Archive for the ‘Essay’ Category.

Lampsort

 

In support of his view of software methodology, Leslie Lamport likes to use the example of non-recursive Quicksort. Independently of the methodological arguments, his version of the algorithm should be better known. In fact, if I were teaching “data structures and algorithms” I would consider introducing it first.

As far as I know he has not written down his version in an article, but he has presented it in lectures; see [1]. His trick is to ask the audience to give a non-recursive version of Quicksort, and of course everyone starts trying to remove the recursion, for example by making the stack explicit or looking for invertible functions in calls. But his point is that recursion is not at all fundamental in Quicksort. The recursive version is a specific implementation of a more general idea.

Lamport’s version — let us call it Lampsort —is easy to express in Eiffel. We may assume the following context:

a: ARRAY [G -> COMPARABLE]        — The array to be sorted.
pivot: INTEGER                                      —  Set by partition.
picked: INTEGER_INTERVAL            — Used by the sorting algorithm, see below.
partition (i, j: INTEGER)
……..require      — i..j is a sub-interval of the array’s legal indexes:
……..……..i < j
……..……..i >= a.lower
……..……..j <= a.upper
……..do
……..……..… Usual implementation of partition
……..ensure     — The expected effect of partition:
……..……..pivot >= i
……..……..pivot < j
……..……..a [i..j] has been reshuffled so that elements in i..pivot are less than
……..……..or equal to those in pivot+1 .. j.
……..end

We do not write the implementation of partition since the point of the present discussion is the overall algorithm. In the usual understanding, that algorithm consists of doing nothing if the array has no more than one element, otherwise performing a partition and then recursively calling itself on the two resulting intervals. The implementation can take advantage of parallelism by forking the recursive calls out to different processors. That presentation, says Lamport, describes only a possible implementation. The true Quicksort is more general. The algorithm works on a set of integer intervals; in Eiffel:

intervals: SET [INTEGER_INTERVAL]

It initializes intervals to contain a single element, the entire interval; at each iteration, it removes an interval from the set, partitions it if that makes sense (i.e. the interval has more than one element), and inserts the resulting two intervals into the set. It ends when the set is empty. Here it is:

……..from                                 — Initialize interval set to contain a single interval, the array’s entire index range:
……..…..create intervals.make_one (a.lower |..| a.upper)….         ..……..
……..invariant
……..…..— See below
……..until
……..…..intervals.is_empty                                                            — Stop when there are no more intervals in set
……..loop
……..…..picked := intervals.item                                                    — Pick an interval from (non-empty) interval set.
……..……if picked.count > 1 then                                                  — (The precondition of partition holds, see below.)
……..……..…..partition (picked.lower, picked.upper)               — Split it, moving small items before and large ones after pivot.
……..……..…..intervals.extend (picked.lower |..| pivot)            — Insert new intervals into interval set: first
……..……....intervals.extend (pivot + 1 |..| picked.upper)     — and second.
……..……end
……..…...intervals.remove (picked)                                               — Remove interval that was just partitioned.
…….end

Eiffel note: the function yielding an integer interval is declared in the library class INTEGER using the operator |..| (rather than just  ..).

The query item from SET, with the precondition not is_empty,  returns an element of the set. It does not matter which element. In accordance with the Command-Query Separation principle, calling item does not modify the set; to remove the element you have to use the command remove. The command extend adds an element to the set.

The abstract idea behind Lampsort, explaining why it works at all, is the following loop invariant (see [2] for a more general discussion of how invariants provide the basis for understanding loop algorithms). We call “slice” of an array a non-empty contiguous sub-array; for adjacent slices we may talk of concatenation; also, for slices s and t s <= t means that every element of s is less than or equal to every element of t. The invariant is:

a is the concatenation of the members of a set slices of disjoint slices, such that:
– The elements of a are a permutation of its original elements.
– The index range of any member  of slices having more than one element is in intervals.
– For any adjacent slices s and t (with s before t), s <= t.

The first condition (conservation of the elements modulo permutation) is a property of partition, the only operation that can modify the array. The rest of the invariant is true after initialization (from clause) with slices made of a single slice, the full array. The loop body maintains it since it either removes a one-element interval from intervals (slices loses the corresponding slice) or performs partition with the effect of partitioning one slice into two adjacent ones satisfying s <= t, whose intervals replace the original one in intervals. On exit, intervals is empty, so slices is a set of one-element slices, each less than or equal to the next, ensuring that the array is sorted.

The invariant also ensures that the call to partition satisfies that routine’s precondition.

The Lampsort algorithm is a simple loop; it does not use recursion, but relies on an interesting data structure, a set of intervals. It is not significantly longer or more difficult to understand than the traditional recursive version

sort (i, j: INTEGER)
……..require
……..……..i <= j
……..……..i >= a.lower
……..……..j <= a.upper
……..do
……..……if j > i then                    — Note that precondition of partition holds.
……..……..…..partition (i, j)         — Split into two slices s and t such that s <= t.
……..……..…..sort (i, pivot)          — Recursively sort first slice.
……..……..…..sort (pivot+1, j)      — Recursively sort second slice.
……..……end……..…..
……..end

Lampsort, in its author’s view, captures the true idea of Quicksort; the recursive version, and its parallelized variants, are only examples of possible implementations.

I wrote at the start that the focus of this article is Lampsort as an algorithm, not issues of methodology. Let me, however, give an idea of the underlying methodological debate. Lamport uses this example to emphasize the difference between algorithms and programs, and to criticize the undue attention being devoted to programming languages. He presents Lampsort in a notation which he considers to be at a higher level than programming languages, and it is for him an algorithm rather than a program. Programs will be specific implementations guided in particular by efficiency considerations. One can derive them from higher-level versions (algorithms) through refinement. A refinement process may in particular remove or restrict non-determinism, present in the above version of Lampsort through the query item (whose only official property is that it returns an element of the set).

The worldview underlying the Eiffel method is almost the reverse: treating the whole process of software development as a continuum; unifying the concepts behind activities such as requirements, specification, design, implementation, verification, maintenance and evolution; and working to resolve the remaining differences, rather than magnifying them. Anyone who has worked in both specification and programming knows how similar the issues are. Formal specification languages look remarkably like programming languages; to be usable for significant applications they must meet the same challenges: defining a coherent type system, supporting abstraction, providing good syntax (clear to human readers and parsable by tools), specifying the semantics, offering modular structures, allowing evolution while ensuring compatibility. The same kinds of ideas, such as an object-oriented structure, help on both sides. Eiffel as a language is the notation that attempts to support this seamless, continuous process, providing tools to express both abstract specifications and detailed implementations. One of the principal arguments for this approach is that it supports change and reuse. If everything could be fixed from the start, maybe it could be acceptable to switch notations between specification and implementation. But in practice specifications change and programs change, and a seamless process relying on a single notation makes it possible to go back and forth between levels of abstraction without having to perform repeated translations between levels. (This problem of change is, in my experience, the biggest obstacle to refinement-based approaches. I have never seen a convincing description of how one can accommodate specification changes in such a framework without repeating the whole process. Inheritance, by the way, addresses this matter much better.)

The example of Lampsort in Eiffel suggests that a good language, equipped with the right abstraction mechanisms, can be effective at describing not only final implementations but also abstract algorithms. It does not hurt, of course, that these abstract descriptions can also be executable, at the possible price of non-optimal performance. The transformation to an optimal version can happen entirely within the same method and language.

Quite apart from these discussions of software engineering methodology, Lamport’s elegant version of Quicksort deserves to be known widely.

References

[1] Lamport video here, segment starting at 0:32:34.
[2] Carlo Furia, Bertrand Meyer and Sergey Velder: Loop invariants: Analysis, Classification and Examples, in ACM Computing Surveys, September 2014, preliminary text here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (12 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 8 votes)

Empirical answers to fundamental software engineering questions

This is a slightly reworked version of an article in the CACM blog, which also served as the introduction to a panel which I moderated at ESEC/FSE 2013 last week; the panelists were Harald Gall, Mark Harman, Giancarlo Succi (position paper only) and Tony Wasserman.

For all the books on software engineering, and the articles, and the conferences, a remarkable number of fundamental questions, so fundamental indeed that just about every software project runs into them, remain open. At best we have folksy rules, some possibly true, others doubtful, and others — such as “adding people to a late software project delays it further” [1] — wrong to the point of absurdity. Researchers in software engineering should, as their duty to the community of practicing software practitioners, try to help provide credible answers to such essential everyday questions.

The purpose of this panel discussion is to assess what answers are already known through empirical software engineering, and to define what should be done to get more.

Empirical software engineering” applies the quantitative methods of the natural sciences to the study of software phenomena. One of its tasks is to subject new methods — whose authors sometimes make extravagant and unsupported claims — to objective scrutiny. But the benefits are more general: empirical software engineering helps us understand software construction better.

