations lead to the rule that summarizes the object-oriented form of
software architecture by defining the (undemocratic) social relations between masters and
serfs in the object-oriented software world:

The Object Orientation Treaty is the starting point for object-oriented architectures, all
organized around data types, to which operations are attached. The aim is the one defined
at the beginning of this chapter: yielding more flexible software architectures that will
support extendibility and reusability.

This discussion, of course, has not proved that the O-O form of modularization
makes it possible to achieve these aims; this is the aim of more in-depth presentations of
the method, and the argument is in particular made in detail in the book Object-Oriented
Software Construction (see the bibliography of chapter 2). As we go along, we will
encounter a number of informal reasons to support the Object Orientation Treaty.

THE OBJECT ORIENTATION TREATY

In a pure object-oriented approach, every operation belongs to exactly one class.

add_
word

justify

WORD PARAGRAPH

length
font

word_count
justified?

A DATA FLOW DIAGRAM
(WARNING: this is not an object-oriented diagram! See text.)

set_font

RELATIONS BETWEEN CLASSES 161
RELATIONS BETWEEN CLASSES

To build a software architecture, we need to make two kinds of decision: selecting the
modules; and defining their interconnections. We have the general answer to the first issue:
use the data types.

The answer to the second problem, connections, will also be essential for ensuring
extendibility, reusability and reliability. Each of these goals requires that we restrict the
amount of communication that may occur between modules, that is to say, the degree to
which a module may depend on others:

• For extendibility, any dependency means that a change to a module may require
changes to the modules on which it depends — and then to those on which they
depend, and so on.

• For reusability, dependencies mean that we cannot reuse a module without also
having access to all the other modules on which it depends directly or indirectly.

• For reliability, dependencies mean potential inconsistencies and interface problems, a
major source of hard-to-find bugs.

Traditional software construction techniques have failed to limit dependencies. The result,
as already noted, is intricate architectures where a module may depend on many others, as
in a castle of cards where removing any piece will cause the entire edifice to collapse. This
is the primary reason for the lack of extendibility of much of today’s software: changes
requested by customers are much more difficult to carry out than they should be. The
famous “application backlog” of the MIS industry is largely a consequence of this
situation: if developers spend all their time painstakingly making changes to existing
applications, they have no time for new ones.

One of the worst causes of dependency, fostered by many programming languages
(including unfortunately some that claim to be object-oriented) is the global variable
mechanism, allowing a module to declare a variable that many other modules, or even all
modules, will be able to access and change. This facility introduces tight coupling between
modules — since those which access the variable become dependent on those which can
change it — and squelches any hope for decentralized software architectures.

The object-oriented method follows a much stricter approach. When applied
properly, it only leaves room for two kinds of inter-module relation: client and heir (the
latter also known as inheritance).

It is convenient to represent the client relation, in graphical sketches of a system’s
structure, by a double arrow going from a class to one of which it is a client — known as a
supplier of the first:

PARAGRAPH WORD

A CLIENT-SUPPLIER RELATIONSHIP

APPENDIX – O-O: THE TECHNOLOGY 162
A class is a client of another if it relies on its features for the needs of its own features. For
example the class PARAGRAPH will be a client of class WORD since the features of class
PARAGRAPH will manipulate words — through the features of WORD.

Like client-supplier relations between businesses, communication between client and
supplier classes will benefit from precise specifications of their mutual obligations. This is
the concept of Design by Contract, reviewed later in this chapter.

The client-supplier relation between two classes also implies, in most cases, an
execution-time relation between the corresponding objects — the instances of these
classes. Here, for example, a paragraph will consist, among other components, of a list of
words; so each paragraph object will contain references to some words:

Another way of expressing this observation is to note that if we look at instances rather
than classes, the client relation is the has relation: here every paragraph object “has” one or
more word objects. (“Paragraph object” means instance of class PARAGRAPH, and so on.)
The reverse of that relation is sometimes called part-of ; for example a word may be a part
of a paragraph. But the supplier relation is more general than “part-of ”.

The second relation, inheritance, addresses a different need. In many applications
one may need classes describing common neighboring concepts. For example our text
processing system may consider that a document is a sequence of “chunks”, where each
chunk is a paragraph or some other element such as a figure. (Examples of consecutive
chunks in a text are, in the document that you are now reading, the present paragraph, the
previous one, and the figure preceding them.) Class CHUNK and class PARAGRAPH will
have a number of features in common, for example:

• space_before, space_after (queries).

• add_space_before, add_space_after (commands).

But CHUNK is the more general notion, and PARAGRAPH the more specific, meaning that
it has more features; for example justify only makes sense for a paragraph, but not
necessarily for a chunk (the chunk might be a figure, which is not subject to justification.)

word_count

justified

12

false

Other fields

instance of PARAGRAPH instances of WORD

A PARAGRAPH THAT “HAS” WORDS

RELATIONS BETWEEN CLASSES 163
The object-oriented method, with its emphasis on reusability, naturally seeks to take
advantage of this commonality. It would be a pity to duplicate the shared functionality. We
will describe class PARAGRAPH as an heir of class CHUNK. The graphical convention
uses a single arrow:

The heir link means that PARAGRAPH retains — “inherits” — the features of CHUNK, to
which it may of course add its own. Not shown are other classes, such as FIGURE, that
may also be heirs of CHUNK; they will appear later in this chapter.

Inheritance has more properties, which will be seen shortly. For the moment it is
sufficient to consider its role in defining inter-module communication. If client was “has”,
inheritance is “is”; for example the above example states that every paragraph (every
instance of class PARAGRAPH) is also an instance of class CHUNK.

Together, the two relations provide enough power to cover all possible forms of inter-
module communication:

This insistence on “permitting” only certain relations may appear authoritarian. But that is
not the point. The key to software reusability and extendibility — and a factor in ensuring
many other software qualities — is to enable the construction of modular, flexible software
architectures. As with information hiding (see “INFORMATION HIDING AND THE
MANAGER”, page 14, and next), restricting the amount of inter-module communication is
not a matter of restricting the freedom of software developers; it is a matter of enabling
them to build and maintain large systems. This requires remaining in control of their
potential complexity, and there is no other solution than placing stringent controls on the
chief source of complexity: inter-module communication.

OBJECT-ORIENTED COMMUNICATION PRINCIPLE

In a pure object-oriented approach, only two relations are permitted between
classes: client and heir.

PARAGRAPH

CHUNK

word_count
justified?

add_word
remove_word
justify
unjustify

space_before
space_after

height

add_space_before
add_space_after

A CLASS AND ONE OF ITS HEIRS

APPENDIX – O-O: THE TECHNOLOGY 164
For the leader of any software project using object-oriented ideas — and expecting
them to yield the advertized benefits — one of the primary responsibilities is to enforce
these controls, beginning with the selection of an object-oriented language that makes such
enforcement possible.

INFORMATION HIDING

Describing classes in terms of their features is another departure from the traditional
approaches to similar issues.

In those approaches a record or structure declaration would describe the physical
makeup of objects of a certain type. For example, to describe the implementation of
paragraphs illustrated by an earlier figure reproduced here:

you could use a declaration (also shown earlier) describing any PARAGRAPH object as
consisting of the fields that appear on the figure:

-- Warning: this is again not an object-oriented software extract!
type PARAGRAPH

record
word_count: INTEGE
justified: BOOLEAN
word_list: LIST_OF_WORDS
... Other fields ...

end
If you are in charge of writing or maintaining the part of the system that is responsible for
that description, this is the information that you need. But not if you are using the notion of
PARAGRAPH for the needs of another module! Then the internal structure of
PARAGRAPH objects is irrelevant to your needs. Along with useful features such as word_
count that structure may contain many fields that only address implementation needs and
should not be used by client modules.

A PARAGRAPH OBJECT

word_count

justified

12

false

Other fields

instance of PARAGRAPH instances of WORD

word_list

(including
implementation-only fields)

INFORMATION HIDING 165
The object-oriented method avoids this problem by defining an object type, as
represented by a class, not in terms of internal representation but in terms of available
operations — the features of the class. For example a PARAGRAPH object is not known to
clients of this class through its implementation; it is instead defined by the applicable
operations — the features of a class. A paragraph is an object to which you can apply the
commands add_word, remove_word, justify and unjustify, and the queries word_count and
justified. Internally it may have many other properties; but the clients of class
PARAGRAPH will only be able to use those which the author of class PARAGRAPH has
deemed fit for external consumption:

To apply this principle, the designer of every class will assign an export status to every
feature of the class: the feature is either exported or secret. Other terms are also used:
public in the first case; private or hidden in the second. In addition it is possible to make a
feature selectively available to certain clients only.

