Archive for the ‘Eiffel’ Category.

Why not program right?

recycled-logo (Originally published on CACM blog.)

Most of the world programs in a very strange way. Strange to me. I usually hear the reverse question: people ask us, the Eiffel community, to explain why we program our way. I hardly understand the question, because the only mystery is how anyone can even program in any other way.

The natural reference is the beginning of One Flew Over the Cuckoo’s Nest: when entering an insane asylum and wondering who is an inmate and who a doctor, you may feel at a loss for objective criteria. Maybe the rest of the world is right and we are the nut cases. Common sense suggests it.

But sometimes one can go beyond common sense and examine the evidence. So lend me an ear while I explain my latest class invariant. Here it is, in Figure 1. (Wait, do not just run away yet.)

multigraph_invariant

Figure 1: From the invariant of class MULTIGRAPH

This is a program in progress and by the time you read this note the invariant and enclosing class will have changed. But the ideas will remain.

Context: multigraphs

The class is called MULTIGRAPH and describes a generalized notion of graph, illustrated in Figure 2. The differences are that: there can be more than one edge between two nodes, as long as they have different tags (like the spouse and boss edges between 1 and 2); and there can be more than one edge coming out of a given node and with a given tag (such as the two boss edges out of 1, reflecting that 1’s boss might be 2 in some cases and 3 in others). Some of the nodes, just 1 here, are “roots”.

The class implements the notion of multigraph and provides a wide range of operations on multigraphs.

multigraph_example

Figure 2: A multigraph

Data structures

Now we turn to the programming and software engineering aspects. I am playing with various ways of accessing multigraphs. For the basic representation of a multigraph, I have chosen a table of triples:

                triples_table: HASH_TABLE [TRIPLE, TUPLE [source: INTEGER; tag: INTEGER; target: INTEGER]]  — Table of triples, each retrievable through its `source’, `tag’ and `target’.

where the class TRIPLE describes [source, tag, target] triples, with a few other properties, so they are not just “tuples”. It is convenient to use a hash table, where the key is such a 3-tuple. (In an earlier version I used just an ARRAY [TRIPLE], but a hash table proved more flexible.)

Sources and targets are nodes, also called “objects”; we represent both objects and tags by integers for efficiency. It is easy to have structures that map symbolic tag names such as “boss” to integers.

triples_table is the core data structure but it turns out that for the many needed operations it is convenient to have others. This technique is standard: for efficiency, provide different structures to access and manipulate the same underlying information, with some redundancy. So I also have:

 triples_from:  ARRAYED_LIST [LIST [TRIPLE]]
               — Triples starting from a given object. Indexed by object numbers.

  triples_with:  HASH_TABLE [LIST [TRIPLE], INTEGER]
               — Triples labeled by a given tag. Key is tag number.

 triples_to:  ARRAYED_LIST [LIST [TRIPLE]]
               — Triples leading into a given object. Indexed by object numbers.

Figure 3 illustrates triples_from and Figures 4 illustrates triples_with. triples_to is similar.

triples_from

Figure 3: The triples_from array of lists and the triples_table

triples_with

Figure 4: The triples_with array of lists and the triples_table

It is also useful to access multigraphs through yet another structure, which gives us the targets associated with a given object and tag:

successors: ARRAY [HASH_TABLE [LIST [TRIPLE], INTEGER]]
               — successors [obj] [t] includes all o such that there is a t- reference from obj to o.

For example in Figure 1 successors [1] [spouse] is {2, 3}, and in Figures 3 and 4 successors [26] [t] is {22, 55, 57}. Of course we can obtain the “successors” information through the previously defined structures, but since this is a frequently needed operation I decided to include a specific data structure (implying that every operation modifying the multigraph must update it). I can change my mind later on and decide to make “successors” a function rather than a data structure; it is part of the beauty of OO programming, particularly in Eiffel, that such changes are smooth and hardly impact client classes.

There is similar redundancy in representing roots:

                roots:  LINKED_SET [INTEGER]
                              — Objects that are roots.

                is_root:  ARRAY [BOOLEAN]
                              — Which objects are roots? Indexed by object numbers.

If o is a root, then it appears in the “roots” set and is_root [o] has value True.

Getting things right

These are my data structures. Providing such a variety of access modes is a common programming technique. From a software engineering perspective ― specification, implementation, verification… ― it courts disaster. How do we maintain their consistency? It is very easy for a small mistake to slip into an operation modifying the graph, causing one of the data structures to be improperly updated, but in a subtle and rare enough way that it will not manifest itself during testing, coming back later to cause strange behavior that will be very hard to debug.

For example, one of the reasons I have a class TRIPLE and not just 3-tuples is that a triple is not exactly  the same as an edge in the multigraph. I have decided that by default the operation that removes and edge would not remove the corresponding triple from the data structure, but leave it in and mark it as “inoperative” (so class TRIPLE has an extra “is_inoperative” boolean field). There is an explicit GC-like mechanism to clean up deleted edges occasionally. This approach brings efficiency but makes the setup more delicate since we have to be extremely careful about what a triple means and what removal means.

This is where I stop understanding how the rest of the world can work at all. Without some rigorous tools I just do not see how one can get such things right. Well, sure, spend weeks of trying out test cases, printing out the structures, manually check everything (in the testing world this is known as writing lots of “oracles”), try at great pains to find out the reason for wrong results, guess what program change will fix the problem, and start again. Stop when things look OK. When, as Tony Hoare once wrote, there are no obvious errors left.

Setting aside the minuscule share of projects (typically in embedded life-critical systems) that use some kind of formal verification, this process is what everyone practices. One can only marvel that systems, including many successful ones, get produced at all. To take an analogy from another discipline, this does not compare to working like an electrical engineer. It amounts to working like an electrician.

For a short time I programmed like that too (one has to start somewhere, and programming methodology was not taught back then). I no longer could today. Continuing with the Hoare citation, the only acceptable situation is to stop when there are obviously no errors left.

How? Certainly not, in my case, by always being right the first time. I make mistakes like everyone else does. But I have the methodology and tools to avoid some, and, for those that do slip through, to spot and fix them quickly.

Help is available

First, the type system. Lots of inconsistencies, some small and some huge, which in an untyped language would only hit during execution, do not make it past compilation. We are not just talking here about using REAL instead of INTEGER. With a sophisticated type system involving multiple inheritance, genericity, information hiding and void safety, a compiler error message can reflect a tricky logical mistake. You are using a SET as if it were a LIST (some operations are common, but others not). You are calling an operation on a reference that may be void (null) at run time. And so on.

By the way, about void-safety: for a decade now, Eiffel has been void-safe, meaning a compile-time guarantee of no run-time null pointer dereferencing. It is beyond my understanding how the rest of the world can still live with programs that run under myriad swords of Damocles: x.op (…) calls that might any minute, without any warning or precedent, hit a null x and crash.

Then there is the guarantee of logical consistency, which is where my class invariant (Figure 1) comes in. Maybe it scared you, but in reality it is all simple concepts, intended to make sure that you know what you are doing, and rely on tools to check that you are right. When you are writing your program, you are positing all kinds, logical assumptions, large and (mostly) small, all the time. Here, for the structure triples_from [o] to make sense, it must be a list such that:

  • It contains all the triples t in the triples_table such that t.source = o.
  •  It contains only those triples!

You know this when you write the program; otherwise you would not be having a “triples_from” structure. Such gems of knowledge should remain an integral part of the program. Individually they may not be rocket science, but accumulated over the lifetime of a class design, a subsystem design or a system design they collect all the intelligence that makes the software possible.  Yet in the standard process they are gone the next minute! (At best, some programmers may write a comment, but that does not happen very often, and a comment has no guarantee of precision and no effect on testing or correctness.)

Anyone who takes software development seriously must record such fundamental properties. Here we need the following invariant clause:

across triples_from as tf all

across tf.item as tp all tp.item.source = tf.cursor_index end

end

(It comes in the class, as shown in Figure 1, with the label “from_list_consistent”. Such labels are important for documentation and debugging purposes. We omit them here for brevity.)

What does that mean? If we could use Unicode (more precisely, if we could type it easily with our keyboards) we would write things like x: E | P (x) for all x in E, property P holds of x. We need programming-language syntax and write this as across E as x all P (x.item) end. The only subtlety is the “.item” part, which gives us generality beyond the notation: x in the across is not an individual element of E but a cursor that moves over E. The actual element at cursor position is x.item, one of the properties of that cursor. The advantage is that the cursor has more properties, for example x.cursor_index, which gives its position in E. You do not get that with the plain of mathematics.

If instead of you want $ (there exists), use some instead of all. That is pretty much all you need to know to understand all the invariant clauses of class MULTIGRAPH as given in Figure 1.

So what the above invariant clause says is: take every position tf in triples_from; its position is tf.cursor_index and its value is tf.item. triples_from is declared as ARRAYED_LIST [LIST [TRIPLE]], so tf.cursor_index is an integer representing an object o, and tf.item is a list of triples. That list should  consist of the triples having tf.cursor_index as their source. This is the very property that we are expressing in this invariant clause, where the innermost across says: for every triple tp.item in the list, the source of that triple is the cursor index (of the outside across). Simple and straightforward, I think (although such English explanations are so much more verbose than formal versions, such as the Eiffel one here, and once you get the hang of it you will not need them any more).

How can one ever include a structure such as triples_from without expressing such a property? To put the question slightly differently: am I inside the asylum looking out, or outside the asylum looking in? Any clue would be greatly appreciated.

More properties

For the tag (“with_“) and target lists, the properties are similar:

across triples_with as tw all across tw.item as tp all tp.item.tag = tw.key end end

across triples_to as tt all across tt.item as tp all tp.item.target = tt.cursor_index end end 

We also have some properties of array bounds:

 is_root.lower = 1 and is_root.upper = object_count

triples_from.lower = 1 and triples_from.upper = object_count

triples_to.lower = 1 and triples_to.upper = object_count

where object_count is the number of objects (nodes), and for an array a (whose bounds in Eiffel are arbitrary, not necessarily 0 or 1, and set on array creation), a.lower and a.upper are the bounds. Here we number the arrays from 1.

There are, as noted, two ways to represent rootness. We must express their consistency (or risk trouble). Two clauses of the invariant do the job:

across roots as t all is_root [t.item] end

across is_root as t all (t.item = roots.has (t.cursor_index)) end

The first one says that if we go through the list “roots” we only find elements whose “is_root” value is true; the second, that if we go through the array “is_root” we find values that are true where and only where the corresponding object, given by the cursor index, is in the “roots” set. Note that the “=” in that second property is between boolean values (if in doubt, check the type instantly in the EIffelStudio IDE!), so it means “if and only if”.

Instead of these clauses, a more concise version, covering them both, is just

roots ~ domain (is_root)

with a function domain that gives the domain of a function represented by a boolean array. The ~ operator denotes object equality, redefined in many classes, and in particular in the SET classes (“roots” is a LINKED_SET) to cover equality between sets, i.e. the property of having the same elements.

The other clauses are all similarly self-explanatory. Let us just go through the most elaborate one, successors_consistent, involving three levels of across:

across successors as httpl all                   — httpl.item: hash table of list of triples

        across httpl.item as tpl all                — tpl.item: list of triples (tpl.key: key (i.e. tag) in hash table (tag)

                  across tpl.item as tp all            — tp.item: triple

                         tp.item.tag = tpl.key

and tp.item.source = httpl.cursor_index

                   end

          end

end

You can see that I struggled a bit with this one and made provisions for not having to struggle again when I would look at the code again 10 minutes, 10 days or 10 months later. I chose (possibly strange but consistent) names such as httpl for hash-table triple, and wrote comments (I do not usually need any in invariant and other contract clauses) to remind me of the type of everything. That was not strictly needed since once again the IDE gives me the types, but it does not cost much and could help.

What this says: go over “successors“; which as you remember is an ARRAY, indexed by objects, of HASH_TABLE, where each entry of such a hash table has an element of type [LIST [TRIPLE] and a key of type INTEGER, representing the tag of a number of outgoing edges from the given object. Go over each hash table httpl. Go over the associated list of triples tpl. Then for each triple tp in this list: the tag of the triple must be the key in the hash table entry (remember, the key does denote a tag); and the source of the triple must the object under consideration, which is the current iteration index in the array of the outermost iteration.