There are two kinds of target for empirical software studies: products and processes. Product studies assess actual software artifacts, as found in code repositories, bug databases and documentation, to infer general insights. Project studies assess how software projects proceed and how their participants work; as a consequence, they can share some properties with studies in other fields that involve human behavior, such as sociology and psychology. (It is a common attitude among computer scientists to express doubts: “Do you really want to bring us down to the standards of psychology and sociology?” Such arrogance is not justified. These sciences have obtained many results that are both useful and sound.)

Empirical software engineering has been on a roll for the past decade, thanks to the availability of large repositories, mostly from open-source projects, which hold information about long-running software projects and can be subjected to data mining techniques to identify important properties and trends. Such studies have already yielded considerable and often surprising insights about such fundamental matters as the typology of program faults (bugs), the effectiveness of tests and the value of certain programming language features.

Most of the uncontested successes, however, have been from the product variant of empirical software engineering. This situation is understandable: when analyzing a software repository, an empirical study is dealing with a tangible and well-defined artifact; if any of the results seems doubtful, it is possible and sometimes even easy for others to reproduce the study, a key condition of empirical science. With processes, the object of study is more elusive. If I follow a software project working with Scrum and another using a more traditional lifecycle, and find that one does better than the other, how do I know what other factors may have influenced the outcome? And even if I bring external factors under control how do I compare my results with those of another researcher following other teams in other companies? Worse, in a more realistic scenario I do not always have the luxury of tracking actual industry projects since few companies are enlightened enough to let researchers into their developments; how do I know that I can generalize to industry the conclusions of experiments made with student groups?

Such obstacles do not imply that sound results are impossible; studies involving human behavior in psychology and sociology face many of the same difficulties and yet do occasionally yield insights. But these obstacles explain why there are still few incontrovertible results on process aspects of software engineering. This situation is regrettable since it means that projects large and small embark on specific methods, tools and languages on the basis of hearsay, opinions and sometimes hype rather than solid knowledge.

No empirical study is going to give us all-encompassing results of the form “Agile methods yield better products” or “Object-oriented programming is better than functional programming”. We are entitled to expect, however, that they help practitioners assess some of the issues that await every project. They should also provide a perspective on the conventional wisdom, justified or not, that pervades the culture of software engineering. Here are some examples of general statements and questions on which many people in the field have opinions, often reinforced by the literature, but crying for empirical backing:

  • The effect of requirements faults: the famous curve by Boehm is buttressed by old studies on special kinds of software (large mission-critical defense projects). What do we really lose by not finding an error early enough?
  • The cone of uncertainty: is that idea just folklore?
  • What are the successful techniques for shortening delivery time by adding manpower?
  • The maximum compressibility factor: is there a nominal project delivery time, and how much can a project decrease it by throwing in money and people?
  • Pair programming: when does it help, when does it hurt? If it has any benefits, are there in quality or in productivity (delivery time)?
  • In iterative approaches, what is the ideal time for a sprint under various circumstances?
  • How much requirements analysis should be done at the beginning of a project, and how much deferred to the rest of the cycle?
  • What predictors of size correlate best with observed development effort?
  • What predictors of quality correlate best with observed quality?
  • What is the maximum team size, if any, beyond which a team should be split?
  • Is it better to use built-in contracts or just to code assertions in tests?

When asking these and other similar questions relating to core aspects of practical software development, I sometimes hear “Oh, but we know the answer conclusively, thanks to so-and-so’s study“. This may be true in some cases, but in many others one finds, in looking closer, that the study is just one particular experiment, fraught with the same limitations as any other.

The principal aim of the present panel is to find out, through the contributions of the panelists which questions have useful and credible empirical answers already available, whether or not widely known. The answers must indeed be:

  • Empirical: obtained through objective quantitative studies of projects.
  • Useful: providing answers to questions of interest to practitioners.
  • Credible: while not necessarily absolute (a goal difficult to reach in any matter involving human behavior), they must be backed by enough solid evidence and confirmation to be taken as a serious input to software project decisions.

An auxiliary outcome of the panel should be to identify fundamental questions on which credible, useful empirical answers do not exist but seem possible, providing fuel for researchers in the field.

To mature, software engineering must shed the folkloric advice and anecdotal evidence that still pervade the field and replace them with convincing results, established with all the limitations but also the benefits of quantitative, scientific empirical methods.

Note

[1] From Brooks’s Mythical Man-Month.

VN:F [1.9.10_1130]
Rating: 8.7/10 (10 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Conferences: Publication, Communication, Sanction

Recycled(This article was first published in the Communications of the ACM blog.)

A healthy discussion is taking place in the computer science community on our publication culture. It was spurred by Lance Fortnow’s 2009 article [1]; now Moshe Vardi has taken the lead to prepare a report on the topic, following a workshop in Dagstuhl in November [2]. The present article and one that follows (“The Waves of Publication”)  are intended as contributions to the debate.

One of the central issues is what to do with conferences. Fortnow had strong words for the computer science practice of using conferences as the selective publication venues, instead of relying on journals as traditional scientific disciplines do. The criticism is correct, but if we look at the problem from a practical perspective it is unlikely that top conferences will lose their role as certifiers of quality. This is not a scientific matter but one of power. People in charge of POPL or OOPSLA have decisive sway over the careers (one is tempted to say the lives) of academics, particularly young academics, and it is a rare situation in human affairs that people who have critical power voluntarily renounce it. Maybe the POPL committee will see the light: maybe starting in 2014 it will accept all reasonable papers somehow related to “principles of programming languages”, turn the event itself into a pleasant multi-track community affair where everyone in the field can network, and hand over the selection and stamp-of-approval job to a journal such as TOPLAS. Dream on; it is not going to happen.

We should not, however, remain stuck with the status quo and all its drawbacks. That situation is unsustainable. As a single illustration, consider the requirement, imposed by all conferences, that having a paper pass the refereeing process is not enough: you must also register. A couple of months before the conference, authors of accepted papers (at least, they thought their paper was accepted) receive a threatening email telling them that unless they register and pay their paper will not be published after all. Now assume an author, in a field where a conference is the top token of recognition, has his visa application rejected by the country of the conference — a not so uncommon situation — and does not register. (Maybe he does not mind paying the fee, but he does not want to lie by pretending he is going to attend whereas he knows he will not.) He has lost his opportunity for publication and perhaps severely harmed this career. What have such requirements to do with science?

To understand what can be done, we need to analyze the role of conferences. In an earlier article  [3] I described four “modes and uses” of publication: Publication, Exam, Business and Ritual. From the organizers’ viewpoint, ignoring the Business and Ritual aspects although they do play a significant role, a conference has three roles: Publication, Communication and Sanction. The publication part corresponds to the proceedings of the conference, which makes articles available to the community at large, not just the conference attendees. The communication part only addresses the attendees: it includes the presentation of papers as well as all other interactions made possible by being present at a conference. The sanction part (corresponding to the “exam” part of the more general classification) is the role of a renowned conference as a stamp of approval for the best work of the moment.

What we should do is separate these roles. A conference can play all three roles, but it can also select two of them, or even just one. A well-established, prestigious conference will want to retain its sanctioning role: accepted papers get the stamp of approval. It will also remain an event, where people meet. And it may distribute proceedings. But the three roles can also be untied:

  • Publication is the least critical, and can easily be removed from the other two, since everything will be available on the Web. In fact the very notion of proceedings is quickly becoming fuzzy: more and more conferences save money by not distributing printed proceedings to attendees, sometimes not printing any proceedings at all; and some even spare themselves the production of a proceedings-on-a-stick, putting the material on the Web instead. A conference may still decide to have its own proceedings, or it might outsource that part to a journal. Each conference will make these decisions based on its own culture, tradition, ambition and constraints. For authors, the decision does not particularly matter: what counts are the sanction, which is provided by the refereeing process, and the availability of their material to the world, which will be provided in any scenario (at least in computer science where we have, thankfully, the permission to put our papers on our own web sites, an acquired right that our colleagues from other disciplines do not all enjoy).
  • Separating sanction from communication is a natural step. Acceptance and participation are two different things.

Conference organizers should not be concerned about lost revenue: most authors will still want to participate in the conference, and will get the funding since institutions are used to pay for travel to present accepted papers; some new participants might come, attracted by more interaction-oriented conference styles; and organizers can replace the requirement to register by a choice between registering and paying a publication fee.

Separating the three roles does not mean that any established conference renounces its sanctioning status, acquired through the hard work of building the conference’s reputation, often over decades. But everyone gets more flexibility. Several combinations are possible, such as:

  • Sanction without communication or publication: papers are submitted for certification through peer-review, they are available on the Web anyway, and there is no need for a conference.
  • Publication without sanction or communication: an author puts a paper on his web page or on a self-publication site such as ArXiv.
  • Sanction and communication without publication: a traditional selective conference, which does not bother to produce proceedings.
  • Communication without sanction: a working conference whose sole aim is to advance the field through presentations and discussions, and accepts any reasonable submission. It may be by invitation (a kind of advance sanction). It may have proceedings (publication) or not.

