Posts tagged ‘ICSE’

Reading notes: strong specifications are well worth the effort


This report continues the series of ICSE 2013 article previews (see the posts of these last few days, other than the DOSE announcement), but is different from its predecessors since it talks about a paper from our group at ETH, so you should not expect any dangerously delusional,  disingenuously dubious or downright deceptive declaration or display of dispassionate, disinterested, disengaged describer’s detachment.

The paper [1] (mentioned on this blog some time ago) is entitled How good are software specifications? and will be presented on Wednesday by Nadia Polikarpova. The basic result: stronger specifications, which capture a more complete part of program functionality, cause only a modest increase in specification effort, but the benefits are huge; in particular, automatic testing finds twice as many faults (“bugs” as recently reviewed papers call them).

Strong specifications are specifications that go beyond simple contracts. A straightforward example is a specification of a push operation for stacks; in EiffelBase, the basic Eiffel data structure library, the contract’s postcondition will read

item =                                          /A/
count = old count + 1

where x is the element being pushed, item the top of the stack and count the number of elements. It is of course sound, since it states that the element just pushed is now the new top of the stack, and that there is one more element; but it is also  incomplete since it says nothing about the other elements remaining as they were; an implementation could satisfy the contract and mess up with these elements. Using “complete” or “strong” preconditions, we associate with the underlying domain a theory [2], or “model”, represented by a specification-only feature in the class, model, denoting a sequence of elements; then it suffices (with the convention that the top is the first element of the model sequence, and that “+” denotes concatenation of sequences) to use the postcondition

model = <x> + old model         /B/

which says all there is to say and implies the original postconditions /A/.

Clearly, the strong contracts, in the  /B/ style, are more expressive [3, 4], but they also require more specification effort. Are they worth the trouble?

The paper explores this question empirically, and the answer, at least according to the criteria used in the study, is yes.  The work takes advantage of AutoTest [5], an automatic testing framework which relies on the contracts already present in the software to serve as test oracles, and generates test cases automatically. AutoTest was applied to both to the classic EiffelBase, with classic partial contracts in the /A/ style, and to the more recent EiffelBase+ library, with strong contracts in the /B/ style. AutoTest is for Eiffel programs; to check for any language-specificity in the results the work also included testing a smaller set of classes from a C# library, DSA, for which a student developed a version (DSA+) equipped with strong model-based contracts. In that case the testing tool was Microsoft Research’s Pex [7]. The results are similar for both languages: citing from the paper, “the fault rates are comparable in the C# experiments, respectively 6 . 10-3 and 3 . 10-3 . The fault complexity is also qualitatively similar.

The verdict on the effect of strong specifications as captured by automated testing is clear: the same automatic testing tools applied to the versions with strong contracts yield twice as many real faults. The term “real fault” comes from excluding spurious cases, such as specification faults (wrong specification, right implementation), which are a phenomenon worth studying but should not count as a benefit of the strong specification approach. The paper contains a detailed analysis of the various kinds of faults and the corresponding empirically determined measures. This particular analysis is for the Eiffel code, since in the C#/Pex case “it was not possible to get an evaluation of the faults by the original developers“.

In our experience the strong specifications are not that much harder to write. The paper contains a precise measure: about five person-weeks to create EiffelBase+, yielding an “overall benefit/effort ratio of about four defects detected per person-day“. Such a benefit more than justifies the effort. More study of that effort is needed, however, because the “person” in the person-weeks was not just an ordinary programmer. True, Eiffel experience has shown that most programmers quickly get the notion of contract and start applying it; as the saying goes in the community, “if you can write an if-then-else, you can write a contract”. But we do not yet have significant evidence of whether that observation extends to model-based contracts.

Model-based contracts (I prefer to call them “theory-based” because “model” means so many other things, but I do not think I will win that particular battle) are, in my opinion, a required component of the march towards program verification. They are the right compromise between simple contracts, which have proved to be attractive to many practicing programmers but suffer from incompleteness, and full formal specification à la Z, which say everything but require too much machinery. They are not an all-or-nothing specification technique but a progressive one: programmers can start with simple contracts, then extend and refine them as desired to yield exactly the right amount of precision and completeness appropriate in any particular context. The article shows that the benefits are well worth the incremental effort.