I hope I am not scaring you at this point. Although the concepts are simple, this invariant is more sophisticated than most of those we typically write. Many invariant clauses (and preconditions, and postconditions) are very simple properties, such as x > 0 or x ≠ y. The reason this one is more elaborate is not that I am trying to be fussy but that without it I would be the one scared to death. What is elaborate here is the data structure and programming technique. Not rocket science, not anything beyond programmers typically do, but elaborate. The only way to get it right is to buttress it by the appropriate logical properties. As noted, these properties are there anyway, in the back of your head, when you write the program. If you want to be more like an electrical engineer than an electrician, you have to write them down.

There is more to contracts

Invariants are not the only kind of such “contract” properties. Here for example, from the same class, is a (slightly abbreviated) part of the postcondition (output property) of the operation that tells us, through a boolean Result, if the multigraph has an edge of given components osource, t (the tag) and otarget :

Result =

(across successors [osource] [t] as tp some

not tp.item.is_inoperative and tp.item.target = otarget

end)

In words, this clause expresses the compatibility of the operation with the “successors” view: it must answer yes if and only if otarget appears in the successor set of osource for t, and the corresponding triple is not marked inoperative.

The concrete benefits

And so? What do we get out of making these logical properties explicit? Just the intellectual satisfaction of doing things right, and the methodological guidance? No! Once you have done this work, it is all downhill. Turn on the run-time assertion monitoring option (tunable separately for preconditions, postconditions, invariants etc., and on by default in development mode), and watch your tests run. If you are like almost all of us, you will have made a few mistakes, some which will seem silly when or rather if you find them in time (but there is nothing funny about a program that crashes during operation) and some more subtle. Sit back, and just watch your contracts be violated. For example if I change “<=” to “<” in the invariant property “tw.key <= max_tag“, I get the result of Figure 5. I see the call stack that I can traverse, the object run-time structure that I can explore, and all the tools of a modern debugger for an OO language. Finding and correcting the logical flaw will be a breeze.

debugger

Figure 5: An invariant violation brings up the debugger

The difference

It will not be a surprise that I did not get all the data structures and algorithms of the class MULTIGRAPH  right the first time. The Design by Contract approach (the discipline of systematically expressing, whenever you write any software element, the associated logical properties) does lead to fewer mistakes, but everyone occasionally messes up. Everyone also looks at initial results to spot and correct mistakes. So what is the difference?

Without the techniques described here, you execute your software and patiently examine the results. In the example, you might output the content of the data structures, e.g.

List of outgoing references for every object:

        1: 1-1->1|D, 1-1->2|D, 1-1->3|D, 1-2->1|D, 1-2->2|D,  1-25->8|D, 1-7->1|D, 1-7->6|D,

1-10->8|D, 1-3->1|D, 1-3->2|D, 1-6->3|D, 1-6->4|D, 1-6->5|D

        3: 3-6->3, 3-6->4, 3-6->5, 3-9->14, 3-9->15,   3-9->16, 3-1->3, 3-1->2, 3-2->3, 3-2->2,

                  3-25->8, 3-7->3, 3-7->6, 3-10->8, 3-3->3,  3-3->2    

List of outgoing references for every object:

        1: 1-1->1|D, 1-1->2|D, 1-1->3|D, 1-2->1|D, 1-2->2|D, 1-25->8|D, 1-7->1|D, 1-7->6|D,

1-10->8|D, 1-3->1|D,  1-3->2|D, 1-6->3|D, 1-6->4|D, 1-6->5|D

        3: 3-6->3, 3-6->4, 3-6->5, 3-9->14, 3-9->15,  3-9->16, 3-1->3, 3-1->2, 3-2->3, 3-2->2,

                                 3-25->8, 3-7->3, 3-7->6, 3-10->8, 3-3->3,  3-3->2

and so on for all the structures. You check the entries one by one to ascertain that they are as expected. The process nowadays has some automated support, with tools such as JUnit, but it is still essentially manual, tedious and partly haphazard: you write individual test oracles for every relevant case. (For a more automated approach to testing, taking advantage of contracts, see [1].) Like the logical properties appearing in contracts, these oracles are called “assertions” but the level of abstraction is radically different: an oracle describes the desired result of one test, where a class invariant, or routine precondition, or postcondition expresses the properties desired of all executions.

Compared to the cost of writing up such contract properties (simply a matter of formalizing what you are thinking anyway when you write the code), their effect on testing is spectacular. Particularly when you take advantage of “across” iterator mechanisms. In the example, think of all the checks and crosschecks automatically happening across all the data structures, including the nested structures as in the 3-level across clause. Even with a small test suite, you immediately get, almost for free, hundreds or thousands of such consistency checks, each decreasing the likelihood that a logical flaw will survive this ruthless process.

Herein lies the key advantage. Not that you will magically stop making mistakes; but that the result of such mistakes, in the form of contract violations, directly points to logical properties, at the level of your thinking about the program. A wrong entry in an output, whether you detect it visually or through a Junit clause, is a symptom, which may be far from the cause. (Remember Dijkstra’s comment, the real point of his famous Goto paper, about the core difficulty of programming being to bridge the gap between the static program text, which is all that we control, and its effect: the myriad possible dynamic executions.) Since the cause of a bug is always a logical mistake, with a contract violation, which expresses a logical inconsistency, you are much close to that cause.

(About those logical mistakes: since a contract violation reflects a discrepancy between intent, expressed by the contract, and reality, expressed by the code, the mistake may be on either side. And yes, sometimes it is the contract that is wrong while the implementation in fact did what is informally expected. There is partial empirical knowledge [1] of how often this is the case. Even then, however, you have learned something. What good is a piece of code of which you are not able to say correctly what it is trying to do?)

The experience of Eiffel programmers reflects these observations. You catch the mistakes through contract violations; much of the time, you find and correct the problem easily. When you do get to producing actual test output (which everyone still does, of course), often it is correct.

This is what has happened to me so far in the development of the example. I had mistakes, but converging to a correct version was a straightforward process of examining violations of invariant violations and other contract elements, and fixing the underlying logical problem each time.

By the way, I believe I do have a correct version (in the sense of the second part of the Hoare quote), on the basis not of gut feeling or wishful thinking but of solid evidence. As already noted it is hard to imagine, if the code contains any inconsistencies, a test suite surviving all the checks.

Tests and proofs

Solid evidence, not perfect; hard to imagine, not impossible. Tests remain only tests; they cannot exercise all cases. The only way to achieve demonstrable correctness is to rely on mathematical proofs performed mechanically. We have this too, with the AutoProof proof system for Eiffel, developed in recent years [1]. I cannot overstate my enthusiasm for this work (look up the Web-based demo), its results (automated proof of correctness of a full-fledged data structures and algorithms library [2]) and its potential, but it is still a research effort. The dynamic approach (meaning test-based rather than proof-based) presented above is production technology, perfected over several decades and used daily for large-scale mission-critical applications. Indeed (I know you may be wondering) it scales up without difficulty:

  • The approach is progressive. Unlike fully formal methods (and proofs), it does not require you to write down every single property down to the last quantifier. You can start with simple stuff like x > 0. The more you write, the more you get, but it is the opposite of an all-or-nothing approach.
  • On the practical side, if you are wondering about the consequences on performance of a delivered system: there is none. Run-time contract monitoring is a compilation option, tunable for different kinds of contracts (invariants, postconditions etc.) and different parts of a system. People use it, as discussed here, for development, testing and debugging. Most of the time, when you deliver a debugged system, you turn it off.
  • It is easy to teach. As a colleague once mentioned, if you can write an if-then-else you can write a precondition. Our invariants in the above example where a bit more sophisticated, but programmers do write loops (in fact, the Eiffel loop for iterating over a structure also uses across, with “loop” and instructions instead of “all” or “some” and boolean expressions). If you can write a loop over an array, you can write a property of the array’s elements.
  • A big system is an accumulation of small things. In a blog article [5] I recounted how I lost a full day of producing a series of technical diagrams of increasing complexity, using one of the major Web-based collaborative development tools. A bug of the system caused all the diagrams to reproduce the first, trivial one. I managed to get through to the developers. My impression (no more than an educated guess resulting from this interaction) is that the data structures involved were far simpler than the ones used in the above discussion. One can surmise that even simple invariants would have uncovered the bug during testing rather than after deployment.
  • Talking about deployment and tools used directly on the cloud: the action in software engineering today is in DevOps, a rapid develop-deploy loop scheme. This is where my perplexity becomes utter cluelessness. How can anyone even consider venturing into that kind of exciting but unforgiving development model without the fundamental conceptual tools outlined above?

We are back then to the core question. These techniques are simple, demonstrably useful, practical, validated by years of use, explained in professional books (e.g. [6]), introductory programming textbooks (e.g. [7]), EdX MOOCs (e.g. [8]), YouTube videos, online tutorials at eiffel.org, and hundreds of articles cited thousands of times. On the other hand, most people reading this article are not using Eiffel. On reflection, a simple quantitative criterion does exist to identify the inmates: there are far more people outside the asylum than inside. So the evidence is incontrovertible.

What, then, is wrong with me?

References

(Nurse to psychiatrist: these are largely self-references. Add “narcissism” to list of patient’s symptoms.)

1.    Ilinca Ciupa, Andreas Leitner, Bertrand Meyer, Manuel Oriol, Yu Pei, Yi Wei and others: AutoTest articles and other material on the AutoTest page.

2. Bertrand Meyer, Ilinca Ciupa, Lisa (Ling) Liu, Manuel Oriol, Andreas Leitner and Raluca Borca-Muresan: Systematic evaluation of test failure results, in Workshop on Reliability Analysis of System Failure Data (RAF 2007), Cambridge (UK), 1-2 March 2007 available here.

3.    Nadia Polikarpova, Ilinca Ciupa and Bertrand Meyer: A Comparative Study of Programmer-Written and Automatically Inferred Contracts, in ISSTA 2009: International Symposium on Software Testing and Analysis, Chicago, July 2009, available here.

4.    Carlo Furia, Bertrand Meyer, Nadia Polikarpova, Julian Tschannen and others: AutoProof articles and other material on the AutoProof page. See also interactive web-based online tutorial here.

5.    Bertrand Meyer, The Cloud and Its Risks, blog article, October 2010, available here.

6.    Bertrand Meyer, Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.

7.    Bertrand Meyer, Touch of Class: Learning to Program Well Using Objects and Contracts, Springer, 2009, see touch.ethz.ch and Amazon page.

8.    MOOCs (online courses) on EdX : “Computer: Art, Magic, Science”, Part 1 and Part 2. (Go to “archived versions” to follow the courses.)

VN:F [1.9.10_1130]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Mainstream enough for me

Every couple of weeks or so, I receive a message such as the one below; whenever I give a talk on any computer science topic anywhere in the world, strangers come to me to express similar sentiments. While I enjoy compliments as much as anyone else, I am not the right recipient for such comments. In fact there are 7,599,999,999  more qualified recipients. For me, Eiffel is “mainstream” enough.

What strikes me is why so many commenters, after the compliment, stop at the lament. Eiffel is not some magical dream, it is a concrete technology available for download at eiffel.org. Praising Eiffel will not change the world. Using EiffelStudio might.

When one answers the compliments with “Thanks! Then use it for your work“, the variety of excuses is amusing, or sad depending on the perspective, from “my boss would not allow it” (variant: “my team would not accept it”) to “does it work with [library that does not work with anything else]?”.

Well, you might have some library wrapping to do (EiffelStudio easily interfaces with C, C++ and others). Also, you should not stop at the first hurdle: it might be due to a bug (surprise! The technology is not perfect!), but it might also just be that Eiffel and EiffelStudio are different and you have to shed some long-held assumptions and practices. What matters is that the technology does work; companies large and small use Eiffel all the time for long-running projects, some into the millions of lines and tens of thousands of classes, and refuse to switch to anything else.

What follows is a literal translation of the original message into English (it was written in another language). Since the author, whom I do not know, did not state the email was a public comment, I removed identifying details.

 

Subject:Eiffel is fantastic! But why is it not mainstream?

Dear Professor Meyer:

Greetings from [the capital of a country on another continent].

I graduated from [top European university] in 1996 and completed a master’s in physics from [institute on another continent] in 2006.

I have worked for twenty years in the industry, from application engineer to company head. In my industry career I have been able to be both CEO and CTO at the same time, thanks to the good education I received originally.

Information systems were always a pillar of my business strategy. Unfortunately, I was disappointed every single time I commissioned the development of a new system. This led me to study further and to investigate why the problem is not solved. That’s how I found your book Object-Oriented Software Construction and became enthusiastic about Design by Contract, Eiffel and EiffelStudio. To me your method is the only method for developing “correct” software. The Eiffel programming language is, in my view, the only true object-oriented language.