Once we understand that the three roles are not inextricably tied, the stage is clear for removal for some impediments to a more effective publication culture. Some, not all. The more general problem is the rapidly changing nature of scientific publication, what may be called the concentric waves of publication. That will be the topic of the next article.

References

[1] Lance Fortnow: Time for Computer Science to Grow Up, in Communications of the ACM, Vol. 52, no. 8, pages 33-35, 2009, available here.

[2] Dagstuhl: Perspectives Workshop: Publication Culture in Computing Research, see here.

[3] Bertrand Meyer: The Modes and Uses of Scientific Publication, article on this blog, 22 November 2011, see here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

A fundamental duality of software engineering

A couple of weeks ago I proposed a small quiz. (I also stated that the answer would come “on Wednesday” — please understand any such promise as “whenever I find the time”. Sorry.) Here is the answer.

The quiz was:

I have a function:

  • For 0 it yields 0.
  • For 1 it yields 1.
  • For 2 it yields 4.
  • For 3 it yields 9.
  • For 4 it yields 16.

What is the value for 5?

Shortly thereafter I added a hint: the value for 5 is 25, and changed the question to: “What is the value for 6?”. For good measure we can also ask about the value for 1000. Now compare your answer to  what follows.

A good answer for the value at 6 is: 34 . The function in this case is -10 + 5 x + |2 x – 3| + |2 x -7|. It matches the values for the given inputs.

Linear, small values

 

 

 

 

 

 

 

 

 

The value for 1000 is 8980:

Linear function, full range

 

 

 

 

 

 

 

 

 

Another good answer at position 6 is 35.6. It comes up if we assume the function is over reals rather than integers; then a possible formula, which correlates very well (R-square of 0.9997) with the values at the given inputs, is:

869.42645566111 (1 – 0.4325853145802 e-.0467615868913719  (x – 17.7342512233011))2.3116827277657443

Exponential function, initial range

 

 

 

 

 

 

 

 

 

 

with a quite different asymptotic behavior, giving the value 869.4 at position 1000:

Exponential, full range

 

 

 

 

 

 

 

 

 

 

Some readers might have thought of another possibility, the square function x2, which again matches all the given values:

Square function, initial range

 

 

 

 

 

 

 

 

 

 

So which of these answers is right? Each is as good as the others, and as bad. There is in particular no reason to believe that the values given in the quiz’s statement suggest the square function. Any function that fits the given values, exactly (if we stick to integers) or approximately (with reals as simulated on a computer) is an equally worthy candidate. Six inputs, or six thousand, do not resolve the question. At best they are hints.

This difference between a hint and a solution is at the core of software engineering. It is, for example, the difference between a test and a specification. A test tells us that the program works for some values; as Dijkstra famously pointed out, and anyone who has developed a serious program has experienced, it does not tell us that it will work for others. The more successful tests, the more hints; but they are still only hints. I have always wondered whether Dijkstra was explicitly thinking of the Popperian notion of falsifiability: no number of experiments will prove a physical theory (although a careful experiment may boost the confidence in the theory, especially if competing theories fail to explain it, as the famous Eddington expedition did for relativity in 1919 [1]); but a single experiment can disprove a theory. Similarly, being told that our function’s value at 6 is 34 disqualifies the square function and the last one (the exponential), but does not guarantee that the first function (the linear combination) is the solution.

The specification-testing duality is the extension to computer science of the basic duality of logic. It starts with the elementary boolean operators: to prove a or b it suffices to establish a or to establish b; and to disprove a and b it suffices to show that a does not hold or to show that b does not hold. The other way round, to disprove a or b we have to show that a does not hold and to show that b does not hold; to prove that a and b holds, we have to show that a holds and to show that b holds.

Predicate calculus generalizes or to , “there exists”, and and to , “for all”. To prove ∃ x | p (x) (there is an x of which p holds) it suffices to find one value a such that p (a); let’s be pretentious and say we have “skolemized” x. To disprove∀ x | p (x) (p holds of all x) it suffices to find one value for which p does not hold.

In software engineering the corresponding duality is between proofs and tests, or (equivalently) specifications and use cases. A specification is like a “for all”: it tells us what must happen for all envisioned inputs. A test is like a “there exists”: it tells us what happens for a particular input and hence, as in predicate calculus, it is interesting as a disproof mechanism:

  • A successful test brings little information (like learning the value for 5 when trying to figure out what a function is, or finding one true value in trying to prove a or a false value in trying to prove a ).
  • An unsuccessful test brings us decisive information (like a false value for a ): the program is definitely not correct. It skolemizes incorrectness.

A proof, for its part, brings the discussion to an end when it is successful. In practice, testing may still be useful in this case, but only testing that addresses issues not covered by the proof:

  • Correctness of the compiler and platform, if not themselves proved correct.
  • Correctness the proof tools themselves, since most practical proofs require software support.
  • Aspects not covered by the specification such as, typically, performance and usability.

But for the properties it does cover the proof is final.

It is as foolish, then, to use tests in lieu of specifications as it would be to ignore the limitations of a proof. Agile approaches have caused much confusion here; as often happens in the agile literature [2], the powerful insight is mixed up with harmful advice. The insight, which has significantly improved the practice of software development, is that the regression test suite is a key asset of a project and that tests should be run throughout. The bad advice is to ditch upfront requirements and specifications in favor of tests. The property that tests lack and specifications possess is generality. A test is an instance; a thousand tests can never be more than a thousand instances. As I pointed out in a short note in EiffelWorld (the precursor to this blog) a few years ago [3], the relationship is not symmetric: one can generate tests from a specification, but not the other way around.

The same relationship holds between use cases and requirements. It is stunning to see how many people think that use cases (scenarios) are a form of requirements. As requirements they are as useless as one or ten values are to defining a function. Use cases are a way to complement the requirements by describing the system’s behavior in selected important cases. A kind of reality check, to ensure that whatever abstract aims have been defined for the system it still covers the cases known to be of immediate interest. But to rely on use cases as requirements means that you will get a system that will satisfy the use cases — and possibly little else.

When I use systems designed in recent years, in particular Web-based systems, I often find myself in a stranglehold: I am stuck with the cases that the specifiers thought of. Maybe it’s me, but my needs tend, somehow, to fall outside of these cases. Actually it is not just me. Not long ago, I was sitting close to a small-business owner who was trying to find her way through an insurance site. Clearly the site had a planned execution path for employees, and another for administrators. Problem: she was both an employee and the administrator. I do not know how the session ended, but it was a clear case of misdesign: a system built in terms of standard scenarios. Good specification performs an extra step of abstraction (for example using object-oriented techniques and contracts, but this is for another article). Skipping this step means forsaking the principal responsibility of the requirements phase: to generalize from an analysis of the behavior in known cases to a definition of the desired behaviors in all relevant cases.

Once more, as everywhere else in computer science [4], abstraction is the key to solid results that stand the test of time. Definitely better than judging a book by its cover, inferring a function by its first few values, verifying a program by its tests, or specifying a system by its use cases.

References

[1] See e.g. a blog article: Einstein and Eddington, here.

[2] Bertrand Meyer: Agile! The Good, the Hype and the Ugly, 2013, to appear.

[3] Bertrand Meyer: Test or spec? Test and spec? Test from spec!, EiffelWorld column, 2004 available here.

[4] Jeff Kramer: Is Abstraction the Key to Computer Science?, in Communications of the ACM, vol. 50, no. 4, April 2007, pages 36-42,  available from CiteSeer here

VN:F [1.9.10_1130]
Rating: 9.5/10 (32 votes cast)
VN:F [1.9.10_1130]
Rating: +13 (from 13 votes)

The most beautiful monument of Europe

 

The most beautiful of all monuments in Europe is not the palace of Versailles, notwithstanding the Hall of Mirrors with its endless reflections of chandeliers and pillars, notwithstanding the fairy-tale grace of the Trianons, notwithstanding the sumptuous Hall of Congresses where the 1919 peace conference put a formal end … read the entire text. Le plus beau des monuments d’Europe n’est pas Versailles, malgré sa Galerie des Glaces où se reflètent à l’infini les lustres et les pilastres, malgré ses Trianons, malgré son imposante Salle du Congrès où prit officiellement fin, en 1919, … lire le texte complet en français.

 

Yes, I know, this is supposed to be a technology blog.

There are, however, times like right now when intellectuals should not remain silent — especially engineers and scientists.

I wrote the text referenced above several years ago; I don’t remember the exact date but it sounds very much Maastricht-aftermath. I have circulated it to a few friends, but think the time has come to publish it.

I am quite aware that unfolding events may make it look ridiculous. And then what? I will have done my tiny bit to bring people back to reason.

Note: I do not remember the provenance of the photograph. If informed, I would be happy to add the proper acknowledgment.

VN:F [1.9.10_1130]
Rating: 9.3/10 (13 votes cast)
VN:F [1.9.10_1130]
Rating: +12 (from 12 votes)

Domain Theory: the forgotten step in program verification

 

Program verification is making considerable progress but is hampered by a lack of abstraction in specifications. A crucial step is, almost always, absent from the process; this omission is the principal obstacle to making verification a standard component of everyday software development.