According to the ICSE program the talk will be presented in the formal specification session, Wednesday, May 22, 13:30-15:30, Grand Ballroom C.


[1] Nadia Polikarpova, Carlo A. Furia, Yu Pei, Yi Wei and Bertrand Meyer: What Good Are Strong Specifications?, to appear in ICSE 2013 (Proceedings of 35th International Conference on Software Engineering), San Francisco, May 2013, draft available here.

[2] Bertrand Meyer: Domain Theory: the forgotten step in program verification, article on this blog, see here.

[3] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[4] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ‘ 10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[5] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[6] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, in IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[7] Nikolai Tillman and Peli de Halleux, Pex: White-Box Generation for .NET, in Tests And Proofs (TAP 2008), pp. 134-153.


VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Reading notes: misclassified bugs


(Please note the general disclaimer [1].)

How Misclassification Impacts Bug Prediction [2], an article to be presented on Thursday at ICSE, is the archetype of today’s successful empirical software engineering research, deriving significant results from the mining of publicly available software project repositories — in this case Tomcat5 and three others from Apache, as well as Rhino from Mozilla. The results are in some sense meta-results, because many studies have already mined the bug records of such repositories to draw general lessons about bugs in software development; what Herzig, Just and Zeller now tell us is that the mined data is highly questionable: many problems classified as bugs are not bugs.

The most striking results (announced in a style a bit stentorian to my taste, but indeed striking) are that: every third bug report does not describe a bug, but a request for a new feature, an improvement, better documentation or tests, code cleanup or refactoring; and that out of five program files marked as defective, two do not in fact contain any bug.

These are both false positive results. The repositories signal very few misclassifications the other way: only a small subset of enhancement and improvement requests (around 5%) should have been classified as bugs, and even fewer faulty files are missed (8%, but in fact less than 1% if one excludes an outlier, tomcat5 with 38%, a discrepancy that the paper does not discuss).

The authors have a field day, in the light of this analysis, of questioning the validity of the many studies in recent years — including some, courageously cited, by Zeller himself and coauthors — that start from bug repositories to derive general lessons about bugs and their properties.

The methodology is interesting if a bit scary. The authors (actually, just the two non-tenured authors, probably just a coincidence) analyzed 7401 issue reports manually; more precisely, one of them analyzed all of them and the second one took a second look at the reports that came out from the first step as misclassified, without knowing what the proposed reclassification was, then the results were merged. At 4 minutes per report this truly stakhanovite effort took 90 working days. I sympathize, but I wonder what the rules are in Saarland for experiments involving living beings, particularly graduate students.

Precise criteria were used for the reclassification; for example a report describes a bug, in the authors’ view, if it mentions a null pointer exception (I will skip the opportunity of a pitch for Eiffel’s void safety mechanism), says that the code has to be corrected to fix the semantics, or if there is a “memory issue” or infinite loop. These criteria are reasonable if a bit puzzling (why null pointer exceptions and not other crashes such as arithmetic overflows?); but more worryingly there is no justification for them. I wonder  how much of the huge discrepancy found by the authors — a third or reported bugs are not bugs, and 40% of supposedly defective program files are not defective — can be simply explained by different classification criteria applied by the software projects under examination. The authors give no indication that they interacted with the people in charge of these projects. To me this is the major question hovering over this paper and its spectacular results. If you are in the room and get the chance, don’t hesitate to ask this question on my behalf or yours!

Another obvious question is how much the results depend on the five projects selected. If there ever was room for replicating a study (a practice whose rarity in software engineering we lament, but whose growth prospects are limited by the near-impossibility of convincing selective software engineering venues to publish confirmatory empirical studies), this would be it. In particular it would be good to see some of the results for commercial products.

The article offers an explanation for the phenomena it uncovered: in its view, the reason why so many bug reports end up misclassified is the difference of perspective between users of the software, who complain about the problems they encounter,  and the software professionals  who prepare the actual bug reports. The explanation is plausible but I was surprised not to see any concrete evidence that supports it. It is also surprising that the referees did not ask the authors to provide more solid arguments to buttress that explanation. Yet another opportunity to raise your hand and ask a question.