In the example you may have noted that an exported query such as word_count may
directly correspond to a field of PARAGRAPH objects in the traditional, no-information-
hiding solution. But the differences are considerable:

• In the traditional approach any client that has access to PARAGRAPH and hence to
word_count will also be able to modify the word_count field of any PARAGRAPH
object. With object-oriented information hiding this is not the case any more: the
designer of class PARAGRAPH may export feature word_count in “read-only” mode,
so that clients can access the corresponding values but not modify them. To make
word_count modifiable by clients you have to write a small command set_word_
count and export that command. The same technique was assumed above in the case
of the justified query, whose value can be changed through two exported commands
justify and unjustify. It gives class designers the needed flexibility for defining the
appropriate privileges granted to various clients for each feature.

• Although word_count is an exported feature, it does not necessarily correspond to a
field in the representation of each PARAGRAPH object as pictured above. Instead of
the representation shown there you could for example, if space were tight, dispense
with the corresponding field, while still offering a word_count feature in the class:
when a client requests the value of that feature you simply compute it by traversing
the list of words (accessing through the field marked word_list) and counting the

INFORMATION HIDING PRINCIPLE

A principal duty of the designer of any class is to define precisely which
ones of the features of the class will be accessible to its clients, and which
ones they will not be permitted to use.

A principal duty of an object-oriented language (whether meant for analysis,
design or implementation) is to enforce these decisions by ensuring that a
client class cannot access a feature unless the supplier class has made it
available to it.

APPENDIX – O-O: THE TECHNOLOGY 166
number of items in the list. In this case feature word_count is computed, rather than
stored; but to client classes this makes no difference, except possibly for the time it
takes to obtain the result of the feature during execution.

• You can change from one representation to the other without causing any change in
the client classes, which will continue to use the word_count feature without having
to rely on knowledge of how it is actually implemented.

This ability to implement a feature by either computation (time) or storage (space) without
affecting the client’s way of accessing the feature, and in fact without having to tell the
authors of client classes of the change, is one of the important consequences of
information hiding.

ASSERTIONS AND DESIGN BY CONTRACT

To make information hiding practical, and to enable reuse of classes, object technology
requires systematic techniques for documentation. Assertions help solve this problem; they
will also play a key role in addressing the reliability goal.

Assertions are elements of specification integrated with the software. Traditionally,
software has been viewed as an operational product — a sequence of instructions for the
computer to execute. In reality software texts have a much broader role; they are read not
only by computing machinery but also by humans. With assertions, you can let the
software describe what it is trying to do, not just how it goes about doing it. This also
advances the goal of seamlessness: many of the assertions will be produced at the analysis
stage, or at the design stage, and will remain in the final product that they will help to build.

Here is a simple example. Class PARAGRAPH, as noted, may have a command add_
space_after that inserts vertical space, measured in number of lines, after a paragraph:

add_space_after (lines: REAL)
-- Add lines lines after the current paragraph

...
This procedure is actually inherited from CHUNK, but let us assume for a while that
everything is done in PARAGRAPH. The number of lines is declared as a REAL, so that a
fractional number will be acceptable. A typical call in a client might be

first_ paragraph ? add_space_after (3.5)

which causes the feature add_space_after, with argument 3.5, to be called on the
PARAGRAPH object that first_ paragraph will denote at run time. The result is to add a
vertical space, 3.5 lines high, after the first_ paragraph. (Such feature calls, which make
the bulk of the execution of an object-oriented system, are also known as message passing:
we may view the above as sending to the object a “message” asking it to add the space.)

The line in the above feature declaration beginning with -- is known as a header
comment. It gives some documentation about what the feature does, but that documentation
is rather informal. With assertions we can be more precise. Here is what we can write:

ASSERTIONS AND DESIGN BY CONTRACT 167
add_space_after (lines: REAL)
-- Add lines lines after the current paragraph.

require
height > 0
lines >= 0

ensure
height = old height + lines

This version has two assertions: a precondition, introduced by require, and a
postcondition, introduced by ensure. The precondition states what initial conditions a
client should satisfy to be entitled to call the feature; the postcondition states what will be
true on return. Here we are saying that:

• One may add space after a paragraph only if it is non-empty (that is to say, with non-
zero height) and if the number of lines of the requested space is non-negative. (The
first of these requirements may be too strong, but let us just assume that it is what the
author of class PARAGRAPH has decided.)

• After a call to add_space_after, the paragraph’s height will have been increased by
lines, the value of the argument (such as 3.5 in the above example call). The notation
old height refers to the value of height on entry to the feature.

Executing the feature may do quite a few things besides increasing the value of height. But
the postcondition captures one of the essential effects by stating the relationship between
the old and new values of height, both observable by the client.

Such a precondition-postcondition pair illustrates the use of assertions to express the
terms of the contract that the author of the class offers to the clients. Here the assertions
define the contract for feature add_space_after:

add_space_
after

OBLIGATIONS BENEFITS

Client

(Satisfy precondition:)
Ensure paragraph is non-empty,
and requested spacing is non-
negative.

(From postcondition:)
Get requested spacing
after paragraph.

Supplier

(Satisfy postcondition:)
Update text to insert requested
spacing after paragraph.

(From precondition:)
Simpler processing thanks
to the assumption that
paragraph is non-empty
and requested spacing is
non-negative.

APPENDIX – O-O: THE TECHNOLOGY 168
Like any contract between people or between companies, this contract describes the
benefits expected by both parties, and the obligations that each has to meet in order to
obtain the benefits. Benefits for one correspond to obligations for the other.

Design by Contract is a powerful metaphor for software construction. It leads
developers and managers to view the construction of a software system as consisting of a
large number of contract decisions, large and small, between modules cooperating towards
a common goal.

Most of the time, reliability problems — bugs — are interface problems. They result
from an inconsistency between two modules, one of them expecting something and the
other doing something slightly different. These interface problems are the nightmare of
software developers, because the inconsistencies are often small (such as the typical “off
by one” errors that show up in borderline cases) and manifest themselves in rare cases only.
Often they do not occur in testing but suddenly appear in full-scale production runs.

The first contribution of object technology towards a solution to this central problem
of software development has been highlighted above: by enforcing information hiding and
outlawing global variables, the method puts drastic limits on inter-module communication.
But this is only a first step, since communication, however limited, will still occur. Design
by Contract provides the required second component of the solution by encouraging
software developers to base the remaining inter-module interactions on precise definitions
of mutual expectations and promises. Each client module states what it needs; each
supplier module states what it guarantees; the task of the software developer is to check
that the guarantee is at least as much as the need.

This conception of a software system as a myriad of client-supplier relations, based
on an abstract but precise description of each party’s contribution, lies at the heart of the
object-oriented approach to the construction of reliable software. Both abstraction and
precision are essential: precision because if we are interested in bug-free systems we
cannot accept hazy details; abstraction because the only way to handle complexity is to
force modules and their designers to interact solely on the basis of each other’s essential,
externally meaningful properties, leaving in peace the internal details that are not
significant to the outside.

APPLICATIONS OF ASSERTIONS

Assertions have a number of practical uses in the object-oriented method.

In the spirit of Design by Contract, they are a powerful aid to the construction of O-O
systems at all stages, beginning with analysis. You can model the properties of a future
system through classes and features equipped with assertions; this makes it possible to be
precise without over-specifying, resolving the dilemma of traditional analysis methods that
err between the Charybdis of imprecision (typified by he bubbles and arrows of Structured
Analysis) and the Scylla of over-specification (which always tempts the analyst, in the
pursuit of precision, to write an implementation-oriented description — losing abstraction
and committing too early).

APPLICATIONS OF ASSERTIONS 169
Another important application of assertions is documentation. In the final version of
a class there will be many implementation details; for example our above example feature
may appear as

add_space_after (lines: REAL

-- Add lines lines after the current paragraph

require

height > 0

lines >= 0

do

... Instructions implementing the feature’s specification ...

ensure

height = old height + lines

where the “... Instructions ...” part can be long and detailed. To provide a class
documentation, you need to state what the features do, but not how they do it, which would
be too low-level for the needs of client authors (that is to say, developers writing classes
that may need to rely on this class). The short form of a class addresses this need: it
discards the implementation-related aspects, in particular the do clauses, but keeps the
client-relevant parts and in particular the assertions. It expresses the set of contracts
defined by the class.

The short form can serve as the basic form of documentation for object-oriented
software. A system’s documentation is viewed here not as a product to be written and
maintained on its own, but as a component of the software, which can be extracted from it
by automatic tools. This makes it easier to ensure that the software and its documentation,
as they both evolve, remain consistent (if there is anything worse than no documentation, it
certainly is wrong documentation).