However it befuddles me — I cannot understand —  why the “big” players in this industry (Apple, Google, Microsoft etc.) do not use Design by Contract. .NET has a Visual Studio extension with the name “Code Contracts” but it is no longer supported in the latest Visual Studio 2017. Big players, why don’t you promote Design by Contract?

Personally, after 20 years in industry, I found out that my true calling is in research. It would be a great pleasure to be able to work in research. My dream job is Data Scientist and I had thought to apply to Google for a job. Studying the job description, I noted that “Python” is one of the desired languages. Python is dynamically typed and does not support good encapsulation. No trace of Design by Contract…

What’s wrong with the software industry?

With best regards,

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Festina retro

We “core” computer scientists and software engineers always whine that our research themes forever prevent us, to the delight of our physicist colleagues but unjustly, from reaching the gold standard of academic recognition: publishing in Nature. I think I have broken this barrier now by disproving the old, dusty laws of physics! Brace yourself for my momentous discovery: I have evidence of negative speeds.

My experimental setup (as a newly self-anointed natural scientist I am keen to offer the possibility of replication) is the Firefox browser. I was downloading an add-on, with a slow connection, and at some point got this in the project bar:

Negative download speed

Negative speed! Questioning accepted wisdom! Nobel in sight! What next, cold fusion?

I fear I have to temper my enthusiasm in deference to more mundane explanations. There’s the conspiracy explanation: the speed is truly negative (more correctly, it is a “velocity”, a vector of arbitrary direction, hence in dimension 1 possibly negative); Firefox had just reversed the direction of transfer, surreptitiously dumping my disk drive to some spy agency’s server.

OK, that is rather far-fetched. More likely, it is a plain bug. A transfer speed cannot be negative; this property is not just wishful thinking but should be expressed as an integral part of the software. Maybe someone should tell Firefox programmers about class invariants.

VN:F [1.9.10_1130]
Rating: 9.5/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Split the Root: a little design pattern

Many programs take “execution arguments” which the program users provide at the start of execution. In EiffelStudio you can enter them under Execution -> Execution parameters.

The program can access them through the Kernel Library class ARGUMENTS. Typically, the root class of the system inherits from ARGUMENTS and its creation procedure will include something like

if argument_count /= N then
……..print (“XX expects exactly N arguments: AA, BB, …%N”)
else
……..u := argument (1) ; v := argument (2) ; …
……..“Proceed with normal execution, using u, v, …”
end

where N is the number of expected arguments, XX is the name of the program, and AA, …. are the roles of arguments. u, v, … are local variables. The criterion for acceptance could be “at least N” instead of exactly N. The features argument_count and arguments come from class ARGUMENTS.

In all but trivial cases this scheme (which was OK years ago, in a less sophisticated state of the language) does not work! The reason is that the error branch will fail to initialize attributes. Typically, the “Proceed with…” part in the other branch is of the form

               attr1 := u
                attr2 := v
                …
                create obj1.make (attr1, …)
                create obj2.make (attr2, …)
                “Work with obj1, obj2, …”

If you try to compile code of this kind, you will get a compilation error:

Compiler error message

Eiffel is void-safe: it guarantees that no execution will ever produce null-pointer dereference (void call). To achieve this guarantee, the compiler must make sure that all attributes are “properly set” to an object reference (non-void) at the end of the creation procedure. But the error branch fails to initialize obj1 etc.

You might think of replacing the explicit test by a precondition to the creation procedure:

               require
                                argument_count = N

but that does not work; the language definition explicit prohibits preconditions in a root creation procedure. The Ecma-ISO standard (the official definition of the language, available here) explains the reason for the corresponding validity rule (VSRP, page 32):

A routine can impose preconditions on its callers if these callers are other routines; but it makes no sense to impose a precondition on the external agent (person, hardware device, other program…) that triggers an entire system execution, since there is no way to ascertain that such an agent, beyond the system’s control, will observe the precondition.

The solution is to separate the processing of arguments from the rest of the program’s work. Add a class CORE which represents the real core of the application and separate it from the root class, say APPLICATION. In APPLICATION, all the creation procedure does is to check the arguments and, if they are fine, pass them on to an instance of the core class:

                note
                                description: “Root class, processes execution arguments and starts execution”
                class APPLICATION create make feature
                                core: CORE
                                                — Application’s core object
                                make
……..……..……..……..……..……..— Check arguments and proceed if they make sense.
                                                do
                                                             if argument_count /= N then
                                                                                print (“XX expects exactly N arguments: AA, BB, …%N”)
                                                                else
                                                                                create core.make (argument (1), argument (2) ; …)
                                                                                                — By construction the arguments are defined!
                                                                                core.live
                                                                                                — Perform actual work
                                                                                               — (`live’ can instead be integrated with `make’ in CORE.)

                                                                end
                                                end
                 end
 
We may call this little design pattern “Split the Root”. Nothing earth-shattering; it is simply a matter of separating concerns (cutting off the Model from the View). It assumes a system that includes text-based output, whereas many applications are graphical. It is still worth documenting, for two reasons.

First, in its own modest way, the pattern is useful for simple programs; beginners, in particular, may not immediately understand why the seemingly natural way of processing and checking arguments gets rejected by the compiler.

The second reason is that Split the Root illustrates the rules that preside over a carefully designed language meant for carefully designed software. At first it may be surprising and even irritating to see code rejected because, in a first attempt, the system’s root procedure has a precondition, and in a second attempt because some attributes are not initialized — in the branch where they do not need to be initialized. But there is a reason for these rules, and once you understand them you end up writing more solid software.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Concurrency/verification positions at Politecnico di Milano

As part of the continuation of the ERC Advanced Investigator Grant project “Concurrency Made Easy” (started at ETH Zurich, see the project pages at cme.ethz.ch, I have positions at Politecnico di Milano for:

  • Postdocs (having a doctoral degree)
  • Research associates (officially: “Assegno di Ricerca”, with the requirement of having a master degree), which can lead to a PhD position.

The deadline for applications is October 11. Please contact me directly if interested. What I expect:

  • The requisite degrees as stated above.
  • Innovative and enterprising spirit, passion for quality work in software engineering.
  • Either or both of excellent programming abilities and strong CS theoretical background.
  • Knowledge of as many of possible of: object-oriented programming, concurrency/parallelism, software verification/formal methods, Eiffel.
  • Familiarity with the basics of the project as described in the project pages at the URL above.
VN:F [1.9.10_1130]
Rating: 7.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 2 votes)

LASER summer school on software for robotics: last call for registration

Much of the progress in robotics is due to software advances, and software issues remain at the heart of the formidable challenges that remain. The 2017 LASER summer school, held in September in Elba, brings together some of the most prestigious international experts in the area.

The LASER school has established itself as one of the principal forums to discussed advanced software issues. The 2017 school takes place from 9 to 17 September in the idyllic setting of the Hotel del Golfo in Procchio, Elba Island, Italy.

Robotics is progressing at an amazing pace, bringing improvements to almost areas of human activity. Today’s robotics systems rely ever more fundamentally on complex software, raising difficult issues. The LASER 2017 summer school covers both the current state of robotics software technology and open problems. The lecturers are top international experts with both theoretical contributions and major practical achievements in developing robotics systems.
The LASER school is intended for professionals from the industry (engineers and managers) as well as university researchers, including PhD students. Participants learn about the most important software technology advances from the pioneers in the field. The school’s focus is applied, although theory is welcome to establish solid foundations. The format of the school favors extensive interaction between participants and speakers.

We have lined up an impressive roster of speakers from the leading edge of both industry and academia:

Rodolphe Gélin, Aldebaran Robotics
Ashish Kapoor, Microsoft Research
Davide Brugali, University of Bergamo, on Managing software variability in robotic control systems
Nenad Medvidovic, University of Southern California, on Software Architectures of Robotics Systems
Bertrand Meyer, Politecnico di Milano & Innopolis University, on Concurrent Object-Oriented Robotics Software
Issa Nesnas, NASA Jet Propulsion Laboratory, on Experiences from robotic software development for research and planetary flight robots
Hiroshi (“Gitchang”) Okuno, Waseda University & Kyoto University, on Open-Sourced Robot Audition Software HARK: Capabilities and Applications

The school takes place at the magnificent Hotel del Golfo in the Gulf of Procchio, Elba. Along with an intensive scientific program, participants will have time to enjoy the countless natural and cultural riches of this wonderful, history-laden jewel of the Mediterranean.

For more information about the school, the speakers and registration see the LASER site.

VN:F [1.9.10_1130]
Rating: 5.5/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

The perils of feature interaction

One of the most delicate aspects of design is feature interaction. As users, we suffer daily from systems offering features that individually make sense but clash with each other. In my agile book [1] I explained in detail, building on the work of Pamela Zave, why this very problem makes one of the key ideas of agile methods,  the reliance on “user stories” for requirements, worthless and damaging.

A small recent incident reminded me of the perils of feature interaction. I used my Lenovo W540 laptop without power for a short while, then reached a sedentary location and plugged it in. Hence my surprise when, some hours later, it started beeping to alert me that it was running out of battery. The natural reactions — check the outlet and the power cord — had no effect. I found the solution, but just in time: otherwise, including if I had not heard the warning sound, I would have been unable to use the laptop any further. That’s right: I would not have been able to restart the computer at all, even with access to a power outlet, and even though it was perfectly functional and so was its (depleted) battery. The reason is that the problem arose from a software setting, which (catch-22 situation) I could not correct without starting the computer [2].

The only solution would have been to find another, non-depleted battery. That is not a trivial matter if you have traveled with your laptop outside of a metropolis: the W540 has a special battery which ordinary computer shops do not carry [3].

The analysis of what made such a situation possible must start with the list of relevant hardware and software product features.

Hardware:

  • HA. This Lenovo W series includes high-end laptops with high power requirements, which the typical 65-watt airplane power jack does not satisfy.
  • HB. With models prior to the W540, if you tried to connect a running laptop to the power supply in an airplane, it would not charge, and the power indicator would start flickering.  But you could still charge it if you switched it off.
  • HC. The W540 effectively requires 135 watts and will not take power from a 65-watt power source under any circumstances.

Software:

  • SA. The operating system (this discussion assumes Windows) directly reflects HC by physically disabling charging if the laptop is in the “Airplane” power mode.
  • SB. If you disable wireless, the operating system automatically goes into the “Airplane” power mode.
  • SC. In the “Airplane” power mode, the laptop, whether or not connected through a charger to a power outlet of any wattage, will not charge. The charging function is just disabled.
  • SD. One can edit power modes to change parameters, such as time to automatic shutoff, but the no-charging property in Airplane mode is not editable and not even mentioned in the corresponding UI dialog. It seems to be a behind-the-scenes property magically attached to the power-mode name “Airplane”.
  • SE. There is a function key for disabling wireless: F8. As a consequence of SB it also has the effect of switching to “Airplane” mode.
  • SF. Next to F8 on the keyboard is F7.
  • SG. F7 serves to display the screen content on another monitor (Windows calls it a “projector”). F7 offers a cyclic set of choices: laptop only, laptop plus monitor etc.
  • SH. In the old days (like five years ago), such function keys setting important operating system parameters on laptops used to be activated only if you held them together with a special key labeled “Fn”. For some reason (maybe the requirement was considered too complicated for ordinary computer users) the default mode on Lenovo laptops does not use the “Fn” key anymore: you just press the desired key, such as F7 or F8.
  • SI. You can revert to the old mode, requiring pressing “Fn”, by going into the BIOS and performing some not-absolutely-trivial steps, making this possibility the preserve of techies. (Helpfully, this earlier style is called “Legacy mode”, as a way to remind you that your are an old-timer, probably barely graduated from MS-DOS and still using obsolete conventions. In reality, the legacy mode is the right one to use, whether for techies or novices: it is all too easy to hit a function key by mistake and get totally unexpected results. The novice, not the techie, is the one who will be completely confused and panicked as a result. The first thing I do with a new laptop is to go to the BIOS and set legacy mode.)

By now you have guessed what happened in my case, especially once you know that I had connected the laptop to a large monitor and had some trouble getting that display to work. In the process I hit Fn-F7 (feature SG) several times.  I must have mistakenly (SF) pressed F8 instead of F7 at some point. Normally, Legacy mode (SI) should have made me immune to the effects of hitting a function key by mistake, but I did use the neighboring key F7 for another purpose. Hitting F8 disabled wireless (SE) and switched on Airplane power mode (SB). At that point the laptop, while plugged in correctly, stopped charging (SC, SD).