This (impressive) paper will call everyone’s attention to the critical problem of data quality in empirical studies. It is very professionally prepared, and could, in addition to its specific contributions, serve as a guide on how to get an empirical software engineering paper accepted at ICSE: take a critical look at an important research area; study it from a viewpoint that has not been considered much so far; perform an extensive study, with reasonable methodological assumptions; derive a couple of striking results, making sure they are both visibly stated and backed by the evidence; and include exactly one boxplot.

Notes and references

[1] This article review is part of the “Reading Notes” series. General disclaimer here.

[2] Kim Herzig, Sascha Just and Andreas Zeller: It’s not a Bug, it’s a Feature: How Misclassification Impacts Bug Prediction, in ICSE 2013, available here. According to the ICSE program the paper will be presented on May 23 in the Bug Prediction session, 16 to 17:30.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Reading notes: the design of bug fixes


To inaugurate the “Reading Notes” series [1] I will take articles from the forthcoming International Conference on Software Engineering. Since I am not going to ICSE this year I am instead spending a little time browsing through the papers, obligingly available on the conference site. I’ll try whenever possible to describe a paper before it is presented at the conference, to alert readers to interesting sessions. I hope in July and August to be able to do the same for some of the papers to be presented at ESEC/FSE [2].

Please note the general disclaimer [1].

The Design of Bug Fixes [3] caught my attention partly for selfish reasons, since we are working, through the AutoFix project [3], on automatic bug fixing, but also out of sheer interest and because I have seen previous work by some of the authors. There have been article about bug patterns before, but not so much is known with credible empirical evidence about bug fixes (corrections of faults). When a programmer encounters a fault, what strategies does he use to correct it? Does he always produce the best fix he can, and if so, why not? What is the influence of the project phase on such decisions (e.g. will you fix a bug the same way early in the process and close to shipping)? These are some of the questions addressed by the paper.

The most interesting concrete result is a list of properties of bug fixes, classified along two criteria: nature of a fix (the paper calls it “design space”), and reasoning behind the choice of a fix. Here are a few examples of the “nature” classification:

  • Data propagation: the bug arises in a component, fix it in another, for example a library class.
  • More or less accuracy: are we fixing the symptom or the cause?
  • Behavioral alternatives: rather than directly correcting the reported problem, change the user-experienced behavior (evoking the famous quip that “it’s not a bug, it’s a feature”). The authors were surprised to see that developers (belying their geek image) seem to devote a lot of effort trying to understand how users actually use the products, but also found that even so developers do not necessarily gain a solid, objective understanding of these usage patterns. It would be interesting to know if the picture is different for traditional locally-installed products and for cloud-based offerings, since in the latter case it is possible to gather more complete, accurate and timely usage data.

On the “reasoning” side, the issue is why and how programmers decide to adopt a particular approach. For example, bug fixes tend to be more audacious (implying redesign if appropriate) at the beginning of a project, and more conservative as delivery nears and everyone is scared of breaking something. Another object of the study is how deeply developers understand the cause rather than just the symptom; the paper reports that 18% “did not have time to figure out why the bug occurred“. Surprising or not, I don’t know, but scary! Yet another dimension is consistency: there is a tension between providing what might ideally be the best fix and remaining consistent with the design decisions that underlie a software system throughout its architecture.

I was more impressed by the individual categories of the classification than by that classification as a whole; some of the categories appear redundant (“interface breakage“, “data propagation” and “internal vs external“, for example, seem to be pretty much the same; ditto for “cause understanding” and “accuracy“). On the other hand the paper does not explicitly claim that the categories are orthogonal. If they turn this conference presentation into a journal article I am pretty sure they will rework the classification and make it more robust. It does not matter that it is a bit shaky at the moment since the main insights are in the individual kinds of fix and fix-reasoning uncovered by the study.

The authors are from Microsoft Research (one of them was visiting faculty) and interviewed numerous programmers from various Microsoft product groups to find out how they fix bugs.

