Archive for June 2014

The Eiffel Documentation Drive

EiffelStudio releases are semi-annual, end of May and end of November. Release 14-05 just came out. The next release (14-11) is entirely devoted to documentation. We are hoping for extensive community involvement in this first-time Eiffel Documentation Drive.

Many people regularly comment that there is not enough Eiffel and EiffelStudio documentation, and some of what exists is not good enough. We have decided to tackle the problem seriously, hence the dedication of an entire release cycle to documentation. The term is taken here in a broad sense: “documentation” means what is at http://docs.eiffel.com, but also everything else that can help understand Eiffel, for example updating Wikipedia entries on topics for which Eiffel has something to offer.

Anyone with an understanding of an Eiffel-related topic can help. We particularly need help from two (non-disjoint) categories of contributors

  • Those with a good understanding of one or more Eiffel-related topics.
  • Those with good writing skills.

The process will involve reviewing, so if you are an Eiffelist with moderate taste for writing, or a good writer with incomplete knowledge of Eiffel, we need your help anyway; someone else will compensate for the missing side. In particular, a common criticism is that some of the documentation was written by developers who do not have English as their mother tongue; if you can help improve it everyone will benefit. Of course if you are good at both technology and writing it’s even better.

We are mentioning English because it is the first target, but documentation in other languages, either original or a translation of existing English pages, is needed too.

Here is how the Eiffel Documentation Drive works:

  • Here you will find a form to report missing or unsatisfactory documentation. Please fill it on every applicable occasion.
  • The entries will be read by a member of the Eiffel Software team, who in applicable cases will add a row to the Eiffel Documentation Drive spreadsheet here. You can not only read that spreadsheet but also edit it yourself, so as to keep it as accurate and up-to-date as possible.
  • An email will be sent to the user list, with “Eiffel Documentation Drive” in the header (so that people not interested in the topic can filter them out), requesting help.
  • Those willing to help can enter their names in the corresponding row, indicating a planned date of completion.

Each row includes among its fields the following: topic, link to existing documentation, volunteer writer(s), planned completion, volunteer reviewer(s).

The full Eiffel Software team will participate – as noted above, improving the documentation is the strategic goal for the release – but we hope for considerable community participation. Please help make EiffelStudio documentation shine as much as the environment itself.

VN:F [1.9.10_1130]
Rating: 9.0/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Programming language features

 

InfoWorld is currently publishing a series of programming language assessments:

  • 9 Things We Hate About Objective-C, 4 June.
  • 15 Things We Hate About Java, 6 March.
  • 10 Features Apple Stole for the Swift Programming Language, 9 June.

Notable in these articles is what they do not mention: Eiffel has most of what the author misses in Objective-C and Java; and most of what Swift “stole” it stole from Eiffel.

In this article let us concentrate on the nine Objective-C complaints, by Peter Wayner [1]; subsequent articles will examine the Java “hates” and the Swift “steals”.

Criticism 1: “It is a little too different

“Objective-C lovers tout that Objective-C is a strict superset of C: If you can do it in C, you should be able to do it in Objective-C. But it doesn’t go the other way, so you’re stuck wondering, “Should I use an Objective-C method description or a C one?” Achieving portability to C programs requires constant vigilance and forethought.”

This is what happens when you mix language paradigms. Eiffel has a close relationship with C, but the two sides are clearly separated. You can call C from Eiffel, and the other way around. You can declare an Eiffel routine as “external C” and even include the C code inline: in other words an Eiffel “method description” can have a C implementation. The structure is always object-oriented (no need to fear that a novice programmer will revert to a C style for the design) but for access to low-level system mechanisms and small functions that should be optimized to the byte and microsecond you use C directly, in its ideal role.

Criticism 2: “It’s still mostly just plain old C

“For all its object-oriented coolness, you don’t get much else from Objective-C. It’s more of a way to organize your code for large systems than a way to write better code. You’re still responsible for pointers. You’re still responsible for keeping track of memory.

Eiffel is object-oriented all the way. You are not “responsible for pointers“. References are tame: no pointer arithmetic. You are not “responsible for keeping track of memory“:  objects are garbage-collected

“The C programmers loved to call their software a ‘portable assembly code’, and the same is true for Objective-C … except it’s only portable from the Mac to the iPad.”

“Portable assembly code” is exactly what C provides, and hence an excellent target for an Eiffel compiler. As to Eiffel, it runs on all platforms, from Windows to Linux to Solaris to VMS to the Mac.

