Archive for the ‘Eulogy’ Category.

The legacy of Barry Boehm

August of last year brought the sad news of Barry Boehm’s passing away on August 20. If software engineering deserves at all to be called engineering today, it is in no small part thanks to him.

“Engineer” is what Boehm was, even though his doctorate and other degrees were all in mathematics. He looked the part (you might almost expect him to carry a slide rule in his shirt pocket, until you realized that as a software engineer he did not need one) and more importantly he exuded the seriousness, dedication, precision, respect for numbers, no-nonsense attitude and practical mindset of outstanding engineers. He was employed as an engineer or engineering manager in the first part of his career, most notably at TRW, a large aerospace company (later purchased by Northrop Grumman), turning to academia (USC) afterwards, but even as a professor he retained that fundamental engineering ethos.




LASER Summer School, Elba Island (Italy), September 2010
From left: Walter Tichy, Barry Boehm, Vic Basili (photograph by Bertrand Meyer)

Boehm’s passion was to turn the study of software away from intuition and over to empirical enquiry, rooted in systematic objective studies of actual projects. He was not the only one advocating empirical methods (others from the late seventies on included Basili, Zelkowitz, Tichy, Gilb, Rombach, McConnell…) but he had an enormous asset: access to mines of significant data—not student experiments, as most researchers were using!—from numerous projects at TRW. (Basili and Zelkowitz had similar sources at NASA.) He patiently collected huge amounts of project information, analyzed them systematically, and started publishing paper after paper about what works for software development; not what we wish would work, but what actually does on the basis of project results.

Then in 1981 came his magnum opus, Software Engineering Economics (Prentice Hall), still useful reading today (many people inquired over the years about projects for a second edition, but I guess he felt it was not warranted). Full of facts and figures, the book also popularized the Cocomo model for cost prediction, still in use nowadays in a revised version developed at USC (Cocomo II, 1995, directly usable through a simple Web interface at

Cocomo provides a way to estimate both the cost and the duration of a project from the estimated number of lines of code (alternatively, in Cocomo II, from the estimated number of function points), and some auxiliary parameters to account for each project’s specifics. Boehm derived the formula by fitting from thousands of projects.

When people first encounter the idea of Cocomo (even in a less-rudimentary form than the simplified one I just gave), their first reaction is often negative: how can one use a single formula to derive an estimate for any project? Isn’t the very concept ludicrous anyway since by definition we do not know the number of lines of code (or even of function points) before we have developed the project? With lines of code, how do we distinguish between different languages? There are answers to all of these questions (the formula is ponderated by a whole set of criteria capturing project specifics, lines of code calibrated by programming language level do correlate better than most other measures with actual development effort, a good project manager will know in advance the order of magnitude of the code size etc.). Cocomo II is not a panacea and only gives a rough order of magnitude, but remains one of the best available estimation tools.

Software Engineering Economics and the discussion of Cocomo also introduced important laws of software engineering, not folk wisdom as was too often (and sometimes remains) prevalent, but firm results. I covered one in an article in this blog some time ago, calling it the “Shortest Possible Schedule Theorem”: if a serious estimation method, for example Cocomo, has determined an optimal cost and time for a project, you can reduce the time by devoting more resources to the project, but only down to a certain limit, which is about 75% of the original. In other words, you can throw money at a project to make things happen faster, but the highest time reduction you will ever be able to gain is by a quarter. Such a result, confirmed by many studies (by Boehm and many others after him), is typical of the kind of strong empirical work that Boehm favored.

The CMM and CMMI models  of technical management are examples of important developments that clearly reflect Boehm’s influence. I am not aware that he played any direct role (the leader was Watts Humphrey, about whom I wrote a few years ago), but the models’ constant emphasis on measurement, feedback and assessment are in line with the principles  so persuasively argued in his articles and books.