How did I find out? Since I was looking for a hardware problem I could have missed the real cause entirely and ended up with a seemingly dead laptop. Fortunately I opened the Power Options dialog to see what it said about the battery. I noticed that among the two listed power plans the active one was not “Power Saver”, to which I am used, but “Airplane”. I did not immediately pay  attention to that setting; since I had not used the laptop for a while I just thought that maybe the last time around I had switched on “Airplane”, even though that made little sense since I was not even aware of the existence of that option. After trying everything else, though, I came back to that intriguing setting, changed to the more usual “Power Saver”, and the computer started to charge again. I was lucky to have a few percent of battery still left at that point.

Afterwards I found a relevant discussion thread on a Lenovo user forum.

As is often the case in such feature-interaction mishaps, most of the features make sense individually [4]. What causes trouble is some unforeseen combination of features.

There is no sure way to avoid such trouble, but there is a sure way to cause it: design a system feature by feature, as with user stories in agile development. The system must do this and it must do that. Oh, by the way, it must also do that. And that. User stories have one advantage: everyone understands them. But that is also their limitation. Good requirements and design require professionals who can see the whole beyond the parts.

A pernicious side of this situation is that many people believe that use cases and user stories are part of object-oriented analysis, whereas the OO approach to requirements and design is the reverse: rise above individual examples to uncover the fundamental abstractions.

As to my laptop, it is doing well, thanks. And I will be careful with function keys.

Reference and notes

[1] Bertrand Meyer: Agile! The Good, the Hype and the Ugly, Springer, 2014,  Amazon page: here, book page: here. A description of the book appeared here on this blog at the time of publication.

[2] Caveat: I have not actually witnessed this state in which a plugged-in laptop will not restart. The reason is simply that I do not have an alternate battery at the moment so I cannot perform the experiment with the almost certain result of losing the use of my laptop. I will confirm the behavior as soon as I have access to a spare battery.

[3] It has been my systematic experience over the past decade and a half that Lenovo seems to make a point, every couple of years, to introduce new models with incompatible batteries and docking stations. (They are also ever more incredibly bulky, with the one for the W540 almost as heavy as the laptop itself. On the other hand the laptops are good, otherwise I would not be bothering with them.)

[4] One exception here is feature SB: switching wireless off does not necessaril y mean you want to select a specific power mode! It is a manifestation of the common syndrome  of software tools that think they are smarter than you, and are not. Another exception is SE: to let a simple key press change fundamental system behavior is to court disaster. But I had protected myself by using legacy mode and was hit anyway.

VN:F [1.9.10_1130]
Rating: 7.1/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

AutoProof workshop: Verification As a Matter of Course

The AutoProof technology pursues the goal of “Verification As a Matter Of Course”, integrated into the EVE development environment. (The AutoProof  project page here; see particularly the online interactive tutorial.) A one-day workshop devoted to the existing AutoProof and current development will take place on October 1 near Toulouse in France. It is an informal event (no proceedings planned at this point, although based on the submissions we might decide to produce a volume), on a small scale, designed to bring together people interested in making the idea of practical verification a reality.

The keynote will be given by Rustan Leino from Microsoft Research, the principal author of the Boogie framework on which the current implementation of AutoProof relies.

For submissions (or to attend without submitting) see the workshop page here. You are also welcome to contact me for more information.

VN:F [1.9.10_1130]
Rating: 5.3/10 (15 votes cast)
VN:F [1.9.10_1130]
Rating: -2 (from 6 votes)

Design by Contract: ACM Webinar this Thursday

A third ACM webinar this year (after two on agile methods): I will be providing a general introduction to Design by Contract. The date is this coming Thursday, September 17, and the time is noon New York (18 Paris/Zurich, 17 London, 9 Los Angeles, see here for hours elsewhere). Please tune in! The event is free but requires registration here.

VN:F [1.9.10_1130]
Rating: 5.8/10 (19 votes cast)
VN:F [1.9.10_1130]
Rating: -4 (from 8 votes)

Framing the frame problem (new paper)

Among the open problems of verification, particularly the verification of object-oriented programs, one of the most vexing is framing: how to specify and verify what programs element do not change. Continuing previous work, this article presents a “double frame inference” method, automatic on both sides the specification and verification sides. There is no need to write frame specifications: they will be inferred from routine postconditions. For verification, the method computes the set of actually changed properties through a “change calculus”, itself based on the previously developed alias calculus.

Some verification techniques, such as Hoare-style proofs, require significant annotation effort and potentially yield full functional verification; others, such as model checking and abstract interpretation, have more limited goals but seek full automation. Framing, in my opinion, should be automatic, freeing the programmer-verifier to devote the annotation effort to truly interesting properties.

Reference

[1] Bertrand Meyer: Framing the Frame Problem, in Dependable Software Systems, Proceedings of August 2014 Marktoberdorf summer school, eds. Alexander Pretschner, Manfred Broy and Maximilian Irlbeck, NATO Science for Peace and Security, Series D: Information and Communication Security, Springer, 2015 (to appear), pages 174-185; preprint available here.

VN:F [1.9.10_1130]
Rating: 5.8/10 (17 votes cast)
VN:F [1.9.10_1130]
Rating: -1 (from 9 votes)

Detecting deadlock automatically? (New paper)

To verify sequential programs, we have to prove that they do the right thing, but also that they do it within our lifetime — that they terminate. The termination problem is considerably harder with concurrent programs, since they add a new form of non-termination: deadlock. A set of concurrent processes or threads will deadlock if they end up each holding a resource that another wants and wanting a resource that another holds.

There is no general solution to the deadlock problem, even a good enough general solution. (“Good enough” is the best we can hope for, since like many important problems deadlock is undecidable.) It is already hard enough to provide run-time deadlock detection, to be able at least to cancel execution when deadlock happens. The research reported in this new paper [1] pursues the harder goal of static detection. It applies to an object-oriented context (specifically the SCOOP model of concurrent OO computation) and relies fundamentally on the alias calculus, a static alias analysis technique developed in previous publications.

The approach is at its inception and considerable work remains to be done. Still, the example handled by the paper is encouraging: analyzing two versions of the dining philosophers problem and proving — manually — that one can deadlock and the other cannot.

References

[1] Bertrand Meyer: An automatic technique for static deadlock prevention, in PSI 2014 (Ershov Informatics Conference), eds. Irina Virbitskaite and Andrei Voronkov, Lecture Notes in Computer Science, Springer, 2015, to appear.; draft available here.

VN:F [1.9.10_1130]
Rating: 6.0/10 (19 votes cast)
VN:F [1.9.10_1130]
Rating: -2 (from 12 votes)

Lampsort

 

In support of his view of software methodology, Leslie Lamport likes to use the example of non-recursive Quicksort. Independently of the methodological arguments, his version of the algorithm should be better known. In fact, if I were teaching “data structures and algorithms” I would consider introducing it first.

As far as I know he has not written down his version in an article, but he has presented it in lectures; see [1]. His trick is to ask the audience to give a non-recursive version of Quicksort, and of course everyone starts trying to remove the recursion, for example by making the stack explicit or looking for invertible functions in calls. But his point is that recursion is not at all fundamental in Quicksort. The recursive version is a specific implementation of a more general idea.

Lamport’s version — let us call it Lampsort —is easy to express in Eiffel. We may assume the following context:

a: ARRAY [G -> COMPARABLE]        — The array to be sorted.
pivot: INTEGER                                      —  Set by partition.
picked: INTEGER_INTERVAL            — Used by the sorting algorithm, see below.
partition (i, j: INTEGER)
……..require      — i..j is a sub-interval of the array’s legal indexes:
……..……..i < j
……..……..i >= a.lower
……..……..j <= a.upper
……..do
……..……..… Usual implementation of partition
……..ensure     — The expected effect of partition:
……..……..pivot >= i
……..……..pivot < j
……..……..a [i..j] has been reshuffled so that elements in i..pivot are less than
……..……..or equal to those in pivot+1 .. j.
……..end

We do not write the implementation of partition since the point of the present discussion is the overall algorithm. In the usual understanding, that algorithm consists of doing nothing if the array has no more than one element, otherwise performing a partition and then recursively calling itself on the two resulting intervals. The implementation can take advantage of parallelism by forking the recursive calls out to different processors. That presentation, says Lamport, describes only a possible implementation. The true Quicksort is more general. The algorithm works on a set not_sorted of integer intervals i..j such that the corresponding array slices a [i..j] are the only ones possibly not sorted; the goal of the algorithm is to make not_sorted empty, since then we know the entire array is sorted. In Eiffel we declare this set as:

not_sorted: SET [INTEGER_INTERVAL]

The algorithm initializes not_sorted to contain a single element, the entire interval; at each iteration, it removes an interval from the set, partitions it if that makes sense (i.e. the interval has more than one element), and inserts the resulting two intervals into the set. It ends when not_sorted is empty. Here it is:

……..from                                 — Initialize interval set to contain a single interval, the array’s entire index range:
……..…..create not_sorted.make_one (a.lower |..| a.upper)….         ..……..
……..invariant
……..…..— See below
……..until
……..…..not_sorted.is_empty                                                            — Stop when there are no more intervals in set
……..loop
……..…..picked := not_sorted.item                                                     — Pick an interval from (non-empty) interval set.
……..……if picked.count > 1 then                                                      — (The precondition of partition holds, see below.)
……..……..…..partition (picked.lower, picked.upper)                 — Split, moving small items before & large ones after pivot.
……..……..…..not_sorted.extend (picked.lower |..| pivot)            — Insert new intervals into the set of intervals: first
……..……....not_sorted.extend (pivot + 1 |..| picked.upper)     — and second.
……..……end
……..…...not_sorted.remove (picked)                                               — Remove interval that was just partitioned.
…….end

Eiffel note: the function yielding an integer interval is declared in the library class INTEGER using the operator |..| (rather than just  ..).

The query item from SET, with the precondition not is_empty,  returns an element of the set. It does not matter which element. In accordance with the Command-Query Separation principle, calling item does not modify the set; to remove the element you have to use the command remove. The command extend adds an element to the set.

The abstract idea behind Lampsort, explaining why it works at all, is the following loop invariant (see [2] for a more general discussion of how invariants provide the basis for understanding loop algorithms). We call “slice” of an array a non-empty contiguous sub-array; for adjacent slices we may talk of concatenation; also, for slices s and t s <= t means that every element of s is less than or equal to every element of t. The invariant is:

a is the concatenation of the members of a set slices of disjoint slices, such that:
– The elements of a are a permutation of its original elements.
– The index range of any member  of slices having more than one element is in not_sorted.
– For any adjacent slices s and t (with s before t), s <= t.

The first condition (conservation of the elements modulo permutation) is a property of partition, the only operation that can modify the array. The rest of the invariant is true after initialization (from clause) with slices made of a single slice, the full array. The loop body maintains it since it either removes a one-element interval from not_sorted (slices loses the corresponding slice) or performs partition with the effect of partitioning one slice into two adjacent ones satisfying s <= t, whose intervals replace the original one in not_sorted. On exit, not_sorted is empty, so slices is a set of one-element slices, each less than or equal to the next, ensuring that the array is sorted.

The invariant also ensures that the call to partition satisfies that routine’s precondition.

The Lampsort algorithm is a simple loop; it does not use recursion, but relies on an interesting data structure, a set of intervals. It is not significantly longer or more difficult to understand than the traditional recursive version

sort (i, j: INTEGER)
……..require
……..……..i <= j
……..……..i >= a.lower
……..……..j <= a.upper
……..do
……..……if j > i then                    — Note that precondition of partition holds.
……..……..…..partition (i, j)         — Split into two slices s and t such that s <= t.
……..……..…..sort (i, pivot)          — Recursively sort first slice.
……..……..…..sort (pivot+1, j)      — Recursively sort second slice.
……..……end……..…..
……..end

Lampsort, in its author’s view, captures the true idea of Quicksort; the recursive version, and its parallelized variants, are only examples of possible implementations.