Criticism 3: Stuck in the 80’s

Criticism 3: “Stuck in the ’80s

“Parachute pants, big hair, ‘The Breakfast Club’ — and the NeXT machine: Objective-C is like a time machine in programming-language land.”

Eiffel has undergone constant evolution, innovating on all fronts of programming constructs and integrating the best of known techniques.

“The primitives aren’t first-class citizens. Garbage collection, that wonderful idea that sustained Lisp, was adopted by Java ages ago. Objective-C got it in 2006. The same goes for properties and closures.”

All this has been in Eiffel forever. Agents (closures) were introduced in 1999, long before Java, C# and other OO languages had anything of the sort. Eiffel’s assigner commands are vastly superior to properties (no need to write all these boring getter functions).

 Criticism 4: “Punctuation

“The cool modern kids writing Python, Ruby, and CoffeeScript can craft billion-dollar companies without using brackets, braces, and parentheses. You’ll be wearing out your punctuation keys writing Objective-C. Colons, at-signs, asterisks? Is there any character that the language doesn’t use?”

Come on. How can one be so misinformed? The semicolon has been optional in Eiffel for fifteen years. The high-priest style of C, Objective-C, Java, C# and so many others, with its piling up of strange symbols, is something that Eiffel users never had to suffer.

Criticism 5: “Modern syntax

Not modern syntax, that is:

“Objective-C”s syntax is like Coke: They tried to modernize it in the ’90s, but it never stuck.”

Eiffel’s syntax is clear and simple. Total beginners, including high-school students, pick it up just as easily and naturally as advanced programmers, and as application experts who want to concentrate on their problem, not on learning strange language conventions going back to the nineteen-sixties.

Criticism 6: “No namespaces

Here Eiffel does not provide what the journalist wants: it is “post-namespaces” (as in “postmodern”). The Eiffel community has decided that the complexity of namespaces was not worth the trouble (what happens when you move packages around?) and prefers simple mechanisms for resolving class name clashes.

Criticism 7: “It only runs in Apple’s corner of the universe

” Variety is the spice of life. It’s even more important in a world where not everything is an iPhone. If a Windows or Linux shop recruits you, you can forget all of those extra Objective-C extensions you learned because they’ll be of no use.”

Eiffel is not tied to any manufacturer, computer architecture or operating system. If a new processor comes out, or a user needs an exotic platform, a port can usually be produced in a matter of hours. The compiler and the entire environment to which it belongs, EiffelStudio, are written in Eiffel; the supporting runtime is in a highly portable form of C, which requires very little customization, if any, for a new platform. (Here “the compiler” means the Eiffel Software implementation, but other implementations also put a strong emphasis on portability.)

Criticism 8: “XCode is your only choice

“In the Objective-C world, you get really only one choice. Why do you need to be different, comrade?”

Besides EiffelStudio other compilers and tools are available for Eiffel.

Criticism 9: “Apple’s benevolent dictatorship

“Do you want to give out more than 100 copies of your iPhone app? Forget it. Do you want to “think different” with your UI? Please go back and read the user interface guidelines. You can’t do anything without Apple’s permission because Apple uses strong crypto to lock down everything — and fanatically tyrannical policies to lock down the rest.”

The Eiffel language definition is steered by a standards committee under Ecma (the organization behind many of the major standards in IT), which anyone can join. EiffelStudio itself is available in open source. The Eiffel world knows nothing like the close control Apple exerts over its product; it welcomes all contributors.

Maybe someone should talk to Mr. Wayner and help him broaden his scope of programming language knowledge.

References

[1] Peter Wayner, 9 Things We Hate About Objective-C, InfoWorld, 4 June 2014, available here.

VN:F [1.9.10_1130]
Rating: 6.7/10 (17 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 7 votes)

Reading Notes: Single-Entry, Single-Exit

 

It is remarkable that almost half a century after Dijkstra’s goto article, and however copiously and reverently it may be cited, today’s programs (other than in Eiffel) are still an orgy of gotos. There are not called gotos, being described as constructs that break out of a loop or exit a routine in multiple places, but they are gotos all the same. Multiple routine exits are particularly bad since they are in effect interprocedural gotos.

Ian Joyner has just released a simple and cogent summary of why routines should always have one entry and one exit.

References

[1] Ian Joyner: Single-entry, single-exit (SESE) heuristic, available here.