Steps in software verification

In the first few minutes of any introduction to program verification, you will be told that the task requires two artifacts: a program, and a specification. The program describes what executions will do; the specification, what they are supposed to do. To verify software is to ascertain that the program matches the specification: that it does is what it should.

The consequence usually drawn is that verification consists of three steps: write a specification, write a program, prove that the program satisfies the specification. The practical process is of course messier, if only because the first two steps may occur in the reverse order and, more generally, all three steps are often intertwined: the specification and the program influence each other, in particular through the introduction of “verification conditions” into the program; and initial proof attempts will often lead to changes in both the specification and the program. But by and large these are the three accepted steps.

Such a description misses a fourth step, a prerequisite to specification that is essential to a scalable verification process: Domain Theory. Any program addresses a specific domain of discourse, be it the domain of network access and communication for a mobile phone system, the domain of air travel for a flight control system, of companies and shares for a stock exchange system and so on. Even simple programs with a limited scope, such as the computation of the maximum of an array, use a specific domain beyond elementary mathematics. In this example, it is the domain of arrays, with their specific properties: an array has a range, a minimum and maximum indexes in that range, an associated sequence of values; we may define a slice a [i..j], ask for the value associated with a given index, replace an element at a given index and so on. The Domain Theory provides a formal model for any such domain, with the appropriate mathematical operations and their properties. In the example the operations are the ones just mentioned, and the properties will include the axiom that if we replace an element at a certain index i with a value v then access the element at an index j, the value we get is v if i = j, and otherwise the earlier value at j.

The role of a Domain Theory

The task of devising a Domain Theory is to describe such a domain of reference, in the spirit of abstract data types: by listing the applicable operations and their properties. If we do not treat this task as a separate step, we end up with the kind of specification that works for toy examples but quickly becomes unmanageable for real-life applications. Most of the verification literature, unfortunately, relies on such specifications. They lack abstraction since they keep using the lowest-level mathematical objects and constructs, such as numbers and quantified expressions. They are to specification what assembly language is to modern programming.

Dines Bjørner has for a long time advocated a closely related idea, domain engineering; see for example his book in progress [1]. Unfortunately, he does not take advantage of modularization through abstract data types; the book is an example of always-back-to-the-basics specification, resorting time and again to fully explicit specifications based on a small number of mathematical primitives, and as a consequence making formal specification look difficult.

Maximum computed from both ends

As a simple example of modeling through an abstract theory consider an algorithm for computing the maximum of an array. We could use the standard technique that goes through the array one-way, but for variety let us take the algorithm that works from both ends, moving two integer cursors towards each other until they meet.  (This example was used in a verification competition at a recent conference, I forgot which one.) The code looks like this:

Two-way maximum

The specification, expressed by the postcondition (ensure) should state that Result is the maximum of the array; the loop invariant will be closely related to it. How do we express these properties? The obvious way is not the right way. It states the postcondition as something like

k: Z | (ka.lowerka.upper) a [k] ≤ Result

k: Z | ka.lowerka.upper a [k] = Result

In words, Result is at least as large as every element of the array, and is equal to at least one of the elements of the array. The invariant can also be expressed in this style (try it).

The preceding specification expresses the desired property, but it is of an outrageously lower level than called for. The notion of maximum is a general one for arrays over an ordered type. It can be computed through many different algorithms in addition to the one shown above, and exists independently of these algorithms. The detailed, assembly-language-like definition of its properties should not have to be repeated in every case. It should be part of the Domain Theory for the underlying notion, arrays.

A specification at the right level of abstraction

In a Domain Theory for arrays of elements from an ordered set, one of the principal operations is maximum, satisfying the above properties. The definition of maximum through these properties belongs at the Domain Theory level. The Domain Theory should include that definition, independent of any particular computational technique such as two_way_max. Then the routine’s postcondition, relying on this notion from the Domain Theory, becomes simply

Result = a.maximum

The application of this approach to the loop invariant is particularly interesting. If you tried to write it at the lowest level, as suggested above, you should have produced something like this:

a.lowerija.upper

k: Z | kikj ∧ (∀ l: Z | l a.lowerl a.upper a [l] ≤ a [k])

The first clause is appropriate but the rest is horrible! With its nested quantified expressions it gives an impression of great complexity for a property that is in fact straightforward, simple enough in fact to be explained to a 10-year-old: the maximum of the entire array can be found between indexes i and j. In other words, it is also the maximum of the array slice going from i to j. The Domain Theory will define the notion of slice and enable us to express the invariant as just

a.lowerij a.upper — This bounding clause remains

a.maximum = (a [i..j ]).maximum

(where we will write the slice a [i..j ] as a.slice (i, j ) if we do not have mechanisms for defining special syntax). To verify the routine becomes trivial: on loop exit the invariant still holds and i = j, so the maximum of the entire array is given by the maximum of the single-element slice a [i..i ], which is the value of its single element a [i ]. This last property — the maximum of a single-element array is its single value — is independent of the verification of any particular program and should be proved as a little theorem of the Domain Theory for arrays.

The comparison between the two versions is striking: without Domain Theory, we are back to the most tedious mathematical manipulations again and again; simple, clear properties look complicated and obscure. This just for a small example on basic data structures; now think what it will be for a complex application domain. Without a first step of formal modeling to develop a Domain Theory, no realistic specification and verification process is realistic.

Although the idea is illustrated here through examples of individual routines, the construction of a Domain Theory should usually occur, in an object-oriented development process, at the level of a class: the embodiment of an abstract data type, which is at the appropriate level of granularity. The theory applies to objects of a given type, and hence will be used for the verification of all operations of that type. This observation justifies the effort of devising a Domain Theory, since it will benefit a whole set of software elements.

Components of a Domain Theory

The Domain Theory should include the three ingredients illustrated in the example:

  • Operations, modeled as mathematical functions (no side effects of course, we are in the world of specification).
  • Axioms characterizing the defining properties of these operations.
  • Theorems, characterizing other important properties.

This approach is of course nothing else than abstract data types (the same thing, although few people realize it, as object-oriented analysis). Even though ADTs are a widely popularized notion, supported for example by tools such as CafeOBJ [2] and Maude [3], it is generally not taken to its full conclusions; in particular there is too often a tendency to define every new ADT from scratch, rather than building up libraries of reusable high-level mathematical components in the O-O spirit of reuse.

Results, not just definitions

In devising a Domain Theory with the three kinds of ingredient listed above, we should not forget the last one, the theorems! The most depressing characteristic of much of the work on formal specification is that it is long on definitions and short on results, while good mathematics is supposed to be the reverse. I think people who have seriously looked at formal methods and do not adopt them are turned off not so much by the need to use mathematics but by the impression they get little value for it.

That is why Eiffel contracts do get adopted: even if it’s just for testing and debugging, people see immediate returns. It suffices for a programmer to have caught one bug as the violation of a simple postcondition to be convinced for life and lose any initial math-phobia.

Quantifiers are evil

As we go beyond simple contract properties — this argument must be positive, this reference will not be void — the math needs to be at the same level of abstraction to which, as modern programmers, we are accustomed. For example, one should always be wary of program specifications relying directly on quantified expressions, as in the low-level variants of the postcondition and loop invariant of the two_way_max routine.

This is not just a matter of taste, as in the choice in logic [4] between lambda expressions (more low-level but also more immediately understandable) and combinators (more abstract but, for many, more abstruse). We are talking here about the fundamental software engineering problem of scalability; more generally, of the understandability, extendibility and reusability of programs, and the same criteria for their specification and verification. Quantifiers are of course needed to express fundamental properties of a structure but in general should not directly appear in program assertions: as the example illustrated, their level of abstraction is lower than the level of discourse of a modern object-oriented program. If the rule — Quantifiers Considered Harmful — is not absolute, it must be pretty close.

Quantified expressions, “All elements of this structure possess this property” and “Some element of this structure possesses this property” — belong in the description of the structure and not in the program. They should appear in the Domain Theory, not in the verification. If you want to express that a hash table search found an element of key K, you should not write

(Result = Void ∧ (∀ i: Z | i a.loweri a.upper a.item (i).key ≠ K))

(ResultVoid ∧ (∀ i: Z | i a.loweri a.upper a.item (i).key = K ∧ Result = a.item (i))

but

Result /= Void     (Result a.elements_of_key (K))

The quantified expressions will appear in the Domain Theory for the corresponding structure, in the definition of such domain properties as elements_of_key. Then the program’s specification — the contracts to be verified — can rely on concepts that make sense to the programmer; the verification will take advantage of theorems that have been proved independently since they belong to the Domain Theory and do not depend on individual programs.