Yet another application of assertions is testing, debugging and, more generally,
quality assurance. Traditional approaches to testing and debugging lack a precise definition
of what you are looking for. With assertions, you can associate with every feature, and
more generally with each class, a specification of the intended effect — the contract. Bugs,
then, are cases in which the implementation deviates from the contract. A compiler for an
object-oriented language that supports assertions will be able, on option, to generate code
that checks assertions at run time, and triggers a run-time signal (an exception) if an
assertion is found to be violated.

This is one of the most effective techniques I know to find and correct bugs — at least
those bugs which still remain when static typing (see later in this Appendix) and Design by
Contract have been applied from the beginning.

Whether you are a manager or a developer, is difficult, until you have practiced this technique, to
realize the benefits it can bring to reliability. It can actually change your entire outlook on
software development.

APPENDIX – O-O: THE TECHNOLOGY 170
INVARIANTS

This treatment of assertions has by nature been cursory. Further discussions may be found
in bibliographical references given at the end of chapters 2 and 6. But one more point needs
to be mentioned briefly. Along with preconditions and postconditions, an important use of
assertions is for class invariants.

In contrast with the other two kinds, an invariant does not characterize an individual
feature but the class as a whole. It describes integrity constraints that must be satisfied by
all instances of the class whenever they are accessible by clients. For example a simple
invariant clause for a class LINE in our hypothetical text-processing system might state

invariant
character_count >= 0
space_count >= 0
length >= 0
enclosing_ paragraph ? justified implies (letter_count + space_count = length)

where the last line states that if the enclosing paragraph is justified, the sum of the number
of non-blank characters (character_count) and the number of spaces is equal to the length
of the line. (a implies b is a logical implication, false if and only if a is true and b is false.)
An invariant property must be maintained by every feature that acts on the corresponding
instances.

It is one of the great achievements of object-oriented software construction to have
given us the tools for expressing such constraints, which in traditional methods often remain
unspoken, and then to use them to document, test and debug the systems that we build with
them, so as to achieve a much higher degree of reliability than was previously possible.

GENERICITY AND INHERITANCE

The basic notion of class seen so far can be made more general in two ways.

First, any software that deals with collections of objects will need class-
parameterized classes, also known as generic classes. The idea is that if you want to
manipulate such structures as a list of paragraphs, a list of chapters or a list of words you
will not want to write three different classes — LIST_OF_PARAGRAPHS and so on. Such
classes would be almost identical: they would all have features such as count to give the
number of items in a list, put to insert an item into the list and the like. All that would differ
would be the types of the entities being manipulated. For example LIST_OF_
PARAGRAPHS would have the feature

first: PARAGRAPH
-- The first item in the list.

require
not empty

do
...

end

GENERICITY AND INHERITANCE 171
The corresponding feature in classes LIST_OF_CHAPTERS and LIST_OF_WORDS would
only differ by having first declared of type CHAPTER and WORD.

Such quasi-duplication would clearly be incompatible with the goal of software
reusability. Yet it is not satisfactory to declare simply a LIST class; we must maintain the
type consistency of our software, and be able to guarantee, for example, that a list of words
does not contain chapters, and a list of chapters does not contain words.

The solution is to parameterize. Genericity allows you to declare a class such as

class LIST [G] feature
first: G

-- The first item in the list
require

not empty
do

...
end

put (x: G; i: INTEGER)
-- Insert item x at position i

...

... Other features ...
end

This class represents a pattern which you can use by providing actual types (called actual
generic parameters) for G. For example a client class can use the declaration

my_book: LIST [CHAPTER]

using CHAPTER as the actual generic parameter. Within the class text, G, known as the
formal generic parameter, serves as a placeholder for arbitrary types to be used as actual
generic parameters. Note how the result of first and the first argument of put are declared of
type G; this means these features will use objects of type CHAPTER when applied to a list
object of type LIST [CHAPTER] such as my_book, objects of type PARAGRAPH when
applied to a LIST [PARAGRAPH] and so on.

This form of genericity provides us with much needed flexibility without forcing us
to renounce the benefits of a typed approach, where every entity in the software has a well-
defined type which can be checked by various automatic mechanisms — not just compilers
at implementation time, but also CASE tools at analysis time. (More on typing later.)

The other basic extension mechanism, complementing genericity, has already been
previewed: inheritance. This facility allows you to specialize and generalize classes. For
example, a generalization of PARAGRAPH, as seen above, is CHUNK; this class has
specializations PARAGRAPH and FIGURE. PARAGRAPH itself may have the
specialization DISPLAY, representing display paragraphs such as program extracts, for
example in the present text the display that appears above on this page for class LIST. Here
is the resulting part of the inheritance structure:

APPENDIX – O-O: THE TECHNOLOGY 172
Inheritance is the application to software construction of a central idea of science:
classification. Scientists classify their domains of study to comprehend them: zoologists
have taxonomies (classification systems) for animals, botanists for plants, mathematicians
for the logical artefacts of the mind. In software we similarly need taxonomies to organize
our data abstractions. This is the role of inheritance.

A taxonomy of the principal structures of computing science, covering basic data
structures and common algorithms, has been proposed in the book Reusable Software...
(see the reference on page 130).

INHERITANCE TECHNIQUES

Four techniques enable inheritance to exert an even deeper effect on the software process
than the preceding introduction suggests. The techniques — redeclaration, polymorphism,
dynamic binding and deferred classes — are individually important, but it is their
combination that gives them their full meaning. Let us look at the first three; the last, which
is particularly relevant to object-oriented analysis and design, will be explored in a later
section (page 178).

A bit of terminology: a class that inherits from another is its heir, the other is the
heir’s parent. The ancestors of a class include the class itself, its parents, its grandparents
and so on; the reverse notion is descendant.

Redeclaration makes it possible to be selective in what you inherit from a parent. If
you want to change some of its features, you can redeclare them. For example the feature
add_space_after may have different properties for a general paragraph and a display
paragraph. If so, class DISPLAY will redeclare it, as represented graphically by the
++ mark:

PARAGRAPH

CHUNK

FIGURE

DISPLAY

AN INHERITANCE STRUCTURE

Inherits
from

INHERITANCE TECHNIQUES 173
Redeclaration gives us much needed flexibility in reuse. As noted at the beginning of
chapter 2 (page 8), any reasonable approach to software construction will let you reuse a
software element exactly as it is. The reality of software development is usually more
demanding: it requires that you be able to combine reuse with adaptation — keep what you
like from a software element, here a class, and change what is not adapted to the new
context. All this should be done without affecting the original module and its existing
clients. Redeclaration achieves this: the original class, here PARAGRAPH, is left
untouched; class DISPLAY keeps what it likes from it — most of the features — and
changes what has to be different.

Polymorphism is the ability to have a single entity of the software text denote run-
time objects of more than one type. It is best illustrated by the case of generic structures.
Assume that we have declared a list of the form

your_list: LIST [CHUNK]

then in the corresponding run-time structure it is possible to insert list elements containing
instances of any of the descendant classes of CHUNK: FIGURE, PARAGRAPH and
DISPLAY. At some point during execution the list might look like this:

PARAGRAPH

DISPLAY

add_space_after

add_space_after++

REDECLARING A FEATURE

instance of
PARAGRAPH

instance of
FIGURE instance of

PARAGRAPH

instance of
FIGURE

instance of
DISPLAY

A POLYMORPHIC LIST

APPENDIX – O-O: THE TECHNOLOGY 174
The successive list items are of different types, although these types are all descendants of
CHUNK in conformity with the above declaration of your_list. Such a data structure
containing objects of different types is said to be polymorphic.

Dynamic binding is the requirement that follows naturally from the introduction of
redeclaration and dynamic binding: making sure, if a feature that has several redeclarations
and a call applies it to an object that is only known by a name of a higher-level type, that the
call will trigger the version corresponding to the object’s exact type.

Assume for example that you need to perform a traversal of your_list, using feature
item to denote the element reached at an arbitrary stage of that traversal. Then item is only
known as being of type CHUNK, although polymorphism implies that at run time it can
denote an object of an arbitrary descendant type. If you execute a call of the form

item ? add_space_after (3.5)

you will want to make sure that instead of using a fixed feature each call automatically selects
the appropriate version of add_space_after: the PARAGRAPH version for the first element in
the example list of the above figure, the FIGURE version for the second, and so on.