I wrote at the start that the focus of this article is Lampsort as an algorithm, not issues of methodology. Let me, however, give an idea of the underlying methodological debate. Lamport uses this example to emphasize the difference between algorithms and programs, and to criticize the undue attention being devoted to programming languages. He presents Lampsort in a notation which he considers to be at a higher level than programming languages, and it is for him an algorithm rather than a program. Programs will be specific implementations guided in particular by efficiency considerations. One can derive them from higher-level versions (algorithms) through refinement. A refinement process may in particular remove or restrict non-determinism, present in the above version of Lampsort through the query item (whose only official property is that it returns an element of the set).

The worldview underlying the Eiffel method is almost the reverse: treating the whole process of software development as a continuum; unifying the concepts behind activities such as requirements, specification, design, implementation, verification, maintenance and evolution; and working to resolve the remaining differences, rather than magnifying them. Anyone who has worked in both specification and programming knows how similar the issues are. Formal specification languages look remarkably like programming languages; to be usable for significant applications they must meet the same challenges: defining a coherent type system, supporting abstraction, providing good syntax (clear to human readers and parsable by tools), specifying the semantics, offering modular structures, allowing evolution while ensuring compatibility. The same kinds of ideas, such as an object-oriented structure, help on both sides. Eiffel as a language is the notation that attempts to support this seamless, continuous process, providing tools to express both abstract specifications and detailed implementations. One of the principal arguments for this approach is that it supports change and reuse. If everything could be fixed from the start, maybe it could be acceptable to switch notations between specification and implementation. But in practice specifications change and programs change, and a seamless process relying on a single notation makes it possible to go back and forth between levels of abstraction without having to perform repeated translations between levels. (This problem of change is, in my experience, the biggest obstacle to refinement-based approaches. I have never seen a convincing description of how one can accommodate specification changes in such a framework without repeating the whole process. Inheritance, by the way, addresses this matter much better.)

The example of Lampsort in Eiffel suggests that a good language, equipped with the right abstraction mechanisms, can be effective at describing not only final implementations but also abstract algorithms. It does not hurt, of course, that these abstract descriptions can also be executable, at the possible price of non-optimal performance. The transformation to an optimal version can happen entirely within the same method and language.

Quite apart from these discussions of software engineering methodology, Lamport’s elegant version of Quicksort deserves to be known widely.

References

[1] Lamport video here, segment starting at 0:32:34.
[2] Carlo Furia, Bertrand Meyer and Sergey Velder: Loop invariants: Analysis, Classification and Examples, in ACM Computing Surveys, September 2014, preliminary text here.

VN:F [1.9.10_1130]
Rating: 7.0/10 (27 votes cast)
VN:F [1.9.10_1130]
Rating: +5 (from 11 votes)

New MOOC opens Tuesday

Our online course Computing: Art, Magic, Science, available from EdX, opens this Tuesday (tomorrow, 30 September) at 9 AM Zurich time (and at this time in your area).

An earlier article on this blog described the course, which integrates ten years of experience teaching introductory programming at ETH, and takes advantage of remote-compilation and remote-execution technology from our distributed development research.

You can find the course here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

The Eiffel Documentation Drive

EiffelStudio releases are semi-annual, end of May and end of November. Release 14-05 just came out. The next release (14-11) is entirely devoted to documentation. We are hoping for extensive community involvement in this first-time Eiffel Documentation Drive.

Many people regularly comment that there is not enough Eiffel and EiffelStudio documentation, and some of what exists is not good enough. We have decided to tackle the problem seriously, hence the dedication of an entire release cycle to documentation. The term is taken here in a broad sense: “documentation” means what is at http://docs.eiffel.com, but also everything else that can help understand Eiffel, for example updating Wikipedia entries on topics for which Eiffel has something to offer.

Anyone with an understanding of an Eiffel-related topic can help. We particularly need help from two (non-disjoint) categories of contributors

  • Those with a good understanding of one or more Eiffel-related topics.
  • Those with good writing skills.

The process will involve reviewing, so if you are an Eiffelist with moderate taste for writing, or a good writer with incomplete knowledge of Eiffel, we need your help anyway; someone else will compensate for the missing side. In particular, a common criticism is that some of the documentation was written by developers who do not have English as their mother tongue; if you can help improve it everyone will benefit. Of course if you are good at both technology and writing it’s even better.

We are mentioning English because it is the first target, but documentation in other languages, either original or a translation of existing English pages, is needed too.

Here is how the Eiffel Documentation Drive works:

  • Here you will find a form to report missing or unsatisfactory documentation. Please fill it on every applicable occasion.
  • The entries will be read by a member of the Eiffel Software team, who in applicable cases will add a row to the Eiffel Documentation Drive spreadsheet here. You can not only read that spreadsheet but also edit it yourself, so as to keep it as accurate and up-to-date as possible.
  • An email will be sent to the user list, with “Eiffel Documentation Drive” in the header (so that people not interested in the topic can filter them out), requesting help.
  • Those willing to help can enter their names in the corresponding row, indicating a planned date of completion.

Each row includes among its fields the following: topic, link to existing documentation, volunteer writer(s), planned completion, volunteer reviewer(s).

The full Eiffel Software team will participate – as noted above, improving the documentation is the strategic goal for the release – but we hope for considerable community participation. Please help make EiffelStudio documentation shine as much as the environment itself.

VN:F [1.9.10_1130]
Rating: 9.0/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Programming language features

 

InfoWorld is currently publishing a series of programming language assessments:

  • 9 Things We Hate About Objective-C, 4 June.
  • 15 Things We Hate About Java, 6 March.
  • 10 Features Apple Stole for the Swift Programming Language, 9 June.

Notable in these articles is what they do not mention: Eiffel has most of what the author misses in Objective-C and Java; and most of what Swift “stole” it stole from Eiffel.

In this article let us concentrate on the nine Objective-C complaints, by Peter Wayner [1]; subsequent articles will examine the Java “hates” and the Swift “steals”.

Criticism 1: “It is a little too different

“Objective-C lovers tout that Objective-C is a strict superset of C: If you can do it in C, you should be able to do it in Objective-C. But it doesn’t go the other way, so you’re stuck wondering, “Should I use an Objective-C method description or a C one?” Achieving portability to C programs requires constant vigilance and forethought.”

This is what happens when you mix language paradigms. Eiffel has a close relationship with C, but the two sides are clearly separated. You can call C from Eiffel, and the other way around. You can declare an Eiffel routine as “external C” and even include the C code inline: in other words an Eiffel “method description” can have a C implementation. The structure is always object-oriented (no need to fear that a novice programmer will revert to a C style for the design) but for access to low-level system mechanisms and small functions that should be optimized to the byte and microsecond you use C directly, in its ideal role.

Criticism 2: “It’s still mostly just plain old C

“For all its object-oriented coolness, you don’t get much else from Objective-C. It’s more of a way to organize your code for large systems than a way to write better code. You’re still responsible for pointers. You’re still responsible for keeping track of memory.

Eiffel is object-oriented all the way. You are not “responsible for pointers“. References are tame: no pointer arithmetic. You are not “responsible for keeping track of memory“:  objects are garbage-collected

“The C programmers loved to call their software a ‘portable assembly code’, and the same is true for Objective-C … except it’s only portable from the Mac to the iPad.”

“Portable assembly code” is exactly what C provides, and hence an excellent target for an Eiffel compiler. As to Eiffel, it runs on all platforms, from Windows to Linux to Solaris to VMS to the Mac.

Criticism 3: Stuck in the 80’s

Criticism 3: “Stuck in the ’80s

“Parachute pants, big hair, ‘The Breakfast Club’ — and the NeXT machine: Objective-C is like a time machine in programming-language land.”

Eiffel has undergone constant evolution, innovating on all fronts of programming constructs and integrating the best of known techniques.

“The primitives aren’t first-class citizens. Garbage collection, that wonderful idea that sustained Lisp, was adopted by Java ages ago. Objective-C got it in 2006. The same goes for properties and closures.”

All this has been in Eiffel forever. Agents (closures) were introduced in 1999, long before Java, C# and other OO languages had anything of the sort. Eiffel’s assigner commands are vastly superior to properties (no need to write all these boring getter functions).

 Criticism 4: “Punctuation

“The cool modern kids writing Python, Ruby, and CoffeeScript can craft billion-dollar companies without using brackets, braces, and parentheses. You’ll be wearing out your punctuation keys writing Objective-C. Colons, at-signs, asterisks? Is there any character that the language doesn’t use?”

Come on. How can one be so misinformed? The semicolon has been optional in Eiffel for fifteen years. The high-priest style of C, Objective-C, Java, C# and so many others, with its piling up of strange symbols, is something that Eiffel users never had to suffer.

Criticism 5: “Modern syntax

Not modern syntax, that is:

“Objective-C”s syntax is like Coke: They tried to modernize it in the ’90s, but it never stuck.”

Eiffel’s syntax is clear and simple. Total beginners, including high-school students, pick it up just as easily and naturally as advanced programmers, and as application experts who want to concentrate on their problem, not on learning strange language conventions going back to the nineteen-sixties.

Criticism 6: “No namespaces

Here Eiffel does not provide what the journalist wants: it is “post-namespaces” (as in “postmodern”). The Eiffel community has decided that the complexity of namespaces was not worth the trouble (what happens when you move packages around?) and prefers simple mechanisms for resolving class name clashes.

Criticism 7: “It only runs in Apple’s corner of the universe

” Variety is the spice of life. It’s even more important in a world where not everything is an iPhone. If a Windows or Linux shop recruits you, you can forget all of those extra Objective-C extensions you learned because they’ll be of no use.”

Eiffel is not tied to any manufacturer, computer architecture or operating system. If a new processor comes out, or a user needs an exotic platform, a port can usually be produced in a matter of hours. The compiler and the entire environment to which it belongs, EiffelStudio, are written in Eiffel; the supporting runtime is in a highly portable form of C, which requires very little customization, if any, for a new platform. (Here “the compiler” means the Eiffel Software implementation, but other implementations also put a strong emphasis on portability.)

Criticism 8: “XCode is your only choice

“In the Objective-C world, you get really only one choice. Why do you need to be different, comrade?”

Besides EiffelStudio other compilers and tools are available for Eiffel.

Criticism 9: “Apple’s benevolent dictatorship

“Do you want to give out more than 100 copies of your iPhone app? Forget it. Do you want to “think different” with your UI? Please go back and read the user interface guidelines. You can’t do anything without Apple’s permission because Apple uses strong crypto to lock down everything — and fanatically tyrannical policies to lock down the rest.”

The Eiffel language definition is steered by a standards committee under Ecma (the organization behind many of the major standards in IT), which anyone can join. EiffelStudio itself is available in open source. The Eiffel world knows nothing like the close control Apple exerts over its product; it welcomes all contributors.

Maybe someone should talk to Mr. Wayner and help him broaden his scope of programming language knowledge.

References

[1] Peter Wayner, 9 Things We Hate About Objective-C, InfoWorld, 4 June 2014, available here.

VN:F [1.9.10_1130]
Rating: 6.7/10 (17 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 8 votes)

Attached by default?

 

Opinions requested! See at end.

A void call, during the execution of an object-oriented program, is a call of the standard OO form

x·some_routine (…)                                                /CALL/

where x, a reference, happens to be void (null) instead of denoting, as expected, an object. The operation is not possible; it leads to an exception and, usually, a crash of the program. Void calls are also called “null pointer dereferencing”.

One of the major advances in Eiffel over the past years has been the introduction of attached types, entirely removing the risk of void calls. The language mechanisms, extending the type system, make void-call avoidance a static property, part of type checking: just as the compiler will prevent you from assigning a boolean value to an integer variable, so will it flag your program if it sees a risk of void call. Put the other way around, if your program passes compilation, you have the guarantee that its executions will never produce a void call. Attached types thus remove one of the major headaches of programming, what Tony Hoare [1] called his “one-billion-dollar mistake”:

I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At that time, I was designing the first comprehensive type system for references in an object oriented language (ALGOL W) [2]. My goal was to ensure that all use of references should be absolutely safe, with checking performed automatically by the compiler. But I couldn’t resist the temptation to put in a null reference, simply because it was so easy to implement. This has led to innumerable errors, vulnerabilities, and system crashes, which have probably caused a billion dollars of pain and damage in the last forty year

Thanks to attached types, Eiffel programmers can sleep at night: their programs will not encounter void calls.

To benefit from this advance, you must declare variables accordingly, as either attached (never void after initialization) or detachable (possibly void). You must also write the program properly:

  • If you declare x attached, you must ensure in the rest of the program that before its first use x will have been attached to an object, for example through a creation instruction create x.
  • If you declare x detachable, you must make sure that any call of the above form /CALL/ happens in a context where x is guaranteed to be non-void; for example, you could protect it by a test if x /= Void then or, better, an “object test”.