Even the simplest examples…

Practical software verification requires Domain Theory even in the simplest cases, including those often used as purely academic examples. Perhaps the most common (and convenient) way to explain the notion of loop invariant is Euclid’s algorithm to compute the greatest common divisor (gcd) of two numbers (with a structure remarkably similar to that of two_way_max):
Euclid

I have expressed the postcondition using a concept from an assumed Domain Theory for the underlying problem: gcd, the mathematical function that yields the greatest common divisor of two integers. Many specifications I have seen go back to the basics, with something like this (using \\ for integer remainder):

a \\ Result = 0 b \\ Result = 0   ∀ i: N | (a \\ i = 0) ∧ (b \\ i = 0)  i Result

This is indeed the definition of what it means for Result to be the gcd of a and b (it divides a, it divides b, and is greater than any other integer that also has these two properties). But it makes no sense to include such a detailed mathematical property in the specification of a program element. It belongs in the domain theory, where it will serve as the definition of a function gcd, which we can then use directly in the specification of the program.

Note how the invariant makes the necessity of the Domain Theory approach even more clear: try to express it in the basic mathematical form, not using the function gcd, It can be done, but the result is typical of the high complexity to usefulness ratio of traditional formal specifications mentioned above. Instead, the invariant that I have included in the program text above says exactly what there is to say, clearly and concisely: at each iteration, the gcd of our two temporary values, i and j, is the result that we are seeking, the gcd of the original values a and b. On exit from the loop, when i and j are equal, their common value is that result.

It is also thanks to the Domain Theory modeling that the verification of the program — consisting of proving that the stated property is indeed invariant — will be so simple: as part of the theory, we should have the two little theorems

i > j > 0 gcd (i, j) = gcd (ij, j)
gcd
(i, i) = i

which immediately show the implementation to be correct.

Inside of any big, fat, messy, quantifier-ridden specification there is a simple, elegant and clear Domain-Theory-based specification desperately trying to get out. Find it and use it.

From Domain Theory to domain library

One of the reasons most people working on program verification have not used the division into levels of discourse described here, with a clear role for developing a Domain Theory, is that they lack the appropriate notational support. Mathematical notation is of course available, but we are talking about programs a general verification framework cannot resort to a new special notation for every new application domain.

This is one of the places where Eiffel provides a consistent solution, through its seamless approach to integrating programs and specifications in a single notation. Thanks to mechanisms such as deferred classes (classes that describe concepts through detailed specifications without committing to an implementation), Eiffel is as much for specification as for design and implementation; a Domain Theory can be expressed though a set of deferred Eiffel classes, which we may call a domain library. The classes in a domain library should not just be deferred, meaning devoid of implementation; they should in addition describe stateless operations only — queries, not commands — since they are modeling purely mathematical concepts.

An earlier article in this blog [5] outlined the context of our verification work: the EVE project (Eiffel Verification Environment), a practical approach to integrating software verification in the day-to-day practice of modern software development, with the slogan ““Verification As a Matter Of Course”. In this project we have applied the idea of Domain Theory by building a domain library covering fundamental concepts of set theory, including functions and relations. This is the Mathematical Model Library (MML) [6, 7], which we use to verify the new data structure library EiffelBase 2 using specifications at the appropriate level of abstraction.

MML is in fact useful for the specification of a wide variety of programs, since almost every application area can benefit from the general concepts of set, subset, relation and such. But to cover a specific application domain, say flight traffic control, MML will generally not suffice; you will need to devise a Domain Theory that mathematically models the target domain, and may express it in the form of a domain library written in the same general spirit as MML: all deferred, stateless, focused on high-level abstractions.

It is one of the attractions of Eiffel that you can express such a theory and library in the same notation as the programs that will use it — more precisely in a subset of that notation, since the specification classes do not need the imperative constructs of the language such as instructions and attributes. Then both the development process and the verification use a seamlessly integrated set of notations and techniques, and all use the same tools from a modern IDE, in our case EiffelStudio, for browsing, editing, working with graphical repreentation, metrics etc.

DSL libraries for specifications

A mechanism to express Domain Theories is to a general specification mechanism essentially like a Domain Specific Language (DSL) is to a general programming language: a specialization for a particular domain. Domain libraries make the approach practical by:

  • Embedding the specification language in the programming language.
  • Fundamentally relying on reuse, in the best spirit of object technology.

This approach is in line with the one I presented for handling DSLs in an earlier article of this blog [8] (thanks, by the way, for the many comments received, some of them posted here and some on Facebook and LinkedIn where the post triggered long discussions). It is usually a bad idea to invent a new language for a new application domain. A better solution is to rely on libraries, by taking advantage of the power of object-oriented mechanisms to model (in domain libraries) and implement (for DSLs) the defining features of such a domain, and to make the result widely reusable. The resulting libraries are purely descriptive in the case of a domain library expressing a Domain Theory, and directly usable by programs in the case of a library embodying a DSL, but the goal is the same.

A sound and necessary engineering practice

Many ideas superficially look similar to Domain Theory: domain engineering as mentioned above, “domain analysis” as widely discussed in the requirements literature, model-driven development, abstract data type specification… They all start from some of the same observations, but  Domain Theory as described in this article is something different: a systematic approach to modeling an arbitrary application domain mathematically, which:

  • Describes the concepts through applicable operations, axioms and (most importantly) theorems.
  • Expresses these elements in an applicative (side-effect free, i.e. equivalent to pure mathematics) subset of the programming language, for direct embedding in program specifications.
  • Relies on the class mechanism to structure the results.
  • Collects the specifications into specification libraries and promotes the reuse of specifications in the same way we promote software reuse.
  • Uses the combination of these techniques to ensure that program specifications are at a high level of abstraction, compatible with the programmers’ view of their software.
  • Promotes a clear and effective verification process.

The core idea is in line with standard engineering practices in disciplines other than software: to build a bridge, a car or a chip you need first to develop a sound model of the future system and its environment, using any useful models developed previously rather than always going back to elementary textbook mathematics.

It seems in fact easier to justify doing Domain Analysis than to justify not doing it. The power of expression and abstraction of our programs has grown by leaps and bounds; it’s time for our specifications to catch up.

References

[1] Dines Bjørner: From Domains to Requirements —The Triptych Approach to Software Engineering, “to be submitted to Springer”, available here.

[2] Kokichi Futatsugi and others: CafeObj page, here.

[3] José Meseguer and others: Maude publication page, here.

[4] J. Roger Hindley, J. P. Seldin: Introduction to Combinators and l-calculus, Cambridge University Press, 1986.

[5] Verification As a Matter Of Course, earlier article on this blog (March 2010), available here.

[6] Bernd Schoeller, Tobias Widmer and Bertrand Meyer. Making specifications complete through models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, pages 48-70, available here.

[7] Nadia Polikarpova, Carlo A. Furia and Bertrand Meyer: Specifying Reusable Components, in VSTTE’10: Verified Software: Theories, Tools and Experiments, Edinburgh, August 2010, Lecture Notes in Computer Science, Springer-Verlag, available here.

[8] Never Design a Language, earlier article on this blog (January 2012), available here.

VN:F [1.9.10_1130]
Rating: 9.3/10 (12 votes cast)
VN:F [1.9.10_1130]
Rating: +7 (from 7 votes)

Never design a language

It is a common occurrence in software development. Someone says: “We should design a language”. The usual context is that some part of the development requires a rich functionality set, and it appears appropriate to provide a flexible solution through a specialized language. As an example, in the development of an airline’s frequent flyer program on which I once worked the suggestion came to design a “Flyer Award Language” , with instructions appropriate for that application domain: record a trip, redeem an award, provide a statement of available miles and so on. A common term for such notations is DSL, for Domain-Specific Language.

Designing a language in such a context is almost always a bad idea (and I am not sure why I wrote “almost”). Languages are endless objects of discussion, usually on the least important aspects, which are also the most visible and those on which everyone has a strong opinion: concrete syntactic properties. People might pretend otherwise (“let’s not get bogged down on syntax, this is just one possible form”) but syntax is what the discussions will get bogged down to — keywords or symbols, this order or that order of operands, one instruction with several variants vs. several instructions… — at the expense of discussing the fundamental issues of functionality.

Worse yet, even if a language will be part of the solution it is usually just one facet to the solution. As was already explained in detail in [1], any useful functionality set will naturally be useful through several interfaces: a textual notation with concrete syntax may be one of them, but other possible ones include an API (Abstract Program Interface) for use from other software elements, a Graphical User Interface, a web user interface, yet another for web services (typically WSDL or some other XML or JSON format).

In such cases, starting with a concrete textual language is pretty silly, since it cannot yield the others directly (it would have to be parsed and further analyzed, which does not make sense). Of all the kinds of interface listed, the most fundamental one is the API: it describes the raw functionality, excluding any choice of syntax but including, thanks to contracts, elements of semantics. For example, a class AWARD in our frequent flyer application might include the feature


             redeem_for_upgrade (c: CUSTOMER; f : FLIGHT)
                                     — Upgrade c to next class of service on f.
                       require
                                    c /= holder
implies holder.allowed_substitute (c)
                                    f.permitted_for_upgrade
(Current)
                                    c.booked
( f )
                       
ensure
                                    c.class_of_service
( f ) =  old c.class_of_service ( f ) + 1

There is of course no implementation as this declaration only specifies an interface, but it says what needs to be said: to redeem the award for an upgrade, the intended customer must be either the holder of the award or an allowed substitute; the flight must be available for an upgrade with the current award (including the availability of enough miles); the intended customer must already be booked on the flight; and the upgrade will be for the next class of service.