Dynamic binding ensures this desired run-time behavior. It enables you to take a
polymorphic data structure and apply a feature to its every one of its elements with the
guarantee that every call will automatically adapt to the type of the corresponding element.
For example you may process a list of prospects using a feature call of the form prospect_
list ? process, where the feature process of the corresponding class executes a loop of the
form

[O-O SCHEME]
from

start
until

after
loop

item.marketing_action
forth

end

The initialization gets you at the beginning of the list (start); the loop will proceed until
you have moved past the end, as represented by after, and at each stage will advance to the
next item through forth. The current element is item, to which each iteration applies
marketing_action. Now assume that there are various kinds of prospect — “hot” new
prospects, former customers that we hope to bring back to the fold, leads from shows and
so on. We want to generate a different marketing action (personalized letter, telemarketing
call, visit, special offer...) for each category. This will be achieved simply by having a
different redeclaration of feature marketing_action for each of the corresponding classes
(LEAD_FROM_SHOW and the like), each of which is a descendant of a general class
PROSPECT. Dynamic binding takes care of the rest.

MULTIPLE INHERITANCE 175
Using more traditional techniques it would of course have been possible to achieve a
superficially similar goal using elaborate decision structures:

[NON-O-O SCHEME]
if show_sales_lead then

... Marketing action for show sales leads ...
elseif former_customer then

... Marketing action for former customers ...
elseif

...
end

Apart from being much simpler, the O-O solution based on classes, inheritance,
redeclaration, polymorphism and dynamic binding has a major software engineering
advantage: it lends itself to smooth evolution and reuse. If you want to extend your
software to handle a new kind of prospect that you had not thought about before, all you
need to do in the “O-O SCHEME” is to add a new class to the inheritance hierarchy to
cover that new variant, and redeclare feature marketing_action accordingly. This takes care
of the problem for any structure of the preceding form, relying on dynamic binding; if the
technique has been applied thoroughly no existing software will need to be changed. But in
the “NON-O-O-SCHEME” you would have to add an elseif branch to the text of every
client that was using the notion of prospect! This phenomenon is one of the major sources
of instability in traditional software engineering, and is responsible for many of the chain
reactions of changes noted in earlier discussions.

What the combination of inheritance-based techniques brings here is the ability to take
abstraction and information hiding to their extreme, by making each module as independent
from the others as possible. The basic techniques of information hiding allowed a client to
use a call such as item ? marketing_action without knowing the details of the prospect object
represented by item; but here we are going further: when several versions of marketing_
action are available, we can defer the choice of version to use in this call until the very last
moment that conceptually makes sense — each execution of the feature at run time.

Polymorphism, dynamic binding and the associated ideas are sometimes
misunderstood as implementation tricks. To the contrary, they are architectural techniques,
essential to the flexible, decentralized architectures of object-oriented software
construction and its support for reusability and extendibility.

MULTIPLE INHERITANCE

It is often necessary, when using O-O techniques to model and implement systems, to use
classifications that are based on more than one criterion. Multiple inheritance — the ability
for a class to have two or more parents — addresses this need.

For example we might have developed a class AIRPLANE representing planes and, in
a different part of our software, a class ASSET representing company assets. The features
of AIRPLANE may include queries such as passenger_capacity as well as commands such
as fly_to; the features of ASSET may include queries purchase_value, depreciation and
resale_value, as well as commands depreciate and resell.

APPENDIX – O-O: THE TECHNOLOGY 176
What if we need to cover the notion of company plane? Multiple inheritance provides
the solution:

Not having multiple inheritance would defeat reusability here: we would have to renounce
one of the inheritance links and choose between the two parents (the other’s features being
duplicated). This is not acceptable.

Multiple inheritance raises a few technical problems, such as how to disambiguate
name clashes between features inherited from different parents; good O-O language design
will solve these problems in a straightforward way.

TYPING

One more important notion, arising from the reliability concern, has its place in this review
of the principal O-O concepts: static typing.

The problem is easy to summarize. In the object-oriented approach the execution of
software systems boils down to feature calls — “message passing” — of the form x ? f for
some feature f, meaning: call f (possibly with arguments) on whatever object is attached to
x at the time of the call. Dynamic binding guarantees that if more than one version of f is
available the call will use the right one (the one that is appropriate for the type of that
object); but static typing addresses an even more fundamental question: how do we know
that there will always be at least one f?

Many examples of such a call have been seen above. Here is another. Assume a call
of the form

your_aircraft ? lower_landing_gear

where your_aircraft denotes some flying object. Dynamic binding gives you a guarantee, if
your_aircraft is polymorphic, that each call will trigger the proper version. For example, in
the situation shown on the following figure, the version of lower_landing_gear for
BOEING_747_400 is not the same one as for BOEING_747, and if your_aircraft denotes
an object of the more specialized type you will want the 400 version to be applied, even if
your_aircraft is declared of type BOEING_747 or something even more general such
as PLANE.

AIRPLANE ASSET

COMPANY_
PLANE

A CASE OF MULTIPLE INHERITANCE

TYPING 177
For the sake of this discussion let us assume that only planes have landing gears, not
helicopters, so that feature lower_landing_gear only appears at the level of class
AIRPLANE, not AIRCRAFT. The statically typed approach to O-O development, used in
Eiffel and assumed in the earlier examples, assumes that your_aircraft has been declared
somewhere in the text, for example with one of the following two declarations:

your_aircraft: AIRCRAFT -- VERSION 1
your_aircraft: AIRPLANE -- VERSION 2

With version 2, the call your_aircraft ? lower_landing_gear is safe: class AIRPLANE has a
feature lower_landing_gear, ensuring that the call is always meaningful — even though
every descendant may redeclare the feature as it pleases, so that dynamic binding may
trigger several possible variants. But with version 1 there is no guarantee that the call will
make sense: because of polymorphism, your_aircraft could in some execution be attached
to an object of type HELICOPTER, to which lower_landing_gear is not applicable.

Static typing means that we require every entity x to be declared of some type C, and
that the compiler or other tool checks that for any call x ? f the class corresponding to C
contain a feature f. If that condition is not satisfied, the system containing the call will be
rejected. This is a pessimistic policy, as evidenced by the above example: after all, this
could be your lucky day at the flight control center, when all run-time values of your_
aircraft will denote objects of type BOEING_747 or AIRBUS_A_320. Static typing may

AIRPLANE

AIRCRAFT

HELICOPTER

JET_PLANEPROPELLER_
PLANE

BOEING_747

BOEING_747_
400

AIRBUS_A_320

...

...

lower_
landing_
gear*

lower_landing_gear+

lower_landing_gear++

AN INHERITANCE STRUCTURE WITH REDECLARATIONS

* *

*

For the meaning of
*, +, ++, see next
section.

APPENDIX – O-O: THE TECHNOLOGY 178
indeed reject software that might work in some cases, because the aim is to guarantee that
the software will work in all cases.

The other approach, typified by Smalltalk, is dynamic typing, which does not require
type declarations such as the above, and waits until run time to find out whether a call will
work, terminating abnormally if it does not. This may be acceptable for environments
meant for experimentation or “prototyping”, but not for production software. After all, run
time is in most cases a bit late to find out whether your aircraft can lower its landing gear.

DEFERRED FEATURES AND CLASSES

The asterisk that marked feature lower_landing_gear of class AIRPLANE as well as that
class itself, AIRCRAFT and HELICOPTER on the figure of page 177 is an indication that
this feature and these classes are deferred.

A deferred feature is not implemented, although it may be specified through
assertions. For example the feature lower_landing_gear could appear in class AIRPLANE
under the general form

lower_landing_gear
require

altitude >= minimum_for_landing;
altitude <= maximum_for_landing

deferred
ensure

landing_gear ? down
end

The deferred indication, replacing the part where the non-deferred features of earlier
examples had a list of instructions preceded by do and giving the feature’s implementation,
states that the actual implementation is postponed (deferred, hence the name) to
descendants of class AIRPLANE, such as BOEING_747.

A feature which is not deferred (that is to say, a fully implemented feature) is said to
be effective. This terminology carries over to classes: a class is deferred if it has one or
more deferred features (even if some of its other features are effective); it is effective if all
its features are effective. A deferred class is also called an abstract class.

A descendant class that provides an implementation of a feature that it inherits in
deferred form is said to effect it. For example the class BOEING_747 effects the feature
lower_landing_gear; this is graphically represented by the + symbol.

The ++ symbol is reserved for a redefinition: the case in which a class provides a new
implementation of a feature that was already effective in the parent; see lower_landing_gear for
class BOEING_747_400 on the figure of page 177. These notations come from the BON analysis
method (see reference page 38). Effecting and redefinition are the two kinds of redeclaration.

Deferred features and classes have three major applications: providing higher-level
abstractions; capturing patterns of behavior; and supporting object-oriented analysis.

The first application is the most common. In applying taxonomical efforts to a certain
area, you will usually uncover high-level notions that have no full implementation.