The paper is nicely written and reads easily. It includes some audacious syntax, as in “this dimension” [internal vs external] “describes how much internal code is changed versus external code is changed as part of a fix“. It has a discreet amount of humor, some of which may escape non-US readers; for example the authors explain that when approaching programmers out of the blue for the survey they tried to reassure them through the words “we are from Microsoft Research, and we are here to help“, a wry reference to the celebrated comment by Ronald Reagan (or his speechwriter) that the most dangerous words in the English language are “I am from the government, and I am here to help“. To my taste the authors include too many details about the data collection process; I would have preferred the space to be used for a more detailed discussion of the findings on bug fixes. On the other hand we all know that papers to selective conferences are written for referees, not readers, and this amount of methodological detail was probably the minimum needed to get past the reviewers (by avoiding the typical criticism, for empirical software engineering research, that the sample is too small, the questions biased etc.). Thankfully, however, there is no pedantic discussion of statistical significance; the authors openly present the results as dependent on the particular population surveyed and on the interview technique. Still, these results seem generalizable in their basic form to a large subset of the industry. I hope their publication will spawn more detailed studies.

According to the ICSE program the paper will be presented on May 23 in the Debugging session, 13:30 to 15:30.

Notes and references

[1] This article review is part of the “Reading Notes” series. General disclaimer here.

[2] European Software Engineering Conference 2013, Saint Petersburg, Russia, 18-24 August, see here.

[3] Emerson Murphy-Hill, Thomas Zimmerman, Christian Bird and Nachiappan Nagapan: The Design of Bug Fixes, in ICSE 2013, available here.

[4] AutoFix project at ETH Zurich, see project page here.

[5] Ronald Reagan speech extract on YouTube.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Presentations at ICSE and VSTTE


The following presentations from our ETH group in the ICSE week (International Conference on Software Engineering, San Francisco) address important issues of software specification and verification, describing new techniques that we have recently developed as part of our work building EVE, the Eiffel Verification Environment. One is at ICSE proper and the other at VSTTE (Verified Software: Tools, Theories, Experiments). If you are around please attend them.

Julian Tschannen will present Program Checking With Less Hassle, written with Carlo A. Furia, Martin Nordio and me, at VSTTE on May 17 in the 15:30-16:30 session (see here in the VSTTE program. The draft is available here. I will write a blog article about this work in the coming days.

Nadia Polikarpova will present What Good Are Strong Specifications?, written with , Carlo A. Furia, Yu Pei, Yi Wei and me at ICSE on May 22 in the 13:30-15:30 session (see here in the ICSE program). The draft is available here. I wrote about this paper in an earlier post: see here. It describes the systematic application of theory-based modeling to the full specification and verification of advanced software.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

Another DOSE of distributed software development

The software world is not flat; it is multipolar. Gone are the days of one-site, one-team developments. The increasingly dominant model today is a distributed team; the place where the job gets done is the place where the appropriate people reside, even if it means that different parts of the job get done in different places.

This new setup, possibly the most important change to have affected the practice of software engineering in this early part of the millennium,  has received little attention in the literature; and even less in teaching techniques. I got interested in the topic several years ago, initially by looking at the phenomenon of outsourcing from a software engineering perspective [1]. At ETH, since 2004, Peter Kolb and I, aided by Martin Nordio and Roman Mitin, have taught a course on the topic [2], initially called “software engineering for outsourcing”. As far as I know it was the first course of its kind anywhere; not the first course about outsourcing, but the first to explore the software engineering implications, rather than business or political issues. We also teach an industry course on the same issues [3], attended since 2005 by several hundred participants, and started, with Mathai Joseph from Tata Consulting Services, the SEAFOOD conference [4], Software Engineering Advances For Outsourced and Offshore Development, whose fourth edition starts tomorrow in Saint Petersburg.

After a few sessions of the ETH course we realized that the most important property of the mode of software development explored in the course is not that it involves outsourcing but that it is distributed. In parallel I became directly involved with highly distributed development in the practice of Eiffel Software’s development. In 2007 we renamed the ETH course “Distributed and Outsourced Software Engineering” (DOSE) to acknowledge the broadened scope. The topic is still new; each year we learn a little more about what to teach and how to teach it.