Another of his famous contributions is the Spiral model of the software lifecycle. His early work and Software Engineering Economics had made Boehm a celebrity in the field, one of its titans in fact, but also gave him the reputation, deserved or not, of representing what may be called big software engineering, typified by the TRW projects from which he drew his initial results: large projects with large budgets, armies of programmers of variable levels of competence, strong quality requirements (often because of the mission- and life-critical nature of the projects) leading to heavy quality assurance processes, active regulatory bodies, and a general waterfall-like structure (analyze, then specify, then design, then implement, then verify). Starting in the eighties other kinds of software engineering blossomed, pioneered by the personal computer revolution and Unix, and often typified by projects, large or small but with high added value, carried out iteratively by highly innovative teams and sometimes by just one brilliant programmer. The spiral model is a clear move towards flexible modes of software development. I must say I was never a great fan (for reasons not appropriate for discussion here) of taking the Spiral literally, but the model was highly influential and made Boehm a star again for a whole new generation of programmers in the nineties. It also had a major effect on agile methods, whose notion of  “sprint ” can be traced directly the spiral. It is a rare distinction to have influenced both the CMM and agile camps of software engineering with all their differences.

This effort not to remain wrongly identified with the old-style massive-project software culture, together with his natural openness to new ideas and his intellectual curiosity, led Boehm to take an early interest in agile methods; he was obviously intrigued by the iconoclasm of the first agile publications and eager to understand how they could be combined with timeless laws of software engineering. The result of this enquiry was his 2004 book (with Richard Turner) Balancing Agility and Discipline: A Guide for the Perplexed, which must have been the first non-hagiographic presentation (still measured, may be a bit too respectful out of a fear of being considered old-guard) of agile approaches.

Barry Boehm was an icon of the software engineering movement, with the unique position of having been in essence present at creation (from the predecessor conference of ICSE in 1975) and accompanying, as an active participant, the stupendous growth and change of the field over half a century.



Barry Boehm at a dinner at ICSE 2006, Shanghai (photograph by Bertrand Meyer)

I was privileged to meet Barry very early, as we were preparing a summer school in 1978 on Programming Methodology where the other star was Tony Hoare. It was not clear how the mix of such different personalities, the statistics-oriented UCLA-graduate American engineer and the logic-driven classically-trained (at Oxford) British professor would turn out.

Boehm could be impatient with cryptic academic pursuits; one exercise in Software Engineering Economics (I know only a few other cases of sarcasm finding its refuge in exercises from textbooks) presents a problem in software project management and asks for an answer in multiple-choice form. All the proposed choices are sensible management decisions, except for one which goes something like this: “Remember that Bob Floyd [Turing-Awarded pioneer of algorithms and formal verification] published in Communications of the ACM vol. X no. Y pages 658-670 that scheduling of the kind required can be performed in O (n3 log log n) instead of O (n3 log n) as previously known; take advantage of this result to spend 6 months writing an undecipherable algorithm, then discover that customers do not care a bit about the speed.” (Approximate paraphrase from memory [1].)

He could indeed be quite scathing of what he viewed as purely academic pursuits removed from the reality of practical projects. Anyone who attended ICSE 1979 a few months later in Munich will remember the clash between him and Dijkstra; the organizers had probably engineered it (if I can use that term), having assigned them the topics  “Software Engineering As It Is” and “Software Engineering as It Should Be”, but it certainly was spectacular. There had been other such displays of the divide before. Would we experience something of the kind at the summer school?

No clash happened; rather, the reverse, a meeting of minds. The two sets of lectures (such summer schools lasted three weeks at that time!) complemented each other marvelously, participants were delighted, and the two lecturers also got along very well. They were, I think, the only native English speakers in that group, they turned out to have many things in common (such as spouses who were also brilliant software engineers on their own), and I believe they remained in contact for many years. (I wish I had a photo from that school—if anyone reading this has one, please contact me!)

Barry was indeed a friendly, approachable, open person, aware of his contributions but deeply modest.

Few people leave a profound personal mark on a field. A significant part of software engineering as it is today is a direct consequence of Barry’s foresight.



[1] The full text of the exercise will appear shortly as a separate article on this blog.


Recycled A version of this article appeared previously in the Communications of the ACM blog.