DEFERRED FEATURES AND CLASSES 179
CHUNK in the text-processing system was one such case; AIRPLANE in our latest example
is another. But a class that does not have a full implementation can still have many
properties worth expressing precisely: features, their preconditions and postconditions,
invariants. For example any CHUNK will have a command add_space_after, although its
implementation can only be given in more specific descendants such as PARAGRAPH and
FIGURE; and any AIRPLANE will have a lower_landing_gear command, characterized by
the assertions given above even in the absence of a default implementation.

With polymorphism and dynamic binding, you can declare an entity as being of a
deferred type, and rely on dynamic binding to call a feature that is still deferred in the
corresponding class:

c: CHUNK; a: AIRPLANE
... Instructions attaching c to an effective kind of chunk (a figure or
 a paragraph) and a to an effective kind of plane (Boeing etc.) ...
c ? add_space_after (2.1)
a ? lower_landing_gear

The second application is to capture patterns of behavior. This results from the ability
of an effective (non-deferred) feature to call deferred ones. The extract introduced earlier
under the label “OO-SCHEME” (page 174) could be part of an effective feature:

process
-- Solicit the prospect list.

do
from

start
until

after
loop

item.marketing_action
forth

end
end

This feature describes the overall processing quite precisely and hence is effective; but it
relies on features such as marketing_action that may be deferred. Such a mechanism
addresses a major reuse problem: capturing patterns of behavior that are known in their
broad outline, but depend on details which may vary. This is again a typical manager’s
requirement: being able to define an overall strategy and leave details to be filled in later
on. One can use the phrase programs with holes for such patterns.

The ability to define programs with holes is an essential requirement of ambitious,
forward-looking software development: you need to define precisely what you know and
want today; but you also need to leave room — the holes — for what will only be known
later, and will often have many different variants.

APPENDIX – O-O: THE TECHNOLOGY 180
The final application of deferred classes and features is to object-oriented analysis:
when studying a system purely for modeling purposes, before any thought about
implementation, you may use deferred elements. This will be discussed again in the section
on object-oriented analysis (see page 180).

GARBAGE COLLECTION

The execution of an object-oriented system tends to create many objects; some of these
objects will eventually become unreachable from the active ones and hence useless.

As noted in chapter 2, advanced implementations of object-oriented languages
address this problem by providing an automatic memory management mechanism, or
garbage collector, that periodically looks for unreachable objects and reclaims their
memory.

Although some object-oriented implementations do not offer garbage collection —
this is in particular the case with most implementations of hybrid O-O languages such as
C++, which make it impossible or very hard to write a safe collector — most experts in the
field consider garbage collection to be an essential requirement.

OBJECT-ORIENTED LANGUAGES AND IMPLEMENTATION

The major characteristics of three major object-oriented languages, C++, Eiffel and
Smalltalk, were briefly presented in chapter 2; see “OBJECT-ORIENTED
LANGUAGES”, page 24. The object-oriented examples of this Appendix have used Eiffel
syntax.

The earlier discussion also introduced the mechanisms needed to implement O-O
languages, and illustrated the notion of object-oriented environment.

OBJECT-ORIENTED ANALYSIS

The object-oriented method is a powerful modeling tool, and in particular can serve right
from the beginning of a software effort to perform the requirements analysis of the system
under discussion.

Several examples sketched in this chapter have illustrated the idea; text processing
classes such are PARAGRAPH are typical of the possibilities offered. Here is another
(references to which were used in chapter 2).

Assume you are interested in describing certain kinds of chemical plant. Object-
oriented modeling means identifying the major object types and organizing the description
— the various chapters of the document — around these types, rather than focusing on the
functions. The types of interest may include such notions as PLANT, CONTROL_ROOM,
TANK, PIPE, VALVE, VAT and the like. Each one of them will give a class; since we are at
a purely descriptive stage, all these classes will be deferred. But thanks to assertions that
does not prevent us from being precise about their properties insofar as we know them.
Here for example how class VAT might look:

OBJECT-ORIENTED ANALYSIS 181
deferred class VAT inherit
TANK

feature
fill

-- Fill the vat.
require

in_valve. open; out_valve .closed
deferred
ensure

in_valve.closed; out_valve.closed; is_ full
end

... [Other features: is_full, is_empty, empty, in_valve, out_valve,
 gauge, maximum ...]

invariant
is_ full = (gauge >= .97 * maximum) and (gauge <= 1.03 * maximum)

end

Inheritance enables us to describe vats as a special case of tanks. Among the features of
vats are mechanism to fill a vat (fill), find out if it is full (is_full) and so on; only fill has
been detailed. The feature is deferred, of course — this is analysis, not design or
implementation — but has precise properties expressed by the assertions: it requires that
the input valve be initially open and the output valve closed; it leaves both valves closed
and the vat full, in the approximate sense spelled out by the invariant. As in earlier
examples, these assertions express a contract, a notion that is at least as important at the
analysis level as it is for design and implementation:

fill OBLIGATIONS BENEFITS

Client

(Satisfy precondition:)
Input valve must be open, and
output valve closed.

(From postcondition:)
Get the vat in a state in
which it is full, with the
valves in the proper
positions.

Supplier

(Satisfy postcondition:)
Fill vat and leave the valves in
the proper positions.

(From precondition:)
No need to worry about
initial cases in which input
valve is closed or output
valve open.

Postface

This book benefited from the lessons learned from many people. The books and articles
quoted (sometimes critically) in the bibliography sections have set a high standard and
provided many ideas. Discussions with countless software project managers have yielded
insights and raised tough questions. Many thanks in particular to ISE’s customers and to
the companies that have relied on our consulting services over the past few years.

Much of the material was taught as part of a seminar series of seminars on Object-
Oriented Management, presented in sessions in the US, Canada, Europe, Japan and
Australia. The participants’ feedback helped refine and extend the presentation.

Talks given at several TOOLS conferences (Technology of Object-Oriented
Languages and Systems) by Roger Osmond of Bytex on his experience as O-O project
leader have been most enlightening. Other TOOLS invited speakers, in particular Adele
Goldberg of ParcPlace, Bob Marcus of Boeing, Meilir Page-Jones of the Wayland Institute,
and Donna Veltri of General Electric have been a source of fresh ideas and challenges. A
panel at TOOLS USA 94, organized by Eric Aranow on the theme “Reuse: Nature or
Nurture?” helped find the proper title for chapter 6.

Jean-Marc Nerson of SOL let me use some of the lessons of his extensive experience
of technical and management consulting using object technology, Eiffel and BON. A
number of project management insights came from discussions with Philippe Stephan.

The influence of my work at ISE and of the interaction with my colleagues there is
visible throughout the book. I should really name all of them, but must at least mention
useful comments made by Xavier Le Vourch on the topic of integration and by Eric Bezault
on project management.

Kim Waldén, Per Grape, Jean-Marc Éber and Ron House provided criticisms on an
earlier draft. James McKim also contributed detailed and useful feedback on both form and
content.

I owe to Rock Howard the permission to use ample material from his Eiffel Outlook
article on the Bytex project (see “A SUCCESS STORY”, page 85). I am grateful to
Emmanuel Girard for pointing out, many years ago, the relation of Escher’s magical
waterfall (page 47) to models of the software lifecycle, and to Jacques André of IRISA for
providing me with a copy of the non-seamless lifecycle illustration reproduced on page 45.

Index
Page numbers are hyperlinks to the corresponding occurrences
A
a posteriori approach to the production of

reusable components 116–122
a posteriori principle 117
a priori approach to the production of reusable

components 116–122
a priori principle 117
abstract class 178
abstracting 123
abstraction 13–14, 88, 89, 102

data abstraction principle 13
abstraction-based 12
actual generic parameter 171
Ada 74, 75, 98, 102
airplane 70, 175
Amazonians 32, 90, 144
analysis, see object-oriented analysis,

requirements analysis, specification,
structured analysis

and productivity 87
and quality 87
André, Jacques 183
Aranow, Eric 183
architecture of object-oriented systems 8, 9,

155–156
architecture principle 9
arrow 32

in structured analysis 32, 168
artificial intelligence 2
assertion 8, 17, 25, 166–170

applications of assertions 168–169
in Eiffel 25

average programmer 94–95
B

Baker, Terry F. 144
banking 25
BASIC 89
basic issue of software construction 7, 8
Beaujolais Nouveau 120
bibliography 5, 37–38, 59, 71, 103, 130,

137, 144
Biggerstaff, Ted J. 130
Blaha, Michael 38
Boehm, Barry W. 40, 42, 43, 46, 59, 132
BON analysis method (Business Object

Notation) 38, 178

Booch, Grady 38
booster shot 77–78
bottom-up development 143
Brooks, Frederick P. 4, 5, 64, 68, 69, 71, 84,

