Archive for the ‘Object technology’ Category.

The power and terror of imagination

Reading notes. From: Quelques éléments d’histoire des nombres négatifs (Elements of a history of negative numbers) by Anne Boyé, Proyecto Pénélope, 2002, revision available here; On Solving Equations, Negative Numbers, and Other Absurdities: Part II by Ralph Raimi, available  here; Note sur l’histoire des nombres entiers négatifs (Note on the History of Negative Numbers) by Rémi Lajugie, 2016, hereThe History of Negative Numbers by Leo Rogers, here; Historical Objections against the Number Line, by Albrecht Heeffer, here; Making Sense of Negative Numbers by Cecilia Kilhamn, 2011 PhD thesis at the University of Gothenburg, here.  Also the extensive book by Gert Schubring on Number Concepts Underlying the Development of Analysis in 17-19th Century France and Germany, here. Translations are mine (including from Maclaurin and De Morgan, retranslated from Lajugie’s and Boyé’s French citations). This excursion was spurred by a side remark in the article How to Take Advantage of the Blur Between the Finite and the Infinite by the recently deceased mathematician Pierre Cartier, available here.

negative_numbers

At dinner recently, with non-scientists, discussion revolved about ages and a very young child, not even able to read yet, volunteered about his forthcoming little brother that “when he comes out his age will be zero”. An adult remarked “indeed, and right now his age is minus five months”, which everyone young and old seemingly found self-evident. How remarkable!

From a elite concept to grade school topic

It is a characteristic of potent advances in human understanding that for a while they are understandable to a few geniuses only, or, if not geniuses, to a handful of forward-thinking luminaries, and a generation later, sometimes less, they are taught in grade school. When I came across object-oriented programming, those of us who had seen the light, so to speak, were very few. Feeling very much like plotting Carbonari, we would excitedly meet once in a while in exotic locations (for my Simula-fueled band usually in Scandinavia, although for the Smalltalk crowd it must have been California) to share our shared passion and commiserate about the decades it would take for the rest of humankind to see the truth. Then at some point, almost overnight, without any noticeable harbinger, the whole thing exploded and from then on it was object-oriented everything. Nowadays every beginning programmer talks objects — I did not write “understands”, they do not, but that will be for another article.

Zero too was a major invention. Its first recorded use as a number (not just a marker for absent entities) was in India in the first centuries of our era. It is not hard to imagine the mockeries. “Manish here has twenty sheep, Rahul has twelve sheep, and look at that nitwit Shankar, he sold all his sheep and still claims he has some, zero of them he says! Can you believe the absurdity? Ha ha ha.”

That dialog is imaginary, but for another momentous concept, negative numbers, we have written evidence of the resistance. From the best quarters!

The greatest minds on the attack

The great Italian mathematician Cardan (Gerolamo Cardano), in his Ars Magna from 1545, was among the skeptics. As told in a 1758 French History of Mathematics by Montucla (this quote and the next few ones are from Boyé):

In his article 7 Cardan proposes an equation which in our language would be x2 + 4 x = 21 and observes that the value of x can equally be +3 or -7, and that by changing the sign of the second term it becomes -3 or +7. The name he gives to such values is “fake”.

The words I am translating here as “fake values” are, in Montucla, valeurs feintes, where feint in French means feigned, or pretended (“pretend values”). Although I have not seen the text of Ars Magna, which is in Latin anyway, I like to think that Cardan was thinking of the Italian word finto. (Used for example  in the title of an opera composed by Mozart at the age of 19, La Finta Giardinera, the fake girl gardener — English has no feminine for “gardener”. The false gardenerette in question is a disguised marchioness.) It is fun to think of negative roots as feigned.

Cardan also uses terms like “abundant” versus “failing” quantities (abondantes and défaillantes in French texts) for positive and negative:

Simple advice: do not confuse failing quantities with abundant quantities. One must add the abundant quantities between themselves, also subtract failing quantities between themselves, and subtract failing quantities from abundant quantities but only by taking species into account, that is to say, only operate same with same […]

There is a recognition of negative values, but with a lot of apprehension. Something strange, the author seems to feel, is at play here. Boyé cites the precedent of Chinese accountants who could manipulate positive values through black sticks and negative ones through red sticks and notes that it resembles what Cardan seems to be thinking here. In the fifteenth century, Nicolas Chuquet “used negative numbers as exponents but referred to them as `absurd numbers’”.

For all his precautions, Cardan did consider negative quantities. No lesser mind as Descartes, a century later (La Géométrie, 1637), is more circumspect. In discussing roots of equations he writes:

Often it turns out that some of those roots are false, or less than nothing [“moindres que rien”] as if one supposes that x can also denote the lack of a quantity, for example 5, in which case we have x + 5 = 0, which, if we multiply it by x3 − 9 x2  + 26 x − 24 = 0 yields  x4 − 4 x3 − 19 x2 + 106 x − 120 = 0, an equation for which there are four roots, as follows: three true ones, namely 2, 3, 4, and a false one, namely 5.

Note the last value: “5”. Not a -5, but a 5 dismissed as “false”. The list of exorcising adjectives continues to grow: negative values are no longer “failing”, or “fake”, or “absurd”, now for Descartes they are “false”!  To the modern mind they are neither more nor less true than the “true” ones, but to him they are still hot potatoes, to be handled with great suspicion.

Carnot cannot take the heat

One more century later we are actually taking a step back with Lazare Carnot. Not the one of the thermodynamic cycle — that would be his son, as both were remarkable mathematicians and statesmen. Lazare in 1803 cannot hide his fear of negative numbers:

If we really were to obtain a negative quantity by itself, we would have to deduct an effective quantity from zero, that is to say, remove something from nothing : an impossible operation. How then can one conceived a negative quantity by itself?.

(Une quantité négative isolée : an isolated negative quantity, meaning a negative quantity considered in isolation). How indeed! What a scary thought!

The authors of all these statements, even when they consider negative values, cannot bring themselves to talk of negative numbers, only of negative quantities. Numbers, of course, are positive: who has ever heard of a shepherd who is guarding a herd of minus 7 lambs? Negative quantities are a slightly crazy concoction to be used only reluctantly as a kind of kludge.

Lajugie mentions another example, mental arithmetic: to compute 19 x 31  in your head, it is clever to multiply (20 -1) by (30 + 1), but then as you expand the product by applying the laws of distributivity you get negative values.

De Morgan too

We move on by three decades to England and Augustus De Morgan, yes, the one who came up with the two famous laws of logic duality. De Morgan in 1803, as cited by Raimi:

8-3 is easily understood; 3 can be taken from 8 and the remainder is 5; but 3-8 is an impossibility; it requires you to take from 3 more than there is in 3, which is absurd. If such an expression as 3-8 should be the answer to a problem, it would denote either that there was some absurdity inherent in the problem itself, or in the manner of putting it into an equation.

Raimi points out that “De Morgan is not naïve” but wants to caution students about possible errors. Maybe, but we are back to fear and to words such as “absurd”, as used by Chuquet three centuries before. De Morgan (cited by Boyé) doubles down in his reluctance to accept negatives as numbers:

0 − a is just as inconceivable as -a.

Here is an example. A father is 56 years old and his [son] is 29 years old. In how many years will the father’s age be twice his son’s age? Let x be that number of years; x satisfies 56 +x = 2 (29 + x). We find x = -2.

Great, we say, he got it! This simple result is screaming at De Morgan but he has to reject it:

This result is absurd. However if we change x into -x and correspondingly resolve 56−x = 2 (29−x), we find x = -2. The [previous] negative answer shows that we had made an error in the initial phrasing of the equation.

In other words, if you do not like the solution, change the problem! I too can remember a few exam situations in which I would have loved to make an equation more sympathetic by replacing a plus sign with a minus. Too bad no one told me I could.

De Morgan’s comment is remarkable as the “phrasing of  the equation” contained no “error” whatsoever.   The equation correctly reflected the problem as posed. One could find the statement of the problem mischievous (“in how many years” suggests a solution in the future whereas there is only one in the past), but the equation is meaningful and  has a solution — one, however, that horrifies De Morgan. As a result, when discussing the quadratic (second-degree) equation ax2 + bx + c = 0, instead of accepting that a, b and c can be negative, he distinguishes no fewer than 6 cases, such as ax2 – bx + c = 0, ax2 + bx – c = 0 etc. The coefficients are always non-negative, it is the operators that change between + and  -. As a consequence, the determinant actually has two possible values, the one familiar to us, b2 – 4ac, but also b2 + 4ac for some of the cases. According to Raimi, many American textbooks of the 19th century taught that approach, forcing students to remember all six cases. (For a report about a current teaching distortion of the same topic, see a recent article on the present blog, “Mathematics Is Not a Game of Hit and Miss”, here.)

De Morgan (cited here by Boyé) feels the need to turn this reluctance to use negative numbers into a general rule:

When the answer to a problem is negative, by changing the sign of x in the equation that produced the result, we can discover that an error was made in the method that served to form this equation, or show that the question asked by the problem is too limited.

Sure! It is no longer “if the facts do not fit the theory, change the facts” (a sarcastic definition of bad science), but also “if you do not like the solution, change the problem”. All the more unnecessary (to a modern reader, who thanks to the work of countless mathematicians over centuries learned negative numbers in grade school, and does not spend time wondering whether they mean something) that if we keep the original problem the computed solution, x = -2, makes perfect sense: the father was twice his son’s age two years ago. The past is a negative future. But to see things this way, and to accept that there is nothing fishy here, requires a mindset for which an early 19-th century mathematician was obviously not ready.

And Pascal, and Maclaurin

Not just a mathematician but a great mathematical innovator. What is remarkable in all such statements against negative numbers is that they do not emanate from little minds, unable to grasp abstractions. Quite the contrary! These negative-number-skeptics are outstanding mathematicians. Lajugie gives more examples from the very top. Blaise Pascal in 1670:

Too much truth surprises; I know people who cannot understand that when you deduct 4 from zero, what remains is zero.

(Oh yes?, one is tempted to tell the originator of probability theory, who was fascinated by betting and games of chance: then I put the 4 back and get 4? Quick way to get rich. Give me the address of that casino please.) A friend of Pascal, skeptical about the equality -1 / 1 = 1 / -1: “How could a smaller number be to a larger one as a larger one to a smaller one?”. An English contemporary, John Wallis, one of the creators of infinitesimal calculus — again, not a nitwit! — complains that a / 0 is infinity, but since in a / -1 the denominator is lesser than zero it must follow that a / -1, which is less than zero (since it is negative by the rule of signs), must also be greater than infinity! Nice one actually.

This apparent paradox also bothered the great scientist D’Alembert, the 18-th century co-editor of the Encyclopédie, who resolves it, so to speak, by stating (as cited by Heeffer) that “One can only go from positive to negative through either zero or through infinity”; so unlike Wallis he accepts that 1 / -a is negative, but only because it becomes negative when it passes through infinity. D’Alembert concludes (I am again going after Heeffer) that it is wrong to say that negatives numbers are always smaller than zero. Euler was similarly bothered and similarly looking for explanations through infinity: what does Leibniz’s expansion of 1 / (1 – x)  into 1 + x + x2 + x3 + … become for x = 2? Well, the sum 1 + 2 + 4 + 8 + … diverges, so 1 / -1 is infinity!

We all know the name “Maclaurin” from the eponymous series. Colin Maclaurin  wrote in 1742, decades after Pascal (Boyé):

The use of the negative sign in algebra leads to several consequences that one initially has trouble accepting and has led to ideas that seem not to have any real foundation.

Again the supposed trouble is the absence of an immediately visible connection to everyday reality (a “real foundation”). And again Maclaurin accepts that quantities can be negative, but numbers cannot:

While abstract quantities can be both negative and positive, concrete quantities are not always capable of being the opposite of each other.

(cited by Kilhamn). Apparently Colin’s wife Anne never thought of buying him a Réaumur thermometer (see below) for his birthday.

Yes, two negatives make a positive

We may note that the authors cited above, and many of their contemporaries, had no issue manipulating negative quantities in some contexts, and to accept the law of signs, brilliantly expressed by the Indian mathematician Brahmagupta  in the early 7th century (not a typo); as cited by Rogers:

A debt minus zero is a debt.
A fortune minus zero is a fortune.
Zero minus zero is a zero.
A debt subtracted from zero is a fortune.
A fortune subtracted from zero is a debt.
The product of zero multiplied by a debt or fortune is zero.
The product of zero multiplied by zero is zero.
The product or quotient of two fortunes is one fortune.
The product or quotient of two debts is one fortune.
The product or quotient of a debt and a fortune is a debt.
The product or quotient of a fortune and a debt is a debt.

That view must have been clear to accountants. Whatever Pascal may have thought, 4 francs removed from nothing do not vanish; they become a debt. What the great mathematicians cited above could not fathom was that there is such a thing as a negative number. You can count up as far as your patience will let you; you can then count down, but you will inevitably stop. Everyone knows that, and even Pascal or Euler have trouble going beyond. (Old mathematical joke: “Do you know about the mathematician who was afraid of negative numbers? He will stop at nothing to avoid them”.)

The conceptual jump that took centuries to achieve was to accept that there are not only negative quantities, but negative numbers: numbers in their own right, not just temporarily  negated positive numbers (that is, the only ones to which we commonly rely in everyday life), prefaced with a minus sign because we want to use them as “debts”, but with the firm intention to move them back to the other side so as to restore their positivity  — their supposed naturalness —  at the end of the computation. We have seen superior minds “stopping at nothing” to avoid that step.

Others were bolder; Schubring has a long presentation of how Fontenelle, an 18-th century French scientist and philosopher who contributed to many fields of knowledge,  made the leap.

Not everyone may yet get it

While I implied above that today even small children understand the concept, we may note in passing that there may still be people for whom it remains a challenge. Lajugie notes that the Fahrenheit temperature scale frees people from having to think about negative temperatures in ordinary circumstances, but since the 18-th century the (much more reasonable) Réaumur thermometer and Celsius scale goes under as well as above zero, helping people get familiar with negative values as something quite normal and not scary. (Will the US ever switch?)

Maybe the battle is not entirely won.  Thanks to Rogers I learned about the 2018 Lottery Incident in the United Kingdom of Great Britain and Northern Ireland, where players could win by scratching away, on a card, a temperature lower than the displayed figure. Some temperatures were below freezing. The game had to be pulled after less than a week as a result of player confusion. Example complaints included this one from a  23-year-old who was adamant she should have won:

On one of my cards it said I had to find temperatures lower than -8. The numbers I uncovered were -6 and -7 so I thought I had won, and so did the woman in the shop. But when she scanned the card the machine said I hadn’t. I phoned Camelot [the lottery office] and they fobbed me off with some story that -6 is higher – not lower – than -8 but I’m not having it. I think Camelot are giving people the wrong impression – the card doesn’t say to look for a colder or warmer temperature, it says to look for a higher or lower number. Six is a lower number than 8. Imagine how many people have been misled.

Again, quantities versus numbers. As we have seen, she could claim solid precedent for this reasoning. Most people, of course, have figured out that while 8 is greater than 6 (actually, because of that), -6 is greater than -8. But as Lajugie points out the modern, rigorous definition of negative numbers is (in the standard approach) far from the physical intuition (which typically looks like the two-directional line pictured at the beginning of this article, with numbers spreading away from zero towards both the right and the left). The picture helps, but it is only a picture.

Away from the perceptible world

If we ignore the intuition coming from observing a Réaumur or Celsius thermometer (which does provide a “real world” guide), the early deniers of negative numbers were right that this concept does not directly reflect the experiential understanding of numbers, readily accessible to everyone. The general progress of science, however, has involved moving away from such immediate intuition. Everyday adventures (such as falling on the floor) absolutely do not suggest to us that matter is made of sparse atoms interacting through electrical and magnetic phenomena. This march towards abstraction has guided the evolution of modern science — most strikingly, the evolution of modern mathematics.

Some lament this trend; think of the negative reactions to the so-called “new math”. (Not from me. I was caught by the  breaking of the wave and loved every minute of it.) But there is no going back; in addition, it is well known that some of the initially most abstract mathematical development, initially pursued without any perceived connection with reality, found momentous unexpected applications later on; two famous examples are Minkowski’s space-time formalism, which provided the mathematical framework for specifying relativity, and number-theoretical research about factoring large numbers into primes, which made modern cryptography (and hence e-commerce) possible.

Negative numbers too required abstraction to acquire mathematical activity. That step required setting aside the appeal to intuition and considering the purely concepts solely through its posited properties. We computer scientists would say “applying the abstract data type approach”. The switch took place sometime in the middle of the 19th century, spurred among others by Évariste Galois. The German mathematician Hermann Hankel — who lived only a little longer than Galois — explained clearly how this transition occurred for negative numbers (cited by Boyé among others):

The [concept of] number is no longer today a thing, a substance that is supposed to exist outside of the thinking subject or the objects that lead to it being considered; it is no longer an independent principle, as the Pythagoreans thought. […] The mathematician considers as impossible only that which is logically impossible, in the sense of implying a contradiction. […] But if the numbers under study are logically possible, if the underlying concept is defined clearly and distinctly, the question can no longer be whether a substrate exists in the world of reality.

A very modern view: if you can dream it, and you can make it free of contradiction (well, Hankel lived in the blissful times before Gödel), then you can consider it exists. An engineer might replace the second of these conditions by: if you can build it. And a software engineer, by: if you can compile and run it. In the end it is all the same idea.

Formally: a general integer is an equivalence class

In modern mathematics, while no one forbids you from clinging for help to some concrete intuition such as the Celsius scale, it is not part of the definition. Negative numbers are formally defined members of the zoo.

For those interested (and not remembering the details), the rigorous definition goes like this. We start from zero-or-positive integers (the set N of “natural” numbers) and consider pairs [a, b] of numbers (as we would do to define rationals, but the sequel quickly diverges). We define an equivalence relation which holds with another pair [a’, b’] if a + b’ = a’ + b. Then we can define the set Z of all integers (positive, zero, negative) as the quotient of N x N by that relation. The intuition if that the characteristic property of an equivalence class, such as [1, 4], [2, 5],  [3, 6]… , is that b – a, the difference between the second and first values, is the same for all pairs: 3 in this example (4 – 1, 5 – 2, 6 – 3 etc.). At least that property holds for b >= a; since we are starting from N, subtraction is defined only in that case. But then if we take that quotient as the definition of Z, we call members of that set “negative”, by pure convention, whenever b < a (if this property holds for one of the pairs in an equivalence class it holds for all of them), and positive if b > a. Zero is obtained for a = b.

We reestablish the connection with our good old natural integers by identifying N with the subset of Z for which b >= a. (This is an informal statement; the correct technical phrasing is that there is a “bijection” — a one-to-one correspondence, in fact an isomorphism — between that subset and N.) So we have plunged, or “embedded”, N into something bigger, to which most of its treasured properties (associativity and commutativity of addition etc.) immediately spread, while some limitations disappear; in particular, unlike in N, we can now subtract any Z integer from any other.

We also get the opposites of numbers as a result: for any m in Z, we can easily prove that there is another one n such that m + n = 0. That n can be written -m. The property is true for both positive and negative numbers, concepts that are also easy to define: we show that “>” is one of those operations that extend from N to Z, and the positive numbers are those m such that m > 0. Then if m is positive -m is negative, and conversely; 0 is the only number for which m = -m.

Remarkably, Z too is in one-to-one correspondence with N. (It is one of the definitions of an infinite set that it can be in one-to-one correspondence with one of its strict subsets, something that is obviously not possible for a finite set. To shine in cocktail parties you can refer to this property as “Dedekind-infinite”.) In other words, we have uncovered yet a new attraction of Hilbert’s Grand Hotel: the hotel has an annex, ready for the case of a guest coming with an unannounced companion. The companion will be hosted in the annex, in a room uniquely paired with the original guest’s room. The annex is a second hotel, but it is not exactly like the first: it does not have an annex of its own in the form of yet another hotel. It does have an annex, but that is the original hotel (the hotel of which it itself is the annex).

If you were not aware of the construction through equivalence classes of pairs and your reaction is “so much ado about so little! I do not need any of this to understand negative numbers and to know that m + -m = 0”, well, maybe, but you are missing part of the story: the observation that even the “natural” numbers are not that natural. Those we can readily apprehend as part of “natural” reality are the ones from 1 to something like 1000,  denoting quantities that we can reasonably count. If you really have extraordinary patience and time make this 1000,000 or even 1 million, that does not change the argument.