VN:F [1.9.10_1130]
Rating: 9.3/10 (12 votes cast)
VN:F [1.9.10_1130]
Rating: +5 (from 5 votes)

Accurately Analyzing Agility

  
Book announcement:

Agile! The Good, the Hype and the Ugly
Bertrand Meyer
Springer, 2014 (just appeared)
Book page: here.
Amazon page: here.
Publisher’s page: here

A few years ago I became fascinated with agile methods: with the unique insights they include; with the obvious exaggerations and plainly wrong advice they also promote; and perhaps most of all with the constant intermingling of these two extremes.

I decided to play the game seriously: I read a good part of the agile literature, including all the important books; I sang the song, became a proud certified Scrum Master; I applied many agile techniques in my own work.

The book mentioned above is the result of that study and experience. It is both a tutorial and a critique.

The tutorial component was, I felt, badly needed. Most of the agile presentations I have seen are partisan texts, exhorting you to genuflect and adopt some agile method as the secret to a better life. Such preaching has a role but professionals know there is no magic in software development.  Agile! describes the key agile ideas objectively, concretely, and as clearly as I could present them. It does not introduce them in a vacuum, like the many agile books that pretend software engineering did not exist before (except for a repulsive idea, the dreaded “waterfall”). Instead, it relates them to many other concepts and results of software engineering, to which they bring their own additions and improvements.

Unfortunately, not all the additions are improvements. Up to now, the field has largely been left (with the exception of Boehm’s and Turner’s 2005 “Guide for the Perplexed“) to propaganda pieces and adoring endorsements. I felt that software developers would benefit more from a reasoned critical analysis. All the more so that agile methods are a remarkable mix of the best and the worst; the book carefully weeds out — in the terminology of the title — the ugly from the hype and the truly good.

Software developers and managers need to know about the “ugly”: awful agile advice that is guaranteed to harm your project. The “hype” covers ideas that have been widely advertised as shining agile contributions but have little relevance to the core goals of software development. The reason it was so critical to identify agile ideas belonging to these two categories is that they detract from the “good”, some of it remarkably good. I would not have devoted a good part of the last five years to studying agile methods if I did not feel they included major contributions to software engineering. I also found that some of these contributions do not get, in the agile literature itself, the explanations and exposure they deserve; I made sure they got their due in the book. An example is the “closed-window rule”, a simple but truly brilliant idea, of immediate benefit to any project.

Software methodology is a difficult topic, on which we still have a lot to learn. I expect some healthy discussions, but I hope readers will appreciate the opportunity to discuss agile ideas in depth for the greater benefit of quality software development.

I also made a point of writing a book that (unlike my last two) is short: 190 pages, including preface, index and everything else.

The table of contents follows; more details and sample chapters can be found on the book page listed above.

Preface
1 OVERVIEW
     1.1 VALUES
     1.2 PRINCIPLES
          Organizational principles
          Technical principles
     1.3 ROLES
     1.4 PRACTICES
          Organizational practices
          Technical practices
     1.5 ARTIFACTS
          Virtual artifacts
          Material artifacts
     1.6 A FIRST ASSESSMENT
          Not new and not good
          New and not good
          Not new but good
          New and good!

2 DECONSTRUCTING AGILE TEXTS
     2.1 THE PLIGHT OF THE TRAVELING SEMINARIST
          Proof by anecdote
          When writing beats speaking
          Discovering the gems
          Agile texts: reader beware!
     2.2 THE TOP SEVEN RHETORICAL TRAPS
          Proof by anecdote
          Slander by association
          Intimidation
          Catastrophism
          All-or-nothing
          Cover-your-behind
          Unverifiable claims
          Postscript: you have been ill-served by the software industry!