92, 144
browsing 30
bubble

for a class in graphical representations of
object-oriented architectures 32, 157

in structured analysis 32, 168
bug 8, 12, 23, 43, 44, 100, 132, 161, 168,

169
business class 108–110
business object, improper terminology for

“business class” 108
Bytex 85–87, 92, 101

C
C 2, 8, 24, 25, 73, 78, 86, 156

as target language for Eiffel and C++
compilers 27

as universal assembly language 27
heritage for C++ 24

C hacker 91
C++ 24, 25, 27, 36, 37, 73, 74, 86, 98
Casanova stance 80
Casanova, Giacomo, Chevalier of Steingalt

 80
CASE (Computer-Aided Software

Engineering) 27, 33
Catherine II of Russia 65
censorship of electronic mail 148
champion 87
changes of direction 149
chemical plant 32, 180–181
chief programmer team 143–144
chunk (in a text-processing system) 162, 163,

166, 171, 173, 174, 179
class 9–35, 51, 52, 54, 74, 78, 155–181

deferred, see deferred class
fate in the reusability culture 121, 122
graphical representation 157
identification 54
in a cluster 51
invariant, see invariant
not to be confused with object 11
principle 9

INDEX 186
relations between classes 12–13, 161–
164

relations, see also has relation, is relation
short form 169
specification 54

class-based 12
clickable 30, 31
client 7, 12, 13, 14, 15, 16, 23, 30, 32, 161,

162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 173, 175, 181

CLOS 74, 98
cluster 52, 99

definition 51–52
division into clusters 139
risk of divergence 54, 140

cluster model 39, 48–59, 70, 75, 96, 139
ordering the steps 55–57
pictorial representation 53
steps 54–55
variants 55–57

clusterfall model 55, 56
Coad, Peter 38
COBOL 89, 93, 149
Cobol 156
COCOMO cost model 59, 132
Cognos 84, 85
Coleman, Derek 38
collection 170
command 30, 157, 158, 162, 165, 175, 179
communication between classes, see relations

between classes
communication principle 12, 163
communication tools 147–148
compatibility 100
competition 132, 150
compilation 27
complexity in software 9
component, see software component
Computer-Aided Design (CAD) 9, 25, 35, 89
ComputerWorld 2
concurrent engineering 52, 140
configuration management 140
consistency in the design of libraries 107
consultants 79–82

how to choose them 79–82
consumer 15, 105, 106, 107, 108, 110, 112,

113, 114, 115, 119, 123, 129
consumer’s view 105–106
contract 7, 8, 13, 15–??, 17, ??–17, 21, 35,

37, 38, 162, 167, 168, 181
principle 15
see also Design by Contract

Cook, Steve 38
CORBA 37

CORBA 2 37
Corneille, Pierre 39
courses, see training
Cox, Brad J. 37
CPU 135, 136
crisis 133–135, 150

panic 150
remedy principle 133

cuckoo 88
current demo, see demo
customer 34, 108–110, 151, 174

D
Daniels, John 38
data abstraction principle 13
Data Flow Diagrams (DFD) 159
database, see object-oriented, relational

database
de Marco, Tom 137
deadlines 132
debugging 27, 31, 42, 151–152, 169
deferred feature, class 178–180

use for object-oriented analysis 180
demo 67, 141–142

effect 142
demonstration, see demo
Descartes, René 94
design 24, 42, 43, 48, 49, 50, 51, 54, 55, 57

detailed 40
global 40

Design by Contract 8, 13, 15–17, 21, 37,
140, 162, 166–169

design-implementation 46, 52, 54, 55
detailed design 40
developer

creativity 107
individual differences 89
psychology 107, 133, 136, 143, 150,
151–153

qualifications 93–96
resource rights 136

direct approach to the production of reusable
components 116–122

disk space 136
distribution 40
divergence risk for clusters 54, 140
division of labor 44
documentation 42

for object-oriented software 169
not a step in the lifecycle 42

domestics 111
DOS 112

INDEX 187
dynamic binding 19–21, 78, 174–175, 176,
179

principle 19
relevance to managers 20–21

dynamic reconfiguration of project tasks 43,
57–58

dynamic typing 178
E

ease of use 64
ease-of-use

principle 93
Éber, Jean-Marc 183
Eddy, Frederick 38
education, see training
Edwards, Julian 38, 59
effecting 178
effective 178
efficiency 3, 7, 25, 49, 64, 106, 107, 123

definition 3
egoless programming 107
Eiffel 25, 27, 32, 36, 37, 74, 76, 98, 177

implementation through C 27
EiffelBase library 107
EiffelCase 31, 32, 33
EiffelStore 36
electronic mail 136–137, 147–148

advantages 147–148
risks 148

elitism 89–90
e-mail, see electronic mail
end-user 94
engineering

use of this term for software and other
disciplines 57–58

entity-relationship modeling 38
Escher, Mauritius C. 47, 183
Escherfall model 46–47, 50
evangelist 83
exception handling 8
experimentation 62, 63, 66, 67, 71, 100

failed 62
expertise principle 81
export status 165
extendibility 3, 7, 8, 12, 14, 21, 64, 91, 100,

160, 161, 163, 175
definition 3

F
factoring 123
failure 68–69, 84–85

story 84–85
fate of classes 121, 122
feasibility study 40, 42, 52

feature 13–34, 157–181
deferred, see deferred feature
history 30
implementing by storage or computation
 166

selectively available to a class 165
fewer may be better principle 91
formal generic parameter 171
FORTRAN 89, 93
Frankenstein (Dr.) 11
FTP (File Transfer Protocol) 137
function 9, 155

fate in object-oriented architectures 156–
160

in the traditional view 158–160
funding for reusability 127–128
Fusion analysis method 38

G
Gantt chart 58
garbage collection 8, 22–23, 180
garbage collector 22, 180
generalist 88
generalization 34, 54, 105, 116–129

and the library 126
role 125–126
tasks 122–125

generic parameter 171
genericity 170–171
Ghezzi, Carlo 3, 5
Gindre, Cyrille 59
Girard, Emmanuel 183
global design 40
Goldberg, Adele 37, 95, 183
Graham, Ian 37
grand cru millésimé 119
Grape, Per 183
grassroots phenomenon 95
GSR (Glitz-to-Sweat Ratio) 65

H
hardware resources 135–137
has relation 162
heir 30, 161, 163
Henderson-Sellers, Brian 37, 38, 59
hiring 87–88, 91–95

principles 91
history of a feature 30
hole 179
hostages 146
House, Ron 183
Howard, Rock 85, 183
hybrid language 101
hype 4, 87

INDEX 188
I
impedance mismatch 46
implementation 24, 40, 42, 43, 44, 46, 48,

49, 50, 52, 54, 55
implementation of object-oriented language

 27
IMS 35
incremental development 63, 67, 71
indirect approach to the production of reusable

components 116–122
industrial revolution 94
information hiding 14–15, 54, 124, 140,

163, 164–166, 168
and the manager 14–15
principle 165

information modeling 38
information systems 54
inheritance 17–20, 23, 28, 30, 161, 162,

163, 170, 171–180
displaying in an object-oriented

environment 28
displaying the history of a feature 30
multiple 175–176
principle 17
techniques 172–180

instance 10–12, 156
principle 10

integration 54, 140–141
integration principle 140
interfacing with the rest of the world 132
interoperability 106, 107, 111
interpretation 27
invariant 170
is relation 163
ISE 183

J
Jackson, Michael 102
Jacobson, Ivar 37, 38
Jazayeri, Mehdi 5
JCL 89
Joy, William N. 90
JSD/JSP 75, 99, 102

K
killer app principle 83
Kilov, Haim 38
Kim, Won 38
Knuth, Donald E. 108
Knuthware 108, 109

L
La Bruyère, Jean de 39

language, see under object-oriented
large object-oriented project principle 93
Leathers, Burton 84
Lévi-Strauss, Claude 90, 144
librarian, job description to be avoided 111
library 113–115

and generalization 126
criteria for inclusion 114, 115
design principles 107, 130
entry principle 114
evolution 127

principle 127
lifecycle 39–59
LIM (Less Is More) crisis remedy principle

 133, 134
Lisp 88
Lister, Tim 137
Loire 111
Lorensen, William 38
Los Angeles Times 80

M
Magritte, René 11
maintenance 24, 106

costs 7
management champion 87
manager

tasks and responsibilities 14–15, 23, 55–
57, 126, 131–153

non-technical manager 145–153
technical manager 139–144

training 79
Mancusi, Michael 86
Mandrioli, Dino 5, 59
Marcus, Bob 183
Martin, James 38
Massery, Joseph E. 86
mass-production prototype 61–62
material rewards for reusable components