Even zero, as noted, took millennia to be recognized as a number. Beyond the numbers that we can readily fathom in relation to our experience at human scale, the set of natural integers is also an intellectual fiction. (Its official construction in the modern mathematical canon is seemingly even more contorted than the extension to Z sketched above: N, in the so-called Zermelo-Fraenkel theory (more pickup lines for cocktail parties!) contains the empty set for 0, and then sets each containing the previous one and a set made of that previous one. It is clearer with symbols: ø, {ø}, {ø, {ø}}, {ø, {ø}, {ø, {ø}}}, ….)

Coming back to negative numbers, Riemann (1861, cited by Schubring) held their construction as a fundamental step in the generalization process that characterizes mathematics, beautifully explaining the process:

The original object of mathematics is the integer number; the field of study increases only gradually. This extension does not happen arbitrarily, however; it is always motivated by the fact that the initially restricted view leads toward a need for such an extension. Thus the task of subtraction requires us to seek such quantities, or to extend our concept of quantity in such a way that its execution is always possible, thus guiding us to the concept of the negative.

Nature and nurture

The generalization process is also a process of abstraction. The move away from the “natural” and “intuitive” is inevitable to understand negative numbers. All the misunderstandings and fears by great minds, reviewed above, were precisely caused by an exaggerated, desperate attempt to cling to supposedly natural concepts. And we only talked about negative numbers! Similar or worse resistance met the introduction of imaginary and complex numbers (the names themselves reflect the trepidation!), quaternions and other fruitful but artificial creation of mathematics. Millenia before, the Greeks experienced shock when they realized that numbers such as π and the square root of 2 could not be expressed as ratios of integers.

Innovation occurs when someone sets out to disprove a statement of impossibility. (This technique also lies behind one approach to solving puzzles and riddles: you despair that there is no way out; then try to prove that there is no solution. Failing to complete that proof might end up opening for you the path to one.)

Parallels exist between innovators and children. Children do not know yet that some things are impossible; they make up ways. Right now I am sitting next to the Rhine and I would gladly take a short walk on the other bank, but I do not want to go all the way to the bridge and back. If I were 4 years old, I would dream up some magic carpet or other fancy device, inferred from bedtime stories, that would instantly transport me there. We grow up and learn that there are no magic carpets, but true innovators who see an unsolved problem refuse to accept that state of affairs.

In their games, children often use the conditional: “I would be a princess, and you would be a magician!”. Innovators do this too when they refuse to be stopped by conventional-wisdom statements of impossibility. They set out to disprove the statements. The French expression “prouver le mouvement en marchant”, prove movement by walking, refers to the Greek philosophers Diogenes of Sinope and  Zeno of Elea. Zeno, the story goes, used the paradox of Achilles and the tortoise to claim he had proved that movement is impossible. Diogenes proved the reverse by starting to walk.

In mathematics and in computer science, we are even more like children because we can in fact summon our magic carpets — build anything we dream of, provided we can define it properly. Mathematics and computer science are among the best illustrations of Yuval Noah Harari’s thesis that a defining characteristic of the human race is our ability to tell ourselves stories, including very large and complex stories. A mathematical theory is a story that we tell ourselves and to which we can convert other mathematicians (plus, if the theory is really successful, generations of future students). Computer programs are the same with the somewhat lateral extra condition that we must also enable some computing system to execute it, although that system is itself a powerful story that has undergone the same process. You can find variants of these observations in such famous pronouncements as Butler Lampson’s “in computer science, we can solve any problem by introducing an extra level of indirection” and Alan Kay‘s  “the best way to predict the future is to invent it”.

There is a difference, however, with children’s role-playing; and it can have dramatic effects. Children can indulge in make-believe for quite some time, continuing to live their illusions until they grow up and become reasonable. Normally they will not experience bad consequences (well, apart from the child who believes a little too hard, or from a window little too high, that his arms really are wings.) In adult innovation, sooner or later you have to reconcile the products of your imagination with the world. It may be the physical world (your autonomous robot was fantastic in the lab but it requires heavy batteries making it impractical), but things are just as bad with the virtual world of mathematics or software. It is great to define and extend your own freaky artificial worlds, but at some point you have to make sure they are consistent not just with already defined worlds but with themselves. As noted earlier, a mathematical concoction, however audacious, should be free of contradictions; and a software concept, however powerful, should be implementable. (Efficiently implementable.)

By any measure the most breathtaking virtual construction of modern mathematics is Cantor’s set theory, which scared many mathematicians,  the way negative numbers had terrified their predecessors. (Case in point: the editor of a journal to which Cantor had submitted a paper wrote that it was “a hundred years too soon”.  Cantor did not want to wait until 1984. The great mathematician Kronecker described him as “a corrupter of youth”. And so on.) More enlightened colleagues, however, soon recognized the work as ushering in a new era. Hilbert, in particular, was a great supporter, as were many of the top names in several countries. Then intellectual disaster struck.

Cantor himself and others, most famously Russell in a remark included in a letter of Frege, noticed a problem. If sets can contain other sets, and even contain themselves (the set of infinite sets must be infinite), what do we make of the set of all sets that do not contain themselves? Variants of this simple question so shook the mathematical edifice that it took a half-century to put things back in order.

Dream, check, build

Cantor, for his part, went into depression and illness. He died destitute and desperate. There may not have been a direct cause-to-effect relationship, but certainly the intellectual rejection and crisis did not help.

All the sadder that in the end set theory, after significant cleanup, turned out to be one of the biggest successes of history. We still discuss the paradoxes, but it is unlikely that today they prevent anyone from sleeping soundly at night.

Unlike those genuinely disturbing paradoxes of set theory, the paradoxes that led mathematicians of previous centuries to reject negative numbers were apparent only. They were not paradoxes but tokens of intellectual timidity.

The sole reason for fearing and skirting negative numbers was an inability to accept a construction that contradicted a simplistic view of physical reality. Like object-oriented programming and many other bold advances, all that was required was the audacity to take imagined abstractions seriously.

Dream it; check it; build it.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Freely accessible books

Recently I prepared some of my books for free access on the Web (after gaining agreement from the publishers). Here are the corresponding links. They actually point to pages that present the respective books and have further links to the actual PDF versions.

Although the texts are essentially those of the books as published, I was able in most cases to make some improvements, in particular to the formatting, and to introduce some hyperlinking, for example in table of contents, to facilitate online navigation.

If you cite any of these books please use the links given here. Then you know that you are referring your readers to a legal and up-to-date version. In particular, there are a plethora of pirated copies of Object-Oriented Software Construction on various sites, with bad formatting, no copyright acknowledgment, and none of the improvements.   academia.edu hosts one of them, downloadable. I wrote to them and they did not even answer.

Here are the books and the links.

  • Introduction to the Theory of Programming Languages (Prentice Hall, 1990):  A general introduction to formal reasoning about programs and programming languages. Written without a heavy formal baggage so as to be understandable by programmers who do not have a special mathematical background. Full text freely available from here.
  • Object Success (Prentice Hall, 1995): . A general presentation of object technology, meant in particular for managers and decision-makers, presenting the essential OO ideas and their effect on project management and corporate culture. Full text freely available from here.
  • Object-Oriented Software Construction, 2nd edition (Prentice Hall, 1997): . The best-known of my books, providing an extensive (and long!) presentation of object technology, with particular emphasis on software engineering aspects, including Design by Contract. Introduced many ideas including some of the now classic design patterns (Command, called “undo-redo”, Bridge, called “handle” etc. Full text freely available from here.

In addition, let me include links to recent books published by Springer; they are not freely available, but many people can gain free access through their institutions:

  • Touch of Class: An Introduction to Programming Well Using Objects and Contracts. My introductory programming textbook, used in particular for many years for the intro programming course, altogether to something like 6000 students over 14 years, at ETH Zurich (and nourished by experience). The Springer page with  the text (paywall) is here. There is also my own freely accessible book page with substantial extracts (read for example the chapter on recursion): here.
  • Agile! The Good, the Hype and the Ugly A widely used presentation of agile methods, serving both as tutorial and as critique. The Springer page with  the text (paywall) is here. There is also my own freely accessible book page with substantial extracts: here.
  • Handbook of Requirements and Business Analysis (Springer, 2022). A short but extensive textbook on requirements engineering. The Springer page with  the text (paywall) is here. My own book page, which will soon have substantial extracts and supplementary material, is here.

Also note the volume which I recently edited, The French School of Programming, Springer, 2024, with 13 chapters by top French computer scientists (and a chapter by me). The Springer page  is here.

My full list of books is here. Full publication list in chronological order: here.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

The French School of Programming

July 14 (still here for 15 minutes) is not a bad opportunity to announced the publication of a new book: The French School of Programming.

The book is a collection of chapters, thirteen of them, by rock stars of programming and software engineering research (plus me), preceded by a Foreword by Jim Woodcock and a Preface by me. The chapters are all by a single author, reflecting the importance that the authors attached to the project. Split into four sections after chapter 1, the chapters are, in order:

1. The French School of Programming: A Personal View, by Gérard Berry (serving as a general presentation of the subsequent chapters).

Part I: Software Engineering

2. “Testing Can Be Formal Too”: 30 Years Later, by  Marie-Claude Gaudel

3. A Short Visit to Distributed Computing Where Simplicity Is Considered a First-Class Property, by Michel Raynal

4. Modeling: From CASE Tools to SLE and Machine Learning, by Jean-Marc Jézéquel

5. At the Confluence of Software Engineering and Human-Computer Interaction: A Personal Account,  by Joëlle Coutaz

Part II:  Programming Language Mechanisms and Type Systems

6. From Procedures, Objects, Actors, Components, Services, to Agents, by  Jean-Pierre Briot

7. Semantics and Syntax, Between Computer Science and Mathematics, by Pierre-Louis Curien

8. Some Remarks About Dependent Type Theory, by Thierry Coquand

Part III: Theory

9. A Personal Historical Perspective on Abstract Interpretation, by Patrick Cousot

10. Tracking Redexes in the Lambda Calculus, by  Jean-Jacques Lévy

11. Confluence of Terminating Rewriting Computations, by  Jean-Pierre Jouannaud

Part IV: Language Design and Programming Methodology

12. Programming with Union, Intersection, and Negation Types, by Giuseppe Castagna

13, Right and Wrong: Ten Choices in Language Design, by Bertrand Meyer

What is the “French School of Programming”? As discussed in the Preface (although Jim Woodcock’s Foreword does not entirely agree) it is not anything defined in a formal sense, as the variety of approaches covered in the book amply demonstrates. What could be more different (for example) than Coq, OCaml (extensively referenced by several chapters) and Eiffel? Beyond the differences, however, there is a certain je ne sais quoi of commonality; to some extent, in fact, je sais quoi: reliance on mathematical principles, a constant quest for simplicity, a taste for elegance. It will be for the readers to judge.

Being single authors of their chapters, the authors felt free to share some of their deepest insights an thoughts. See for example Thierry Coquand’s discussion of the concepts that led to the widely successful Coq proof system, Marie-Claude Gaudel’s new look at her seminal testing work of 30 years ago, and Patrick Cousot’s detailed recounting of the intellectual path that led him and Radhia to invent abstract interpretation.


The French School of Programming
Edited by Bertrand Meyer
Springer, 2024. xxiv + 439 pages

Book page on Springer site
Amazon US page
Amazon France page
Amazon Germany page

The book is expensive (I tried hard to do something about it, and failed). But many readers should be able to download it, or individual chapters, for free through their institutions.

It was a privilege for me to take this project to completion and work with such extraordinary authors who produced such a collection of gems.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Niklaus Wirth and the Importance of Being Simple

[This is a verbatim copy of a post in the Communications of the ACM blog, 9 January 2024.]

I am still in shock from the unexpected death of Niklaus Wirth eight days ago. If you allow a personal note (not the last one in this article): January 11, two days from now, was inscribed in my mind as the date of the next time he was coming to my home for dinner. Now it is the date set for his funeral.

standing

Niklaus Wirth at the ACM Turing centenary celebration
San Francisco, 16 June 2012
(all photographs in this article are by B. Meyer)

A more composed person would wait before jotting down thoughts about Wirth’s contributions but I feel I should do it right now, even at the risk of being biased by fresh emotions.

Maybe I should first say why I have found myself, involuntarily, writing obituaries of computer scientists: Kristen Nygaard and Ole-Johan Dahl, Andrey Ershov, Jean Ichbiah, Watts Humphrey, John McCarthy, and most recently Barry Boehm (the last three in this very blog). You can find the list with comments and links to the eulogy texts on the corresponding section of my publication page. The reason is simple: I have had the privilege of frequenting giants of the discipline, tempered by the sadness of seeing some of them go away. (Fortunately many others are still around and kicking!) Such a circumstance is almost unbelievable: imagine someone who, as a student and young professional, discovered the works of Galileo, Descartes, Newton, Ampère, Faraday, Einstein, Planck and so on, devouring their writings and admiring their insights — and later on in his career got to meet all his heroes and conduct long conversations with them, for example in week-long workshops, or driving from a village deep in Bavaria (Marktoberdorf) to Munich airport. Not possible for a physicist, of course, but exactly the computer science equivalent of what happened to me. It was possible for someone of my generation to get to know some of the giants in the field, the founding fathers and mothers. In my case they included some of the heroes of programming languages and programming methodology (Wirth, Hoare, Dijkstra, Liskov, Parnas, McCarthy, Dahl, Nygaard, Knuth, Floyd, Gries, …) whom I idolized as a student without every dreaming that I would one day meet them. It is natural then to should share some of my appreciation for them.

My obituaries are neither formal, nor complete, nor objective; they are colored by my own experience and views. Perhaps you object to an author inserting himself into an obituary; if so, I sympathize, but then you should probably skip this article and its companions and go instead to Wikipedia and official biographies. (In the same vein, spurred at some point by Paul Halmos’s photographic record of mathematicians, I started my own picture gallery. I haven’t updated it recently, and the formatting shows the limits of my JavaScript skills, but it does provide some fresh, spontaneous and authentic snapshots of famous people and a few less famous but no less interesting ones. You can find it here. The pictures of Wirth accompanying this article are taken from it.)

liskov

Niklaus Wirth, Barbara Liskov, Donald Knuth
(ETH Zurich, 2005, on the occasion of conferring honorary doctorates to Liskov and Knuth)

A peculiarity of my knowledge of Wirth is that unlike his actual collaborators, who are better qualified to talk about his years of full activity, I never met him during that time. I was keenly aware of his work, avidly getting hold of anything he published, but from a distance. I only got to know him personally after his retirement from ETH Zurich (not surprisingly, since I joined ETH because of that retirement). In the more than twenty years that followed I learned immeasurably from conversations with him. He helped me in many ways to settle into the world of ETH, without ever imposing or interfering.

I also had the privilege of organizing in 2014, together with his longtime colleague Walter Gander, a symposium in honor of his 80th birthday, which featured a roster of prestigious speakers including some of the most famous of his former students (Martin Oderski, Clemens Szyperski, Michael Franz…) as well as Vint Cerf. Like all participants in this memorable event (see here for the program, slides, videos, pictures…) I learned more about his intellectual rigor and dedication, his passion for doing things right, and his fascinating personality.

Some of his distinctive qualities are embodied in a book published on the occasion of an earlier event, School of Niklaus Wirth: The Art of Simplicity (put together by his close collaborator Jürg Gutknecht together with Laszlo Boszormenyi and Gustav Pomberger; see the Amazon page). The book, with its stunning white cover, is itself a model of beautiful design achieved through simplicity. It contains numerous reports and testimonials from his former students and colleagues about the various epochs of Wirth’s work.

bauer

Niklaus Wirth (right)
with F.L. Bauer, one of the founders of German computer science
Zurich,22 June 2005

Various epochs and many different topics. Like a Renaissance man, or one of those 18-th century “philosophers” who knew no discipline boundaries, Wirth straddled many subjects. It was in particular still possible (and perhaps necessary) in his generation to pay attention to both hardware and software. Wirth is most remembered for his software work but he was also a hardware builder. The influence of his PhD supervisor, computer design pioneer and UC Berkeley professor Harry Huskey, certainly played a role.

Stirred by the discovery of a new world through two sabbaticals at Xerox PARC (Palo Alto Research Center, the mother lode of invention for many of today’s computer techniques) but unable to bring the innovative Xerox machines to Europe, Wirth developed his own modern workstations, Ceres and Lilith. (Apart from the Xerox stays, Wirth spent significant time in the US and Canada: University of Laval for his master degree, UC Berkeley for his PhD, then Stanford, but only as an assistant professor, which turned out to be Switzerland’s and ETH’s gain, as he returned in 1968,)

 

lilith

Lilith workstation and its mouse
(Public display in the CAB computer science building at ETH Zurich)

One of the Xerox contributions was the generalized use of the mouse (the invention of Doug Englebart at the nearby SRI, then the Stanford Research Institute). Wirth immediately seized on the idea and helped found the Logitech company, which soon became, and remains today, a world leader in mouse technology.
Wirth returned to hardware-software codesign late in his career, in his last years at ETH and beyond, to work on self-driving model helicopters (one might say to big drones) with a Strong-ARM-based hardware core. He was fascinated by the goal of maintaining stability, a challenge involving physics, mechanical engineering, electronic engineering in addition to software engineering.
These developments showed that Wirth was as talented as an electronics engineer and designer as he was in software. He retained his interest in hardware throughout his career; one of his maxims was indeed that the field remains driven by hardware advances, which make software progress possible. For all my pride as a software guy, I must admit that he was largely right: object-oriented programming, for example, became realistic once we had faster machines and more memory.

Software is of course what brought him the most fame. I struggle not to forget any key element of his list of major contributions. (I will come back to this article when emotions abate, and will add a proper bibliography of the corresponding Wirth publications.) He showed that it was possible to bring order to the world of machine-level programming through his introduction of the PL/360 structured assembly language for the IBM 360 architecture. He explained top-down design (“stepwise refinement“), as no one had done before, in a beautiful article that forever made the eight-queens problem famous. While David Gries had in his milestone book Compiler Construction for Digital Computers established compiler design as a systematic discipline, Wirth showed that compilers could be built simply and elegantly through recursive descent. That approach had a strong influence on language design, as will be discussed below in relation to Pascal.

The emphasis simplicity and elegance carried over to his book on compiler construction. Another book with the stunning title Algorithms + Data Structures = Programs presented a clear and readable compendium of programming and algorithmic wisdom, collecting the essentials of what was known at the time.

And then, of course, the programming languages. Wirth’s name will forever remained tied to Pascal, a worldwide success thanks in particular to its early implementations (UCSD Pascal, as well as Borland Pascal by his former student Philippe Kahn) on microcomputers, a market that was exploding at just that time. Pascal’s dazzling spread was also helped by another of Wirth’s trademark concise and clear texts, the Pascal User Manual and Report, written with Kathleen Jensen. Another key component of Pascal’s success was the implementation technique, using a specially designed intermediate language, P-Code, the ancestor of today’s virtual machines. Back then the diversity of hardware architectures was a major obstacle to the spread of any programming language; Wirth’s ETH compiler produced P-Code, enabling anyone to port Pascal to a new computer type by writing a translator from P-Code to the appropriate machine code, a relatively simple task.

Here I have a confession to make: other than the clear and simple keyword-based syntax, I never liked Pascal much. I even have a snide comment in my PhD thesis about Pascal being as small, tidy and exciting as a Swiss chalet. In some respects, cheekiness aside, I was wrong, in the sense that the limitations and exclusions of the language design were precisely what made compact implementations possible and widely successful. But the deeper reason for my lack of enthusiasm was that I had fallen in love with earlier designs from Wirth himself, who for several years, pre-Pascal, had been regularly churning out new language proposals, some academic, some (like PL/360) practical. One of the academic designs I liked was Euler, but I was particularly keen about Algol W, an extension and simplification of Algol 60 (designed by Wirth with the collaboration of Tony Hoare, and implemented in PL/360). I got to know it as a student at Stanford, which used it to teach programming. Algol W was a model of clarity and elegance. It is through Algol W that I started to understand what programming really is about; it had the right combination of freedom and limits. To me, Pascal, with all its strictures, was a step backward. As an Algol W devotee, I felt let down.
Algol W played, or more precisely almost played, a historical role. Once the world realized that Algol 60, a breakthrough in language design, was too ethereal to achieve practical success, experts started to work on a replacement. Wirth proposed Algol W, which the relevant committee at IFIP (International Federation for Information Processing) rejected in favor of a competing proposal by a group headed by the Dutch computer scientist (and somewhat unrequited Ph.D. supervisor of Edsger Dijkstra) Aad van Wijngaarden.

Wirth recognized Algol 68 for what it was, a catastrophe. (An example of how misguided the design was: Algol 68 promoted the concept of orthogonality, roughly stating that any two language mechanisms could be combined. Very elegant in principle, and perhaps appealing to some mathematicians, but suicidal: to make everything work with everything, you have to complicate the compiler to unbelievable extremes, whereas many of these combinations are of no use whatsoever to any programmer!) Wirth was vocal in his criticism and the community split for good. Algol W was a casualty of the conflict, as Wirth seems to have decided in reaction to the enormity of Algol 68 that simplicity and small size were the cardinal virtues of a language design, leading to Pascal, and then to its modular successors Modula and Oberon.

