Archive for January 2014

Eiffel as an expression language

A functional-programming style, or more generally a style involving more expressions and fewer instructions, is possible in Eiffel. In particular, Eiffel’s agent mechanism embeds a full functional-programming mechanism in the object-oriented framework of the language.

To make the notations simpler, we are discussing and tentatively implementing a number of proposed extensions. They involve no fundamental new language mechanisms, but provide new, more concise notations for existing mechanisms. Examples are:

  • Conditional expressions.
  • Implicit tuple, a rule allowing the omission of brackets for an actual argument when it is a tuple and the last argument, e.g. f (x, y, z) as an abbreviation for f ([x, y, z]) (an example involving just one argument). Tuples already provided the equivalent of a variable-argument (“varargs”) facility, but it is made simpler to use with this convention.
  • Parenthesis alias, making it possible to write just f (x, y) when f is an agent (closure, lambda expression, delegate etc. in other terminologies), i.e. treating f as if it were a function; the notation is simply an abbreviation for f.item ([x, y]) (an example that also takes advantage of implicit tuples). It has many other applications since a “parenthesis alias” can be defined for a feature of any class.
  • Avoiding explicit assignments to Result.
  • Type inference (to avoid explicitly specifying the type when it can be deduced from the context). This is a facility for the programmer, useful in particular for local variables, but does not affect the type system: Eiffel remains strongly typed, it is just that you can be lazy about writing the type when there is no ambiguity.
  • In the same vein, omitting the entire list of generic parameters when it can be inferred.

The description of the mechanism (see the link in [1]) is in the form of a set of slides explaining the concepts and presenting example. This is a working document and feedback is welcome.

References

[1] Eiffel as an expression language, Eiffel Software working document, 2012-2014, see here.

VN:F [1.9.10_1130]
Rating: 7.8/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 2 votes)

LASER 2014 (Elba, September)

2014 marks the 10-th anniversary (11th edition) of the LASER summer school. The school will be held September 7-14, 2014, and the detailed information is here.

LASER (the name means Laboratory for Applied Software Engineering Research) is dedicated to practical software engineering. The roster of speakers since we started is a who’s who of innovators in the field. Some of the flavor of the school can gathered from the three proceedings volumes published in Springer LNCS (more on the way) or simply by browsing the pages of the schools from previous years.

Usually we have a theme, but to mark this anniversary we decided to go for speakers first; we do have a title, “Leading-Edge Software Engineering”, but broad enough to encompass a wide variety of a broad range of topics presented by star speakers: Harald Gall, Daniel Jackson, Michael Jackson, Erik Meijer (appearing at LASER for the third time!), Gail Murphy and Moshe Vardi. With such a cast you can expect to learn something important regardless of your own primary specialty.

LASER is unique in its setting: a 5-star hotel in the island paradise of Elba, with outstanding food and countless opportunities for exploring the marvelous land, the beaches, the sea, the geology (since antiquity Elba has been famous for its stones and minerals) and the history, from the Romans to Napoleon, who in the 9 months of his reign changed the island forever. The school is serious stuff (8:30 to 13 and 17 to 20 every day), but with enough time to enjoy the surroundings.

Registration is open now.

VN:F [1.9.10_1130]
Rating: 7.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)

PhD positions in concurrency/distribution/verification at ETH

As part of our “Concurrency Made Easy” ERC Advanced Investigator Grant project (2012-2017), we are offering PhD positions at the Chair of Software Engineering of ETH Zurich. The goal of the project is to build a sophisticated programming and verification architecture to make concurrent and distributed programming simple and reliable, based on the ideas of Eiffel and particularly the SCOOP concurrency model. Concurrency in its various forms (particularly multithreading) as well as distributed computing are required for most of today’s serious programs, but programming concurrent applications remains a challenge. The CME project is determined to break this complexity barrier.  Inevitably, achieving simplicity for users (in this case, application programmers) requires, under the hood, a sophisticated infrastructure, both conceptual (theoretical models) and practical (the implementation). We are building that infrastructure.

ETH offers an outstanding research and education environment and competitive salaries for “assistants” (PhD students), who are generally expected in addition to their research to participate in teaching, in particular introductory programming, and other activities of the Chair.  The candidates we seek have: a master’s degree in computer science or related field from a recognized institution (as required by ETH); a strong software engineering background, both practical and theoretical, and more generally a strong computer science and mathematical culture; a good knowledge of verification techniques (e.g. Hoare-style, model-checking, abstract interpretation); some background in concurrency or distribution; and a passion for high-quality software development. Prior publications, and experience with Eiffel, are pluses. In line with ETH policy, particular attention will be given to female candidates.

Before applying, you should become familiar with our work; see in particular the research pages at se.ethz.ch including the full description of the CME project at cme.ethz.ch.