 114
maturity model 101
McKim, James C., Jr. 108, 130, 183
meeting 146–147

types 146
meetingitis 146–147
Mellor, Steve 38
memory management 22–23, 180

principle 22
mentoring 143
Merise 75, 99, 102
message passing 166, 176
method (as an approximate synonym for

feature) 157
method enforcement 142

INDEX 189
méthode champenoise 119–120
Mingins, Christine 103
MIPS 136
mockup 63, 71

see also throwaway prototyping
model, see cluster model, lifecycle, spiral

model, waterfall model
modular methods 75, 99, 102
module 9, 155
Montaigne, Michel de 144
mOOsak phenomenon 78
morale of a team 65, 133–135
Mosaic 137
MOSES analysis method 38
multiple inheritance, see under inheritance

N
nature 116–122, 126
Nerson, Jean-Marc 38, 59, 183
network news 137
networks 36–37
New York 120
Newton, Sir Isaac 94
NIH (Not Invented Here) 111–112
NMM (Non-Meeting Meeting) 147
normalization (in relational databases) 35
Novobilski, Andrew J. 37
NRM slogan (Next Release, Maybe) 152
nurture 116–122, 126

O
object 10–12, 156

definition 10
not to be confused with class 11
see also instance

Object Management Group 1
object orientation 12
object orientation treaty 157
object request broker 36–37
object success questionnaire 74–75, 97–103

interpreting 97–103
object technology

as grassroots phenomenon 95
definition 7–27, 155–181
goals 7–8
transition 73–103
what to do with people who fail to master

it 95–96
Objective-C 37
object-oriented

analysis 31, 31–35, 38, 80, 180, 180–
181

first principle 34
new role in object technology 34–35

role in the training curriculum 76–77
second principle 34
use of deferred classes and features
 180

architecture 9, 155–156
communication principle 12, 163
databases 35–36, 38
environment 27–31, 93
expertise principle 81
ideal developer profile 87
implementation 27
language 24–27, 37, 93, 101, 180
method 12
responsibility principle 79
software engineering principle 85
structuring principle 156
teaching, see teaching object technology

Object-Oriented Series 37
ObjectSpeak 1
Odell, James J. 38
OLE (Object Linking and Embedding) 1, 37
OMT analysis method 38
OpenDoc 37
operating system 136
Oracle 36
OS 360 68, 71, 89
Osmond, Roger F. 85–86, 103, 183
ownership of reusable components 127

P
Page-Jones, Meilir 183
panic crisis 150
paragraph (in a text-processing system) 157–

174, 179, 180
parameterization, see genericity
parser 112
part-of relation 162
Pascal 156
patterns 88
people

and technology evolution 88–89
people aspects of object technology 87–
96

Perlis, Alan J. 130
persistence 36
PERT chart 58
pilot project 63, 66, 67, 76, 82–87, 92

principle 82
PL/I 156
planning for the transition to object technology

 73–75
politics 132
polymorphism 19–21, 78, 173–175, 177,

179

INDEX 190
principle 19
relevance to managers 20–21

portability 3, 7, 8, 27, 64
postcondition 16, 17, 32, 167, 181
Potemkin, Prince Grigori Aleksandrovitch

 64–65, 67
power user 94
pragmatism in reuse principle 110
precondition 16, 17, 32, 167, 181
Premerlani, William 38
principle

a posteriori 117
a priori 117
architecture 9
class 9
contract 15
crisis remedy 133
data abstraction 13
ease-of-use 93
fewer may be better 91
information hiding 165
inheritance 17
instance 10
integration 140
killer app 83
large object-oriented project 93
library entry 114
library evolution 127
LIM (Less is More) 133
management champion 87
memory management 22
object-oriented analysis (first principle)
 34

object-oriented analysis (second principle)
 34

object-oriented communication 12, 163
object-oriented expertise 81
object-oriented responsibility 79
object-oriented software engineering 85
object-oriented structuring 156
pilot project 82
polymorphism and dynamic binding 19
pragmatism in reuse 110
prototyping 69
prototyping rule 66
prudent hiring 91
reusability policy 113
reuse priorities 112
seamlessness 24
selfishness 14
seriousness 76
static typing 21
usability 119
usefulness 119

process model, see cluster model, lifecycle,
spiral model, waterfall model

producer 15, 105, 106, 107, 108, 112, 113,
114, 115, 119, 129

producer’s view 105–106
productivity 3–4, 8, 65, 79, 87, 100, 106

and quality 3–4, 8
profile of ideal object-oriented developer 87
program element 55, 70
programmer, see developer
programming-in-the-large 9
programming-in-the-small 9
programs with holes 179
project

manager, see manager
size 101

Prolog 88
prospect 174
prototype, see prototyping
prototyping 2, 61–71, 75, 99

and failure 68–69
and reusability 70
mass production 61–62
meaning of term in other engineering

disciplines 61–62
meaning of term in software 62–63
principle 69
reduced scale 61–62
rule 66
shipping the prototype 66
throwaway, see throwaway prototyping
variants 66–67

provability 91
prudent hiring principle 91

Q
quality 2–4, 7–8, 65, 87, 100

and productivity 3–4, 8
and prototyping 65–66
reconciling tradeoffs 64

quality assurance team 57
query 30, 157, 158, 162, 165, 175
questionnaire, object success 74–75, 97–103

interpreting 97–103
R

Racine, Jean 39
readability 91
redeclaration 18–21, 172–175, 178
redefinition 178
reduced-scale prototype 61–62
reengineering 95
relational database 35–36, 38

INDEX 191
coexistence with object-oriented
development 36, 38

relations between classes 12–13, 161–164
see also has relation, is relation

reliability 3, 7, 8, 9, 12, 25, 100, 106, 107,
111, 161, 166, 168, 169, 170, 176

definition 3
repository 115
requirements analysis 40, 43, 152
research 57
responsibility principle 79
reusability 3, 7, 8, 12, 14, 15, 21, 34, 54,

64, 96, 100, 105–130, 160, 161, 163,
171, 175, 176

and prototyping 70
argument list 106
consultants 82
consumer, see under consumer
consumer’s view, see under consumer’s

view
definition 3
discipline 128–129
expected benefits 106–108
funding 127–128
group 111
levels 82, 118
logistics aspects 111
manager 110–111, 126
material rewards 114
myths 111–112
plan 110
policy 110–122

principle 113
pragmatism principle 110
priorities 112–113
priorities principle 112
producer, see under producer
producer’s view, see under producer’s

view
rules 114
tax 128
two paths 116–122

merging 120–122
two views 105–106

reusable class 11
reusable object, improper terminology 11
reuse or redo dilemma 18
reuse, see reusability

consumer, see under consumer
producer, see under producer

reversibility 49–50, 59, 152, 153
risk management 43, 51, 57–58, 65, 132
Riviera 111
Robson, David 37

Ross, James 38
Royce, W. W. 40
rule

prototyping 66
Rumbaugh, James 38
run-time system 27

S
Sada, Frédérique 59
Schaad, René 69
scheduling project activities 56–57
seamlessness 23–24, 46, 48–49, 59, 152

principle 24
second-system effect 68, 71
SEI maturity model 101
selectively available 165
selfishness principle 14
seriousness principle 76
Shlaer, Sally 38
short form 169
significant project 101
Simula 24
size

of project 101
of team 91–93, 134

skipper 111
small project 101
Smalltalk 24, 25, 27, 36, 37, 74, 95, 98,

178
software component 55, 70, 96, 108, 126
software engineering 2, 62

definition 2
vs. research 57

Software Engineering Institute 101
software engineering principle 85
software process model, see cluster model,

lifecycle, spiral model, waterfall model
software qualifications 93–95
specialist 88
specification 46, 50, 51, 52, 54

vs. analysis 54
spiral model 46, 50, 75, 99, 101
stack 108
stalactite 49
standards 37
static typing

principle 21
static typing, see typing
Steingalt 80
Stephan, Philippe 183
steps in the object-oriented lifecycle 54–55
Stroustrup, Bjarne 37
structured analysis 32, 102, 159, 168
structuring principle 156

INDEX 192
style rules 142
subprogram 155
subroutine 155, 159
success story 85–87
supplier 7, 13, 14, 15, 16, 17, 30, 32, 161,

162, 165, 167, 168, 181
Sybase 36
Syntropy analysis method 38

T
tank (in a chemical plant) 180, 181
tax 128
taxi driver 90
Taylor, David 37
teaching object technology 25
team

morale 65
sanity 133
size 91–93, 134

technology evolution and people 88–89, 93–
95

testing 169
text-processing system 158–172, 179, 180
Thomson-CSF 59
throwaway prototyping 63, 64–69, 71

vs. quality 65–66
Tokyo 120
tool in an object-oriented environment 27–31
TOOLS conferences (Technology of Object-