Continuing with my own perspective, I admired these designs, but when I saw Simula 67 and object-oriented programming I felt that I had come across a whole new level of expressive power, with the notion of class unifying types and modules, and stopped caring much for purely modular languages, including Ada as it was then. A particularly ill-considered feature of all these languages always irked me: the requirement that every module should be declared in two parts, interface and implementation. An example, in my view, of a good intention poorly realized and leading to nasty consequences. One of these consequences is that the information in the interface part inevitably gets repeated in the implementation part. Repetition, as David Parnas has taught us, is (particularly in the form of copy-paste) the programmer’s scary enemy. Any change needs to be checked and repeated in both the original and the duplicate. Any bug needs to be fixed in both. The better solution, instead of the interface-implementation separation, is to write everything in one place (the class of object-oriented programming) and then rely on tools to extract, from the text, the interface view but also many other interesting views abstracted from the text.

In addition, modular languages offer one implementation for each interface. How limiting! With object-oriented programming, you use inheritance to provide a general version of an abstraction and then as many variants as you like, adding them as you see fit (Open-Closed Principle) and not repeating the common information. These ideas took me towards a direction of language design completely different from Wirth’s.

One of his principles in language design was that it should be easy to write a compiler — an approach that paid off magnificently for Pascal. I mentioned above the beauty of recursive-descent parsing (an approach which means roughly that you parse a text by seeing how it starts, deducing the structure that you expect to follow, then applying the same technique recursively to the successive components of the expected structure). Recursive descent will only work well if the language is LL (1) or very close to it. (LL (1) means, again roughly, that the first element of a textual component unambiguously determines the syntactic type of that component. For example the instruction part of a language is LL (1) if an instruction is a conditional whenever it starts with the keyword if, a loop whenever it starts with the keyword while, and an assignment variable := expression whenever it starts with a variable name. Only with a near-LL (1) structure is recursive descent recursive-decent.) Pascal was designed that way.

A less felicitous application of this principle was Wirth’s insistence on one-pass compilation, which resulted in Pascal requiring any use of indirect recursion to include an early announcement of the element — procedure or data type — being used recursively. That is the kind of thing I disliked in Pascal: transferring (in my opinion) some of the responsibilities of the compiler designer onto the programmer. Some of those constraints remained long after advances in hardware and software made the insistence on one-pass compilation seem obsolete.

What most characterized Wirth’s approach to design — of languages, of machines, of software, of articles, of books, of curricula — was his love of simplicity and dislike of gratuitous featurism. He most famously expressed this view in his Plea for Lean Software article. Even if hardware progress drives software progress, he could not accept what he viewed as the lazy approach of using hardware power as an excuse for sloppy design. I suspect that was the reasoning behind the one-compilation-pass stance: sure, our computers now enable us to use several passes, but if we can do the compilation in one pass we should since it is simpler and leaner.
As in the case of Pascal, this relentless focus could be limiting at times; it also led him to distrust artificial intelligence, partly because of the grandiose promises its proponents were making at the time. For many years indeed, AI never made it into ETH computer science. I am talking here of the classical, logic-based form of AI; I had not yet had the opportunity to ask Niklaus what he thought of the modern, statistics-based form. Perhaps the engineer in him would have mollified his attitude, attracted by the practicality and well-defined scope of today’s AI methods. I will never know.

As to languages, I was looking forward to more discussions; while I wholeheartedly support his quest for simplicity, size to me is less important than simplicity of the structure and reliance on a small number of fundamental concepts (such as data abstraction for object-oriented programming), taken to their full power, permeating every facet of the language, and bringing consistency to a powerful construction.

Disagreements on specifics of language design are normal. Design — of anything — is largely characterized by decisions of where to be dogmatic and where to be permissive. You cannot be dogmatic all over, or will end with a stranglehold. You cannot be permissive all around, or will end with a mess. I am not dogmatic about things like the number of compiler passes: why care about having one, two, five or ten passes if they are fast anyway? I care about other things, such as the small number of basic concepts. There should be, for example, only one conceptual kind of loop, accommodating variants. I also don’t mind adding various forms of syntax for the same thing (such as, in object-oriented programming, x.a := v as an abbreviation for the conceptually sound x.set_a (v)). Wirth probably would have balked at such diversity.

In the end Pascal largely lost to its design opposite, C, the epitome of permissiveness, where you can (for example) add anything to almost anything. Recent languages went even further, discarding notions such as static types as dispensable and obsolete burdens. (In truth C is more a competitor to P-Code, since provides a good target for compilers: its abstraction level is close to that of the computer and operating system, humans can still with some effort decipher C code, and a C implementation is available by default on most platforms. A kind of universal assembly language. Somehow, somewhere, the strange idea creeped into people’s minds that it could also be used as a notation for human programmers.)

In any case I do not think Niklaus followed closely the evolution of the programming language field in recent years, away from principles of simplicity and consistency; sometimes, it seems, away from any principles at all. The game today is mostly “see this cute little feature in my language, I bet you cannot do as well in yours!” “Oh yes I can, see how cool my next construct is!“, with little attention being paid to the programming language as a coherent engineering construction, and even less to its ability to produce correct, robust, reusable and extendible software.

I know Wirth was horrified by the repulsive syntax choices of today’s dominant languages; he could never accept that a = b should mean something different from b = a, or that a = a + 1 should even be considered meaningful. The folly of straying away from conventions of mathematics carefully refined over several centuries (for example by distorting “=” to mean assignment and resorting to a special symbol for equality, rather than the obviously better reverse) depressed him. I remain convinced that the community will eventually come back to its senses and start treating language design seriously again.

One of the interesting features of meeting Niklaus Wirth the man, after decades of studying from the works of Professor Wirth the scientist, was to discover an unexpected personality. Niklaus was an affable and friendly companion, and most strikingly an extremely down-to-earth person. On the occasion of the 2014 symposium we were privileged to meet some of his children, all successful in various walks of life: well-known musician in the Zurich scene, specialty shop owner… I do not quite know how to characterize in words his way of speaking (excellent) English, but it is definitely impossible to forget its special character, with its slight but unmistakable Swiss-German accent (also perceptible in German). To get an idea, just watch one of the many lecture videos available on the Web. See for example the videos from the 2014 symposium mentioned above, or this full-length interview recorded in 2018 as part of an ACM series on Turing Award winners.

On the “down-to-earth” part: computer scientists, especially of the first few generations, tend to split into the mathematician types and the engineer types. He was definitely the engineer kind, as illustrated by his hardware work. One of his maxims for a successful career was that there are a few things that you don’t want to do because they are boring or feel useless, but if you don’t take care of them right away they will come back and take even more of your time, so you should devote 10% of that time to discharge them promptly. (I wish I could limit that part to 10%.)

He had a witty, subtle — sometimes caustic — humor. Here is a Niklaus Wirth story. On the seventh day of creation God looked at the result. (Side note: Wirth was an atheist, which adds spice to the choice of setting for the story.) He (God) was pretty happy about it. He started looking at the list of professions and felt good: all — policeman, minister, nurse, street sweeper, interior designer, opera singer, personal trainer, supermarket cashier, tax collector… — had some advantages and some disadvantages. But then He got to the University Professor row. The Advantages entry was impressive: long holidays, decent salary, you basically get to do what you want, and so on; but the Disadvantages entry was empty! Such a scandalous discrepancy could not be tolerated. For a moment, a cloud obscured His face. He thought and thought and finally His smile came back. At that point, He had created colleagues.

When the computing world finally realizes that design needs simplicity, it will do well to go back to Niklaus Wirth’s articles, books and languages. I can think of only a handful of people who have shaped the global hardware and software industry in a comparable way. Niklaus Wirth is, sadly, sadly gone — and I still have trouble accepting that he will not show up for dinner, on Thursday or ever again — but his legacy is everywhere.

VN:F [1.9.10_1130]
Rating: 9.8/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

New article: scenarios versus OO requirements

Maria Naumcheva, Sophie Ebersold, Alexandr Naumchev, Jean-Michel Bruel, Florian Galinier and Bertrand Meyer: Object-Oriented Requirements: a Unified Framework for Specifications, Scenarios and Tests, in JOT (Journal of Object Technology), vol. 22, no. 1, pages 1:1-19, 2023. Available here with link to PDF  (the journal is open-access).

From the abstract:

A paradox of requirements specifications as dominantly practiced in the industry is that they often claim to be object-oriented (OO) but largely rely on procedural (non-OO) techniques. Use cases and user stories describe functional flows, not object types.

To gain the benefits provided by object technology (such as extendibility, reusability, and reliability), requirements should instead take advantage of the same data abstraction concepts – classes, inheritance, information hiding – as OO design and OO programs.

Many people find use cases and user stories appealing because of the simplicity and practicality of the concepts. Can we reconcile requirements with object-oriented principles and get the best of both worlds?

This article proposes a unified framework. It shows that the concept of class is general enough to describe not only “object” in a narrow sense but also scenarios such as use cases and user stories and other important artifacts such as test cases and oracles. Having a single framework opens the way to requirements that enjoy the benefits of both approaches: like use cases and user stories, they reflect the practical views of stakeholders; like object-oriented requirements, they lend themselves to evolution and reuse.

The article builds in part on material from chapter 7 of my requirements book (Handbook of Requirements and Business Analysis, Springer).

VN:F [1.9.10_1130]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

“Object Success” now available

A full, free online version of Object Success
(1995)

success_cover

 

I am continuing the process of releasing some of my earlier books. Already available: Introduction to the Theory of Programming Languages (see here) and Object-Oriented Software Construction, 2nd edition (see here). The latest addition is Object Success, a book that introduced object technology to managers and more generally emphasized the management and organizational consequences of OO ideas.

The text (3.3 MB) is available here for download.

Copyright notice: The text is not in the public domain. It is copyrighted material (© Bertrand Meyer, 1995, 2023), made available free of charge on the Web for the convenience of readers, with the permission of the original publisher (Prentice Hall, now Pearson Education, Inc.). You are not permitted to copy it or redistribute it. Please refer others to the present version at bertrandmeyer.com/success.

(Please do not bookmark or share the above download link as it may change, but use the present page: https:/bertrandmeyer.com/success.) The text is republished identically, with minor reformatting and addition of some color. (There is only one actual change, a mention of the evolution of hardware resources, on page 136, plus a reference to a later book added to a bibliography section on page 103.) This electronic version is fully hyperlinked: clicking entries in the table of contents and index, and any element in dark red such as the page number above, will take you to the corresponding place in the text.

The book is a presentation of object technology for managers and a discussion of management issues of modern projects. While it is almost three decades old and inevitably contains some observations that will sound naïve  by today’s standards, I feel  it retains some of its value. Note in particular:

  • The introduction of a number of principles that went radically against conventional software engineering wisdom and were later included in agile methods. See Agile! The Good, the Hype and the Ugly, Springer, 2014, book page at agile.ethz.ch.
  • As an important example, the emphasis on the primacy of code. Numerous occurrences of the argument throughout the text. (Also, warnings about over-emphasizing analysis, design and other products, although unlike “lean development” the text definitely does not consider them to be “waste”. See the “bubbles and arrows of outrageous fortune”, page 80.)
  • In the same vein, the emphasis on incremental development.
  • Yet another agile-before-agile principle: Less-Is-More principle (in “CRISIS REMEDY”, page 133).
  • An analysis of the role of managers (chapters 7 to 9) which remains largely applicable, and I believe more realistic than the agile literature’s reductionist view of managers.
  • A systematic analysis of what “prototyping” means for software (chapter 4), distinguishing between desirable and less good forms.
  • Advice on how to salvage projects undergoing difficulties or crises (chapters 7 and 9).
  • A concise exposition of OO concepts (chapter 1 and appendix).
  • A systematic discussion of software lifecycle models (chapter 3), including the “cluster model”. See new developments on this topic in my recent “Handbook of Requirements and Business Analysis”, Springer, 2022, book page at bertrandmeyer.com/requirements.
  • More generally, important principles from which managers (and developers) can benefit today just as much as at the time of publication.

The download link again (3.3 MB): here it is.

VN:F [1.9.10_1130]
Rating: 9.4/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

New book: the Requirements Handbook

cover

I am happy to announce the publication of the Handbook of Requirements and Business Analysis (Springer, 2022).

It is the result of many years of thinking about requirements and how to do them right, taking advantage of modern principles of software engineering. While programming, languages, design techniques, process models and other software engineering disciplines have progressed considerably, requirements engineering remains the sick cousin. With this book I am trying to help close the gap.

pegsThe Handbook introduces a comprehensive view of requirements including four elements or PEGS: Project, Environment, Goals and System. One of its principal contributions is the definition of a standard plan for requirements documents, consisting of the four corresponding books and replacing the obsolete IEEE 1998 structure.

The text covers both classical requirements techniques and novel topics such as object-oriented requirements and the use of formal methods.

The successive chapters address: fundamental concepts and definitions; requirements principles; the Standard Plan for requirements; how to write good requirements; how to gather requirements; scenario techniques (use cases, user stories); object-oriented requirements; how to take advantage of formal methods; abstract data types; and the place of requirements in the software lifecycle.

The Handbook is suitable both as a practical guide for industry and as a textbook, with over 50 exercises and supplementary material available from the book’s site.

You can find here a book page with the preface and sample chapters.

To purchase the book, see the book page at Springer and the book page at Amazon US.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Introduction to axiomatic semantics

itplI have released for general usage the chapter on axiomatic semantics of my book Introduction to the Theory of Programming Languages. It’s old but I think it is still a good introduction to the topic. It explains:

  • The notion of theory (with a nice — I think — example borrowed from an article by Luca Cardelli: axiomatizing types in lambda calculus).
  • How to axiomatize a programming language.
  • The notion of assertion.
  • Hoare-style pre-post semantics, dealing with arrays, loop invariants etc.
  • Dijkstra’s calculus of weakest preconditions.
  • Non-determinism.
  • Dealing with routines and recursion.
  • Assertion-guided program construction (in other words, correctness by construction), design heuristics (from material in an early paper at IFIP).
  • 26 exercises.

The text can be found at

https://se.inf.ethz.ch/~meyer/publications/theory/09-axiom.pdf

It remains copyrighted but can be used freely. It was available before since I used it for courses on software verification but the link from my publication page was broken. Also, the figures were missing; I added them back.

I thought I only had the original (troff) files, which I have no easy way to process today, but just found PDFs for all the chapters, likely produced a few years ago when I was still able to put together a working troff setup. They are missing the figures, which I have to scan from a printed copy and reinsert. I just did it for the chapter on mathematical notations, chapter 2, which you can find at https://se.inf.ethz.ch/~meyer/publications/theory/02-math.pdf. If there is interest I will release all chapters (with corrections of errata reported by various readers over the years).

The chapters of the book are:

  • (Preface)
  1. Basic concepts
  2. Mathematical background (available through the link above).
  3. Syntax (introduces formal techniques for describing syntax, included a simplified BNF).
  4. Semantics: the main approaches (overview of the techniques described in detail in the following chapters).
  5. Lambda calculus.
  6. Denotational semantics: fundamentals.
  7. Denotational semantics: language features (covers denotational-style specifications of records, arrays, input/output etc.).
  8. The mathematics of recursion (talks in particular about iterative methods and fixpoints, and the bottom-up interpretation of recursion, based on work by Gérard Berry).
  9. Axiomatic semantics (available through the link above).
  10. Complementary semantic definitions (establishing a clear relationship between different specifications, particular axiomatic and denotational).
  • Bibliography

Numerous exercises are included. The formal models use throughout a small example language called Graal (for “Great Relief After Ada Lessons”).  The emphasis is on understanding programming and programming languages through simple mathematical models.

VN:F [1.9.10_1130]
Rating: 8.2/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

OOSC-2 available online (officially)

My book Object-Oriented Software Construction, 2nd edition (see the Wikipedia page) has become hard to get. There are various copies floating around the Web but they often use bad typography (wrong colors) and are unauthorized.

In response to numerous requests and in anticipation of the third edition I have been able to make it available electronically (with the explicit permission of the original publisher).

You can find the link on another page on this site. (In sharing or linking please use that page, not the URL of the actual PDF which might change.)

I hope having the text freely available proves useful.

 

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Some contributions

Science progresses through people taking advantage of others’ insights and inventions. One of the conditions that makes the game possible is that you acknowledge what you take. For the originator, it is rewarding to see one’s ideas reused, but frustrating when that happens without acknowledgment, especially when you are yourself punctilious about citing your own sources of inspiration.

I have started to record some concepts that are widely known and applied today and which I believe I originated in whole or in part, whether or not their origin is cited by those who took them. The list below is not complete and I may update it in the future. It is not a list of ideas I contributed, only of those fulfilling two criteria:

  • Others have built upon them.  (If there is an idea that I think is great but no one paid attention to it, the list does not include it.)
  • They have gained wide visibility.

There is a narcissistic aspect to this exercise and if people want to dismiss it as just showing I am full of myself so be it. I am just a little tired of being given papers to referee that state that genericity was invented by Java, that no one ever thought of refactoring before agile methods, and so on. It is finally time to state some facts.

Facts indeed: I back every assertion by precise references. So if I am wrong — i.e. someone preceded me — the claims of precedence can be refuted; if so I will update or remove them. All articles by me cited in this note are available (as downloadable PDFs) on my publication page. (The page is up to date until 2018; I am in the process of adding newer publications.)

Post-publication note: I have started to receive some comments and added them in a Notes section at the end; references to those notes are in the format [A].

Final disclaimer (about the narcissistic aspect): the exercise of collecting such of that information was new for me, as I do not usually spend time reflecting on the past. I am much more interested in the future and definitely hope that my next contributions will eclipse any of the ones listed below.

Programming concepts: substitution principle

Far from me any wish to under-represent the seminal contributions of Barbara Liskov, particularly her invention of the concept of abstract data type on which so much relies. As far as I can tell, however, what has come to be known as the “Liskov Substitution Principle” is essentially contained in the discussion of polymorphism in section 10.1 of in the first edition (Prentice Hall, 1988) of my book Object-Oriented Software Construction (hereafter OOSC1); for example, “the type compatibility rule implies that the dynamic type is always a descendant of the static type” (10.1.7) and “if B inherits from A, the set of objects that can be associated at run time with an entity [generalization of variable] includes instances of B and its descendants”.

Perhaps most tellingly, a key aspect of the substitution principle, as listed for example in the Wikipedia entry, is the rule on assertions: in a proper descendant, keep the invariant, keep or weaken the precondition, keep or strengthen the postcondition. This rule was introduced in OOSC1, over several pages in section 11.1. There is also an extensive discussion in the article Eiffel: Applying the Principles of Object-Oriented Design published in the Journal of Systems and Software, May 1986.

The original 1988 Liskov article cited (for example) in the Wikipedia entry on the substitution principle says nothing about this and does not in fact include any of the terms “assertion”, “precondition”, “postcondition” or “invariant”. To me this absence means that the article misses a key property of substitution: that the abstract semantics remain the same. (Also cited is a 1994 Liskov article in TOPLAS, but that was many years after OOSC1 and other articles explaining substitution and the assertion rules.)

Liskov’s original paper states that “if for each object o1 of type S there is an object o2 of type T such that for all programs P defined in terms of T, the behavior of P is unchanged when o1 is substituted for oz, then S is a subtype of T.” As stated, this property is impossible to satisfy: if the behavior is identical, then the implementations are the same, and the two types are identical (or differ only by name). Of course the concrete behaviors are different: applying the operation rotate to two different figures o1 and o2, whose types are subtypes of FIGURE and in some cases of each other, will trigger different algorithms — different behaviors. Only with assertions (contracts) does the substitution idea make sense: the abstract behavior, as characterized by preconditions, postconditions and the class invariants, is the same (modulo respective weakening and strengthening to preserve the flexibility of the different version). Realizing this was a major step in understanding inheritance and typing.

I do not know of any earlier (or contemporary) exposition of this principle and it would be normal to get the appropriate recognition.

Software design: design patterns

Two of the important patterns in the “Gang of Four” Design Patterns book (GoF) by Gamma et al. (1995) are the Command Pattern and the Bridge Pattern. I introduced them (under different names) in the following publications:

  • The command pattern appears in OOSC1 under the name “Undo-Redo” in section 12.2. The solution is essentially the same as in GoF. I do not know of any earlier exposition of the technique. See also notes [B] and [C].
  • The bridge pattern appears under the name “handle technique” in my book Reusable Software: The Base Component Libraries (Prentice Hall, 1994). It had been described several years earlier in manuals for Eiffel libraries. I do not know of an earlier reference. (The second edition of Object-Oriented Software Construction — Prentice Hall, 1997, “OOSC2” –, which also describes it, states that a similar technique is described in an article by Josef Gil and Ricardo Szmit at the TOOLS USA conference in the summer of 1994, i.e. after the publication of Reusable Software.)