&3 THE ENEMY: BIG UPFRONT ANYTHING
     3.1 PREDICTIVE IS NOT WATERFALL
     3.2 REQUIREMENTS ENGINEERING
          Requirements engineering techniques
          Agile criticism of upfront requirements
          The waste criticism
          The change criticism
          The domain and the machine
     3.3 ARCHITECTURE AND DESIGN
          Is design separate from implementation?
          Agile methods and design
     3.4 LIFECYCLE MODELS
     3.5 RATIONAL UNIFIED PROCESS
     3.6 MATURITY MODELS
          CMMI in plain English
          The Personal Software Process
          CMMI/PSP and agile methods
          An agile maturity scale

4 AGILE PRINCIPLES
     4.1 WHAT IS A PRINCIPLE?
     4.2 THE OFFICIAL PRINCIPLES
     4.3 A USABLE LIST
     4.4 ORGANIZATIONAL PRINCIPLES
          Put the customer at the center
          Let the team self-organize
          Maintain a sustainable pace
          Develop minimal software
          Accept change
     4.5 TECHNICAL PRINCIPLES
          Develop iteratively
          Treat tests as a key resource
          Do not start any new development until all tests pass
          Test first
          Express requirements through scenarios

5 AGILE ROLES
     5.1 MANAGER
     5.2 PRODUCT OWNER
     5.3 TEAM
          Self-organizing
          Cross-functional
     5.4 MEMBERS AND OBSERVERS
     5.5 CUSTOMER
     5.6 COACH, SCRUM MASTER
     5.7 SEPARATING ROLES

6 AGILE PRACTICES: MANAGERIAL
     6.1 SPRINT
          Sprint basics
          The closed-window rule
          Sprint: an assessment
     6.2 DAILY MEETING
     6.3 PLANNING GAME
     6.4 PLANNING POKER
     6.5 ONSITE CUSTOMER
     6.6 OPEN SPACE
     6.7 PROCESS MINIATURE
     6.8 ITERATION PLANNING
     6.9 REVIEW MEETING
     6.10 RETROSPECTIVE
     6.11 SCRUM OF SCRUMS
     6.12 COLLECTIVE CODE OWNERSHIP
          The code ownership debate
          Collective ownership and cross-functionality

7 AGILE PRACTICES: TECHNICAL
     7.1 DAILY BUILD AND CONTINUOUS INTEGRATION
     7.2 PAIR PROGRAMMING
          Pair programming concepts
          Pair programming versus mentoring
          Mob programming
          Pair programming: an assessment
     7.3 CODING STANDARDS
     7.4 REFACTORING
          The refactoring concept
          Benefits and limits of refactoring
          Incidental and essential changes
          Combining a priori and a posteriori approaches
     7.5 TEST-FIRST AND TEST-DRIVEN DEVELOPMENT
          The TDD method of software development
          An assessment of TFD and TDD

8 AGILE ARTIFACTS
     8.1 CODE
     8.2 TESTS
     8.3 USER STORIES
     8.4 STORY POINTS
     8.5 VELOCITY
     8.6 DEFINITION OF DONE
     8.7 WORKING SPACE
     8.8 PRODUCT BACKLOG, ITERATION BACKLOG
     8.9 STORY CARD, TASK CARD
     8.10 TASK AND STORY BOARDS
     8.11 BURNDOWN AND BURNUP CHARTS
     8.12 IMPEDIMENT
     8.13 WASTE, TECHNICAL DEBT, DEPENDENCY, DEPENDENCY CHARTS

9 AGILE METHODS
     9.1 METHODS AND METHODOLOGY
          Terminology
          The fox and the hedgehog
     9.2 LEAN SOFTWARE AND KANBAN
          Lean Software’s Big Idea
          Lean Software’s principles
          Lean Software: an assessment
          Kanban
     9.3 EXTREME PROGRAMMING
          XP’s Big Idea
          XP: the unadulterated source
          Key XP techniques
          Extreme Programming: an assessment
     9.4 SCRUM
          Scrum’s Big Idea
          Key Scrum practices
          Scrum: an assessment
     9.5 CRYSTAL
          Crystal’s Big Idea
          Crystal principles
          Crystal: an assessment

10 DEALING WITH AGILE TEAMS
     10.1 GRAVITY STILL HOLDS
     10.2 THE EITHER-WHAT-OR-WHEN FALLACY

11 THE UGLY, THE HYPE AND THE GOOD: AN ASSESSMENT OF THE AGILE APPROACH
     11.1 THE BAD AND THE UGLY
          Deprecation of upfront tasks
          User stories as a basis for requirements
          Feature-based development and ignorance of dependencies
          Rejection of dependency tracking tools
          Rejection of traditional manager tasks
          Rejection of upfront generalization
          Embedded customer
          Coach as a separate role
          Test-driven development
          Deprecation of documents
     11.2 THE HYPED
     11.3 THE GOOD
     11.4 THE BRILLIANT
Bibliography
Index

 

VN:F [1.9.10_1130]
Rating: 8.4/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)