Candidates should send (in PDF or text ) to se-open-positions@lists.inf.ethz.ch a CV and a short cover letter describing their view of the CME project and ideas about their possible contribution.

VN:F [1.9.10_1130]
Rating: 5.7/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

Negative variables: new version

I have mentioned this paper before (see the earlier blog entry here) but it is now going to be published [1] and has been significantly revised, both to take referee comments into account and because we found better ways to present the concepts.

We have  endeavored to explain better than in the draft why the concept of negative variable is necessary and why the usual techniques for modeling object-oriented programs do not work properly for the fundamental OO operation, qualified call x.r (…). These techniques are based on substitution and are simply unable to express certain properties (let alone verify them). The affected properties are those involving properties of the calling context or the global project structure.

The basic idea (repeated in part from the earlier post) is as follows. In modeling OO programs, we have to take into account the unique “general relativity” property of OO programming: all the operations you write are expressed relative to a “current object” which changes repeatedly during execution. More precisely at the start of a call x.r (…) and for the duration of that call the current object changes to whatever x denotes — but to determine that object we must again interpret x in the context of the previous current object. This raises a challenge for reasoning about programs; for example in a routine the notation f.some_reference, if f is a formal argument, refers to objects in the context of the calling object, and we cannot apply standard rules of substitution as in the non-OO style of handling calls.

We introduced a notion of negative variable to deal with this issue. During the execution of a call x.r (…) the negation of x , written x’, represents a back pointer to the calling object; negative variables are characterized by axiomatic properties such as x.x’= Current and x’.(old x)= Current.

Negative variable as back pointer

The paper explains why this concept is necessary, describes the associated formal rules, and presents applications.

Reference

[1] Bertrand Meyer and Alexander Kogtenkov: Negative Variables and the Essence of Object-Oriented Programming, to appear in Specification, Algebra, and Software, eds. Shusaku Iida, Jose Meseguer and Kazuhiro Ogata, Springer Lecture Notes in Computer Science, 2014, to appear. See text here.

VN:F [1.9.10_1130]
Rating: 7.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

Saint Petersburg Software Engineering Seminar: 14 January 2014 (6 PM)

There will be two talks in the Software Engineering Seminar at ITMO, 18:00 local time, Tuesday, January 14, 2014. Please arrive 10 minutes early for registration.

Place: ITMO, Sytninskaya Ulitsa, Saint Petersburg.

Andrey Terekhov (SPBGU): Programming crystals

(I do not know whether this talk will be in Russian or English. An abstract follows but the talk is meant as the start of a discussion rather than a formal lecture.)

В течение последних 20-30 лет основными языками программирования кристаллов были VHDL и Verilog. Эти языки изначально проектировались как средства создания проектной документации, потом они стали использоваться в качестве инструмента моделирования и только сравнительно недавно для этих языков появились средства генерации кода уровня RTL (Register Transfer Language). Тексты на  VHDL и Verilog очень громоздки, трудно читаемые, плохо стандартизованы (одна и та же программа может синтезироваться на одном инструменте и не поддаваться синтезу на другом. Лет 10 назад появился язык SystemC – это С++ с огромным набором библиотек. С одной стороны, любая программа на SystemC может транслироваться стандартными трансляторами С++ , есть удобные средства потактного моделирования и приличные средства генгерации RTL, с другой стороны, требование совместимости с С++ не прошло даром – если в базовом языке нет средств описания параллелизма и конвейеризации, их приходится добавлять весьма искусственными приемами через приставные библиотеки. Буквально в прошлом году фирма Xilinx выпустила продукт Vivado, в рекламе которого утверждается, что он способен автоматически транслировать обычные программы на С/C++ в RTL промышленного качества.

Мы выполнили несколько экспериментов по использованию этого продукта, оказалось, что обещанной автоматизации там нет, пользователь должен писать на С, постоянно думая о том, как его код будет выглядеть в финальном RTL,  расставлять огромное количество прагм, причем не всегда очевидных.

Основной тезис доклада – такая важная область, как проектирование кристаллов, нуждается в специализированных языковых и инструментальных средствах, обеспечивающих  создание компактных и  легко читаемых программ, которые могут быть использованы как для симуляции, так и для генерации эффективного RTL. В докладе будут приведены примеры программ на языке HaSCoL (Hardware and Software Codesign Language), разработанном на кафедре системного программирования СПбГУ, и даны некоторые сравнительные характеристики.

Sergey Velder (ITMO): Alias graphs

(My summary – BM.) In the ITMO SEL work on automatic alias analysis, a new model has been developed: alias graphs, an abstraction of the object structure. This short talk will compare it to previously used approaches.

VN:F [1.9.10_1130]
Rating: 5.5/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 2 votes)