Note that it is pointless to claim precedence over GoF since that book explicitly states that it is collecting known “best practices”, not introducing new ones. The relevant questions are: who, pre-GoF, introduced each of these techniques first; and which publications does the GoF cites as “prior art”  for each pattern. In the cases at hand, Command and Bridge, it does not cite OOSC1.

To be concrete: unless someone can point to an earlier reference, then anytime anyone anywhere using an interactive system enters a few “CTRL-Z” to undo commands, possibly followed by some “CTRL-Y” to redo them (or uses other UI conventions to achieve these goals), the software most likely relying on a technique that I first described in the place mentioned above.

Software design: Open-Closed Principle

Another contribution of OOSC1 (1988), section 2.3, reinforced in OOSC2 (1997) is the Open-Closed principle, which explained one of the key aspects of inheritance: the ability to keep a module both closed (immediately usable as is) and open to extension (through inheritance, preserving the basic semantics. I am mentioning this idea only in passing since in this case my contribution is usually recognized, for example in the Wikipedia entry.

Software design: OO for reuse

Reusability: the Case for Object-Oriented Design (1987) is, I believe, the first publication that clearly explained why object-oriented concepts were (and still are today — in Grady Booch’s words, “there is no other game in town”) the best answer to realize the goal of software construction from software components. In particular, the article:

  • Explains the relationship between abstract data types and OO programming, showing the former as the theoretical basis for the latter. (The CLU language at MIT originated from Liskov’s pioneering work on abstract data types, but was not OO in the full sense of the term, missing in particular a concept of inheritance.)
  • Shows that reusability implies bottom-up development. (Top-down refinement was the mantra at the time, and promoting bottom-up was quite a shock for many people.)
  • Explains the role of inheritance for reuse, as a complement to Parnas’s interface-based modular construction with information hiding.

Software design: Design by Contract

The contribution of Design by Contract is one that is widely acknowledged so I don’t have any point to establish here — I will just recall the essentials. The notion of assertion goes back to the work of Floyd, Hoare and Dijkstra in the sixties and seventies, and correctness-by-construction to Dijktra, Gries and Wirth, but Design by Contract is a comprehensive framework providing:

  • The use of assertions in an object-oriented context. (The notion of class invariant was mentioned in a paper by Tony Hoare published back in 1972.)
  • The connection of inheritance with assertions (as sketched above). That part as far as I know was entirely new.
  • A design methodology for quality software: the core of DbC.
  • Language constructs carefully seamed into the fabric of the language. (There were precedents there, but in the form of research languages such as Alphard, a paper design only, not implemented, and Euclid.)
  • A documentation methodology.
  • Support for testing.
  • Support for a consistent theory of exception handling (see next).

Design by Contract is sometimes taken to mean simply the addition of a few assertions here and there. What the term actually denotes is a comprehensive methodology with all the above components, tightly integrated into the programming language. Note in particular that preconditions and postconditions are not sufficient; in an OO context class invariants are essential.

Software design: exceptions

Prior to the Design by Contract work, exceptions were defined very vaguely, as something special you do outside of “normal” cases, but without defining “normal”. Design by Contract brings a proper perspective by defining these concepts precisely. This was explained in a 1987 article, Disciplined Exceptions ([86] in the list), rejected by ECOOP but circulated as a technical report; they appear again in detail in OOSC1 (sections 7.10.3 to 7.10.5).

Other important foundational work on exceptions, to which I know no real precursor (as usual I would be happy to correct any omission), addressed what happens to the outcome of an exception in a concurrent or distributed context. This work was done at ETH, in particular in the PhD theses  of B. Morandi and A. Kolesnichenko, co-supervised with S. Nanz. See the co-authored papers [345] and [363].

On the verification aspect of exceptions, see below.

Software design: refactoring

I have never seen a discussion of refactoring that refers to the detailed discussion of generalization in both of the books Reusable Software (1994, chapter 3) and Object Success (Prentice Hall, 1995, from page 122 to the end of chapter 6). These discussions describe in detail how, once a program has been shown to work, it should be subject to a posteriori design improvements. It presents several of the refactoring techniques (as they were called when the idea gained traction several years later), such as moving common elements up in the class hierarchy, and adding an abstract class as parent to concrete classes ex post facto.

These ideas are an integral part of the design methodology presented in these books (and again in OOSC2 a few later). It is beyond me why people would present refactoring (or its history, as in the Wikipedia entry on the topic) without referring to these publications, which were widely circulated and are available for anyone to inspect.

Software design: built-in documentation and Single-Product principle

Another original contribution was the idea of including documentation in the code itself and relying on tools to extract the documentation-only information (leaving implementation elements aside). The idea, described in detail in OOSC1 in 1988 (sections 9.4 and 9.5) and already mentioned in the earlier Eiffel papers, is that code should be self-complete, containing elements of various levels of abstraction; some of them describe implementation, but the higher-level elements describe specification, and are distinguished syntactically in such a way that tools can extract them to produce documentation at any desired level of abstraction.

The ideas were later applied through such mechanisms as JavaDoc (with no credit as far as I know). They were present in Eiffel from the start and the underlying principles, in particular the “Single Product principle” (sometimes “Self-Documentation principle”, and also generalized by J. Ostroff and R. Paige as “Single-Model principle”). Eiffel is the best realization of these principles thanks to:

  • Contracts (as mentioned above): the “contract view” of a class (called “short form” in earlier descriptions) removes the implementations but shows the relevant preconditions, postconditions and class invariants, given a precise and abstract specification of the class.
  • Eiffel syntax has a special place for “header comments”, which describe high-level properties and remain in the contract view.
  • Eiffel library class documentation has always been based on specifications automatically extracted from the actual text of the classes, guaranteeing adequacy of the documentation. Several formats are supported (including, from 1995 on, HTML, so that documentation can be automatically deployed on the Web).
  • Starting with the EiffelCase tool in the early 90s, and today with the Diagram Tool of EiffelStudio, class structures (inheritance and client relationships) are displayed graphically, again in an automatically extracted form, using either the BON or UML conventions.

One of the core benefits of the Single-Product principle is to guard against what some of my publications called the “Dorian Gray” syndrome: divergence of an implementation from its description, a critical problem in software because of the ease of modifying stuff. Having the documentation as an integral part of the code helps ensure that when information at some level of abstraction (specification, design, implementation) changes, the other levels will be updated as well.

Crucial in the approach is the “roundtripping” requirement: specifiers or implementers can make changes in any of the views, and have them reflected automatically in the other views. For example, you can graphically draw an arrow between two bubbles representing classes B and A in the Diagram Tool, and the code of B will be updated with “inherit A”; or you can add this Inheritance clause textually in the code of class B, and the diagram will be automatically updated with an arrow.

It is important to note how contrarian and subversive these ideas were at the time of their introduction (and still to some extent today). The wisdom was that you do requirements then design then implementation, and that code is a lowly product entirely separate from specification and documentation. Model-Driven Development perpetuates this idea (you are not supposed to modify the code, and if you do there is generally no easy way to propagate the change to the model.) Rehabilitating the code (a precursor idea to agile methods, see below) was a complete change of perspective.

I am aware of no precedent for this Single Product approach. The closest earlier ideas I can think of are in Knuth’s introduction of Literate Programming in the early eighties (with a book in 1984). As in the Single-product approach, documentation is interspersed with code. But the literate programming approach is (as presented) top-down, with English-like explanations progressively being extended with implementation elements. The Single Product approach emphasizes the primacy of code and, in terms of the design process, is very much yoyo, alternating top-down (from the specification to the implementation) and bottom-up (from the implementation to the abstraction) steps. In addition, a large part of the documentation, and often the most important one, is not informal English but formal assertions. I knew about Literate Programming, of course, and learned from it, but Single-Product is something else.

Software design: from patterns to components

Karine Arnout’s thesis at ETH Zurich, resulting in two co-authored articles ([255] and [257], showed that contrary to conventional wisdom a good proportion of the classical design patterns, including some of the most sophisticated, can be transformed into reusable components (indeed part of an Eiffel library). The agent mechanism (see below) was instrumental in achieving that result.

Programming, design and specification concepts: abstract data types

Liskov’s and Zilles’s ground-breaking 1974 abstract data types paper presented the concepts without a mathematical specification, using programming language constructs instead. A 1976 paper (number [3] in my publication list, La Description des Structures de Données, i.e. the description of data structures) was as far as I know one of the first to present a mathematical formalism, as  used today in presentations of ADTs. John Guttag was taking a similar approach in his PhD thesis at about the same time, and went further in providing a sound mathematical foundation, introducing in particular (in a 1978 paper with Jim Horning) the notion of sufficient completeness, to which I devoted a full article in this blog  (Are My Requirements Complete?) about a year ago. My own article was published in a not very well known journal and in French, so I don’t think it had much direct influence. (My later books reused some of the material.)

The three-level description approach of that article (later presented in English for an ACM workshop in the US in 1981, Pingree Park, reference [28]) is not well known but still applicable, and would be useful to avoid frequent confusions between ADT specifications and more explicit descriptions.

When I wrote my 1976 paper, I was not aware of Guttag’s ongoing work (only of the Liskov and Zilles paper), so the use of a mathematical framework with functions and predicates on them was devised independently. (I remember being quite happy when I saw what the axioms should be for a queue.) Guttag and I both gave talks at a workshop organized by the French programming language interest group in 1977 and it was fun to see that our presentations were almost identical. I think my paper still reads well today (well, if you read French). Whether or not it exerted direct influence, I am proud that it independently introduced the modern way of thinking of abstract data types as characterized by mathematical functions and their formal (predicate calculus) properties.

Language mechanisms: genericity with inheritance

Every once in a while I get to referee a paper that starts “Generics, as introduced in Java…” Well, let’s get some perspective here. Eiffel from its introduction in 1985 combined genericity and inheritance. Initially, C++ users and designers claimed that genericity was not needed in an OO context and the language did not have it; then they introduced template. Initially, the designers of Java claimed (around 1995) that genericity was not needed, and the language did not have it; a few years later Java got generics. Initially, the designers of C# (around 1999) claimed that genericity was not needed, and the language did not have it; a few years later C# and .NET got generics.

Genericity existed before Eiffel of course; what was new was the combination with inheritance. I had been influenced by work on generic modules by a French researcher, Didier Bert, which I believe influenced the design of Ada as well; Ada was the language that brought genericity to a much broader audience than the somewhat confidential languages that had such a mechanism before. But Ada was not object-oriented (it only had modules, not classes). I was passionate about object-oriented programming (at a time when it was generally considered, by the few people who had heard of it as an esoteric, academic pursuit). I started — in the context of an advanced course I was teaching at UC Santa Barbara — an investigation of how the two mechanisms relate to each other. The results were a paper at the first OOPSLA in 1986, Genericity versus Inheritance, and the design of the Eiffel type system, with a class mechanism, inheritance (single and multiple), and genericity, carefully crafted to complement each other.

With the exception of a Trellis-Owl, a  design from Digital Equipment Corporation also presented at the same OOPSLA (which never gained significant usage), there were no other OO languages with both mechanisms for several years after the Genericity versus Inheritance paper and the implementation of genericity with inheritance in Eiffel available from 1986 on. Eiffel also introduced, as far as I know, the concept of constrained genericity, the second basic mechanism for combining genericity with inheritance, described in Eiffel: The Language (Prentice Hall, 1992, section 10.8) and discussed again in OOSC2 (section 16.4 and throughout). Similar mechanisms are present in many languages today.

It was not always so. I distinctly remember people bringing their friends to our booth at some conference in the early nineties, for the sole purpose of having a good laugh with them at our poster advertising genericity with inheritance. (“What is this thing they have and no one else does? Generi-sissy-tee? Hahaha.”). A few years later, proponents of Java were pontificating that no serious language needs generics.

It is undoubtedly part of of the cycle of invention (there is a Schopenhauer citation on this, actually the only thing from Schopenhauer’s philosophy that I ever understood [D]) that people at some point will laugh at you; if it did brighten their day, why would the inventor deny them one of the little pleasures of life? But in terms of who laughs last, along the way C++ got templates, Java got generics, C# finally did too, and nowadays all typed OO languages have something of the sort.

Language mechanisms: multiple inheritance

Some readers will probably have been told that multiple inheritance is a bad thing, and hence will not count it as a contribution, but if done properly it provides a major abstraction mechanism, useful in many circumstances. Eiffel showed how to do multiple inheritance right by clearly distinguishing between features (operations) and their names, defining a class as a finite mapping between names and features, and using renaming to resolve any name clashes.

Multiple inheritance was made possible by an implementation innovation: discovering a technique (widely imitated since, including in single-inheritance contexts) to implement dynamic binding in constant time. It was universally believed at the time that multiple inheritance had a strong impact on performance, because dynamic binding implied a run-time traversal of the class inheritance structure, already bad enough for single inheritance where the structure is a tree, but prohibitive with multiple inheritance for which it is a directed acyclic graph. From its very first implementation in 1986 Eiffel used what is today known as a virtual table technique which guarantees constant-time execution of routine (method) calls with dynamic binding.

Language mechanisms: safe GC through strong static typing

Simula 67 implementations did not have automatic garbage collection, and neither had implementations of C++. The official excuse in the C++ case was methodological: C programmers are used to exerting manual control of memory usage. But the real reason was a technical impossibility resulting from the design of the language: compatibility with C precludes the provision of a good GC.

More precisely, of a sound and complete GC. A GC is sound if it will only reclaim unreachable objects; it is complete if it will reclaim all unreachable objects. With a C-based language supporting casts (e.g. between integers and pointers) and pointer arithmetic, it is impossible to achieve soundness if we aim at a reasonable level of completeness: a pointer can masquerade as an integer, only to be cast back into a pointer later on, but in the meantime the garbage collector, not recognizing it as a pointer, may have wrongly reclaimed the corresponding object. Catastrophe.

It is only possible in such a language to have a conservative GC, meaning that it renounces completeness. A conservative GC will treat as a pointer any integer whose value could possibly be a pointer (because it lies between the bounds of the program’s data addresses in memory). Then, out of precaution, the GC will refrain from reclaiming the objects at these addresses even if they appear unreachable.

This approach makes the GC sound but it is only a heuristics, and it inevitably loses completeness: every once in a while it will fail to reclaim some dead (unreachable) objects around. The result is a program with memory leaks — usually unacceptable in practice, particularly for long-running or continuously running programs where the leaks inexorably accumulate until the program starts thrashing then runs out of memory.

Smalltalk, like Lisp, made garbage collection possible, but was not a typed language and missed on the performance benefits of treating simple values like integers as a non-OO language would. Although in this case I do not at the moment have a specific bibliographic reference, I believe that it is in the context of Eiffel that the close connection between strong static typing (avoiding mechanisms such as casts and pointer arithmetic) and the possibility of sound and complete garbage collection was first clearly explained. Explained in particular around 1990 in a meeting with some of the future designers of Java, which uses a similar approach, also taken over later on by C#.

By the way, no one will laugh at you today for considering garbage collection as a kind of basic human right for programmers, but for a long time the very idea was quite sulfurous, and advocating it subjected you to a lot of scorn. Here is an extract of the review I got when I submitted the first Eiffel paper to IEEE Transactions on Software Engineering:

Systems that do automatic garbage collection and prevent the designer from doing his own memory management are not good systems for industrial-strength software engineering.

Famous last words. Another gem from another reviewer of the same paper:

I think time will show that inheritance (section 1.5.3) is a terrible idea.

Wow! I wish the anonymous reviewers would tell us what they think today. Needless to say, the paper was summarily rejected. (It later appeared in the Journal of Systems and Software — as [82] in the publication list — thanks to the enlightened views of Robert Glass, the founding editor.)

Language mechanisms: void safety

Void safety is a property of a language design that guarantees the absence of the plague of null pointer dereferencing.

The original idea came (as far as I know) from work at Microsoft Research that led to the design of a research language called C-omega; the techniques were not transferred to a full-fledged programming language. Benefiting from the existence of this proof of concept, the Eiffel design was reworked to guarantee void safety, starting from my 2005 ECOOP keynote paper (Attached Types) and reaching full type safety a few years later. This property of the language was mechanically proved in a 2016 ETH thesis by A. Kogtenkov.

Today all significant Eiffel development produces void-safe code. As far as I know this was a first among production programming languages and Eiffel remains the only production language to provide a guarantee of full void-safety.

This mechanism, carefully crafted (hint: the difficult part is initialization), is among those of which I am proudest, because in the rest of the programming world null pointer dereferencing is a major plague, threatening at any moment to crash the execution of any program that uses pointers of references. For Eiffel users it is gone.

Language mechanisms: agents/delegates/lambdas

For a long time, OO programming languages did not have a mechanism for defining objects wrapping individual operations. Eiffel’s agent facility was the first such mechanism or among the very first together the roughly contemporaneous but initially much more limited delegates of C#. The 1999 paper From calls to agents (with P. Dubois, M. Howard, M. Schweitzer and E. Stapf, [196] in the list) was as far as I know the first description of such a construct in the scientific literature.

Language mechanisms: concurrency

The 1993 Communications of the ACM paper on Systematic Concurrent Object-Oriented Programming [136] was certainly not the first concurrency proposal for OO programming (there had been pioneering work reported in particular in the 1987 book edited by Tokoro and Yonezawa), but it innovated in offering a completely data-race-free model, still a rarity today (think for example of the multi-threading mechanisms of dominant OO languages).

SCOOP, as it came to be called, was implemented a few years later and is today a standard part of Eiffel.

Language mechanisms: selective exports

Information hiding, as introduced by Parnas in his two seminal 1972 articles, distinguishes between public and secret features of a module. The first OO programming language, Simula 67, had only these two possibilities for classes and so did Ada for modules.

In building libraries of reusable components I realized early on that we need a more fine-grained mechanism. For example if class LINKED_LIST uses an auxiliary class LINKABLE to represent individual cells of a linked list (each with a value field and a “right” field containing a reference to another LINKABLE), the features of LINKABLE (such as the operation to reattach the “right” field) should not be secret, since LINKED_LIST needs them; but they should also not be generally public, since we do not want arbitrary client objects to mess around with the internal structure of the list. They should be exported selectively to LINKED_LIST only. The Eiffel syntax is simple: declare these operations in a clause of the class labeled “feature {LINKED_LIST}”.

This mechanism, known as selective exports, was introduced around 1989 (it is specified in full in Eiffel: The Language, from 1992, but was in the Eiffel manuals earlier). I think it predated the C++ “friends” mechanism which serves a similar purpose (maybe someone with knowledge of the history of C++ has the exact date). Selective exports are more general than the friends facility and similar ones in other OO languages: specifying a class as a friend means it has access to all your internals. This solution is too coarse-grained. Eiffel’s selective exports make it possible to define the specific export rights of individual operations (including attributes/fields) individually.

Language mechanisms and implementation: serialization and schema evolution

I did not invent serialization. As a student at Stanford in 1974 I had the privilege, at the AI lab, of using SAIL (Stanford Artificial Intelligence Language). SAIL was not object-oriented but included many innovative ideas; it was far ahead of its time, especially in terms of the integration of the language with (what was not yet called) its IDE. One feature of SAIL with which one could fall in love at first sight was the possibility of selecting an object and having its full dependent data structure (the entire subgraph of the object graph reached by following references from the object, recursively) stored into a file, for retrieval at the next section. After that, I never wanted again to live without such a facility, but no other language and environment had it.

Serialization was almost the first thing we implemented for Eiffel: the ability to write object.store (file) to have the entire structure from object stored into file, and the corresponding retrieval operation. OOSC1 (section 15.5) presents these mechanisms. Simula and (I think) C++ did not have anything of the sort; I am not sure about Smalltalk. Later on, of course, serialization mechanisms became a frequent component of OO environments.

Eiffel remained innovative by tackling the difficult problems: what happens when you try to retrieve an object structure and some classes have changed? Only with a coherent theoretical framework as provided in Eiffel by Design by Contract can one devise a meaningful solution. The problem and our solutions are described in detail in OOSC2 (the whole of chapter 31, particularly the section entitled “Schema evolution”). Further advances were made by Marco Piccioni in his PhD thesis at ETH and published in joint papers with him and M. Oriol, particularly [352].