Code satisfying these properties is called void-safe.

Void safety is the way to go: who wants to worry about programs, even after they have been thoroughly tested and have seemingly worked for a while, crashing at unpredictable times? The absence of null-pointer-dereferencing can be a statically  enforced property, as the experience of Eiffel now demonstrates; and that what it should be. One day, children will think void-safely from the most tender age, and their great-grandparents will tell them, around the fireplace during long and scary winter nights, about the old days when not everyone was programming in Eiffel and even those who did were worried about the sudden null-pointer-derefencing syndrome. To get void safety through ordinary x: PERSON declarations, you had (children, hold your breath) to turn on a compiler option!

The transition to void safety was neither fast nor easy; in fact, it has taken almost ten years. Not everyone was convinced from the beginning, and we have had to improve and simplify the mechanism along the way to make void-safe programming practical. Compatibility has been a key issue throughout: older classes are generally not void-safe, but in a language that has been around for many years and has a large code base of operational software it is essential to ensure a smooth transition. Void safety has, from its introduction, been controlled by a compiler option:

  • With the option off, old code will compile as it used to do, but you do not get any guarantee of void safety. At execution time, a void call can still cause your program to go berserk.
  • With the option on, you get the guarantee: no void calls. To achieve this goal, you have to make sure the classes obey the void safety rules; if they do not, the compiler will reject them until you fix the problem.

In the effort to reconcile the compatibility imperative with the inexorable evolution to void safety, the key decisions have affected default values for compiler options and language conventions. Three separate decisions, in fact. Two of the defaults have already been switched; the question asked at the end of this article addresses the switching of the last remaining one.

The first default governed the void-safety compiler option. On its introduction, void-safety was off by default; the mechanism had to be turned on explicitly, part of the “experimental” option that most EiffelStudio releases offer for new, tentative mechanisms. That particular decision changed a year ago, with version 7.3 (May 2013): now void safety is the default. To include non-void-safe code you must mark  it explicitly.

The second default affects a language convention: the meaning of a standard declaration. A typical declaration, such as

x: PERSON                                                                                      /A/

says that at run time x denotes a reference which, if not void, will be attached to an object of type PERSON.  In pre-void-safety Eiffel, as in today’s other typed OO languages,  the reference could occasionally become void at run time; in other words, x was detachable. With the introduction of void safety, you could emphasize this property by specifying it explicitly:

x: detachable PERSON                                                             /B/

You could also specify that x would never be void by declaring it attached, asking the compiler to guarantee this property for you (through its application of the void-safety rules to all operations involving x). The explicit form in this case is

x: attached PERSON                                                               /C/

In practical programming, of course, you do not want to specify attached or detachable all the time: you want to use the simple form /A/ as often as possible. Originally, since we were starting from a non-void-safe language, compatibility required /A/ to mean /B/ by default. But it turns out that “attached” really is the dominant case: most references should remain attached at all times and Void values should be reserved for important but highly specialized cases such as terminating linked data structures. So the simple form should, in the final state of the language, mean /C/. That particular default was indeed switched early (version 7.0, November 2011) for people using the void-safety compiler option. As a result, the attached keyword is no longer necessary for declarations such as the above, although it remains available. Everything is attached by default; when you want a reference that could be void (and are prepared to bear the responsibility for convincing the compiler that it won’t when you actually use it in a call), you declare it as detachable; that keyword remains necessary.

There remains one last step in the march to all-aboard-for-void-safety: removing the “detachable by default” option, that is to say, the compiler option that will make /A/ mean /B/ (rather than /C/). It is only an option, and not the default; but still it remains available. Do we truly need it? The argument for removing it  is that it simplifies the specification (the fewer options the better) and encourages everyone, even more than before, to move to the new world. The argument against is to avoid disturbing existing projects, including their compiler control files (ECFs).

The question looms: when do we switch the defaults? Some of us think the time is now; specifically, the November release (14.11) [4].

Do you think the option should go? We would like your opinion. Please participate in the Eiffelroom poll [5].

 

References and note

[1] C.A.R. Hoare: Null References: The Billion Dollar Mistake , abstract of talk at QCon London, 9-12 March 2009, available here.

[2] (BM note) As a consolation, before Algol W, LISP already had NIL, which is the null pointer.

[3] Bertrand Meyer, Alexander Kogtenkov and Emmanuel Stapf: Avoid a Void: The Eradication of Null Dereferencing, in Reflections on the Work of C.A.R. Hoare, eds. C. B. Jones, A.W. Roscoe and K.R. Wood, Springer-Verlag, 2010, pages 189-211, available here.

[4] EiffelStudio version numbering changed in 2014: from a classic major_number.minor_number to a plain year.month, with two principal releases, 5 and 11 (May and November).

[5] Poll on switching the attachment defaults: at the bottom of the Eiffelroom page here (direct access here).

VN:F [1.9.10_1130]
Rating: 8.6/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

New article: contracts in practice

For almost anyone programming in Eiffel, contracts are just a standard part of daily life; Patrice Chalin’s pioneering study of a few years ago [1] confirmed this impression. A larger empirical study is now available to understand how developers actually use contracts when available. The study, to published at FM 2014 [2] covers 21 programs, not just in Eiffel but also in JML and in Code Contracts for C#, totaling 830,000 lines of code, and following the program’s revision history for a grand total of 260 million lines of code over 7700 revisions. It analyzes in detail whether programmers use contracts, how they use them (in particular, which kinds, among preconditions, postconditions and invariants), how contracts evolve over time, and how inheritance interacts with contracts.

The paper is easy to read so I will refer you to it for the detailed conclusions, but one thing is clear: anyone who thinks contracts are for special development or special developers is completely off-track. In an environment supporting contracts, especially as a native part of the language, programmers understand their benefits and apply them as a matter of course.

References

[1] Patrice Chalin: Are practitioners writing contracts?, in Fault-Tolerant System, eds. Butler, Jones, Romanovsky, Troubitsyna, Springer LNCS, vol. 4157, pp. 100–113, 2006.

[2] H.-Christian Estler, Carlo A. Furia, Martin Nordio, Marco Piccioni and Bertrand Meyer: Contracts in Practice, to appear in proceedings of 19th International Symposium on Formal Methods (FM 2014), Singapore, May 2014, draft available here.

VN:F [1.9.10_1130]
Rating: 8.4/10 (11 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 6 votes)

Eiffel as an expression language

A functional-programming style, or more generally a style involving more expressions and fewer instructions, is possible in Eiffel. In particular, Eiffel’s agent mechanism embeds a full functional-programming mechanism in the object-oriented framework of the language.

To make the notations simpler, we are discussing and tentatively implementing a number of proposed extensions. They involve no fundamental new language mechanisms, but provide new, more concise notations for existing mechanisms. Examples are:

  • Conditional expressions.
  • Implicit tuple, a rule allowing the omission of brackets for an actual argument when it is a tuple and the last argument, e.g. f (x, y, z) as an abbreviation for f ([x, y, z]) (an example involving just one argument). Tuples already provided the equivalent of a variable-argument (“varargs”) facility, but it is made simpler to use with this convention.
  • Parenthesis alias, making it possible to write just f (x, y) when f is an agent (closure, lambda expression, delegate etc. in other terminologies), i.e. treating f as if it were a function; the notation is simply an abbreviation for f.item ([x, y]) (an example that also takes advantage of implicit tuples). It has many other applications since a “parenthesis alias” can be defined for a feature of any class.
  • Avoiding explicit assignments to Result.
  • Type inference (to avoid explicitly specifying the type when it can be deduced from the context). This is a facility for the programmer, useful in particular for local variables, but does not affect the type system: Eiffel remains strongly typed, it is just that you can be lazy about writing the type when there is no ambiguity.
  • In the same vein, omitting the entire list of generic parameters when it can be inferred.

The description of the mechanism (see the link in [1]) is in the form of a set of slides explaining the concepts and presenting example. This is a working document and feedback is welcome.

References

[1] Eiffel as an expression language, Eiffel Software working document, 2012-2014, see here.

VN:F [1.9.10_1130]
Rating: 7.8/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 2 votes)

Negative variables: new version

I have mentioned this paper before (see the earlier blog entry here) but it is now going to be published [1] and has been significantly revised, both to take referee comments into account and because we found better ways to present the concepts.

We have  endeavored to explain better than in the draft why the concept of negative variable is necessary and why the usual techniques for modeling object-oriented programs do not work properly for the fundamental OO operation, qualified call x.r (…). These techniques are based on substitution and are simply unable to express certain properties (let alone verify them). The affected properties are those involving properties of the calling context or the global project structure.

The basic idea (repeated in part from the earlier post) is as follows. In modeling OO programs, we have to take into account the unique “general relativity” property of OO programming: all the operations you write are expressed relative to a “current object” which changes repeatedly during execution. More precisely at the start of a call x.r (…) and for the duration of that call the current object changes to whatever x denotes — but to determine that object we must again interpret x in the context of the previous current object. This raises a challenge for reasoning about programs; for example in a routine the notation f.some_reference, if f is a formal argument, refers to objects in the context of the calling object, and we cannot apply standard rules of substitution as in the non-OO style of handling calls.

We introduced a notion of negative variable to deal with this issue. During the execution of a call x.r (…) the negation of x , written x’, represents a back pointer to the calling object; negative variables are characterized by axiomatic properties such as x.x’= Current and x’.(old x)= Current.

Negative variable as back pointer

The paper explains why this concept is necessary, describes the associated formal rules, and presents applications.

Reference

[1] Bertrand Meyer and Alexander Kogtenkov: Negative Variables and the Essence of Object-Oriented Programming, to appear in Specification, Algebra, and Software, eds. Shusaku Iida, Jose Meseguer and Kazuhiro Ogata, Springer Lecture Notes in Computer Science, 2014, to appear. See text here.

VN:F [1.9.10_1130]
Rating: 7.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

New paper: alias calculus and frame inference

For a while now I have  been engaged in  a core problem of software verification: the aliasing problem. As with many difficult problems in science, it is easy to state the basic question: can we determine automatically whether at a program point p the values of two reference expressions e and f can ever denote the same object?

Alias analysis lies at the core of many problems in software analysis and verification.

Earlier work [2] I introduced an “alias calculus”. The calculus is a set of rules, attached to the constructs of the programming language, to compute the “alias relation”: the set of possibly aliased expression pairs. A new paper [1] with Sergey Velder and Alexander Kogtenkov improves the model (correcting in particular an error in the axiom for assignment, whose new version has been proved sound using Coq) and applies it to the inference of frame properties. Here the abstract:

Alias analysis, which determines whether two expressions in a program may reference to the same object, has many potential applications in program construction and verification. We have developed a theory for alias analysis, the “alias calculus”, implemented its application to an object-oriented language, and integrated the result into a modern IDE. The calculus has a higher level of precision than many existing alias analysis techniques. One of the principal applications is to allow automatic change analysis, which leads to inferring “modifies clauses”, providing a significant advance towards addressing the Frame Problem. Experiments were able to infer the “modifies” clauses of an existing formally specied library. Other applications, in particular to concurrent programming, also appear possible. The article presents the calculus, the application to frame inference including experimental results, and other projected applications. The ongoing work includes building more efficient model capturing aliasing properties and soundness proof for its essential elements.

This is not the end of the work, as better models and implementations are needed, but an important step.

References

[1] Sergey Velder, Alexander Kogtenkovand Bertrand Meyer: Alias Calculus, Frame Calculus and Frame Inference, in Science of Computer Programming, to appear in 2014 (appeared online 26 November 2013); draft available here, published version here.
[2] Bertrand Meyer: Steps Towards a Theory and Calculus of Aliasing, in International Journal of Software and Informatics, Chinese Academy of Sciences, 2011, pages 77-116, available here.

 

VN:F [1.9.10_1130]
Rating: 7.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

The laws of branching (part 1)

 

The first law of branching is: don’t. There is no other law.

The only sane way to develop software in a group, whether collocated or distributed, is to have a single branch (“trunk”) to which everyone commits changes, with constant running of the regression test suite to make sure that any breaking change is detected and corrected right away.

To allow branching, that is to say the emergence of separate lines of development with the expectation that they will be merged back later on, is to guarantee disaster. It is easy to diverge, but hard to converge; not only hard, but unpredictable. It can take days, weeks or more to reconcile changes and resolve conflicts, when the reason for the changes is no longer fresh in the developers’ memories, and the developers themselves may even no longer be there. Conflicts should be detected right away, and corrected immediately.