The 2007 session saw another important addition. We felt it was no longer sufficient to talk about distributed development, but that students should practice it. Collaboration between groups in Zurich and other groups in Zurich was not good enough. So we contacted colleagues around the world interested in similar issues, and received an enthusiastic response. The DOSE project is itself distributed: teams from students in different universities collaborate in a single development. Typically, we have two or three geographically distributed locations in each project group. The participating universities have been Politecnico di Milano (where our colleagues Carlo Ghezzi and Elisabetta di Nitto have played a major role in the current version of the project), University of Nijny-Novgorod in Russia, University of Debrecen in Hungary, Hanoi University of Technology in Vietnam, Odessa National Polytechnic in the Ukraine and (across town for us) University of Zurich. For the first time in 2010 a university from the Western hemisphere will join: University of Rio Cuarto in Argentina.

We have extensively studied how the projects actually fare (see publications [4-8]). For students, the job is hard. Often, after a couple of weeks, many want to give up: they have trouble reaching their partner teams, understanding their accents on Skype calls, agreeing on modes of collaboration, finalizing APIs, devising a proper test plan. Yet they hang on and, in most cases, succeed. At the end of the course they tell us how much they have learned about software engineering. For example I know few better way of teaching the importance of carefully documented program interfaces — including contracts — than to ask the students to integrate their modules with code from another team halfway around the globe. This is exactly what happens in industrial software development, when you can no longer rely on informal contacts at the coffee machine or in the parking lot to smooth out misunderstandings: software engineering principles and techniques come in full swing. With DOSE, students learn and practice these fundamental techniques in the controlled environment of a university project.

An example project topic, used last year, was based on an idea by Martin Nordio. He pointed out that in most countries there are some card games played in that country only. The project was to program such a game, where the team in charge of the game logic (what would be the “business model” in an industrial project) had to explain enough of their country’s game, and abstractly enough, to enable the other team to produce the user interface, based on a common game engine started by Martin. It was tough, but some of the results were spectacular, and these are students who will not need more preaching on the importance of specifications.

We are currently preparing the next session of DOSE, in collaboration with our partner universities. The more the merrier: we’d love to have other universities participate, including from the US. Adding extra spice to the project, the topic will be chosen among those from the ICSE SCORE competition [9], so that winning students have the opportunity to attend ICSE in Hawaii. If you are teaching a suitable course, or can organize a student group that will fit, please read the project description [10] and contact me or one of the other organizers listed on the page. There is a DOSE of madness in the idea, but no one, teacher or student,  ever leaves the course bored.


[1] Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software Engineering, in Computer (IEEE), January 2006, pages 124, 122-123. Available here.

[2] ETH course page: see here for last year’s session (description of Fall 2010 session will be added soon).

[3] Industry course page: see here for latest (June 2010( session (description of November 2010 session will be added soon).

[4] SEAFOOD 2010 home page.

[5] Bertrand Meyer and Marco Piccioni: The Allure and Risks of a Deployable Software Engineering Project: Experiences with Both Local and Distributed Development, in Proceedings of IEEE Conference on Software Engineering & Training (CSEE&T), Charleston (South Carolina), 14-17 April 2008, ed. H. Saiedian, pages 3-16. Preprint version  available online.

[6] Bertrand Meyer:  Design and Code Reviews in the Age of the Internet, in Communications of the ACM, vol. 51, no. 9, September 2008, pages 66-71. (Original version in Proceedings of SEAFOOD 2008 (Software Engineering Advances For Offshore and Outsourced Development,  Lecture Notes in Business Information Processing 16, Springer Verlag, 2009.) Available online.

[7] Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi, Elisabetta Di Nitto and Giordano Tamburelli: The Role of Contracts in Distributed Development, in Proceedings of SEAFOOD 2009 (Software Engineering Advances For Offshore and Outsourced Development), Zurich, June-July 2009, Lecture Notes in Business Information Processing 35, Springer Verlag, 2009. Available online.

[8] Martin Nordio, Roman Mitin and Bertrand Meyer: Advanced Hands-on Training for Distributed and Outsourced Software Engineering, in ICSE 2010: Proceedings of 32th International Conference on Software Engineering, Cape Town, May 2010, IEEE Computer Society Press, 2010. Available online.

[9] ICSE SCORE 2011 competition home page.

[10] DOSE project course page.

VN:F [1.9.10_1130]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)