These details are the kind of things that need to be discussed and agreed before the API is finalized. Then one can start discussing about a textual form (a DSL), a graphical interface, a web services interface. They all consist of relatively simple layers to be superimposed on a solidly defined and precisely specified basis. Once you have that basis, you can have all the fun you like arguing over everyone’s favorite forms of concrete syntax; it cannot hurt the project any more. Having these discussions early, at the expense of the more fundamental issues, is a great danger.

One of the key rules for successful software construction — as for many other ventures of course, especially in science and technology — is to distinguish the essential from the auxiliary, and consequently to devote proper attention to the essential issues while avoiding disputations of auxiliary issues. To define functionality, API is essential; language is auxiliary.

So when should you design a language? Never. Well, hardly ever.

Reference

[1] Bertrand Meyer: Introduction to the Theory of Programming Languages, Prentice Hall, 1990.

VN:F [1.9.10_1130]
Rating: 7.9/10 (18 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 16 votes)

The Modes and Uses of Scientific Publication

p> 

Recycled(This article was initially published in the CACM blog.)
Publication is about helping the advancement of humankind. Of course.

Let us take this basis for granted and look at the other, possibly less glamorous aspects.

Publication has four modes: Publicity; Exam; Business; and Ritual.

1. Publication as Publicity

The first goal of publication is to tell the world that you have discovered something: “See how smart I am!” (and how much smarter than all the others out there!). In a world devoid of material constraints for science, or where the material constraints are handled separately, as in 19th-century German universities where professors were expected to fund their own labs, this would be the only mode and use of publication. Science today is a more complex edifice.

A good sign that Publication as Publicity is only one of the modes is that with today’s technology we could easily skip all the others. If all we cared about were to make our ideas and results known, we would simply put out our papers on ArXiv or just our own Web page. But almost no one stops there; researchers submit to conferences and journals, demonstrating how crucial the other three modes are to the modern culture of science.

2. Publication as Exam

Academic careers depend on a publication record. Actually this is not supposed to be the case; search and tenure committees are officially interested in “impact,” but any candidate is scared of showing a short publication list where competitors have tens or (commonly) hundreds of items.

We do not just publish; we want to be chosen for publication. Authors are proud of the low acceptance rates of conferences at which their papers have been accepted; in the past few years it has in fact become common practice, in publication lists attached to CVs, to list this percentage next to each accepted article. Acceptance rates are carefully tracked; see for example [2] for software engineering.

As Jeff Naughton has pointed out [1], this mode of working amounts to giving researchers the status of students forced to take exams again and again. Maybe that part is inevitable; the need to justify ourselves anew every morning may be an integral part of being a scientist, especially one funded by other people’s money. Two other consequences of this phenomenon are, I believe, more damaging.

The first risk directly affects the primary purpose of publication (remember the advancement of humankind?): a time-limited review process with low acceptance rates implies that some good papers get rejected and some flawed ones accepted. Everyone in software engineering knows (and recent PC chairs have admitted) that getting a paper accepted at the International Conference on Software Engineering is in part a lottery; with an acceptance rate hovering around 13%, this is inevitable. The mistakes occur both ways: papers accepted or even getting awards, then shown a few months later to be inaccurate; and innovative papers getting rejected because some sentence rubbed the referees the wrong way, or some paper was not cited. With a 4-month review cycle, and the next deadline coming several months later, the publication of a truly important result can be delayed significantly.

The second visible damage is publication inflation. Today’s research environment channels productive research teams towards an LPU (Least Publishable Unit) publication practice, causing an explosion of small contributions and the continuous decrease of the ratio of readers to writers. When submitting a paper I have always had, as my personal goal, to be read; but looking at the overall situation of computer science publication today suggests that this is not the dominant view: the overwhelming goal of publication is publication.

3. Publication as Business

Publishing requires an infrastructure, and money plays a role. Conferences in particular are a business. They have a budget to balance, not always an easy task, although a truly successful conference can be a big money-maker for its sponsor, commercial or non-profit. The financial side of conference publication has its consequences on authors: if you do not pay your fees, not only will you be unable to participate, but your paper will not be published.

One can deplore these practices, in particular their effect on authors from less well-endowed institutions, but they result from today’s computer science publication culture with its focus on the conference, what Lance Fortnow has called “A Journal in a Hotel”.

Sometimes the consequences border on the absurd. The ASE conference (Automated Software Engineering) accepts some contributions as “short papers”. Fair enough. At ASE 2009, “short paper” did not mean a shorter conference presentation but the permission to put up a poster and stand next to it for a while and answer passersby’s questions. For that privilege — and the real one: a publication in the conference volume — one had to register for the conference. ASE 2009 was in New Zealand, the other end of the world for a majority of authors. I ceded to the injunction: who was I to tell the PhD student whose work was the core of the submission, and who was so happy to have a paper accepted at a well-ranked conference, that he was not going to be published after all? But such practices are dubious. It would be more transparent to set up an explicit pay-for-play system, with page charges: at least the money would go to a scientific society or a university. Instead we ended up funding (in addition to the conference, which from what I heard was an excellent experience) airlines and hotels.

What makes such an example remarkable is that a reasonable justification exists for every one of its components: a highly selective refereeing process to maintain the value of the publication venue; limiting the number of papers selected for full presentation, to avoid a conference with multiple parallel tracks (and the all too frequent phenomenon of conference sessions whose audience consists of the three presenters plus the session chair); making sure that authors of published papers actually attend the event, so that it is a real conference with personal encounters, not just an opportunity to increment one’s publication count. The concrete result, however, is that authors of short papers have the impression of being ransomed without getting the opportunity to present their work in a serious way. Literally seconds as I was going to hit the “publish” button for the present article, an author of an accepted short paper for ASE 2012 (where the process appears similar) sent an email to complain, triggering a new discussion. We clearly need to find better solutions to resolve the conflicting criteria.

4. Publication as Ritual

Many of the seminal papers in science, including some of the most influential in computer science, defy classification and used a distinctive, one-of-a-kind style. Would they stand a chance in one of today’s highly ranked conferences, such as ICSE in software or VLDB in databases? It’s hard to guess. Each community has developed its own standard look-and-feel, so that after a while all papers start looking the same. They are like a classical mass with its Te Deum, Agnus Dei and Kyrie Eleison. (The “Te Deum” part is, in a conference submission, spread throughout the paper, in the form of adoring citations of the program committee members’ own divinely inspired articles, good for their H-indexes if they bless your own offering.)

All empirical software engineering papers, for example, have the obligatory “Threats to Validity” section, which is has developed into a true art form. The trick is the same as in the standard interview question “What can you say about your own deficiencies?”, to which every applicant know the key: describe a personality trait so that you superficially appear self-critical but in reality continue boasting, as in “sometimes I take my work too much to heart” [3]. The “Threats to Validity” section follows the same pattern: you try to think of all possible referee objections, the better to refute them.

Another part of the ritual is the “related work” section, treacherous because you have to make sure not to omit anything that a PC member finds important; also, you must walk a fine line between criticizing existing research too much, which could offend someone, or not enough, which enables the referee to say that you are not bringing anything significantly new. I often wonder who, besides the referees, reads those sections. But here too it is easier to lament than to fault the basic idea or propose better solutions. We do want to avoid wasting our time on papers whose authors are not aware of previous work. The related work section allows referees to perform this check. Its importance in the selection process has, however, grown out of proportion. It is one thing to make sure that a paper is state-of-the-art, but another to reject it (as often happens) because it fails to cite a particular contribution whose results would not directly affect its own. Here we move from the world of the rational to the world of the ritual. An extreme and funny recent example — funny to me, not necessarily to the coauthors — is a rejection from  APSEC 2011, the Australia-Pacific Software Engineering Conference, based on one review (the others were positive) that stated: “How novel is this? Are [there] not any cloud-based IDEs out there that have [a] similar awareness model integrated into their CM? This is something the related work [section] fails to describe precisely. [4] The ritual here becomes bizarre: as far as we know, no existing system discusses a similar model; the reviewer too does not know of any; but he blasts the paper all the same for not citing work that he thinks must have been done by someone, somehow, somewhere. APSEC is a fine conference — it has to be, from the totally unbiased criterion that it accepted another one of our submissions this year! — and this particular paper may or may not have been ready for publication; judge it for yourself [5]. Such examples suggest, however, that the ritual of computer science publication has its limits.

Publicity, Exam, Business, Ritual: to which one of the four modes of publication are you most attuned? Oh, sorry, I forgot: in your case, it is solely for the advancement of humankind.

References and notes

[1] Jeffrey F. Naughton, DBMS Research: First 50 Years, Next 50 Years, slides of keynote at 26th IEEE International Conference on Data Engineering, 2010, available at lazowska.cs.washington.edu/naughtonicde.pdf .