Language mechanisms and implementation: safe GC through strong static typing

Simula 67 (if I remember right) did not have automatic garbage collection, and neither had C++ implementations. The official justification in the case of C++ was methodological: C programmers are used to exerting manual control of memory usage. But the real obstacle was technical: compatibility with C makes it impossible to have a good GC. More precisely, to have a sound and complete GC. A GC is sound if it will only reclaim unreachable objects; it is complete if it will reclaim all unreachable objects. With a C-based language supporting casts (e.g. between integers and pointers) and pointer arithmetic, it is impossible to achieve soundness if we aim at a reasonable level of completeness: a pointer can masquerade as an integer, only to be cast back into a pointer later on, but in the meantime the garbage collector, not recognizing it as a pointer, may have wrongly reclaimed the corresponding object. Catastrophe. It is only possible in such a language to have a conservative GC, which will treat as a pointer any integer whose value could possibly be a pointer (because its value lies between the bounds of the program’s data addresses in memory). Then, out of precaution, it will not reclaim the objects at the corresponding address. This approach makes the GC sound but it is only a heuristics, and it may be over-conservative at times, wrongly leaving dead (i.e. unreachable) objects around. The result is, inevitably, a program with memory leaks — usually unacceptable in practice.

Smalltalk, like Lisp, made garbage collection possible, but was not a typed language and missed on the performance benefits of treating simple values like integers as a non-OO language would. Although in this case I do not at the moment have a specific bibliographic reference, I believe that it is in the context of Eiffel that the close connection between strong static typing (avoiding mechanisms such as casts and pointer arithmetic) and the possibility of sound and complete garbage collection was first clearly explained. Explained in particular to some of the future designers of Java, which uses a similar approach, also taken over later on by C#.

By the way, no one will laugh at you today for considering garbage collection as a kind of basic human right for programmers, but for a long time it was quite sulfurous. Here is an extract of the review I got when I submitted the first Eiffel paper to IEEE <em>Transactions on Software Engineering:

Software engineering: primacy of code

Agile methods are widely and properly lauded for emphasizing the central role of code, against designs and other non-executable artifacts. By reading the agile literature you might be forgiven for believing that no one brought up that point before.

Object Success (1995) makes the argument very clearly. For example, chapter 3, page 43:

Code is to our industry what bread is to a baker and books to a writer. But with the waterfall code only appears late in the process; for a manager this is an unacceptable risk factor. Anyone with practical experience in software development knows how many things can go wrong once you get down to code: a brilliant design idea whose implementation turns out to require tens of megabytes of space or minutes of response time; beautiful bubbles and arrows that cannot be implemented; an operating system update, crucial to the project which comes five weeks late; an obscure bug that takes ages to be fixed. Unless you start coding early in the process, you will not be able to control your project.

Such discourse was subversive at the time; the wisdom in software engineering was that you need to specify and design a system to death before you even start coding (otherwise you are just a messy “hacker” in the sense this word had at the time). No one else in respectable software engineering circles was, as far as I know, pushing for putting code at the center, the way the above extract does.

Several years later, agile authors started making similar arguments, but I don’t know why they never referenced this earlier exposition, which still today I find not too bad. (Maybe they decided it was more effective to have a foil, the scorned Waterfall, and to claim that everyone else before was downplaying the importance of code, but that was not in fact everyone.)

Just to be clear, Agile brought many important ideas that my publications did not anticipate; but this particular one I did.

Software engineering: the roles of managers

Extreme Programming and Scrum have brought new light on the role of managers in software development. Their contributions have been important and influential, but here too they were for a significant part prefigured by a long discussion, altogether two chapters, in Object Success (1995).

To realize this, it is enough to read the titles of some of the sections in those chapters, describing roles for managers (some universal, some for a technical manager): “risk manager”, “interface with the rest of the world” (very scrummy!), “protector of the team’s sanity”, “method enforcer” (think Scrum Master), “mentor and critic”. Again, as far as I know, these were original thoughts at the time; the software engineering literature for the most part did not talk about these issues.

Software engineering: outsourcing

As far as I know the 2006 paper Offshore Development: The Unspoken Revolution in Software Engineering was the first to draw attention, in the software engineering community, to the peculiar software engineering challenges of distributed and outsourced development.

Software engineering: automatic testing

The AutoTest project (with many publications, involving I. Ciupa, A. Leitner, Y. Wei, M. Oriol, Y. Pei, M. Nordio and others) was not the first to generate tests automatically by creating numerous instances of objects and calling applicable operations (it was preceded by Korat at MIT), but it was the first one to apply this concept with Design by Contract mechanisms (without which it is of little practical value, since one must still produce test oracles manually) and the first to be integrated in a production environment (EiffelStudio).

Software engineering: make-less system building

One of the very first decisions in the design of Eiffel was to get rid of Make files.

Feldman’s Make had of course been a great innovation. Before Make, programmers had to produce executable systems manually by executing sequences of commands to compile and link the various source components. Make enabled them to instead  to define dependencies between components in a declarative way, resulting in a partial order, and then performed a topological sort to produce the sequence of comments. But preparing the list of dependencies remains a tedious task, particularly error-prone for large systems.

I decided right away in the design of Eiffel that we would never force programmers to write such dependencies: they would be automatically extracted from the code, through an exhaustive analysis of the dependencies between modules. This idea was present from the very the first Eiffel report in 1985 (reference [55] in the publication list): Eiffel programmers never need to write a Make file or equivalent (other than for non-Eiffel code, e.g. C or C++, that they want to integrate); they just click a Compile button and the compiler figures out the steps.

Behind this approach was a detailed theoretical analysis of possible relations between modules in software development (in many programming languages), published as the “Software Knowledge Base” at ICSE in 1985. That analysis was also quite instructive and I would like to return to this work and expand it.

Educational techniques: objects first

Towards an Object-Oriented Curriculum ( TOOLS conference, August 1993, see also the shorter JOOP paper in May of the same year) makes a carefully argued case for what was later called the Objects First approach to teaching programming. I would be interested to know if there are earlier publications advocating starting programming education with an OO language.

The article also advocated for the “inverted curriculum”, a term borrowed from work by Bernie Cohen about teaching electrical engineering. It was the first transposition of this concept to software education. In the article’s approach, students are given program components to use, then little by little discover how they are made. This technique met with some skepticism and resistance since the standard approach was to start from the very basics (write trivial programs), then move up. Today, of course, many introductory programming courses similarly provide students from day one with a full-fledged set of components enabling them to produce significant programs.

More recent articles on similar topics, taking advantage of actual teaching experience, are The Outside-In Method of Teaching Programming (2003) and The Inverted Curriculum in Practice (at ICSE 2006, with Michela Pedroni). The culmination of that experience is the textbook Touch of Class from 2009.

Educational techniques: Distributed Software Projects

I believe our team at ETH Zurich (including among others M. Nordio, J. Tschannen, P. Kolb and C. Estler and in collaboration with C. Ghezzi, E. Di Nitto and G. Tamburrelli at Politecnico di Milano, N. Aguirre at Rio Cuarto and many others in various universities) was the first to devise,  practice and document on a large scale (see publications and other details here) the idea of an educational software project conducted in common by student groups from different universities. It yielded a wealth of information on distributed software development and educational issues.

Educational techniques: Web-based programming exercises

There are today a number of cloud-based environments supporting the teaching of programming by enabling students to compile and test their programs on the Web, benefiting from a prepared environment (so that they don’t have to download any tools or prepare control files) and providing feedback. One of the first — I am not sure about absolute precedence — and still a leading one, used by many universities and applicable to many programming languages, is Codeboard.

The main developer, in my chair at ETH Zurich, was Christian Estler, supported in particular by M. Nordio and M. Piccioni, so I am only claiming a supporting role here.

Educational techniques: key CS/SE concepts

The 2001 paper Software Engineering in the Academy did a good job, I think, of defining the essential concepts to teach in a proper curriculum (part of what Jeannette Wing’s 2006 paper called Computational Thinking).

Program verification: agents (delegates etc.)

Reasoning about Function Objects (ICSE 2010, with M. Nordio, P. Müller and J. Tschannen) introduced verification techniques for objects representing functions (such as agents, delegates etc., see above) in an OO language. Not sure whether there were any such techniques before.

Specification languages: Z

The Z specification language has been widely used for formal development, particularly in the UK. It is the design of J-R Abrial. I may point out that I was a coauthor of the first publication on Z in English (1980),  describing a version that preceded the adaptation to a more graphical-style notation done later at Oxford. The first ever published description of Z, pertaining to an even earlier version, was in French, in my book Méthodes de Programmation (with C. Baudoin), Eyrolles, 1978, running over 15 pages (526-541), with the precise description of a refinement process.

Program verification: exceptions

Largely coming out of the PhD thesis of Martin Nordio, A Sound and Complete Program Logic for Eiffel (TOOLS 2009) introduces rules for dealing with exceptions in a Hoare-style verification framework.

Program verification: full library, and AutoProof

Nadia Polikarpova’s thesis at ETH, aided by the work of Carlo Furia and Julian Tschannen (they were the major contributors and my participation was less important), was as far as I know the first to produce a full functional verification of an actual production-quality reusable library. The library is EiffelBase 2, covering fundamental data structures.

AutoProof — available today, as a still experimental tool, through its Web interface, see here — relied on the AutoProof prover, built by the same team, and itself based on Microsoft Research’s Boogie and Z3 engines.

More

There are more concepts worthy of being included here, but for today I will stop here.

Notes

[A] One point of divergence between usual presentations of the substitution principle and the view in OOSC and my other publications is the covariance versus contravariance of routine argument types. It reflects a difference of views as to what the proper policy (both mathematically sound and practically usable) should be.

[B]  The GoF book does not cite OOSC for the command or bridge patterns. For the command pattern it cites (thanks to Adam Kosmaczewski for digging up the GoF text!) a 1985 SIGGRAPH paper by Henry Lieberman (There’s More to Menu Systems than Meets the Screen). Lieberman’s paper describes the notion of command object and mentions undoing in passing, but does not include the key elements of the command pattern (as explained in full in OOSC1), i.e. an abstract (deferred) command class with deferred procedures called (say) do_it and undo_it, then specific classes for each kind of command, each providing a specific implementation of those procedures, then a history list of commands supporting multiple-level undo and redo as explained in OOSC1. (Reading Lieberman’s paper with a 2021 perspective shows that it came tantalizingly close to the command pattern, but doesn’t get to it. The paper does talk about inheritance between command classes, but only to “define new commands as extensions to old commands”, not in the sense of a general template that can be implemented in many specific ways. And it does mention a list of objects kept around to enable recovery from accidental deletions, and states that the application can control its length, as is the case with a history list; but the objects in the list are not command objects, they are graphical and other objects that have been deleted.)

[C] Additional note on the command pattern: I vaguely remember seeing something similar to the OOSC1 technique in an article from a supplementary volume of the OOPSLA proceedings in the late eighties or early nineties, i.e. at the same time or slightly later, possibly from authors from Xerox PARC, but I have lost the reference.

[D] Correction: I just checked the source and learned that the actual Schopenhauer quote (as opposed to the one that is usually quoted) is different; it does not include the part about laughing. So much for my attempts at understanding philosophy.

 

VN:F [1.9.10_1130]
Rating: 8.7/10 (27 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 14 votes)

The right forms of expression

If you want to know whether your_string has at least one upper-case character, you will write this in Eiffel:

if  ∃ c: your_string ¦ c.is_upper then

Such predicate-calculus boolean expressions, using a quantifier (“for all”) or (“there exists”) are becoming common in Eiffel code. They are particularly useful in Design by Contract assertions, making it possible to characterize deep semantic properties of the code and its data structures. For example a class invariant clause in a class I wrote recently states

from_lists_exist: ∀ tf: triples_from ¦ tf Void                        — [1]

meaning that all the elements, if any, of the list triples_from  are non-void (non-null). The notation is the exact one from mathematics. (Mathematical notation sometimes uses a dot in place of the bar, but the bar is clearer, particularly in an OO context where the dot has another use.)

Programming languages should support time-honored notations from mathematics. Reaching this goal has been a driving force in the evolution of Eiffel, but not as a concession to “featurism” (the gratuitous piling up of language feature upon feature). The language must remain simple and consistent; any new feature must find its logical place in the overall edifice.

The design of programming languages is a constant search for the right balance between rigor, simplicity, consistency, formal understanding, preservation of existing code, innovation and expressiveness. The design of Eiffel has understood the last of these criteria as implying support for established notations from mathematics, not through feature accumulation but by re-interpreting these notations in terms of the language’s fundamental concepts. A typical example is the re-interpretation of the standard mathematical notation a + b as as simply an operator-based form for the object-oriented call a.plus (b), obtained by declaring “+” as an operator alias for the function plus in the relevant classes. There are many more such cases in today’s Eiffel. Quantifier expressions using and  are the latest example.

 They are not a one-of-a-kind trick but just as a different syntax form for loops. Expressed in a more verbose form, the only one previously available, [1] would be:

across triples_from is tf all tf /= Void end                         — [2]

It is interesting to walk back the history further. [2] is itself a simplification of

across triples_from as tf all tf.item /= Void end               — [3]

where the “.item” has a good reason for being there, but that reason is irrelevant to a beginner. The earlier use of as in [3] is also the reason for the seemingly bizarre use of is in [2], which is only explainable by the backward compatibility criterion (code exists that uses as , which has a slightly different semantics from is), and will go away. But a few years ago the across loop variant did not exist and you would have had to write the above boolean expressions as

all_non_void (triples_from)

after defining a function

all_non_void (l: LIST [T]): BOOLEAN                                    — [4]
                         — Are all the elements of `l’, if any, non-void?
          local
pos: INTEGER
do
from
pos := l.index
l.start
Result := True
until not Result or l.after loop
l.forth
end
go_ith (pos)
end

The road traveled from [4] to [1] is staggering. As we introduced new notations in the history of Eiffel the reaction of the user community has sometimes been between cautious and negative. With the exception of a couple of quickly discarded ideas (such as the infamous and short-lived “!!” for creation), they were generally adopted widely because they simplify people’s life without adding undue complexity to the language. The key has been to avoid featurism and choose instead to provide two kinds of innovation:

  • Major conceptual additions, which elevate the level of abstraction of the language. A typical introduction was the introduction of agents, which provide the full power of functional programming in an object-oriented context; another was the SCOOP concurrency mechanism. There have been only a few such extensions, all essential.
  • Syntactical variants for existing concepts, allowing more concise forms obtained from traditional mathematical notation. The use of quantifier expressions as in [1] is the latest example.

Complaints of featurism still occasionally happen when people first encounter the new facilities, but they fade away quickly as people start using them. After writing a few expressions such as [1], no one wants to go back to any of the other forms.

These quantifier expressions using and , as well as the “” not-equal sign for what used to be (and still commonly is) written “/=”, rely on Unicode. Eiffel started out when ASCII was the law of the land. (Or 8-bit extended ASCII, which does not help much since the extensions are rendered differently in different locales, i.e. the same 8-bit character code may mean something different on French and Swedish texts.) In recent years, Eiffel has made a quiet transition to full Unicode support. (Such support extends to manifest strings and operators, not to identifiers. The decision, which could be revisited, has been to keep the ASCII-only  policy for identifiers to favor compatible use by programmers regardless of their mother tongues.) The use of Unicode considerably extends the expressive power of the language, in particular for scientific software which can — thanks to Eiffel’s mechanism for defining free operators — rely on advanced mathematical notations.

Unicode is great, but I hear the question: how in the world can we enter the corresponding symbols, since our keyboards are still ASCII plus some extensions?

It would be tedious to have to select from a list of special symbols (as you do when inserting a mathematical symbol in Microsoft Word or, for that matter, as I did when inserting the phrase “ and ” in the preceding paragraph using WordPress).

The answer lies in the interplay between the language and the development environment. EiffelStudio, like other modern IDEs, includes an automatic completion mechanism which lets you enter the beginning of a construct and will take care of filling in the rest. Already useful for complex structures (if you type “if” the tools will create the entire “if then else end” conditional structure for you to fill in), automatic completion will take care of inserting the appropriate Unicode symbols for you. Type for example “across”,  then CTRL-Space to trigger completion, and the choices will include the “∀” and “” forms. You can see below how this works:

across_all

Programming languages can be at the same time simple, easy to learn, consistent, and expressive. Start using quantifiers now!

Acknowledgments to the Ecma Technical Committee on Eiffel and the Eiffel Software team, particularly Alexander Kogtenkov (see his blog post here) and (for the completion mechanism and its animated illustration above) Jocelyn Fiat.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Fan mail

Received this today from a heretofore unknown correspondent (I don’t often check Facebook Messenger but just happened to). Name removed (I am not sure he would want me to identify him), text translated from another language into English.

Hello, thanks for your book “Object-Oriented Software Construction” [read in a translation]. I read it after a horrible failure of a project on which I was a consultant. Another consultant was my technical leader. He was truly insufferable but I appreciated him for one reason: his code! I had never seen such “beautiful” program code; he was using principles of genericity, dynamic binding and others, which were totally unknown to me after the lousy programming education I had received. He had insulted me, telling me that I was no developer at all; I was deeply offended since I could feel that he was right. In spite of his unbearable personality I wanted to learn at his side, but he was far too selfish, seeing me just as a competitor, even if a pathetic one. He had a book on the side of his desk… and it’s that book that enabled me to understand where he had learned all those OO design methods. That book, obviously, was yours, and I acquired a copy for myself. I sincerely think that it should be used as textbook in educational institutions. And I really wanted to thank you for writing it. I hope to become a real developer thanks to you. So, thank you.

Note 1: Thanks to you.

Note 2: There is also the intro programming text, Touch of Class (Amazon page).

Note 3 (to my fan club): You are welcome to take advantage of the ideas and there is actually no compelling requirement to be, in addition, “insufferable”.

VN:F [1.9.10_1130]
Rating: 9.4/10 (15 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

LASER 2020 in Elba Island: DevOps, Microservices and more, first week of June

The page for the 2020 LASER summer school (31 May to 7 June) now has the basic elements (some additions still forthcoming) and registration at the early price is open. The topic is DevOps, Microservices and Software Development for the Age of the Web with both conceptual lectures and contributions from industry, by technology leaders from Amazon, Facebook and ServiceNow. The confirmed speakers are:

  • Fabio Casati, ServiceNow and University of Trento, and Kannan Govindarajan from ServiceNow on Taking AI from research to production – at scale.
  • Adrian Cockcroft, Amazon Web Services, on Building and Operating Modern Applications.
  • Elisabetta Di Nitto, Politecnico di Milano.
  • Valérie Issarny, INRIA, on The Web for the age of the IoT.
  • Erik Meijer, Facebook, on Software Development At Scale.
  • Me, on Software from beginning to end: a comprehensive method.

As always, the setup is the incomparable environment of the Hotel del Golfo in Procchio, Elba Island off the coast of Tuscany, ideal at that time of year (normally good weather, warm but not hot, few tourists). The school is intensive but there is time to enjoy the beach, the hotel’s amenities and the wonderful of environment of Elba (wake up your inner Napoleon). The school has a fairly small size and everyone lives under the same (beautiful) roof, so there is plenty of time for interaction with the speakers and other participants.

About these participants: the school is intended for engineers and managers in industry as well as researchers and PhD student. In fact it’s a mix that one doesn’t find that often, allowing for much cross-learning.

Another way to put it is that this is now the 16th edition of the school (it started in 2004 but we skipped one year), so it cannot be doing everything wrong.

 

VN:F [1.9.10_1130]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

This Wednesday in Nice: survey talk on the Eiffel method

The “Morgenstern Colloquium” at the University of Nice / INRIA Sophia Antipolis invited me to give a talk, next Wednesday (18 December) at 11 in Sophia Antipolis, in the aptly named* “Kahn Building”. The announcement appears here. I proposed various topics but (pleasant surprise) the organizers explicitly asked me to lecture about what I really want to talk about: the Eiffel approach. I will give a general presentation describing not specifically the language but the unified view of software construction embodied in Eiffel, from modeling to requirements to design, implementation and verification. Here is the abstract:

With society’s growing reliance on IT systems, the ability to write high-quality software is ever more critical. While a posteriori verification techniques have their role, there is no substitute for methods and tools that provide built-in quality (“correctness by construction”) and scale up to very large systems. For several decades my colleagues and I have been building such a method, based in particular on the concept of Design by Contract, the associated tools and the supporting language, Eiffel. The scope is wide, encompassing all aspects of the software development process, from requirements and design to implementation and verification. I will present an overview of the approach, show what it can yield, and discuss remaining open issues.

This talk is meant for everyone, whether from industry or academia, with an interest in practical techniques for engineering high-quality software.

No registration is required. The presentation will be in English.

