Reading notes: misclassified bugs

 

(Please note the general disclaimer [1].)

How Misclassification Impacts Bug Prediction [2], an article to be presented on Thursday at ICSE, is the archetype of today’s successful empirical software engineering research, deriving significant results from the mining of publicly available software project repositories — in this case Tomcat5 and three others from Apache, as well as Rhino from Mozilla. The results are in some sense meta-results, because many studies have already mined the bug records of such repositories to draw general lessons about bugs in software development; what Herzig, Just and Zeller now tell us is that the mined data is highly questionable: many problems classified as bugs are not bugs.

The most striking results (announced in a style a bit stentorian to my taste, but indeed striking) are that: every third bug report does not describe a bug, but a request for a new feature, an improvement, better documentation or tests, code cleanup or refactoring; and that out of five program files marked as defective, two do not in fact contain any bug.

These are both false positive results. The repositories signal very few misclassifications the other way: only a small subset of enhancement and improvement requests (around 5%) should have been classified as bugs, and even fewer faulty files are missed (8%, but in fact less than 1% if one excludes an outlier, tomcat5 with 38%, a discrepancy that the paper does not discuss).

The authors have a field day, in the light of this analysis, of questioning the validity of the many studies in recent years — including some, courageously cited, by Zeller himself and coauthors — that start from bug repositories to derive general lessons about bugs and their properties.

The methodology is interesting if a bit scary. The authors (actually, just the two non-tenured authors, probably just a coincidence) analyzed 7401 issue reports manually; more precisely, one of them analyzed all of them and the second one took a second look at the reports that came out from the first step as misclassified, without knowing what the proposed reclassification was, then the results were merged. At 4 minutes per report this truly stakhanovite effort took 90 working days. I sympathize, but I wonder what the rules are in Saarland for experiments involving living beings, particularly graduate students.

Precise criteria were used for the reclassification; for example a report describes a bug, in the authors’ view, if it mentions a null pointer exception (I will skip the opportunity of a pitch for Eiffel’s void safety mechanism), says that the code has to be corrected to fix the semantics, or if there is a “memory issue” or infinite loop. These criteria are reasonable if a bit puzzling (why null pointer exceptions and not other crashes such as arithmetic overflows?); but more worryingly there is no justification for them. I wonder  how much of the huge discrepancy found by the authors — a third or reported bugs are not bugs, and 40% of supposedly defective program files are not defective — can be simply explained by different classification criteria applied by the software projects under examination. The authors give no indication that they interacted with the people in charge of these projects. To me this is the major question hovering over this paper and its spectacular results. If you are in the room and get the chance, don’t hesitate to ask this question on my behalf or yours!

Another obvious question is how much the results depend on the five projects selected. If there ever was room for replicating a study (a practice whose rarity in software engineering we lament, but whose growth prospects are limited by the near-impossibility of convincing selective software engineering venues to publish confirmatory empirical studies), this would be it. In particular it would be good to see some of the results for commercial products.

The article offers an explanation for the phenomena it uncovered: in its view, the reason why so many bug reports end up misclassified is the difference of perspective between users of the software, who complain about the problems they encounter,  and the software professionals  who prepare the actual bug reports. The explanation is plausible but I was surprised not to see any concrete evidence that supports it. It is also surprising that the referees did not ask the authors to provide more solid arguments to buttress that explanation. Yet another opportunity to raise your hand and ask a question.

This (impressive) paper will call everyone’s attention to the critical problem of data quality in empirical studies. It is very professionally prepared, and could, in addition to its specific contributions, serve as a guide on how to get an empirical software engineering paper accepted at ICSE: take a critical look at an important research area; study it from a viewpoint that has not been considered much so far; perform an extensive study, with reasonable methodological assumptions; derive a couple of striking results, making sure they are both visibly stated and backed by the evidence; and include exactly one boxplot.

Notes and references

[1] This article review is part of the “Reading Notes” series. General disclaimer here.

[2] Kim Herzig, Sascha Just and Andreas Zeller: It’s not a Bug, it’s a Feature: How Misclassification Impacts Bug Prediction, in ICSE 2013, available here. According to the ICSE program the paper will be presented on May 23 in the Bug Prediction session, 16 to 17:30.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)
Reading notes: misclassified bugs, 10.0 out of 10 based on 4 ratings
Be Sociable, Share!

Leave a Reply

You must be logged in to post a comment.