[2] Tao Xie, Software Engineering Conferences, at people.engr.ncsu.edu/txie/seconferences.htm .

[3] I once saw on French TV a hilarious interview of an entrepreneur who had started a software company in Vietnam, where job candidates just did not know “the code”, and moved on, in response to such a question, to tell the interviewer about being rude to their mother and all the other horrible things they had done in their lives.

[4] The words in brackets were not in the review but I added them for clarity.

[5] Martin Nordio, H.-Christian Estler, Carlo A. Furia and Bertrand Meyer: Collaborative Software Development on the Web, available at arxiv.org/abs/1105.0768 .

(This article was first published on the CACM blog in September 2011.)

VN:F [1.9.10_1130]
Rating: 9.3/10 (11 votes cast)
VN:F [1.9.10_1130]
Rating: +9 (from 9 votes)

Nastiness in computer science

 

Recycled(This article was originally published in the CACM blog.)
 

Are we malevolent grumps? Nothing personal, but as a community computer scientists sometimes seem to succumb to negativism.

They admit it themselves. A common complaint in the profession (at least in academia) is that instead of taking a cue from our colleagues in more cogently organized fields such as physics, who band together for funds, promotion, and recognition, we are incurably fractious. In committees, for example, we damage everyone’s chances by badmouthing colleagues with approaches other than ours. At least this is a widely perceived view (“Circling the wagons and shooting inward,” as Greg Andrews put it in a recent discussion). Is it accurate?

One statistic that I have heard cited is that in 1-to-5 evaluations of projects submitted to the U.S. National Science Foundation the average grade of computer science projects is one full point lower than the average for other disciplines. This is secondhand information, however, and I would be interested to know if readers with direct knowledge of the situation can confirm or disprove it.

More such examples can be found in the material from a recent keynote by Jeffrey Naughton, full of fascinating insights (see his Powerpoint slides External Link). Naughton, a database expert, mentions that only one paper out of 350 submissions to SIGMOD 2010 received a unanimous “accept” from its referees, and only four had an average accept recommendation. As he writes, “either we all suck or something is broken!

Much of the other evidence I have seen and heard is anecdotal, but persistent enough to make one wonder if there is something special with us. I am reminded of a committee for a generously funded CS award some time ago, where we came close to not giving the prize at all because we only had “good” proposals, and none that a committee member was willing to die for. The committee did come to its senses, and afterwards several members wondered aloud what was the reason for this perfectionism that almost made us waste a great opportunity to reward successful initiatives and promote the discipline.

We come across such cases so often—the research project review that gratuitously but lethally states that you have “less than a 10% chance” of reaching your goals, the killer argument  “I didn’t hear anything that surprised me” after a candidate’s talk—that we consider such nastiness normal without asking any more whether it is ethical or helpful. (The “surprise” comment is particularly vicious. Its real purpose is to make its author look smart and knowledgeable about the ways of the world, since he is so hard to surprise; and few people are ready to contradict it: Who wants to admit that he is naïve enough to have been surprised?)

A particular source of evidence is refereeing, as in the SIGMOD example.  I keep wondering at the sheer nastiness of referees in CS venues.

We should note that the large number of rejected submissions is not by itself the problem. Naughton complains that researchers spend their entire careers being graded, as if passing exams again and again. Well, I too like acceptance better than rejection, but we have to consider the reality: with acceptance rates in the 8%-20% range at good conferences, much refereeing is bound to be negative. Nor can we angelically hope for higher acceptance rates overall; research is a competitive business, and we are evaluated at every step of our careers, whether we like it or not. One could argue that most papers submitted to ICSE and ESEC are pretty reasonable contributions to software engineering, and hence that these conferences should accept four out of five submissions; but the only practical consequence would be that some other venue would soon replace ICSE and ESEC as the publication place that matters in software engineering. In reality, rejection remains a frequent occurrence even for established authors.

Rejecting a paper, however, is not the same thing as insulting the author under the convenient cover of anonymity.

The particular combination of incompetence and arrogance that characterizes much of what Naughton calls “bad refereeing” always stings when you are on the receiving end, although after a while it can be retrospectively funny; one day I will publish some of my own inventory, collected over the years. As a preview, here are two comments on the first paper I wrote on Eiffel, rejected in 1987 by the IEEE Transactions on Software Engineering (it was later published, thanks to a more enlightened editor, Robert Glass, in the Journal of Systems and Software, 8, 1988, pp. 199-246 External Link). The IEEE rejection was on the basis of such review gems as:

  • I think time will show that inheritance (section 1.5.3) is a terrible idea.
  • Systems that do automatic garbage collection and prevent the designer from doing his own memory management are not good systems for industrial-strength software engineering.

One of the reviewers also wrote: “But of course, the bulk of the paper is contained in Part 2, where we are given code fragments showing how well things can be done in Eiffel. I only read 2.1 arrays. After that I could not bring myself to waste the time to read the others.” This is sheer boorishness passing itself off as refereeing. I wonder if editors in other, more established disciplines tolerate such attitudes. I also have the impression that in non-CS journals the editor has more personal leverage. How can the editor of IEEE-TSE have based his decision on such a biased an unprofessional review? Quis custodiet ipsoes custodes?

“More established disciplines”: Indeed, the usual excuse is that we are still a young field, suffering from adolescent aggressiveness. If so, it may be, as Lance Fortnow has argued in a more general context, “time for computer science to grow up.” After some 60 or 70 years we are not so young any more.

What is your experience? Is the grass greener elsewhere? Are we just like everyone else, or do we truly have a nastiness problem in computer science?

VN:F [1.9.10_1130]
Rating: 9.5/10 (31 votes cast)
VN:F [1.9.10_1130]
Rating: +19 (from 19 votes)

All Bugs Great and Small

(Acknowledgment: this article came out of a discussion with Manuel Oriol, Carlo Furia and Yi Wei. The material is largely theirs but the opinions are mine.)

A paper on automatic testing, submitted some time ago, received the following referee comment:

The case study seems unrealistic and biased toward the proposed technique. 736 unique faults found in 92 classes means at least 8 unique faults per class at the same time. I have never seen in all my life a published library with so many faults …

This would be a good start for a discussion of what is wrong with refereeing in computer science today (on the negativism of our field see [1]); we have a referee who mistakes experience for expertise, prejudice for truth, and refuses to accept carefully documented evidence because “in all his life”, presumably a rich and rewarding life, he has never seen anything of the sort. That is not the focus of the present article, however; arrogant referees eventually retire and good papers eventually get published. The technical problems are what matters. The technical point here is about testing.

Specifically, what bugs are worth finding, and are high bug rates extraordinary?

The paper under review was a step in the work around the automatic testing tool AutoTest (see [2] for a slightly older overall description and [3] for the precise documentation). AutoTest applies a fully automatic strategy, exercising classes and their routines without the need to provide test cases or test oracles. What makes such automation possible is the combination of  random generation of tests and reliance on contracts to determine the success of tests.

For several years we have regularly subjected libraries, in particular the EiffelBase data structure library, to long AutoTest sessions, and we keep finding bugs (the better term is faults). The fault counts are significant; here they caught the referee’s eye. In fact we have had such comments before: I don’t believe your fault counts for production software; your software must be terrible!

Well, maybe.

My guess is that in fact EiffelBase has no more bugs, and possibly far fewer bugs, than other “production” code. The difference is that the  AutoTest framework performs far more exhaustive tests than usually practiced.

This is only a conjecture; unlike the referee I do not claim any special powers that make my guesses self-evident. Until we get test harnesses comparable to AutoTest for environments other than Eiffel and, just as importantly, libraries that are fully equipped with contracts, enabling the detection of bugs that otherwise might not come to light, we will not know whether the explanation is the badness of EiffelBase or the goodness of AutoTest.

What concrete, incontrovertible evidence demonstrates is that systematic random testing does find faults that human testers typically do not. In a 2008 paper [4] with Ilinca Ciupa, Manuel Oriol and Alexander Pretschner, we ran AutoTest on some classes and compared the results with those of human testers (as well as actual bug reports from the field, since this was released software). We found that the two categories are complementary: human testers find faults that are still beyond the reach of automated tools, but they typically never find certain faults that AutoTest, with its stubborn dedication to leaving no stone unturned, routinely uncovers. We keep getting surprised at bugs that AutoTest detects and which no one had sought to test before.

A typical set of cases that human programmers seldom test, but which frequently lead to uncovering bugs, involves boundary values. AutoTest, in its “random-plus” strategy, always exercises special values of every type, such as MAXINT, the maximum representable integer. Programmers don’t. They should — all testing textbooks tell them so — but they just don’t, and perhaps they can’t, as the task is often too tedious for a manual process. It is remarkable how many routines using integers go bezerk when you feed them MAXINT or its negative counterpart. Some of the fault counts that seem so outrageous to our referee directly come from trying such values.