Note

*Gilles Kahn, a brilliant computer scientist who died too young, was for a while director of INRIA.

VN:F [1.9.10_1130]
Rating: 6.3/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 2 votes)

Formality in requirements: new publication

The best way to make software requirements precise is to use one of the available “formal” approaches. Many have been proposed; I am not aware of a general survey published so far. Over the past two years, we have been working on a comprehensive survey of the use of formality in requirements, of which we are now releasing a draft. “We” is a joint informal research group from Innopolis University and the University of Toulouse, whose members have been cooperating on requirements issues, resulting in publications listed  under “References” below and in several scientific events.

The survey is still being revised, in particular because it is longer than the page limit of its intended venue (ACM Computing Surveys), and some sections are in need of improvement. We think, however, that the current draft can already provide a solid reference in this fundamental area of software engineering.

The paper covers a broad selection of methods, altogether 22 of them, all the way from completely informal to strictly formal. They are grouped into five categories: natural language, semi-formal, automata- or graph-based, other mathematical frameworks, programming-language based. Examples include SysML, Relax, Statecharts, VDM, Eiffel (as a requirements notation), Event-B, Alloy. For every method, the text proposes a version of a running example (the Landing Gear System, already used in some of our previous publications) expressed in the corresponding notation. It evaluates the methods using a set of carefully defined criteria.

The paper is: Jean-Michel Bruel, Sophie Ébersold, Florian Galinier, Alexandr Naumchev, Manuel Mazzara and Bertrand Meyer: Formality in Software Requirements, draft, November 2019.

The text is available here. Comments on the draft are welcome.

References

Bertrand Meyer, Jean-Michel Bruel, Sophie Ebersold, Florian Galinier and Alexandr Naumchev: Towards an Anatomy of Software Requirements, in TOOLS 2019, pages 10-40, see here (or arXiv version here). I will write a separate blog article about this publication.

Alexandr Naumchev and Bertrand Meyer: Seamless requirements. Computer Languages, Systems & Structures 49, 2017, pages 119-132, available here.

Florian Galinier, Jean-Michel Bruel, Sophie Ebersold and Bertrand Meyer: Seamless Integration of Multirequirements, in Complex Systems, 25th International Requirements Engineering Conference Workshop, IEEE, pages 21-25, 2017, available here.

Alexandr Naumchev, Manuel Mazzara, Bertrand Meyer, Jean-Michel Bruel, Florian Galinier and Sophie Ebersold: A contract-based method to specify stimulus-response requirements, Proceedings of the Institute for System Programming, vol. 29, issue 4, 2017, pp. 39-54. DOI: 10.15514, available here.

Alexandr Naumchev and Bertrand Meyer: Complete Contracts through Specification Drivers., in 10th International Symposium on Theoretical Aspects of Software Engineering (TASE), pages 160-167, 2016, available here.

Alexandr Naumchev, Bertrand Meyer and Víctor Rivera: Unifying Requirements and Code: An Example, in PSI 2015 (Ershov conference, Perspective of System Informatics), pages 233-244, available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Why not program right?

recycled-logo (Originally published on CACM blog.)

Most of the world programs in a very strange way. Strange to me. I usually hear the reverse question: people ask us, the Eiffel community, to explain why we program our way. I hardly understand the question, because the only mystery is how anyone can even program in any other way.

The natural reference is the beginning of One Flew Over the Cuckoo’s Nest: when entering an insane asylum and wondering who is an inmate and who a doctor, you may feel at a loss for objective criteria. Maybe the rest of the world is right and we are the nut cases. Common sense suggests it.

But sometimes one can go beyond common sense and examine the evidence. So lend me an ear while I explain my latest class invariant. Here it is, in Figure 1. (Wait, do not just run away yet.)

multigraph_invariant

Figure 1: From the invariant of class MULTIGRAPH

This is a program in progress and by the time you read this note the invariant and enclosing class will have changed. But the ideas will remain.

Context: multigraphs

The class is called MULTIGRAPH and describes a generalized notion of graph, illustrated in Figure 2. The differences are that: there can be more than one edge between two nodes, as long as they have different tags (like the spouse and boss edges between 1 and 2); and there can be more than one edge coming out of a given node and with a given tag (such as the two boss edges out of 1, reflecting that 1’s boss might be 2 in some cases and 3 in others). Some of the nodes, just 1 here, are “roots”.

The class implements the notion of multigraph and provides a wide range of operations on multigraphs.

multigraph_example

Figure 2: A multigraph

Data structures

Now we turn to the programming and software engineering aspects. I am playing with various ways of accessing multigraphs. For the basic representation of a multigraph, I have chosen a table of triples:

                triples_table: HASH_TABLE [TRIPLE, TUPLE [source: INTEGER; tag: INTEGER; target: INTEGER]]  — Table of triples, each retrievable through its `source’, `tag’ and `target’.

where the class TRIPLE describes [source, tag, target] triples, with a few other properties, so they are not just tuples. It is convenient to use a hash table, where the key is such a 3-tuple. (In an earlier version I used just an ARRAY [TRIPLE], but a hash table proved more flexible.)

Sources and targets are nodes, also called “objects”; we represent both objects and tags by integers for efficiency. It is easy to have structures that map symbolic tag names such as “boss” to integers.

triples_table is the core data structure but it turns out that for the many needed operations it is convenient to have others. This technique is standard: for efficiency, provide different structures to access and manipulate the same underlying information, with some redundancy. So I also have:

 triples_from:  ARRAYED_LIST [LIST [TRIPLE]]
               — Triples starting from a given object. Indexed by object numbers.

  triples_with:  HASH_TABLE [LIST [TRIPLE], INTEGER]
               — Triples labeled by a given tag. Key is tag number.

 triples_to:  ARRAYED_LIST [LIST [TRIPLE]]
               — Triples leading into a given object. Indexed by object numbers.

Figure 3 illustrates triples_from and Figures 4 illustrates triples_with. triples_to is similar.

triples_from

Figure 3: The triples_from array of lists and the triples_table

triples_with

Figure 4: The triples_with array of lists and the triples_table

It is also useful to access multigraphs through yet another structure, which gives us the targets associated with a given object and tag:

successors: ARRAY [HASH_TABLE [LIST [TRIPLE], INTEGER]]
               — successors [obj] [t] includes all o such that there is a t- reference from obj to o.

For example in Figure 1 successors [1] [spouse] is {2, 3}, and in Figures 3 and 4 successors [26] [t] is {22, 55, 57}. Of course we can obtain the “successors” information through the previously defined structures, but since this is a frequently needed operation I decided to include a specific data structure (implying that every operation modifying the multigraph must update it). I can change my mind later on and decide to make “successors” a function rather than a data structure; it is part of the beauty of OO programming, particularly in Eiffel, that such changes are smooth and hardly impact client classes.

There is similar redundancy in representing roots:

                roots:  LINKED_SET [INTEGER]
                              — Objects that are roots.

                is_root:  ARRAY [BOOLEAN]
                              — Which objects are roots? Indexed by object numbers.

If o is a root, then it appears in the “roots” set and is_root [o] has value True.

Getting things right

These are my data structures. Providing such a variety of access modes is a common programming technique. From a software engineering perspective ― specification, implementation, verification… ― it courts disaster. How do we maintain their consistency? It is very easy for a small mistake to slip into an operation modifying the graph, causing one of the data structures to be improperly updated, but in a subtle and rare enough way that it will not manifest itself during testing, coming back later to cause strange behavior that will be very hard to debug.

For example, one of the reasons I have a class TRIPLE and not just 3-tuples is that a triple is not exactly  the same as an edge in the multigraph. I have decided that by default the operation that removes and edge would not remove the corresponding triple from the data structure, but leave it in and mark it as “inoperative” (so class TRIPLE has an extra “is_inoperative” boolean field). There is an explicit GC-like mechanism to clean up deleted edges occasionally. This approach brings efficiency but makes the setup more delicate since we have to be extremely careful about what a triple means and what removal means.

This is where I stop understanding how the rest of the world can work at all. Without some rigorous tools I just do not see how one can get such things right. Well, sure, spend weeks of trying out test cases, printing out the structures, manually check everything (in the testing world this is known as writing lots of “oracles”), try at great pains to find out the reason for wrong results, guess what program change will fix the problem, and start again. Stop when things look OK. When, as Tony Hoare once wrote, there are no obvious errors left.

Setting aside the minuscule share of projects (typically in embedded life-critical systems) that use some kind of formal verification, this process is what everyone practices. One can only marvel that systems, including many successful ones, get produced at all. To take an analogy from another discipline, this does not compare to working like an electrical engineer. It amounts to working like an electrician.

For a short time I programmed like that too (one has to start somewhere, and programming methodology was not taught back then). I no longer could today. Continuing with the Hoare citation, the only acceptable situation is to stop when there are obviously no errors left.

How? Certainly not, in my case, by always being right the first time. I make mistakes like everyone else does. But I have the methodology and tools to avoid some, and, for those that do slip through, to spot and fix them quickly.

Help is available

First, the type system. Lots of inconsistencies, some small and some huge, which in an untyped language would only hit during execution, do not make it past compilation. We are not just talking here about using REAL instead of INTEGER. With a sophisticated type system involving multiple inheritance, genericity, information hiding and void safety, a compiler error message can reflect a tricky logical mistake. You are using a SET as if it were a LIST (some operations are common, but others not). You are calling an operation on a reference that may be void (null) at run time. And so on.

By the way, about void-safety: for a decade now, Eiffel has been void-safe, meaning a compile-time guarantee of no run-time null pointer dereferencing. It is beyond my understanding how the rest of the world can still live with programs that run under myriad swords of Damocles: x.op (…) calls that might any minute, without any warning or precedent, hit a null x and crash.

Then there is the guarantee of logical consistency, which is where my class invariant (Figure 1) comes in. Maybe it scared you, but in reality it is all simple concepts, intended to make sure that you know what you are doing, and rely on tools to check that you are right. When you are writing your program, you are positing all kinds, logical assumptions, large and (mostly) small, all the time. Here, for the structure triples_from [o] to make sense, it must be a list such that:

  • It contains all the triples t in the triples_table such that t.source = o.
  •  It contains only those triples!

You know this when you write the program; otherwise you would not be having a “triples_from” structure. Such gems of knowledge should remain an integral part of the program. Individually they may not be rocket science, but accumulated over the lifetime of a class design, a subsystem design or a system design they collect all the intelligence that makes the software possible.  Yet in the standard process they are gone the next minute! (At best, some programmers may write a comment, but that does not happen very often, and a comment has no guarantee of precision and no effect on testing or correctness.)

Anyone who takes software development seriously must record such fundamental properties. Here we need the following invariant clause:

across triples_from as tf all

across tf.item as tp all tp.item.source = tf.cursor_index end

end

(It comes in the class, as shown in Figure 1, with the label “from_list_consistent”. Such labels are important for documentation and debugging purposes. We omit them here for brevity.)

What does that mean? If we could use Unicode (more precisely, if we could type it easily with our keyboards) we would write things like “∀ x: E | P (x) for all x in E, property P holds of x. We need programming-language syntax and write this as across E as x all P (x.item) end. The only subtlety is the .item part, which gives us generality beyond the  notation: x in the across is not an individual element of E but a cursor that moves over E. The actual element at cursor position is x.item, one of the properties of that cursor. The advantage is that the cursor has more properties, for example x.cursor_index, which gives its position in E. You do not get that with the plain of mathematics.

If instead of  you want  (there exists), use some instead of all. That is pretty much all you need to know to understand all the invariant clauses of class MULTIGRAPH as given in Figure 1.

So what the above invariant clause says is: take every position tf in triples_from; its position is tf.cursor_index and its value is tf.item. triples_from is declared as ARRAYED_LIST [LIST [TRIPLE]], so tf.cursor_index is an integer representing an object o, and tf.item is a list of triples. That list should  consist of the triples having tf.cursor_index as their source. This is the very property that we are expressing in this invariant clause, where the innermost across says: for every triple tp.item in the list, the source of that triple is the cursor index (of the outside across). Simple and straightforward, I think (although such English explanations are so much more verbose than formal versions, such as the Eiffel one here, and once you get the hang of it you will not need them any more).

How can one ever include a structure such as triples_from without expressing such a property? To put the question slightly differently: am I inside the asylum looking out, or outside the asylum looking in? Any clue would be greatly appreciated.

More properties

For the tag ( with_) and target lists, the properties are similar:

across triples_with as tw all across tw.item as tp all tp.item.tag = tw.key end end

across triples_to as tt all across tt.item as tp all tp.item.target = tt.cursor_index end end 

We also have some properties of array bounds:

 is_root.lower = 1 and is_root.upper = object_count

triples_from.lower = 1 and triples_from.upper = object_count

triples_to.lower = 1 and triples_to.upper = object_count

where object_count is the number of objects (nodes), and for an array a (whose bounds in Eiffel are arbitrary, not necessarily 0 or 1, and set on array creation), a.lower and a.upper are the bounds. Here we number the arrays from 1.

There are, as noted, two ways to represent rootness. We must express their consistency (or risk trouble). Two clauses of the invariant do the job:

across roots as t all is_root [t.item] end

across is_root as t all (t.item = roots.has (t.cursor_index)) end

The first one says that if we go through the list roots we only find elements whose is_root value is true; the second, that if we go through the array “is_root” we find values that are true where and only where the corresponding object, given by the cursor index, is in the roots set. Note that the = in that second property is between boolean values (if in doubt, check the type instantly in the EIffelStudio IDE!), so it means “if and only if.

Instead of these clauses, a more concise version, covering them both, is just

roots ~ domain (is_root)

with a function domain that gives the domain of a function represented by a boolean array. The ~ operator denotes object equality, redefined in many classes, and in particular in the SET classes (roots is a LINKED_SET) to cover equality between sets, i.e. the property of having the same elements.

The other clauses are all similarly self-explanatory. Let us just go through the most elaborate one, successors_consistent, involving three levels of across:

across successors as httpl all                   — httpl.item: hash table of list of triples

        across httpl.item as tpl all                — tpl.item: list of triples (tpl.key: key (i.e. tag) in hash table (tag)

                  across tpl.item as tp all            — tp.item: triple

                         tp.item.tag = tpl.key

and tp.item.source = httpl.cursor_index

                   end

          end

end

You can see that I struggled a bit with this one and made provisions for not having to struggle again when I would look at the code again 10 minutes, 10 days or 10 months later. I chose (possibly strange but consistent) names such as httpl for hash-table triple, and wrote comments (I do not usually need any in invariant and other contract clauses) to remind me of the type of everything. That was not strictly needed since once again the IDE gives me the types, but it does not cost much and could help.

What this says: go over successors; which as you remember is an ARRAY, indexed by objects, of HASH_TABLE, where each entry of such a hash table has an element of type [LIST [TRIPLE] and a key of type INTEGER, representing the tag of a number of outgoing edges from the given object. Go over each hash table httpl. Go over the associated list of triples tpl. Then for each triple tp in this list: the tag of the triple must be the key in the hash table entry (remember, the key does denote a tag); and the source of the triple must the object under consideration, which is the current iteration index in the array of the outermost iteration.

I hope I am not scaring you at this point. Although the concepts are simple, this invariant is more sophisticated than most of those we typically write. Many invariant clauses (and preconditions, and postconditions) are very simple properties, such as x > 0 or x ≠ y. The reason this one is more elaborate is not that I am trying to be fussy but that without it I would be the one scared to death. What is elaborate here is the data structure and programming technique. Not rocket science, not anything beyond programmers typically do, but elaborate. The only way to get it right is to buttress it by the appropriate logical properties. As noted, these properties are there anyway, in the back of your head, when you write the program. If you want to be more like an electrical engineer than an electrician, you have to write them down.

There is more to contracts

Invariants are not the only kind of such “contract properties. Here for example, from the same class, is a (slightly abbreviated) part of the postcondition (output property) of the operation that tells us, through a boolean Result, if the multigraph has an edge of given components osource, t (the tag) and otarget :

Result =

(across successors [osource] [t] as tp some

not tp.item.is_inoperative and tp.item.target = otarget

end)

In words, this clause expresses the compatibility of the operation with the successors view: it must answer yes if and only if otarget appears in the successor set of osource for t, and the corresponding triple is not marked inoperative.

The concrete benefits

And so? What do we get out of making these logical properties explicit? Just the intellectual satisfaction of doing things right, and the methodological guidance? No! Once you have done this work, it is all downhill. Turn on the run-time assertion monitoring option (tunable separately for preconditions, postconditions, invariants etc., and on by default in development mode), and watch your tests run. If you are like almost all of us, you will have made a few mistakes, some which will seem silly when or rather if you find them in time (but there is nothing funny about a program that crashes during operation) and some more subtle. Sit back, and just watch your contracts be violated. For example if I change <= to < in the invariant property tw.key <= max_tag, I get the result of Figure 5. I see the call stack that I can traverse, the object run-time structure that I can explore, and all the tools of a modern debugger for an OO language. Finding and correcting the logical flaw will be a breeze.

debugger

Figure 5: An invariant violation brings up the debugger

The difference

It will not be a surprise that I did not get all the data structures and algorithms of the class MULTIGRAPH  right the first time. The Design by Contract approach (the discipline of systematically expressing, whenever you write any software element, the associated logical properties) does lead to fewer mistakes, but everyone occasionally messes up. Everyone also looks at initial results to spot and correct mistakes. So what is the difference?

Without the techniques described here, you execute your software and patiently examine the results. In the example, you might output the content of the data structures, e.g.

List of outgoing references for every object:

        1: 1-1->1|D, 1-1->2|D, 1-1->3|D, 1-2->1|D, 1-2->2|D,  1-25->8|D, 1-7->1|D, 1-7->6|D,

1-10->8|D, 1-3->1|D, 1-3->2|D, 1-6->3|D, 1-6->4|D, 1-6->5|D

        3: 3-6->3, 3-6->4, 3-6->5, 3-9->14, 3-9->15,   3-9->16, 3-1->3, 3-1->2, 3-2->3, 3-2->2,

                  3-25->8, 3-7->3, 3-7->6, 3-10->8, 3-3->3,  3-3->2    

List of outgoing references for every object:

        1: 1-1->1|D, 1-1->2|D, 1-1->3|D, 1-2->1|D, 1-2->2|D, 1-25->8|D, 1-7->1|D, 1-7->6|D,

1-10->8|D, 1-3->1|D,  1-3->2|D, 1-6->3|D, 1-6->4|D, 1-6->5|D

        3: 3-6->3, 3-6->4, 3-6->5, 3-9->14, 3-9->15,  3-9->16, 3-1->3, 3-1->2, 3-2->3, 3-2->2,

                                 3-25->8, 3-7->3, 3-7->6, 3-10->8, 3-3->3,  3-3->2

and so on for all the structures. You check the entries one by one to ascertain that they are as expected. The process nowadays has some automated support, with tools such as JUnit, but it is still essentially manual, tedious and partly haphazard: you write individual test oracles for every relevant case. (For a more automated approach to testing, taking advantage of contracts, see [1].) Like the logical properties appearing in contracts, these oracles are called assertions but the level of abstraction is radically different: an oracle describes the desired result of one test, where a class invariant, or routine precondition, or postcondition expresses the properties desired of all executions.

Compared to the cost of writing up such contract properties (simply a matter of formalizing what you are thinking anyway when you write the code), their effect on testing is spectacular. Particularly when you take advantage of across iterators. In the example, think of all the checks and crosschecks automatically happening across all the data structures, including the nested structures as in the 3-level across clause. Even with a small test suite, you immediately get, almost for free, hundreds or thousands of such consistency checks, each decreasing the likelihood that a logical flaw will survive this ruthless process.

Herein lies the key advantage. Not that you will magically stop making mistakes; but that the result of such mistakes, in the form of contract violations, directly points to logical properties, at the level of your thinking about the program. A wrong entry in an output, whether you detect it visually or through a Junit clause, is a symptom, which may be far from the cause. (Remember Dijkstra’s comment, the real point of his famous Goto paper, about the core difficulty of programming being to bridge the gap between the static program text, which is all that we control, and its effect: the myriad possible dynamic executions.) Since the cause of a bug is always a logical mistake, with a contract violation, which expresses a logical inconsistency, you are much close to that cause.

(About those logical mistakes: since a contract violation reflects a discrepancy between intent, expressed by the contract, and reality, expressed by the code, the mistake may be on either side. And yes, sometimes it is the contract that is wrong while the implementation in fact did what is informally expected. There is partial empirical knowledge [1] of how often this is the case. Even then, however, you have learned something. What good is a piece of code of which you are not able to say correctly what it is trying to do?)

The experience of Eiffel programmers reflects these observations. You catch the mistakes through contract violations; much of the time, you find and correct the problem easily. When you do get to producing actual test output (which everyone still does, of course), often it is correct.