Oriented Languages and Systems) 59, 183
top-down development 143
total quality management 46
training 76–82, 143

choosing trainers 79–82
initial 76–77

sequence 77
managers 79
mentoring by a technical project leader
 143

second-level courses 78–79
university education 103

transfer of ownership 127
transition to object technology 73–103

summary of principles 96–97
treaty of object orientation 157, 160
trickle model 55, 56
type, see class, typing
typing 8, 21–22, 171, 176–178

dynamic 178
in Eiffel 25, 177
Smalltalk 24, 178

U
Unix 27, 90, 112

Ur-managerialität 146
usability principle 119
use case 38
use of lifecycle models 39–40
usefulness principle 119
user interface 2
user interface experiment 67
user, see customer, end-user, power user

V
V&V 40, 46, 52, 54, 96
validation and verification, see V&V
value-added tax 128
vat (in a chemical plant) 25, 32–33, 180–

181
Veltri, Donna 183
version management 140
VMS 27

W
Waldén, Kim 38, 59, 183
waterfall model 40–46, 48, 49, 50, 51, 52,

55, 57, 58, 75, 99, 101, 152
and quality management 43–46
arguments against 43–46, 57
arguments for 40–42
criteria for a better model 48
pictorial representation 41

Wiener, Laura 38
Wilkerson, Brian 38
window 110
Windows 27, 112
Wirfs-Brock, Rebecca 38
World-Wide Web 137
wrapper 128

Y
Yourdon, Edward 38

Z
Zukerman, Pinchas 131

	Contents
	1
	Object frenzy
	WHAT IS IT REALLY ABOUT?
	QUALITY VERSUS PRODUCTIVITY?
	EXPECTATIONS AND REALITY
	BIBLIOGRAPHY

	2
	The ten key O-O concepts
	THE GOALS
	CONCEPT ONE: ARCHITECTURE
	CONCEPT TWO: CLASSES
	CONCEPT THREE: INSTANCES
	OBJECTS, CLASSES, AND PROPER TERMINOLOGY
	CONCEPT FOUR: RESTRICTED COMMUNICATION
	CONCEPT FIVE: ABSTRACTION
	INFORMATION HIDING AND THE MANAGER
	CONCEPT SIX: DESIGN BY CONTRACT
	CONCEPT SEVEN: INHERITANCE
	CONCEPT EIGHT: POLYMORPHISM AND DYNAMIC BINDING
	POLYMORPHISM, DYNAMIC BINDING AND YOU
	CONCEPT NINE: STATIC TYPING
	CONCEPT TEN: AUTOMATIC MEMORY MANAGEMENT
	SEAMLESSNESS
	OBJECT-ORIENTED LANGUAGES
	IMPLEMENTATION ASPECTS
	OBJECT-ORIENTED ENVIRONMENTS
	OBJECT-ORIENTED ANALYSIS
	THE NEW ROLE OF ANALYSIS
	OBJECT-ORIENTED DATABASES
	NETWORKS AND OBJECT REQUEST BROKERS
	BIBLIOGRAPHY

	3
	The object-oriented lifecycle
	WHAT USE FOR LIFECYCLE MODELS?
	THE WATERFALL MODEL
	IN FAVOR OF THE WATERFALL
	THE DOWNSIDE OF THE WATERFALL
	THE WATERFALL AND QUALITY MANAGEMENT
	IMPEDANCE MISMATCHES
	THE ESCHERFALL
	TOWARDS A BETTER MODEL
	SEAMLESSNESS
	REVERSIBILITY
	THE NOTION OF CLUSTER
	CONCURRENT ENGINEERING
	THE STEPS
	PROJECT MANAGEMENT AND STEP ORDERING
	RISK MANAGEMENT AND DYNAMIC RECONFIGURATION
	BIBLIOGRAPHY

	4
	But what about prototyping?
	A BORROWED TERM
	PROTOTYPING IN SOFTWARE
	THE POTEMKIN APPROACH TO SOFTWARE DEVELOPMENT
	THROWAWAY PROTOTYPING VERSUS QUALITY
	SHIPPING THE PROTOTYPE
	DISTINGUISHING THE VARIANTS
	THE SECOND-SYSTEM EFFECT
	PROTOTYPING AND FAILURE
	THE BELATED VOICE OF REASON
	PROTOTYPING FOR REUSABILITY?
	PROTOTYPING FOR SOFTWARE: AN ASSESSMENT
	BIBLIOGRAPHY

	5
	Managing the transition
	PLANNING
	GOING ALL THE WAY
	INITIAL TRAINING
	WHAT TO TEACH FIRST
	THE BOOSTER SHOTS
	SECOND-LEVEL COURSES
	TRAINING THE MANAGERS
	CHOOSING TRAINERS AND CONSULTANTS
	REUSABILITY CONSULTANTS
	PILOT PROJECTS
	A FAILURE
	A SUCCESS STORY
	CHOOSING THE RIGHT PEOPLE
	TECHNOLOGY EVOLUTION AND PEOPLE
	ELITISM?
	TWO CAVEATS
	SOFTWARE QUALIFICATIONS AND THEIR EVOLUTION
	FOSTERING A GRASSROOTS PHENOMENON
	WHAT TO DO WITH THE OTHERS?
	A SUMMARY OF TRANSITION PRINCIPLES
	APPENDIX: INTERPRETING THE QUESTIONNAIRE
	BIBLIOGRAPHY

	6
	Nature and nurture: Making reuse succeed
	THE TWO VIEWS OF REUSE
	WHY REUSABILITY?
	STACKS OR CUSTOMERS?
	LEARNING BEFORE JUMPING
	ORGANIZING FOR REUSABILITY
	THE TWO MYTHS OF SOFTWARE REUSABILITY
	CHASING THE RIGHT HORSE
	THE LIBRARY
	THE REPOSITORY
	THE TWO PATHS TO PRODUCING REUSABLE SOFTWARE
	ARGUMENTS FOR NATURE AND FOR NURTURE
	THE MÉTHODE CHAMPENOISE
	MERGING THE TWO APPROACHES
	THE FATE OF CLASSES
	GENERALIZATION TASKS
	THE ROLE OF GENERALIZATION
	GENERALIZATION AND THE LIBRARY
	THE EVOLUTION OF THE LIBRARY
	FUNDING FOR REUSABILITY
	THE DISCIPLINE OF REUSABILITY
	EXERCISE: WHAT ARE THESE PEOPLE DOING WRONG?
	BIBLIOGRAPHY

	7
	The manager’s role, 1: Fundamentals
	RISK MANAGER
	DEADLINE KEEPER
	INTERFACE WITH THE REST OF THE WORLD
	PROTECTOR OF THE TEAM’S SANITY
	CRISIS REMEDY
	HARDWARE RESOURCES
	BIBLIOGRAPHY

	8
	The manager’s role, 2: Technical manager
	THE MANAGER AS CLUSTER DIVIDER
	THE MANAGER AS INTEGRATOR
	THE MANAGER AS DEMO KEEPER
	THE MANAGER AS METHOD ENFORCER
	MENTOR AND CRITIC
	CHIEF PROGRAMMER TEAMS
	BIBLIOGRAPHY

	9
	The manager’s role, 3: Non-technical manager
	MEETINGITIS
	ABOUT COMMUNICATION TOOLS
	MONDAY MORNING CONSULTING FROM COMPUTERWEEK
	180° DEGREE TURNS
	PANIC CRISES
	WHAT THE NON-TECHNICAL MANAGER CAN DO
	THE DEBUGGER THAT WOULD HAVE COST AN ARM AND A LEG
	COSTS AND BENEFITS

	Appendix
	O-O: the technology
	THE ARCHITECTURE
	INSTANCES AND OBJECTS
	THE FATE OF FUNCTIONS
	FUNCTIONS IN THE TRADITIONAL VIEW
	AN UNEQUAL TREATY
	RELATIONS BETWEEN CLASSES
	INFORMATION HIDING
	ASSERTIONS AND DESIGN BY CONTRACT
	APPLICATIONS OF ASSERTIONS
	INVARIANTS
	GENERICITY AND INHERITANCE
	INHERITANCE TECHNIQUES
	MULTIPLE INHERITANCE
	TYPING
	DEFERRED FEATURES AND CLASSES
	GARBAGE COLLECTION
	OBJECT-ORIENTED LANGUAGES AND IMPLEMENTATION
	OBJECT-ORIENTED ANALYSIS