The EiffelStudio development never uses branches. A related development, EVE (Eiffel Verification Environment), maintained at ETH, includes all research tools, and is reconciled every Friday with the EiffelStudio trunk, so it is never allowed to diverge into a separate branch. Most other successful teams I know apply the first law of branching too. Solve conflicts before they have had the time to become conflicts.

VN:F [1.9.10_1130]
Rating: 5.1/10 (28 votes cast)
VN:F [1.9.10_1130]
Rating: -10 (from 20 votes)

Concurrency video

Our Concurrency Made Easy project, the result of an ERC Advanced Investigator Grant, is trying to solve the problem of making concurrent programming simple, reliable and effective. It has spurred related efforts, in particular the Roboscoop project applying concurrency to robotics software.

Sebastian Nanz and other members of the CME project at ETH have just produced a video that describes the aims of the project and presents some of the current achievements. The video is available on the CME project page [1] (also directly on YouTube [2]).

References

[1] Concurrency Made Easy project, here.

[2] YouTube CME video, here.

VN:F [1.9.10_1130]
Rating: 9.5/10 (17 votes cast)
VN:F [1.9.10_1130]
Rating: +13 (from 15 votes)

Reading notes: strong specifications are well worth the effort

 

This report continues the series of ICSE 2013 article previews (see the posts of these last few days, other than the DOSE announcement), but is different from its predecessors since it talks about a paper from our group at ETH, so you should not expect any dangerously delusional,  disingenuously dubious or downright deceptive declaration or display of dispassionate, disinterested, disengaged describer’s detachment.

The paper [1] (mentioned on this blog some time ago) is entitled How good are software specifications? and will be presented on Wednesday by Nadia Polikarpova. The basic result: stronger specifications, which capture a more complete part of program functionality, cause only a modest increase in specification effort, but the benefits are huge; in particular, automatic testing finds twice as many faults (“bugs” as recently reviewed papers call them).

Strong specifications are specifications that go beyond simple contracts. A straightforward example is a specification of a push operation for stacks; in EiffelBase, the basic Eiffel data structure library, the contract’s postcondition will read

item =                                          /A/
count = old count + 1

where x is the element being pushed, item the top of the stack and count the number of elements. It is of course sound, since it states that the element just pushed is now the new top of the stack, and that there is one more element; but it is also  incomplete since it says nothing about the other elements remaining as they were; an implementation could satisfy the contract and mess up with these elements. Using “complete” or “strong” preconditions, we associate with the underlying domain a theory [2], or “model”, represented by a specification-only feature in the class, model, denoting a sequence of elements; then it suffices (with the convention that the top is the first element of the model sequence, and that “+” denotes concatenation of sequences) to use the postcondition

model = <x> + old model         /B/

which says all there is to say and implies the original postconditions /A/.

Clearly, the strong contracts, in the  /B/ style, are more expressive [3, 4], but they also require more specification effort. Are they worth the trouble?

The paper explores this question empirically, and the answer, at least according to the criteria used in the study, is yes.  The work takes advantage of AutoTest [5], an automatic testing framework which relies on the contracts already present in the software to serve as test oracles, and generates test cases automatically. AutoTest was applied to both to the classic EiffelBase, with classic partial contracts in the /A/ style, and to the more recent EiffelBase+ library, with strong contracts in the /B/ style. AutoTest is for Eiffel programs; to check for any language-specificity in the results the work also included testing a smaller set of classes from a C# library, DSA, for which a student developed a version (DSA+) equipped with strong model-based contracts. In that case the testing tool was Microsoft Research’s Pex [7]. The results are similar for both languages: citing from the paper, “the fault rates are comparable in the C# experiments, respectively 6 . 10-3 and 3 . 10-3 . The fault complexity is also qualitatively similar.

The verdict on the effect of strong specifications as captured by automated testing is clear: the same automatic testing tools applied to the versions with strong contracts yield twice as many real faults. The term “real fault” comes from excluding spurious cases, such as specification faults (wrong specification, right implementation), which are a phenomenon worth studying but should not count as a benefit of the strong specification approach. The paper contains a detailed analysis of the various kinds of faults and the corresponding empirically determined measures. This particular analysis is for the Eiffel code, since in the C#/Pex case “it was not possible to get an evaluation of the faults by the original developers“.

In our experience the strong specifications are not that much harder to write. The paper contains a precise measure: about five person-weeks to create EiffelBase+, yielding an “overall benefit/effort ratio of about four defects detected per person-day“. Such a benefit more than justifies the effort. More study of that effort is needed, however, because the “person” in the person-weeks was not just an ordinary programmer. True, Eiffel experience has shown that most programmers quickly get the notion of contract and start applying it; as the saying goes in the community, “if you can write an if-then-else, you can write a contract”. But we do not yet have significant evidence of whether that observation extends to model-based contracts.

Model-based contracts (I prefer to call them “theory-based” because “model” means so many other things, but I do not think I will win that particular battle) are, in my opinion, a required component of the march towards program verification. They are the right compromise between simple contracts, which have proved to be attractive to many practicing programmers but suffer from incompleteness, and full formal specification à la Z, which say everything but require too much machinery. They are not an all-or-nothing specification technique but a progressive one: programmers can start with simple contracts, then extend and refine them as desired to yield exactly the right amount of precision and completeness appropriate in any particular context. The article shows that the benefits are well worth the incremental effort.

According to the ICSE program the talk will be presented in the formal specification session, Wednesday, May 22, 13:30-15:30, Grand Ballroom C.

References

[1] Nadia Polikarpova, Carlo A. Furia, Yu Pei, Yi Wei and Bertrand Meyer: What Good Are Strong Specifications?, to appear in ICSE 2013 (Proceedings of 35th International Conference on Software Engineering), San Francisco, May 2013, draft available here.

[2] Bertrand Meyer: Domain Theory: the forgotten step in program verification, article on this blog, see here.

[3] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[4] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ‘ 10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[5] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[6] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, in IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[7] Nikolai Tillman and Peli de Halleux, Pex: White-Box Generation for .NET, in Tests And Proofs (TAP 2008), pp. 134-153.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Adult entertainment

 

I should occasionally present examples of the strange reasons people sometimes invoke for not using Eiffel. In an earlier article [1] I gave the basic idea common to all these reasons, but there are many variants, in the general style “I am responsible for IT policy and purchases for IBM, the US Department of Defense and Nikke, and was about to sign the PO for the triple site license when I noticed that an article about Eiffel was published in 1997. How dare you! I had a tooth removed that year and it hurt a lot. I would really have liked to use Eiffel but you just made it impossible“.

While going through old email I found one of these carefully motivated strategic policy decisions: a missing “L” in a class name. Below is, verbatim [2], a message posted on the EiffelStudio developers list in 2006, and my answer. Also provides an interesting glimpse of what supposedly grown-up people find it worthwhile to spend their days on.

Original message

From: es-devel-bounces@origo.ethz.ch [mailto:es-devel-bounces@origo.ethz.ch] On Behalf Of Peter Gummer
Sent: Tuesday, 29 August, 2006 14:01
To: es-devel@origo.ethz.ch
Subject: [Es-devel] Misspelling as a naming convention
From: es-devel-bounces@origo.ethz.ch [mailto:es-devel-bounces@origo.ethz.ch] On Behalf Of Peter Gummer

Today I submitted a problem report that one of the EiffelVision classes has misspelt “tabbable” as “tabable“. Manu replied that the EiffelVision naming convention is that class or feature names ending in “able” will not double the preceding consonant, regardless of whether this results in wrong spelling.

Looking at the latest Es-changes Digest email, I see various changes implementing this naming convention. For example, the comment for revision 63043 is, “Changed from controllable to controlable to meet naming convention‘.

This is lunacy! “Controlable” (implying the existence of some verb “to controle“) might look quite ok to French eyes, but it looks utterly unprofessional to me. It does have a sort of Chaucerian, Middle English, pre-Gutenberg charm I suppose. Is this part of a plot for a Seconde Invasion Normande of the Langue Anglaise?

We are about to embark on some GUI work. Although we are probably going to use .NET WinForms, EiffelVision was a possible choice. But bad spelling puts me in a bad mood. I’d be very reluctant to work with EiffelVision because of this ridiculous naming convention.

– Peter Gummer

Answer

From: Bertrand Meyer
Sent: Wednesday, 30 August, 2006 00:52
To: Peter Gummer
Cc: es-devel@origo.ethz.ch
Subject: Re: [Es-devel] Misspelling as a naming convention

This has nothing to do with French. If anything, French practices the doubling of consonants before a suffix more than English does; an example (extracted from reports of users’ attitudes towards EiffelVision) is English “passionate“, French “passionné“. For the record, there’s no particular French dominance in the Eiffel development team, either at Eiffel Software or elsewhere. The recent discussion on EiffelVision’s “-able” class names involved one native English speaker out of three people, invalidating at the 33% level Kristen Nygaard’s observation that the language of science is English as spoken by foreigners.

The problem in English is that the rules defining which consonants should be doubled before a suffix such as “able” are not obvious. See for example this page from the University of Ottawa:

Double the final consonant before a suffix beginning with a vowel if both of the following are true: the consonant ends a stressed syllable or a one-syllable word, and the consonant is preceded by a single vowel.

Now close your eyes and repeat this from memory. I am sure that won’t be hard because you knew the rule all along, but can we expect this from all programmers using EiffelVision?

Another Web page , from a school in Oxfordshire, England, says:

Rule: Double the last consonant when adding a vowel suffix to a single syllable word ending in one vowel and one consonant.

Note that this is not quite the same rule; it doesn’t cover multi-syllable words with the stress (tonic accent) on the last syllable; and it would suggest “GROUPPABLE” (“group” is a one-syllable word ending in one vowel and one consonant), whereas the first rule correctly prescribes “GROUPABLE“. But apparently this is what is being taught to Oxfordshire pupils, whom we should stand ready to welcome as Eiffel programmers in a few years.

Both rules yield “TRANSFERABLE” because the stress is on the first syllable of “transfer“. But various dictionaries we have consulted also list “TRANSFERRABLE” and “TRANSFERRIBLE“.

As another example consider “FORMATING“. Both rules suggest a single “t“. The Solaris spell checker indeed rejects the form with two “t“s and accepts the version with one; but — a case of Unix-Windows incompatibility that seems so far to have escaped the attention of textbook authors — Microsoft Word does the reverse! In fact in default mode if you type “FORMATING” it silently corrects it to “FORMATTING“. It’s interesting in this example to note a change of tonic accent between the original and derived words: “fórmat” (both noun and verb) but “formáting“. Maybe the Word convention follows the “Ottawa” rule but by considering the stress in the derivation rather than the root? There might be a master’s thesis topic in this somewhere.

Both rules imply “MIXXABLE” and “FIXXABLE“, but we haven’t found a dictionary that accepts either of these forms.

Such rules cannot cover all cases anyway (they are “UNFATHOMMABLE“) because “consonant” vs “vowel” is a lexical distinction that doesn’t reflect the subtleties of English pronunciation. For example either rule would lead to “DRAWWABLE” because the word “draw” ends with “w“, a letter that you’ll find everywhere characterized as a consonant. Lexically it is a consonant, but phonetically it is sometimes a consonant and sometimes not, in particular at the end of a word. In “Wow“, the first “w” is a consonant, but not the second one. A valid rule would need to take into account not only spelling but also pronunciation. This is probably the reason behind the examples involving words ending in “x“: phonetically “X” can be considered two consonants, “KS“. But then the rule becomes more tricky, forcing the inquirer, who is understandably getting quite “PERPLEXXED” at this stage, to combine lexical and phonetic reasoning in appropriate doses.

No wonder then a page from the Oxford Dictionaries site states:

One of the most common types of spelling error is a mistake over whether a word is spelled with a double or a single consonant.

and goes on to list many examples.

You can find a list of of words ending in “ablehere . Here are a few cases involving derivations from a word ending with “p“:

Single consonant
DEVELOPABLE
GRASPABLE
GROUPABLE
HELPABLE
KEEPABLE
REAPABLE
RECOUPABLE

Doubled consonant
DIPPABLE
DROPPABLE (but: DRAPABLE)
FLOPPABLE
MAPPABLE
RECAPPABLE (but: CAPABLE)
RIPPABLE (but: ROPABLE)
SHIPPABLE
SKIPPABLE
STOPPABLE
STRIPPABLE
TIPPABLE

There are also differences between British and American usage.