This is what has happened to me so far in the development of the example. I had mistakes, but converging to a correct version was a straightforward process of examining violations of invariant violations and other contract elements, and fixing the underlying logical problem each time.

By the way, I believe I do have a correct version (in the sense of the second part of the Hoare quote), on the basis not of gut feeling or wishful thinking but of solid evidence. As already noted it is hard to imagine, if the code contains any inconsistencies, a test suite surviving all the checks.

Tests and proofs

Solid evidence, not perfect; hard to imagine, not impossible. Tests remain only tests; they cannot exercise all cases. The only way to achieve demonstrable correctness is to rely on mathematical proofs performed mechanically. We have this too, with the AutoProof proof system for Eiffel, developed in recent years [1]. I cannot overstate my enthusiasm for this work (look up the Web-based demo), its results (automated proof of correctness of a full-fledged data structures and algorithms library [2]) and its potential, but it is still a research effort. The dynamic approach (meaning test-based rather than proof-based) presented above is production technology, perfected over several decades and used daily for large-scale mission-critical applications. Indeed (I know you may be wondering) it scales up without difficulty:

  • The approach is progressive. Unlike fully formal methods (and proofs), it does not require you to write down every single property down to the last quantifier. You can start with simple stuff like x > 0. The more you write, the more you get, but it is the opposite of an all-or-nothing approach.
  • On the practical side, if you are wondering about the consequences on performance of a delivered system: there is none. Run-time contract monitoring is a compilation option, tunable for different kinds of contracts (invariants, postconditions etc.) and different parts of a system. People use it, as discussed here, for development, testing and debugging. Most of the time, when you deliver a debugged system, you turn it off.
  • It is easy to teach. As a colleague once mentioned, if you can write an if-then-else you can write a precondition. Our invariants in the above example where a bit more sophisticated, but programmers do write loops (in fact, the Eiffel loop for iterating over a structure also uses across, with loop and instructions instead of all or some and boolean expressions). If you can write a loop over an array, you can write a property of the array’s elements.
  • A big system is an accumulation of small things. In a blog article [5] I recounted how I lost a full day of producing a series of technical diagrams of increasing complexity, using one of the major Web-based collaborative development tools. A bug of the system caused all the diagrams to reproduce the first, trivial one. I managed to get through to the developers. My impression (no more than an educated guess resulting from this interaction) is that the data structures involved were far simpler than the ones used in the above discussion. One can surmise that even simple invariants would have uncovered the bug during testing rather than after deployment.
  • Talking about deployment and tools used directly on the cloud: the action in software engineering today is in DevOps, a rapid develop-deploy loop scheme. This is where my perplexity becomes utter cluelessness. How can anyone even consider venturing into that kind of exciting but unforgiving development model without the fundamental conceptual tools outlined above?

We are back then to the core question. These techniques are simple, demonstrably useful, practical, validated by years of use, explained in professional books (e.g. [6]), introductory programming textbooks (e.g. [7]), EdX MOOCs (e.g. [8]), YouTube videos, online tutorials at eiffel.org, and hundreds of articles cited thousands of times. On the other hand, most people reading this article are not using Eiffel. On reflection, a simple quantitative criterion does exist to identify the inmates: there are far more people outside the asylum than inside. So the evidence is incontrovertible.

What, then, is wrong with me?

References

(Nurse to psychiatrist: these are largely self-references. Add narcissism to list of patient’s symptoms.)

1.    Ilinca Ciupa, Andreas Leitner, Bertrand Meyer, Manuel Oriol, Yu Pei, Yi Wei and others: AutoTest articles and other material on the AutoTest page.

2. Bertrand Meyer, Ilinca Ciupa, Lisa (Ling) Liu, Manuel Oriol, Andreas Leitner and Raluca Borca-Muresan: Systematic evaluation of test failure results, in Workshop on Reliability Analysis of System Failure Data (RAF 2007), Cambridge (UK), 1-2 March 2007 available here.

3.    Nadia Polikarpova, Ilinca Ciupa and Bertrand Meyer: A Comparative Study of Programmer-Written and Automatically Inferred Contracts, in ISSTA 2009: International Symposium on Software Testing and Analysis, Chicago, July 2009, available here.

4.    Carlo Furia, Bertrand Meyer, Nadia Polikarpova, Julian Tschannen and others: AutoProof articles and other material on the AutoProof page. See also interactive web-based online tutorial here.

5.    Bertrand Meyer, The Cloud and Its Risks, blog article, October 2010, available here.

6.    Bertrand Meyer: Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.

7.    Bertrand Meyer: Touch of Class: Learning to Program Well Using Objects and Contracts, Springer, 2009, see touch.ethz.ch and Amazon page.

8.    MOOCs (online courses) on EdX : Computer: Art, Magic, Science, Part 1 and Part 2. (Go to archived versions to follow the courses.)

VN:F [1.9.10_1130]
Rating: 9.9/10 (12 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 10 votes)

Mainstream enough for me

Every couple of weeks or so, I receive a message such as the one below; whenever I give a talk on any computer science topic anywhere in the world, strangers come to me to express similar sentiments. While I enjoy compliments as much as anyone else, I am not the right recipient for such comments. In fact there are 7,599,999,999  more qualified recipients. For me, Eiffel is “mainstream” enough.

What strikes me is why so many commenters, after the compliment, stop at the lament. Eiffel is not some magical dream, it is a concrete technology available for download at eiffel.org. Praising Eiffel will not change the world. Using EiffelStudio might.

When one answers the compliments with “Thanks! Then use it for your work“, the variety of excuses is amusing, or sad depending on the perspective, from “my boss would not allow it” (variant: “my subordinates would not accept it”) to “does it work with [library that does not work with anything else]?”.

Well, you might have some library wrapping to do (EiffelStudio easily interfaces with C, C++ and others). Also, you should not stop at the first hurdle: it might be due to a bug (surprise! The technology is not perfect!), but it might also just be that Eiffel and EiffelStudio are different and you have to shed some long-held assumptions and practices. What matters is that the technology does work; companies large and small use Eiffel all the time for long-running projects, some into the millions of lines and tens of thousands of classes, and refuse to switch to anything else.

What follows is a literal translation of the original message into English (it was written in another language). Since the author, whom I do not know, did not state the email was a public comment, I removed identifying details.

 

Subject:Eiffel is fantastic! But why is it not mainstream?

Dear Professor Meyer:

Greetings from [the capital of a country on another continent].

I graduated from [top European university] in 1996 and completed a master’s in physics from [institute on another continent] in 2006.

I have worked for twenty years in the industry, from application engineer to company head. In my industry career I have been able to be both CEO and CTO at the same time, thanks to the good education I received originally.

Information systems were always a pillar of my business strategy. Unfortunately, I was disappointed every single time I commissioned the development of a new system. This led me to study further and to investigate why the problem is not solved. That’s how I found your book Object-Oriented Software Construction and became enthusiastic about Design by Contract, Eiffel and EiffelStudio. To me your method is the only method for developing “correct” software. The Eiffel programming language is, in my view, the only true object-oriented language.

However it befuddles me — I cannot understand —  why the “big” players in this industry (Apple, Google, Microsoft etc.) do not use Design by Contract. .NET has a Visual Studio extension with the name “Code Contracts” but it is no longer supported in the latest Visual Studio 2017. Big players, why don’t you promote Design by Contract?

Personally, after 20 years in industry, I found out that my true calling is in research. It would be a great pleasure to be able to work in research. My dream job is Data Scientist and I had thought to apply to Google for a job. Studying the job description, I noted that “Python” is one of the desired languages. Python is dynamically typed and does not support good encapsulation. No trace of Design by Contract…

What’s wrong with the software industry?

With best regards,

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

LASER summer school on software for robotics: last call for registration

Much of the progress in robotics is due to software advances, and software issues remain at the heart of the formidable challenges that remain. The 2017 LASER summer school, held in September in Elba, brings together some of the most prestigious international experts in the area.

The LASER school has established itself as one of the principal forums to discussed advanced software issues. The 2017 school takes place from 9 to 17 September in the idyllic setting of the Hotel del Golfo in Procchio, Elba Island, Italy.

Robotics is progressing at an amazing pace, bringing improvements to almost areas of human activity. Today’s robotics systems rely ever more fundamentally on complex software, raising difficult issues. The LASER 2017 summer school covers both the current state of robotics software technology and open problems. The lecturers are top international experts with both theoretical contributions and major practical achievements in developing robotics systems.
The LASER school is intended for professionals from the industry (engineers and managers) as well as university researchers, including PhD students. Participants learn about the most important software technology advances from the pioneers in the field. The school’s focus is applied, although theory is welcome to establish solid foundations. The format of the school favors extensive interaction between participants and speakers.

We have lined up an impressive roster of speakers from the leading edge of both industry and academia:

Rodolphe Gélin, Aldebaran Robotics
Ashish Kapoor, Microsoft Research
Davide Brugali, University of Bergamo, on Managing software variability in robotic control systems
Nenad Medvidovic, University of Southern California, on Software Architectures of Robotics Systems
Bertrand Meyer, Politecnico di Milano & Innopolis University, on Concurrent Object-Oriented Robotics Software
Issa Nesnas, NASA Jet Propulsion Laboratory, on Experiences from robotic software development for research and planetary flight robots
Hiroshi (“Gitchang”) Okuno, Waseda University & Kyoto University, on Open-Sourced Robot Audition Software HARK: Capabilities and Applications

The school takes place at the magnificent Hotel del Golfo in the Gulf of Procchio, Elba. Along with an intensive scientific program, participants will have time to enjoy the countless natural and cultural riches of this wonderful, history-laden jewel of the Mediterranean.

For more information about the school, the speakers and registration see the LASER site.

VN:F [1.9.10_1130]
Rating: 5.5/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

The perils of feature interaction

One of the most delicate aspects of design is feature interaction. As users, we suffer daily from systems offering features that individually make sense but clash with each other. In my agile book [1] I explained in detail, building on the work of Pamela Zave, why this very problem makes one of the key ideas of agile methods,  the reliance on “user stories” for requirements, worthless and damaging.

A small recent incident reminded me of the perils of feature interaction. I used my Lenovo W540 laptop without power for a short while, then reached a sedentary location and plugged it in. Hence my surprise when, some hours later, it started beeping to alert me that it was running out of battery. The natural reactions — check the outlet and the power cord — had no effect. I found the solution, but just in time: otherwise, including if I had not heard the warning sound, I would have been unable to use the laptop any further. That’s right: I would not have been able to restart the computer at all, even with access to a power outlet, and even though it was perfectly functional and so was its (depleted) battery. The reason is that the problem arose from a software setting, which (catch-22 situation) I could not correct without starting the computer [2].

The only solution would have been to find another, non-depleted battery. That is not a trivial matter if you have traveled with your laptop outside of a metropolis: the W540 has a special battery which ordinary computer shops do not carry [3].

The analysis of what made such a situation possible must start with the list of relevant hardware and software product features.

Hardware:

  • HA. This Lenovo W series includes high-end laptops with high power requirements, which the typical 65-watt airplane power jack does not satisfy.
  • HB. With models prior to the W540, if you tried to connect a running laptop to the power supply in an airplane, it would not charge, and the power indicator would start flickering.  But you could still charge it if you switched it off.
  • HC. The W540 effectively requires 135 watts and will not take power from a 65-watt power source under any circumstances.

Software:

  • SA. The operating system (this discussion assumes Windows) directly reflects HC by physically disabling charging if the laptop is in the “Airplane” power mode.
  • SB. If you disable wireless, the operating system automatically goes into the “Airplane” power mode.
  • SC. In the “Airplane” power mode, the laptop, whether or not connected through a charger to a power outlet of any wattage, will not charge. The charging function is just disabled.
  • SD. One can edit power modes to change parameters, such as time to automatic shutoff, but the no-charging property in Airplane mode is not editable and not even mentioned in the corresponding UI dialog. It seems to be a behind-the-scenes property magically attached to the power-mode name “Airplane”.
  • SE. There is a function key for disabling wireless: F8. As a consequence of SB it also has the effect of switching to “Airplane” mode.
  • SF. Next to F8 on the keyboard is F7.
  • SG. F7 serves to display the screen content on another monitor (Windows calls it a “projector”). F7 offers a cyclic set of choices: laptop only, laptop plus monitor etc.
  • SH. In the old days (like five years ago), such function keys setting important operating system parameters on laptops used to be activated only if you held them together with a special key labeled “Fn”. For some reason (maybe the requirement was considered too complicated for ordinary computer users) the default mode on Lenovo laptops does not use the “Fn” key anymore: you just press the desired key, such as F7 or F8.
  • SI. You can revert to the old mode, requiring pressing “Fn”, by going into the BIOS and performing some not-absolutely-trivial steps, making this possibility the preserve of techies. (Helpfully, this earlier style is called “Legacy mode”, as a way to remind you that your are an old-timer, probably barely graduated from MS-DOS and still using obsolete conventions. In reality, the legacy mode is the right one to use, whether for techies or novices: it is all too easy to hit a function key by mistake and get totally unexpected results. The novice, not the techie, is the one who will be completely confused and panicked as a result. The first thing I do with a new laptop is to go to the BIOS and set legacy mode.)

By now you have guessed what happened in my case, especially once you know that I had connected the laptop to a large monitor and had some trouble getting that display to work. In the process I hit Fn-F7 (feature SG) several times.  I must have mistakenly (SF) pressed F8 instead of F7 at some point. Normally, Legacy mode (SI) should have made me immune to the effects of hitting a function key by mistake, but I did use the neighboring key F7 for another purpose. Hitting F8 disabled wireless (SE) and switched on Airplane power mode (SB). At that point the laptop, while plugged in correctly, stopped charging (SC, SD).

How did I find out? Since I was looking for a hardware problem I could have missed the real cause entirely and ended up with a seemingly dead laptop. Fortunately I opened the Power Options dialog to see what it said about the battery. I noticed that among the two listed power plans the active one was not “Power Saver”, to which I am used, but “Airplane”. I did not immediately pay  attention to that setting; since I had not used the laptop for a while I just thought that maybe the last time around I had switched on “Airplane”, even though that made little sense since I was not even aware of the existence of that option. After trying everything else, though, I came back to that intriguing setting, changed to the more usual “Power Saver”, and the computer started to charge again. I was lucky to have a few percent of battery still left at that point.

Afterwards I found a relevant discussion thread on a Lenovo user forum.

As is often the case in such feature-interaction mishaps, most of the features make sense individually [4]. What causes trouble is some unforeseen combination of features.

There is no sure way to avoid such trouble, but there is a sure way to cause it: design a system feature by feature, as with user stories in agile development. The system must do this and it must do that. Oh, by the way, it must also do that. And that. User stories have one advantage: everyone understands them. But that is also their limitation. Good requirements and design require professionals who can see the whole beyond the parts.

A pernicious side of this situation is that many people believe that use cases and user stories are part of object-oriented analysis, whereas the OO approach to requirements and design is the reverse: rise above individual examples to uncover the fundamental abstractions.

As to my laptop, it is doing well, thanks. And I will be careful with function keys.

Reference and notes

[1] Bertrand Meyer: Agile! The Good, the Hype and the Ugly, Springer, 2014,  Amazon page: here, book page: here. A description of the book appeared here on this blog at the time of publication.

[2] Caveat: I have not actually witnessed this state in which a plugged-in laptop will not restart. The reason is simply that I do not have an alternate battery at the moment so I cannot perform the experiment with the almost certain result of losing the use of my laptop. I will confirm the behavior as soon as I have access to a spare battery.

[3] It has been my systematic experience over the past decade and a half that Lenovo seems to make a point, every couple of years, to introduce new models with incompatible batteries and docking stations. (They are also ever more incredibly bulky, with the one for the W540 almost as heavy as the laptop itself. On the other hand the laptops are good, otherwise I would not be bothering with them.)

[4] One exception here is feature SB: switching wireless off does not necessaril y mean you want to select a specific power mode! It is a manifestation of the common syndrome  of software tools that think they are smarter than you, and are not. Another exception is SE: to let a simple key press change fundamental system behavior is to court disaster. But I had protected myself by using legacy mode and was hit anyway.

VN:F [1.9.10_1130]
Rating: 7.3/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

AutoProof workshop: Verification As a Matter of Course

The AutoProof technology pursues the goal of “Verification As a Matter Of Course”, integrated into the EVE development environment. (The AutoProof  project page here; see particularly the online interactive tutorial.) A one-day workshop devoted to the existing AutoProof and current development will take place on October 1 near Toulouse in France. It is an informal event (no proceedings planned at this point, although based on the submissions we might decide to produce a volume), on a small scale, designed to bring together people interested in making the idea of practical verification a reality.

The keynote will be given by Rustan Leino from Microsoft Research, the principal author of the Boogie framework on which the current implementation of AutoProof relies.

For submissions (or to attend without submitting) see the workshop page here. You are also welcome to contact me for more information.

VN:F [1.9.10_1130]
Rating: 5.3/10 (15 votes cast)
VN:F [1.9.10_1130]
Rating: -2 (from 6 votes)

Design by Contract: ACM Webinar this Thursday

A third ACM webinar this year (after two on agile methods): I will be providing a general introduction to Design by Contract. The date is this coming Thursday, September 17, and the time is noon New York (18 Paris/Zurich, 17 London, 9 Los Angeles, see here for hours elsewhere). Please tune in! The event is free but requires registration here.

VN:F [1.9.10_1130]
Rating: 5.8/10 (19 votes cast)
VN:F [1.9.10_1130]
Rating: -4 (from 8 votes)

Detecting deadlock automatically? (New paper)

To verify sequential programs, we have to prove that they do the right thing, but also that they do it within our lifetime — that they terminate. The termination problem is considerably harder with concurrent programs, since they add a new form of non-termination: deadlock. A set of concurrent processes or threads will deadlock if they end up each holding a resource that another wants and wanting a resource that another holds.

There is no general solution to the deadlock problem, even a good enough general solution. (“Good enough” is the best we can hope for, since like many important problems deadlock is undecidable.) It is already hard enough to provide run-time deadlock detection, to be able at least to cancel execution when deadlock happens. The research reported in this new paper [1] pursues the harder goal of static detection. It applies to an object-oriented context (specifically the SCOOP model of concurrent OO computation) and relies fundamentally on the alias calculus, a static alias analysis technique developed in previous publications.

The approach is at its inception and considerable work remains to be done. Still, the example handled by the paper is encouraging: analyzing two versions of the dining philosophers problem and proving — manually — that one can deadlock and the other cannot.

References

[1] Bertrand Meyer: An automatic technique for static deadlock prevention, in PSI 2014 (Ershov Informatics Conference), eds. Irina Virbitskaite and Andrei Voronkov, Lecture Notes in Computer Science, Springer, 2015, to appear.; draft available here.

VN:F [1.9.10_1130]
Rating: 6.0/10 (19 votes cast)
VN:F [1.9.10_1130]
Rating: -2 (from 12 votes)

Programming language features

 

InfoWorld is currently publishing a series of programming language assessments:

  • 9 Things We Hate About Objective-C, 4 June.
  • 15 Things We Hate About Java, 6 March.
  • 10 Features Apple Stole for the Swift Programming Language, 9 June.

Notable in these articles is what they do not mention: Eiffel has most of what the author misses in Objective-C and Java; and most of what Swift “stole” it stole from Eiffel.

In this article let us concentrate on the nine Objective-C complaints, by Peter Wayner [1]; subsequent articles will examine the Java “hates” and the Swift “steals”.

Criticism 1: “It is a little too different

“Objective-C lovers tout that Objective-C is a strict superset of C: If you can do it in C, you should be able to do it in Objective-C. But it doesn’t go the other way, so you’re stuck wondering, “Should I use an Objective-C method description or a C one?” Achieving portability to C programs requires constant vigilance and forethought.”

This is what happens when you mix language paradigms. Eiffel has a close relationship with C, but the two sides are clearly separated. You can call C from Eiffel, and the other way around. You can declare an Eiffel routine as “external C” and even include the C code inline: in other words an Eiffel “method description” can have a C implementation. The structure is always object-oriented (no need to fear that a novice programmer will revert to a C style for the design) but for access to low-level system mechanisms and small functions that should be optimized to the byte and microsecond you use C directly, in its ideal role.

Criticism 2: “It’s still mostly just plain old C

“For all its object-oriented coolness, you don’t get much else from Objective-C. It’s more of a way to organize your code for large systems than a way to write better code. You’re still responsible for pointers. You’re still responsible for keeping track of memory.

Eiffel is object-oriented all the way. You are not “responsible for pointers“. References are tame: no pointer arithmetic. You are not “responsible for keeping track of memory“:  objects are garbage-collected

“The C programmers loved to call their software a ‘portable assembly code’, and the same is true for Objective-C … except it’s only portable from the Mac to the iPad.”