VN:F [1.9.10_1130]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

John McCarthy

John McCarthyJohn McCarthy, who died last week at the age of 84, was one of the true giants of computer science. Most remarkable about his contributions are their diversity, their depth, and how they span both theory and practice.

To talk about him it is necessary first to dispel an unjustly negative connotation. McCarthy was one of the founders of the discipline of artificial intelligence, its most forceful advocate and the inventor of its very name. In the “AI Winter” episode of the late 1970s and 1980s, that name suffered some disrepute as a result of a scathing report by James Lighthill blaming AI researchers for over-promising. In fact the promoters of AI may not have delivered exactly what they announced (who can accurately predict science?); but what they delivered is astounding. Many breakthroughs in computer science, both in theory (advances in lambda calculus and the theory of computation) and in the practice of programming (garbage collection, functional programming languages), can directly be traced to work in AI. Part of the problem is a phenomenon that I heard John McCarthy himself describe:  “As soon as it works, no one calls it AI any more.” Automatic garbage collection was once advanced artificial intelligence; now it is just an algorithm that makes sure your smartphone does not freeze up. In a different field, we have become used to computers routinely beating chess champions, a feat that critics of AI once deemed unthinkable.

The worst over-promises came not from researchers in the field such as McCarthy, who understood the difficulties, but from people like Herbert Simon, more of a philosopher, who in 1965 wrote that “machines will be capable, within twenty years, of doing any work a man can do.” McCarthy’s own best-known over-promise was to take up David Levy on his 1968 bet that no computer would be able to beat him within ten years. But McCarthy was only mistaken in under-estimating the time span: Deep Blue eventually proved him right.

The word that comes most naturally to mind when thinking about McCarthy is “brilliant.” He belonged to that category of scientists who produce the fundamental insights before anyone else, even if they do not always have the patience to finalize the details. The breathtaking paper that introduced Lisp [1] is labeled “Part 1”; there was never a “Part 2.” (Of course we have a celebrated example in computer science, this one from a famously meticulous author, of a seven-volume treaty which never materialized in full.) It was imprudent to announce a second part, but the first was enough to create a whole new school of programming. The Lisp 1.5 manual [2], published in 1962, was another masterpiece; as early as page 13 it introduces — an unbelievable feat, especially considering that the program takes hardly more than half a page — an interpreter for the language being defined, written in that very language! The more recent reader can only experience here the kind of visceral, poignant and inextinguishable jealously that overwhelms us the first time we realize that we will never be able to attend the première of Don Giovanni at the Estates Theater in Prague on 29 October, 1787 (exactly 224 years ago yesterday — did you remember to celebrate?). What may have been the reaction of someone in “Data Processing,” such as it was in 1962, suddenly coming across such a language manual?

These years, 1959-1963, will remain as McCarthy’s Anni Mirabiles. 1961 and 1962 saw the publication of two visionary papers [3, 4] which started the road to modern program verification (and where with the benefit of hindsight it seems that he came remarkably close to denotational semantics). In [4] he wrote

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program. For this to be possible, formal systems are required in which it is easy to write proofs. There is a good prospect of doing this, because we can require the computer to do much more work in checking each step than a human is willing to do. Therefore, the steps can be bigger than with present formal systems.

Words both precise and prophetic. The conclusion of [3] reads:

It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between analysis and physics in the last. The development of this relationship demands a concern for both applications and for mathematical elegance.

“A concern for both applications and mathematical elegance” is an apt characterization of McCarthy’s own work. When he was not busy designing Lisp, inventing the notion of meta-circular interpreter and developing the mathematical basis of programming, he was building the Lisp garbage collector and proposing the concept of time-sharing. He also played, again in the same period, a significant role in another milestone development, Algol 60 — yet another sign of his intellectual openness and versatility, since Algol is (in spite of the presence of recursion, which McCarthy championed) an imperative language at the antipodes of Lisp.