True, the “Ottawa” rule could be amended to take into account words ending in “w“, “x“, “h” and a few other letters, and come reasonably close to matching dictionary practice. But should programmers have to remember all this? Will they?

Since we are dealing in part with artificial words, there is also some doubt as to what constitutes a “misspelt” word as you call it (or a “misspelled” one as Eiffel conventions — based on American English — would have it). Applying the rule yields “MAPPABLE“, which is indeed found in dictionaries. But in the world of graphics we have the term “bitmap“, where the stress is on the first syllable. The rule then yields “BITMAPABLE“. That’s suspicious but “GOOGLABLE“; a search produces 31 “BITMAPPABLE” and two “BITMAPABLE“, one of which qualified by “(Is that a word?)”. So either EiffelVision uses something that looks inconsistent (“BITMAPABLE” vs “MAPPABLE“) but follows the rule; or we decide for consistency.

In our view this case can be generalized. The best convention is the one that doesn’t require programmers to remember delicate and sometimes fuzzy rules of English spelling, but standardizes on a naming convention that will be as easy to remember as possible. To achieve this goal the key is consistency. A simple rule for EiffelVision classes is:

  • For an “-able” name derived from a word ending with “e“, drop the “e“: REUSABLE. There seems to be no case of words ending with another vowel.
  • If the name is derived from a word ending with a consonant, just add “able“: CONTROLABLE, TOOLTIPABLE, GROUPABLE.

Some of these might look strange the first couple of times but from then on you will remember the convention.

While we are flattered that EiffelVision should be treated as literature, we must admit that there are better recommendations for beach reading, and that Eiffel is not English (or French).

The above rule is just a convention and someone may have a better suggestion.

With best regards,

— Bertrand Meyer, Ian King, Emmanuel Stapf

Reference and note

[1] Habit, happiness and programming languages, article in this blog, 22 October 2012, see here.

[2] I checked the URLs, found that two pages have disappeared since 2006, and replaced them with others having the same content. The formatting (fonts, some of the indentation) is added. Peter Gummer asked me to make sure that his name always appears with two “m“.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Bringing C code to the modern world

The C2Eif translator developed by Marco Trudel takes C code and translates it into Eiffel; it produces not just a literal translation but a re-engineering version exhibiting object-oriented properties. Trudel defended his PhD thesis last Friday at ETH (the examiners were Hausi Muller from Victoria University, Manuel Oriol from ABB, Richard Paige from the University of York,  and me as the advisor). The thesis is not yet available online but earlier papers describing C2Eif are, all reachable from the project’s home page [1].

At issue is what we do with legacy code. “J’ai plus de souvenirs que si j’avais mille ans”, wrote Charles Baudelaire in Les Fleurs du Mal (“Spleen de Paris”). The software industry is not a thousand years old, but has accumulated even more “souvenirs” than

A heavy chest of drawers cluttered with balance-sheets,
Poems, love letters, lawsuits, romances
And heavy locks of hair wrapped in invoices
.

We are suffocating under layers of legacy code heaped up by previous generations of programmers using languages that no longer meet our scientific and engineering standards. We cannot get rid of this heritage; how do we bring it to the modern world? We need automatic tools to wrap it in contemporary code, or, better, translate it into contemporary code. The thesis and the system offer a way out through translation to a modern object-oriented language. It took courage to choose such a topic, since there have been many attempts in the past, leading to conventional wisdom consisting of two strongly established opinions:

  • Plain translation: it has been tried, and it works. Not interesting for a thesis.
  • Object-oriented reengineering: it has been tried, and it does not work. Not realistic for a thesis.

Both are wrong. For translation, many of the proposed solutions “almost work”: they are good enough to translate simple programs, or even some large programs but on the condition that the code avoids murky areas of C programming such as signals, exceptions (setjmp/longjmp) and library mechanisms. In practice, however, most useful C programs need these facilities, so any tool that ignores them is bound to be of conceptual value only. The basis for Trudel’s work has been to tackle C to OO translation “beyond the easy stuff” (as stated in the title of one of the published papers). This effort has been largely successful, as demonstrated by the translation of close to a million lines of actual C code, including some well-known and representative tools such as the Vim editor.

As to OO reengineering, C2Eif makes a serious effort to derive code that exhibits a true object-oriented design and hence resembles, in its structure at least, what a programmer in the target language might produce. The key is to identify the right data abstractions, yielding classes, and specialization properties, yielding inheritance. In this area too, many people have tried to come up with solutions, with little success. Trudel has had the good sense of avoiding grandiose goals and sticking to a number of heuristics that work, such as looking at the signatures of a set of functions to see if they all involve a common argument type. Clearly there is more to be done in this direction but the result is already significant.

Since Eiffel has a sophisticated C interface it is also possible to wrap existing code; some tools are available for that purpose, such as Andreas Leitner’s EWG (Eiffel Wrapper Generator). Wrapping and translating each have their advantages and limitations; wrapping may be more appropriate for C libraries that someone else is still actively updating  (so that you do not have to redo a translation with every new release), and translation for legacy code that you want to take over and bring up to par with the rest of your software. C2Eif is engineered to support both. More generally, this is a practitioner’s tool, devoting considerable attention to the many details that make all the difference between a nice idea and a tool that really works. The emphasis is on full automation, although more parametrization has been added in recent months.

C2Eif will make a big mark on the Eiffel developer community. Try it yourself — and don’t be shy about telling its author about the future directions in which you think the tool should evolve.

Reference

[1] C2Eif project page, here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (13 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 8 votes)

How good are strong specifications? (New paper, ICSE 2013)

 

A core aspect of our verification work is the use of “strong” contracts, which express sophisticated specification properties without requiring a separate specification language: even for advanced properties, there is no need for a separate specification language, with special notations such as those of first-order logic; instead, one can continue to rely, in the tradition of Design by Contract, on the built-in notations of the programming language, Eiffel.

This is the idea of domain theory, as discussed in earlier posts on this blog, in particular [1]. An early description of the approach, part of Bernd Schoeller’s PhD thesis work, was [2]; the next step was [3], presented at VSTTE in 2010.

A new paper to be presented at ICSE in May [3], part of an effort led by Nadia Polikarpova for her own thesis in progress, shows new advances in using strong specifications, demonstrating their expressive power and submitting them to empirical evaluation. The results show in particular that strong specifications justify the extra effort; in particular they enable automatic tests to find significantly more bugs.

A byproduct of this work is to show again the complementarity between various forms of verification, including not only proofs but (particularly in the contribution of two of the co-authors, Yi Wei and Yu Pei, as well as Carlo Furia) tests.

References

[1] Bertrand Meyer: Domain Theory: the forgotten step in program verification, article on this blog, see here.

[2] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[3] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ‘ 10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[4] Nadia Polikarpova, Carlo A. Furia, Yu Pei, Yi Wei and Bertrand Meyer: What Good Are Strong Specifications?, to appear in ICSE 2013 (Proceedings of 35th International Conference on Software Engineering), San Francisco, May 2013, draft available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Multirequirements (new paper)

 

As part of a Festschrift volume for Martin Glinz of the university of Zurich I wrote a paper [1] describing a general approach to requirements that I have been practicing and developing for a while, and presented in a couple of talks. The basic idea is to rely on object-oriented techniques, including contracts for the semantics, and to weave several levels of discourse: natural-language, formal and graphical.

Reference

[1] Bertrand Meyer: Multirequirements, to appear in Martin Glinz Festschrift, eds. Anne Koziolek and Norbert Scheyff, 2013, available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Negative variables and the essence of object-oriented programming (new paper)

In modeling object-oriented programs, for purposes of verification (proofs) or merely for a better understanding, we are faced with the unique “general relativity” property of OO programming: all the operations you write (excluding non-OO mechanisms such as static functions) are expressed relative to a “current object” which changes repeatedly during execution. More precisely at the start of a call x.r (…) and for the duration of that call the current object changes to whatever x denotes — but to determine that object we must again interpret x in the context of the previous current object. This raises a challenge for reasoning about programs; for example in a routine the notation f.some_reference, if f is a formal argument, refers to objects in the context of the calling object, and we cannot apply standard rules of substitution as in the non-OO style of handling calls.

In earlier work [1, 2] initially motivated by the development of the Alias Calculus, I introduced a notion of negative variable to deal with this issue. During the execution of a call x.r (…) the negation of x , written x’, represents a back pointer to the calling object; negative variables are characterized by axiomatic properties such as x.x’= Current and x’.(old x)= Current. Alexander Kogtenkov has implemented these ideas and refined them.

Negative variable as back pointer

In a recent paper under submission [3], we review the concepts and applications of negative variables.

References

[1] Bertrand Meyer: Steps Towards a Theory and Calculus of Aliasing, in International Journal of Software and Informatics, 2011, available here.

[2] Bertrand Meyer: Towards a Calculus of Object Programs, in Patterns, Programming and Everything, Judith Bishop Festschrift, eds. Karin Breitman and Nigel Horspool, Springer-Verlag, 2012, pages 91-128, available here.

[3] Bertrand Meyer and Alexander Kogtenkov: Negative Variables and the Essence of Object-Oriented Programming, submitted for publication, 2012. [Updated 13 January 2014: I have removed the link to the draft mentioned in this post since it is now superseded by the new version, soon to be published, and available here.]

VN:F [1.9.10_1130]
Rating: 9.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Loop invariants: the musical

 

Actually it is not a musical but an extensive survey. I have long been fascinated by the notion of loop invariant, which describes the essence of a loop. Considering a loop without its invariant is like conducting an orchestra without a score.

In this submitted survey paper written with Sergey Velder and Carlo Furia [1], we study loop invariants in depth and describe many algorithms from diverse areas of computer science through their invariants. For simplicity and clarity, the specification technique uses the Domain Theory technique described in an earlier article on this blog [2] (see also [3]). The invariants were verified mechanically using Boogie, a sign of how much more realistic verification technology has become in recent years.

The survey was a major effort (we worked on it for a year and a half); it is not perfect but we hope it will prove useful in the understanding, teaching and verification of important algorithms.

Here is the article’s abstract:

At the heart of every loop, and hence of all significant algorithms, lies a loop invariant: a property ensured by the initialization and maintained by every iteration so that, when combined with the exit condition, it yields the loop’s final effect. Identifying the invariant of every loop is not only a required step for software verification, but also a key requirement for understanding the loop and the program to which it belongs. The systematic study of loop invariants of important algorithms can, as a consequence, yield insights into the nature of software.

We performed this study over a wide range of fundamental algorithms from diverse areas of computer science. We analyze the patterns according to which invariants are derived from postconditions, propose a classification of invariants according to these patterns, and present its application to the algorithms reviewed. The discussion also shows the need for high-level specification and invariants based on “domain theory”. The included invariants and the corresponding algorithms have been mechanically verified using an automatic program prover. Along with the classification and applications, the conclusions include suggestions for automatic invariant inference and general techniques for model-based specification.

 

References

[1] Carlo Furia, Bertrand Meyer and Sergey Velder: Loop invariants: analysis, classification, and examples, submitted for publication, December 2012, draft available here.

[2] Domain Theory: the Forgotten Step in Program Verification, article from this blog, 11 April 2012, available here.

[3] Domain Theory: Precedents, article from this blog, 11 April 2012, available here

VN:F [1.9.10_1130]
Rating: 9.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Habit, happiness, and programming languages

One of the occupational hazards of spreading the word about Eiffel is the frequent answer “yes, it’s much better than the language I use now, I would like to switch, but…“, followed by some sheepish excuse.

Last night I went to see Eugene Onegin once more (I still hope some day to land the part of Monsieur Triquet). Towards the beginning of the first act [1], Tatiana’s mother (Larina), reflecting in a melancholic tone on the vicissitudes of her (long ago) arranged marriage (and (amazingly) anticipating the very fate (as sketched in the last act) of her own daughter (talking about (amazing) anticipation, is there any other similarly hair-raising case of an author (here of the text behind the libretto) so presciently staging the (exact (down to the very last details)) story of his own future tragic death) but enough digressions (sorry (this is supposed (after all) to be (although it is not the first time (and probably not the last either) it strays from the script) a technology blog))), sings

From above, we were given habit:
It is a substitute for happiness

Is this not exactly the excuse?

Reference

[1] Libretto of Onegin, in English here, in the original there.

 

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)