“Portable assembly code” is exactly what C provides, and hence an excellent target for an Eiffel compiler. As to Eiffel, it runs on all platforms, from Windows to Linux to Solaris to VMS to the Mac.

Criticism 3: Stuck in the 80’s

Criticism 3: “Stuck in the ’80s

“Parachute pants, big hair, ‘The Breakfast Club’ — and the NeXT machine: Objective-C is like a time machine in programming-language land.”

Eiffel has undergone constant evolution, innovating on all fronts of programming constructs and integrating the best of known techniques.

“The primitives aren’t first-class citizens. Garbage collection, that wonderful idea that sustained Lisp, was adopted by Java ages ago. Objective-C got it in 2006. The same goes for properties and closures.”

All this has been in Eiffel forever. Agents (closures) were introduced in 1999, long before Java, C# and other OO languages had anything of the sort. Eiffel’s assigner commands are vastly superior to properties (no need to write all these boring getter functions).

 Criticism 4: “Punctuation

“The cool modern kids writing Python, Ruby, and CoffeeScript can craft billion-dollar companies without using brackets, braces, and parentheses. You’ll be wearing out your punctuation keys writing Objective-C. Colons, at-signs, asterisks? Is there any character that the language doesn’t use?”

Come on. How can one be so misinformed? The semicolon has been optional in Eiffel for fifteen years. The high-priest style of C, Objective-C, Java, C# and so many others, with its piling up of strange symbols, is something that Eiffel users never had to suffer.

Criticism 5: “Modern syntax

Not modern syntax, that is:

“Objective-C”s syntax is like Coke: They tried to modernize it in the ’90s, but it never stuck.”

Eiffel’s syntax is clear and simple. Total beginners, including high-school students, pick it up just as easily and naturally as advanced programmers, and as application experts who want to concentrate on their problem, not on learning strange language conventions going back to the nineteen-sixties.

Criticism 6: “No namespaces

Here Eiffel does not provide what the journalist wants: it is “post-namespaces” (as in “postmodern”). The Eiffel community has decided that the complexity of namespaces was not worth the trouble (what happens when you move packages around?) and prefers simple mechanisms for resolving class name clashes.

Criticism 7: “It only runs in Apple’s corner of the universe

” Variety is the spice of life. It’s even more important in a world where not everything is an iPhone. If a Windows or Linux shop recruits you, you can forget all of those extra Objective-C extensions you learned because they’ll be of no use.”

Eiffel is not tied to any manufacturer, computer architecture or operating system. If a new processor comes out, or a user needs an exotic platform, a port can usually be produced in a matter of hours. The compiler and the entire environment to which it belongs, EiffelStudio, are written in Eiffel; the supporting runtime is in a highly portable form of C, which requires very little customization, if any, for a new platform. (Here “the compiler” means the Eiffel Software implementation, but other implementations also put a strong emphasis on portability.)

Criticism 8: “XCode is your only choice

“In the Objective-C world, you get really only one choice. Why do you need to be different, comrade?”

Besides EiffelStudio other compilers and tools are available for Eiffel.

Criticism 9: “Apple’s benevolent dictatorship

“Do you want to give out more than 100 copies of your iPhone app? Forget it. Do you want to “think different” with your UI? Please go back and read the user interface guidelines. You can’t do anything without Apple’s permission because Apple uses strong crypto to lock down everything — and fanatically tyrannical policies to lock down the rest.”

The Eiffel language definition is steered by a standards committee under Ecma (the organization behind many of the major standards in IT), which anyone can join. EiffelStudio itself is available in open source. The Eiffel world knows nothing like the close control Apple exerts over its product; it welcomes all contributors.

Maybe someone should talk to Mr. Wayner and help him broaden his scope of programming language knowledge.

References

[1] Peter Wayner, 9 Things We Hate About Objective-C, InfoWorld, 4 June 2014, available here.

VN:F [1.9.10_1130]
Rating: 6.7/10 (17 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 8 votes)

Attached by default?

 

Opinions requested! See at end.

A void call, during the execution of an object-oriented program, is a call of the standard OO form

x·some_routine (…)                                                /CALL/

where x, a reference, happens to be void (null) instead of denoting, as expected, an object. The operation is not possible; it leads to an exception and, usually, a crash of the program. Void calls are also called “null pointer dereferencing”.

One of the major advances in Eiffel over the past years has been the introduction of attached types, entirely removing the risk of void calls. The language mechanisms, extending the type system, make void-call avoidance a static property, part of type checking: just as the compiler will prevent you from assigning a boolean value to an integer variable, so will it flag your program if it sees a risk of void call. Put the other way around, if your program passes compilation, you have the guarantee that its executions will never produce a void call. Attached types thus remove one of the major headaches of programming, what Tony Hoare [1] called his “one-billion-dollar mistake”:

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At that time, I was designing the first comprehensive type system for references in an object oriented language (ALGOL W) [2]. My goal was to ensure that all use of references should be absolutely safe, with checking performed automatically by the compiler. But I couldn’t resist the temptation to put in a null reference, simply because it was so easy to implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty year

Thanks to attached types, Eiffel programmers can sleep at night: their programs will not encounter void calls.

To benefit from this advance, you must declare variables accordingly, as either attached (never void after initialization) or detachable (possibly void). You must also write the program properly:

  • If you declare x attached, you must ensure in the rest of the program that before its first use x will have been attached to an object, for example through a creation instruction create x.
  • If you declare x detachable, you must make sure that any call of the above form /CALL/ happens in a context where x is guaranteed to be non-void; for example, you could protect it by a test if x /= Void then or, better, an “object test”.

Code satisfying these properties is called void-safe.

Void safety is the way to go: who wants to worry about programs, even after they have been thoroughly tested and have seemingly worked for a while, crashing at unpredictable times? The absence of null-pointer-dereferencing can be a statically  enforced property, as the experience of Eiffel now demonstrates; and that what it should be. One day, children will think void-safely from the most tender age, and their great-grandparents will tell them, around the fireplace during long and scary winter nights, about the old days when not everyone was programming in Eiffel and even those who did were worried about the sudden null-pointer-derefencing syndrome. To get void safety through ordinary x: PERSON declarations, you had (children, hold your breath) to turn on a compiler option!

The transition to void safety was neither fast nor easy; in fact, it has taken almost ten years. Not everyone was convinced from the beginning, and we have had to improve and simplify the mechanism along the way to make void-safe programming practical. Compatibility has been a key issue throughout: older classes are generally not void-safe, but in a language that has been around for many years and has a large code base of operational software it is essential to ensure a smooth transition. Void safety has, from its introduction, been controlled by a compiler option:

  • With the option off, old code will compile as it used to do, but you do not get any guarantee of void safety. At execution time, a void call can still cause your program to go berserk.
  • With the option on, you get the guarantee: no void calls. To achieve this goal, you have to make sure the classes obey the void safety rules; if they do not, the compiler will reject them until you fix the problem.

In the effort to reconcile the compatibility imperative with the inexorable evolution to void safety, the key decisions have affected default values for compiler options and language conventions. Three separate decisions, in fact. Two of the defaults have already been switched; the question asked at the end of this article addresses the switching of the last remaining one.

The first default governed the void-safety compiler option. On its introduction, void-safety was off by default; the mechanism had to be turned on explicitly, part of the “experimental” option that most EiffelStudio releases offer for new, tentative mechanisms. That particular decision changed a year ago, with version 7.3 (May 2013): now void safety is the default. To include non-void-safe code you must mark  it explicitly.

The second default affects a language convention: the meaning of a standard declaration. A typical declaration, such as

x: PERSON                                                                                      /A/

says that at run time x denotes a reference which, if not void, will be attached to an object of type PERSON.  In pre-void-safety Eiffel, as in today’s other typed OO languages,  the reference could occasionally become void at run time; in other words, x was detachable. With the introduction of void safety, you could emphasize this property by specifying it explicitly:

x: detachable PERSON                                                             /B/

You could also specify that x would never be void by declaring it attached, asking the compiler to guarantee this property for you (through its application of the void-safety rules to all operations involving x). The explicit form in this case is

x: attached PERSON                                                               /C/

In practical programming, of course, you do not want to specify attached or detachable all the time: you want to use the simple form /A/ as often as possible. Originally, since we were starting from a non-void-safe language, compatibility required /A/ to mean /B/ by default. But it turns out that “attached” really is the dominant case: most references should remain attached at all times and Void values should be reserved for important but highly specialized cases such as terminating linked data structures. So the simple form should, in the final state of the language, mean /C/. That particular default was indeed switched early (version 7.0, November 2011) for people using the void-safety compiler option. As a result, the attached keyword is no longer necessary for declarations such as the above, although it remains available. Everything is attached by default; when you want a reference that could be void (and are prepared to bear the responsibility for convincing the compiler that it won’t when you actually use it in a call), you declare it as detachable; that keyword remains necessary.

There remains one last step in the march to all-aboard-for-void-safety: removing the “detachable by default” option, that is to say, the compiler option that will make /A/ mean /B/ (rather than /C/). It is only an option, and not the default; but still it remains available. Do we truly need it? The argument for removing it  is that it simplifies the specification (the fewer options the better) and encourages everyone, even more than before, to move to the new world. The argument against is to avoid disturbing existing projects, including their compiler control files (ECFs).

The question looms: when do we switch the defaults? Some of us think the time is now; specifically, the November release (14.11) [4].

Do you think the option should go? We would like your opinion. Please participate in the Eiffelroom poll [5].

 

References and note

[1] C.A.R. Hoare: Null References: The Billion Dollar Mistake , abstract of talk at QCon London, 9-12 March 2009, available here.

[2] (BM note) As a consolation, before Algol W, LISP already had NIL, which is the null pointer.

[3] Bertrand Meyer, Alexander Kogtenkov and Emmanuel Stapf: Avoid a Void: The Eradication of Null Dereferencing, in Reflections on the Work of C.A.R. Hoare, eds. C. B. Jones, A.W. Roscoe and K.R. Wood, Springer-Verlag, 2010, pages 189-211, available here.

[4] EiffelStudio version numbering changed in 2014: from a classic major_number.minor_number to a plain year.month, with two principal releases, 5 and 11 (May and November).

[5] Poll on switching the attachment defaults: at the bottom of the Eiffelroom page here (direct access here).

VN:F [1.9.10_1130]
Rating: 8.6/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

New article: passive processors

 

The SCOOP concurrency model has a clear division of objects into “regions”, improving the clarity and reliability of concurrent programs by establishing a close correspondence between the object structure and the process structure. Each region has an associated “processor”, which executes operations on the region’s objects. A literal application of this rule implies, however, a severe performance penalty. As part of the work for his PhD thesis (defended two weeks ago), Benjamin Morandi found out that a mechanism for specifying certain processors as “passive” yields a considerable performance improvement. The paper, to be published at COORDINATION, describes the technique and its applications.

Reference

Benjamin Morandi, Sebastian Nanz and Bertrand Meyer: Safe and Efficient Data Sharing for Message-Passing Concurrency, to appear in proceedings of COORDINATION 2014, 16th International Conference on Coordination Models and Languages, Berlin, 3-6 June 2014, draft available here.
.

VN:F [1.9.10_1130]
Rating: 8.2/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

LASER 2014 (Elba, September)

2014 marks the 10-th anniversary (11th edition) of the LASER summer school. The school will be held September 7-14, 2014, and the detailed information is here.

LASER (the name means Laboratory for Applied Software Engineering Research) is dedicated to practical software engineering. The roster of speakers since we started is a who’s who of innovators in the field. Some of the flavor of the school can gathered from the three proceedings volumes published in Springer LNCS (more on the way) or simply by browsing the pages of the schools from previous years.

Usually we have a theme, but to mark this anniversary we decided to go for speakers first; we do have a title, “Leading-Edge Software Engineering”, but broad enough to encompass a wide variety of a broad range of topics presented by star speakers: Harald Gall, Daniel Jackson, Michael Jackson, Erik Meijer (appearing at LASER for the third time!), Gail Murphy and Moshe Vardi. With such a cast you can expect to learn something important regardless of your own primary specialty.

LASER is unique in its setting: a 5-star hotel in the island paradise of Elba, with outstanding food and countless opportunities for exploring the marvelous land, the beaches, the sea, the geology (since antiquity Elba has been famous for its stones and minerals) and the history, from the Romans to Napoleon, who in the 9 months of his reign changed the island forever. The school is serious stuff (8:30 to 13 and 17 to 20 every day), but with enough time to enjoy the surroundings.

Registration is open now.

VN:F [1.9.10_1130]
Rating: 7.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)

Negative variables: new version

I have mentioned this paper before (see the earlier blog entry here) but it is now going to be published [1] and has been significantly revised, both to take referee comments into account and because we found better ways to present the concepts.

We have  endeavored to explain better than in the draft why the concept of negative variable is necessary and why the usual techniques for modeling object-oriented programs do not work properly for the fundamental OO operation, qualified call x.r (…). These techniques are based on substitution and are simply unable to express certain properties (let alone verify them). The affected properties are those involving properties of the calling context or the global project structure.

The basic idea (repeated in part from the earlier post) is as follows. In modeling OO programs, we have to take into account the unique “general relativity” property of OO programming: all the operations you write are expressed relative to a “current object” which changes repeatedly during execution. More precisely at the start of a call x.r (…) and for the duration of that call the current object changes to whatever x denotes — but to determine that object we must again interpret x in the context of the previous current object. This raises a challenge for reasoning about programs; for example in a routine the notation f.some_reference, if f is a formal argument, refers to objects in the context of the calling object, and we cannot apply standard rules of substitution as in the non-OO style of handling calls.

We introduced a notion of negative variable to deal with this issue. During the execution of a call x.r (…) the negation of x , written x’, represents a back pointer to the calling object; negative variables are characterized by axiomatic properties such as x.x’= Current and x’.(old x)= Current.

Negative variable as back pointer

The paper explains why this concept is necessary, describes the associated formal rules, and presents applications.

Reference

[1] Bertrand Meyer and Alexander Kogtenkov: Negative Variables and the Essence of Object-Oriented Programming, to appear in Specification, Algebra, and Software, eds. Shusaku Iida, Jose Meseguer and Kazuhiro Ogata, Springer Lecture Notes in Computer Science, 2014, to appear. See text here.

VN:F [1.9.10_1130]
Rating: 7.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

Reading notes: strong specifications are well worth the effort

 

This report continues the series of ICSE 2013 article previews (see the posts of these last few days, other than the DOSE announcement), but is different from its predecessors since it talks about a paper from our group at ETH, so you should not expect any dangerously delusional,  disingenuously dubious or downright deceptive declaration or display of dispassionate, disinterested, disengaged describer’s detachment.

The paper [1] (mentioned on this blog some time ago) is entitled How good are software specifications? and will be presented on Wednesday by Nadia Polikarpova. The basic result: stronger specifications, which capture a more complete part of program functionality, cause only a modest increase in specification effort, but the benefits are huge; in particular, automatic testing finds twice as many faults (“bugs” as recently reviewed papers call them).

Strong specifications are specifications that go beyond simple contracts. A straightforward example is a specification of a push operation for stacks; in EiffelBase, the basic Eiffel data structure library, the contract’s postcondition will read

item =                                          /A/
count = old count + 1

where x is the element being pushed, item the top of the stack and count the number of elements. It is of course sound, since it states that the element just pushed is now the new top of the stack, and that there is one more element; but it is also  incomplete since it says nothing about the other elements remaining as they were; an implementation could satisfy the contract and mess up with these elements. Using “complete” or “strong” preconditions, we associate with the underlying domain a theory [2], or “model”, represented by a specification-only feature in the class, model, denoting a sequence of elements; then it suffices (with the convention that the top is the first element of the model sequence, and that “+” denotes concatenation of sequences) to use the postcondition

model = <x> + old model         /B/

which says all there is to say and implies the original postconditions /A/.

Clearly, the strong contracts, in the  /B/ style, are more expressive [3, 4], but they also require more specification effort. Are they worth the trouble?

The paper explores this question empirically, and the answer, at least according to the criteria used in the study, is yes.  The work takes advantage of AutoTest [5], an automatic testing framework which relies on the contracts already present in the software to serve as test oracles, and generates test cases automatically. AutoTest was applied to both to the classic EiffelBase, with classic partial contracts in the /A/ style, and to the more recent EiffelBase+ library, with strong contracts in the /B/ style. AutoTest is for Eiffel programs; to check for any language-specificity in the results the work also included testing a smaller set of classes from a C# library, DSA, for which a student developed a version (DSA+) equipped with strong model-based contracts. In that case the testing tool was Microsoft Research’s Pex [7]. The results are similar for both languages: citing from the paper, “the fault rates are comparable in the C# experiments, respectively 6 . 10-3 and 3 . 10-3 . The fault complexity is also qualitatively similar.

The verdict on the effect of strong specifications as captured by automated testing is clear: the same automatic testing tools applied to the versions with strong contracts yield twice as many real faults. The term “real fault” comes from excluding spurious cases, such as specification faults (wrong specification, right implementation), which are a phenomenon worth studying but should not count as a benefit of the strong specification approach. The paper contains a detailed analysis of the various kinds of faults and the corresponding empirically determined measures. This particular analysis is for the Eiffel code, since in the C#/Pex case “it was not possible to get an evaluation of the faults by the original developers“.

In our experience the strong specifications are not that much harder to write. The paper contains a precise measure: about five person-weeks to create EiffelBase+, yielding an “overall benefit/effort ratio of about four defects detected per person-day“. Such a benefit more than justifies the effort. More study of that effort is needed, however, because the “person” in the person-weeks was not just an ordinary programmer. True, Eiffel experience has shown that most programmers quickly get the notion of contract and start applying it; as the saying goes in the community, “if you can write an if-then-else, you can write a contract”. But we do not yet have significant evidence of whether that observation extends to model-based contracts.

Model-based contracts (I prefer to call them “theory-based” because “model” means so many other things, but I do not think I will win that particular battle) are, in my opinion, a required component of the march towards program verification. They are the right compromise between simple contracts, which have proved to be attractive to many practicing programmers but suffer from incompleteness, and full formal specification à la Z, which say everything but require too much machinery. They are not an all-or-nothing specification technique but a progressive one: programmers can start with simple contracts, then extend and refine them as desired to yield exactly the right amount of precision and completeness appropriate in any particular context. The article shows that the benefits are well worth the incremental effort.

According to the ICSE program the talk will be presented in the formal specification session, Wednesday, May 22, 13:30-15:30, Grand Ballroom C.

References

[1] Nadia Polikarpova, Carlo A. Furia, Yu Pei, Yi Wei and Bertrand Meyer: What Good Are Strong Specifications?, to appear in ICSE 2013 (Proceedings of 35th International Conference on Software Engineering), San Francisco, May 2013, draft available here.

[2] Bertrand Meyer: Domain Theory: the forgotten step in program verification, article on this blog, see here.

[3] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[4] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ‘ 10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[5] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[6] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, in IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[7] Nikolai Tillman and Peli de Halleux, Pex: White-Box Generation for .NET, in Tests And Proofs (TAP 2008), pp. 134-153.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Presentations at ICSE and VSTTE

 

The following presentations from our ETH group in the ICSE week (International Conference on Software Engineering, San Francisco) address important issues of software specification and verification, describing new techniques that we have recently developed as part of our work building EVE, the Eiffel Verification Environment. One is at ICSE proper and the other at VSTTE (Verified Software: Tools, Theories, Experiments). If you are around please attend them.

Julian Tschannen will present Program Checking With Less Hassle, written with Carlo A. Furia, Martin Nordio and me, at VSTTE on May 17 in the 15:30-16:30 session (see here in the VSTTE program. The draft is available here. I will write a blog article about this work in the coming days.

Nadia Polikarpova will present What Good Are Strong Specifications?, written with , Carlo A. Furia, Yu Pei, Yi Wei and me at ICSE on May 22 in the 13:30-15:30 session (see here in the ICSE program). The draft is available here. I wrote about this paper in an earlier post: see here. It describes the systematic application of theory-based modeling to the full specification and verification of advanced software.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

Multirequirements (new paper)

 

As part of a Festschrift volume for Martin Glinz of the university of Zurich I wrote a paper [1] describing a general approach to requirements that I have been practicing and developing for a while, and presented in a couple of talks. The basic idea is to rely on object-oriented techniques, including contracts for the semantics, and to weave several levels of discourse: natural-language, formal and graphical.

Reference

[1] Bertrand Meyer: Multirequirements, to appear in Martin Glinz Festschrift, eds. Anne Koziolek and Norbert Scheyff, 2013, available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)