McCarthy was in the 1960s and 70s the head of the Artificial Intelligence Laboratory at Stanford. For some reason the Stanford AI Lab has not become as legendary as Xerox PARC, but it was also the home to early versions of  revolutionary technologies that have now become commonplace. Email, which hardly anyone outside of the community had heard about, was already the normal way of communicating, whether with a coworker next door or with a researcher at MIT; the Internet was taken for granted; everyone was using graphical displays and full-screen user interfaces; outside, robots were playing volley-ball (not very successfully, it must be said); the vending machines took no coins, but you entered your login name and received a bill at the end of the month, a setup which never failed to astonish visitors; papers were printed with sophisticated fonts on a laser printer (I remember a whole group reading the successive pages of Marvin Minsky’s  frames paper [5] directly on the lab’s XGP, Xerox Graphics Printer, as  they were coming out, one by one, straight from MIT). Arthur Samuel was perfecting his checkers program. Those who were not programming in Lisp were hooked to SAIL, “Stanford Artificial Intelligence Language,” an amazing design which among other insights convinced me once and for all that one cannot seriously deal with data structures without the benefit of an automatic serialization mechanism. The building itself, improbably set up amid the pastures of the Santa Cruz foothills, was razed in the eighties and the lab moved to the main campus, but the spirit of these early years lives on.

McCarthy ran the laboratory in an open and almost debonair way; he was a legend and somewhat intimidating, but never arrogant and in fact remarkably approachable. I took the Lisp course from him; in my second or third week at Stanford, I raised my hand and with the unflappable assurance of the fully ignorant slowly asked a long question: “In all the recursive function definitions that you have shown so far, termination was obvious because there is some ‘n’ that decreases for every recursive call, and we treat the case ‘n = 0’ or ‘n = 1’ in a special, non-recursive way. But things won’t always be so simple. Is there some kind of grammatical criterion on Lisp programs that we could use to ascertain whether a recursive definition will always lead to a terminating computation?” There was a collective gasp from the older graduate students in the audience, amazed that a greenhorn would have the audacity to interrupt the course with such an incompetent query. But instead of dismissing me, McCarthy proceeded, with a smile, to explain the basics of undecidability. He had the same attitude in the many seminars that he taught, often on topics straddling computer science and philosophy, in a Socratic style where every opinion was welcome and no one was above criticism.

He also had a facetious side. At the end of a talk by McCarthy at SRI, Tony Hoare, who was visiting for a few days, asked a question; McCarthy immediately rejoined that he had expected that question, summoned to the stage a guitar-carrying researcher from the AI Lab, and proceeded with the answer in the form of a prepared song.

The progress of science and technology is a collective effort; it takes many people to turn new insights into everyday reality. The insights themselves come from a few individuals, a handful in every generation. McCarthy was one of these undisputed pioneers.



[1] John McCarthy: Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I, in Communications of the ACM, vol. 3, no. 4, 1960, pages 184-195.

[2] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, Michael I. Levin, LISP 1.5 Programmer’s Manual, MIT, 1962. Available at Amazon  External Linkand also as a PDF External Link.

[3] John McCarthy: A Basis for a Mathematical Theory of Computation, first version in Proc. Western Joint Computer Conference, 1961, revised version in Computer Programming and Formal Systems, eds. P. Braffort and D. Hirschberg, North Holland, 1963. Available in various places on the Web, e.g. here External Link.

[4] John McCarthy: Towards a Mathematical Science of Computation, in IFIP Congress 1962, pages 21-28, available in various places on the Web, e.g. here External Link.

[5] Marvin Minsky:  A Framework for Representing Knowledge, MIT-AI Laboratory Memo 306, June 1974, available here External Link.


(This article was first published on my ACM blog.  I am resuming regular Monday publication.)

VN:F [1.9.10_1130]
Rating: 10.0/10 (35 votes cast)
VN:F [1.9.10_1130]
Rating: +30 (from 30 votes)

About Watts Humphrey

Watts Humphrey, 2007

At FOSE (see previous post [1]) we will honor the memory of Watts Humphrey, the pioneer of disciplined software engineering, who left us in October. A blog entry on my Communications of the ACM blog [2] briefly recalls some of Humphrey’s main contributions.


[1] The Future Of Software Engineering: previous entry of this blog.
[2] Watts Humphrey: In Honor of a Pioneer, in CACM blog.

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)