Some would say the cases are so extreme as to be insignificant. Wrong. Many documented software failures and catastrophes are due to untested extreme values. Perhaps the saddest is the case of the Patriot anti-missile system, which at the beginning of the first Gulf war was failing to catch Scud missiles, resulting in one case in the killing of twenty-eight American soldiers in an army barrack. It was traced to a software error [5]. To predict the position of the incoming missile, the computation multiplied time by velocity. The time computation used multiples of the time unit, a tenth of a second, stored in a 24-bit register and hence approximated. After enough time, long enough to elapse on the battlefield, but longer than what the tests had exercised, the accumulated error became so large as to cause a significant — and in the event catastrophic — deviation. The unique poser of automatic testing is that unlike human testers it is not encumbered by a priori notions of a situation being extreme or unlikely. It tries all the possibilities it can.

The following example, less portentous in its consequences but just as instructive, is directly related to AutoTest. For his work on model-based contracts [6] performed as part of his PhD completed in 2008 at ETH, Bernd Schoeller developed classes representing the mathematical notion of set. There were two implementations; it turned out that one of them, say SET1, uses data structures that make the subset operation easy to program efficiently; in the corresponding class, the superset operation, ab, is then simply implemented as ba. In the other implementation, say SET2, it is the other way around: is directly implemented, and ab, is implemented as ba. This all uses a nice object-oriented structure, with a general class SET defining the abstract notion and the two implementations inheriting from it.

Now you may see (if you have developed a hunch for automated testing) where this is heading: AutoTest knows about polymorphism and dynamic binding, and tries all the type combinations that make sense. One of the generated test cases has two variables s1 and s2 of type SET, and tries out s2s1; in one of the combinations that AutoTest tries, s1 is dynamically and polymorphically of type SET1 and s2 of type SET2. The version of that it will use is from SET2, so it actually calls s1s2; but this tests the SET1 version of , which goes back to SET2. The process would go on forever, were it not for a timeout in AutoTest that uncovers the fault. Bernd Schoeller had tried AutoTest on these classes not in the particular expectation of finding bugs, but more as a favor to the then incipient development of AutoTest, to see how well the tool could handle model-based contracts. The uncovering of the fault, testament to the power of relentless, systematic automatic testing, surprised us all.

In this case no contract was violated; the problem was infinite recursion, due to a use of O-O techniques that for all its elegance had failed to notice a pitfall. In most cases, AutoTest finds the faults through violated postconditions or class invariants. This is one more reason to be cautious about sweeping generalizations of the kind “I do not believe these bug rates, no serious software that I have seen shows anything of the sort!”. Contracts express semantic properties of the software, which the designer takes care of stating explicitly. In run-of-the-mill code that does not benefit from such care, lots of things can go wrong but remain undetected during testing, only to cause havoc much later during some actual execution.

When you find such a fault, it is irrelevant that the case is extreme, or special, or rare, or trivial. When a failure happens it no longer matter that the fault was supposed to be rare; and you will only know how harmful it is when you deal with the consequences. Testing, single-mindedly  devoted to the uncovering of faults [7], knows no such distinction: it hunts all bugs large and small.

References

[1] The nastiness problem in computer science, article on the CACM blog, 22 August 2011, available here.

[2] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[3] Online AutoTest documentation, available here at docs.eiffel.com.

[4] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol and Alexander Pretschner: Finding Faults: Manual Testing vs. Random+ Testing vs. User Reports, in ISSRE ’08, Proceedings of the 19th IEEE International Symposium on Software Reliability Engineering, Redmond, November 2008, available here.

[5] US General Accounting Office: GAO Report: Patriot Missile Defense– Software Problem Led to System Failure at Dhahran, Saudi Arabia, February 4, 1992, available here.

[6] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[7] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008available here.

VN:F [1.9.10_1130]
Rating: 9.1/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

Testing insights

Lionel Briand and his group at the Simula Research Laboratory in Oslo have helped raise the standard for empirical research in testing and other software engineering practices by criticizing work that in their opinion relies on wrong assumptions or insufficiently supported evidence. In one of their latest papers [1] they take aim at “Adaptive Random Testing” (ART); one of the papers they criticize is from our group at ETH, on the ARTOO extension [2] to this testing method. Let’s examine the criticism!

We need a bit of background on random testing, ART, and ARTOO:

  • Random testing tries inputs based on a random process rather than attempting a more sophisticated strategy; it was once derided as silly [3], but has emerged in recent years as a useful technique. Our AutoTest tool [4], now integrated in EiffelStudio, has shown it to be particularly effective when applied to code equipped with contracts, which provide built-in test oracles. As a result of this combination, testing can be truly automatic: the two most tedious tasks of traditional testing, test case preparation and test oracle definition, can be performed without human intervention.
  • ART, developed by Chen and others [5], makes random testing not entirely random by ensuring that the inputs are spread reasonably evenly in the input domain.
  • ARTOO, part of Ilinca Ciupa’s PhD thesis on testing defended in 2008,   generalized ART to object-oriented programs, by defining a notion of distance between objects; the ARTOO strategy  avoids choosing objects that are too close to each other. The distance formula, which you can find in[2], combines three elementary distances: between the types of the objects involved,  the values in their primitive fields (integers etc.), and, recursively, the objects to which they have references.

Arcuri and Briand dispute the effectiveness of ART and criticize arguments that various papers have used to show its effectiveness. About the ARTOO paper they write

The authors concluded that ART was better than random testing since it needed to sample less test cases before finding the first failure. However, ART was also reported as taking on average 1.6 times longer due to the distance calculations!

To someone not having read our paper the comment and the exclamation mark would seem to suggest that the paper somehow downplays this property of random testing, but in fact it stresses it repeatedly. The property appears for example in boldface as part of the caption to Table 2: In most cases ARTOO requires significantly less tests to find a fault, but entails a time overhead, and again in boldface in the caption to Table 3: The overhead that the distance calculations introduce in the testing process causes ARTOO to require on average 1.6 times more time than RAND to find the first fault.

There is no reason, then, to criticize the paper on this point. It reports the results clearly and fairly.

If we move the focus from the paper to the method, however, Arcuri and Briand have a point. As they correctly indicate, the number of tests to first fault is not a particularly useful criterion. In fact I argued against it in another paper on testing [6]

The number of tests is not that useful to managers, who need help deciding when to stop testing and ship, or to customers, who need an estimate of fault densities. More relevant is the testing time needed to uncover the faults. Otherwise we risk favoring strategies that uncover a failure quickly but only after a lengthy process of devising the test; what counts is total time. This is why, just as flies get out faster than bees, a seemingly dumb strategy such as random testing might be better overall.

(To understand the mention of flies and bees you need to read [6].) The same article states, as its final principle:

Principle 7: Assessment criteria A testing strategy’s most important property is the number of faults it uncovers as a function of time.

The ARTOO paper, which appeared early in our testing work, used “time to first failure” because it has long been a standard criterion in the testing literature, but it should have applied our own advice and focused on more important properties of testing strategies.

The “principles” paper [6] also warned against a risk awaiting anyone looking for new test strategies:

Testing research is vulnerable to a risky thought process: You hit upon an idea that seemingly promises improvements and follow your intuition. Testing is tricky; not all clever ideas prove helpful when submitted to objective evaluation.

The danger is that the clever ideas may result in so much strategy setup time that any benefit on the rest of the testing process is lost. This danger threatens testing researchers, including those who are aware of it.

The idea of ARTOO and object distance remains attractive, but more work is needed to make it an effective contributor to automated random testing and demonstrate that effectiveness. We can be grateful to Arcuri and Briand for their criticism, and I hope they continue to apply their iconoclastic zeal to empirical software engineering work, ours included.

I have objections of my own to their method. They write that “all the work in the literature is based either on simulations or case studies with unreasonably high failure rates”. This is incorrect for our work, which does not use simulations, relying instead on actual, delivered software, where AutoTest routinely finds faults in an automatic manner.

In contrast, however, Arcuri and Briand rely on fault seeding (also known as fault introduction or fault injection):

To obtain more information on how shapes appear in actual SUT, we carried out a large empirical analysis on 11 programs. For each program, a series of mutants were generated to introduce faults in these programs in a systematic way. Faults generated through mutation [allow] us to generate a large number of faults, in an unbiased and varied manner. We generated 3727 mutants and selected the 780 of them with lower detection probabilities to carry out our empirical analysis of faulty region shapes.

In the absence of objective evidence attesting to the realism of fault seeding, I do not believe any insights into testing obtained from such a methodology. In fact we adopted, from the start of our testing work, the principle that we would never rely on fault seeding. The problem with seeded faults is that there is no guarantee they reflect the true faults that programmers make, especially the significant ones. Techniques for fault seeding are understandably good at introducing typographical mistakes, such as a misspelling or the replacement of a “+” by a “-”; but these are not interesting kinds of fault, as they are easily caught by the compiler, by inspection, by low-tech static tools, or by simple tests. Interesting faults are those resulting from a logical error in the programmer’s mind, and in my experience (I do not know of good empirical studies on this topic) seeding techniques do not generate them.

For these reasons, all our testing research has worked on real software, and all the faults that AutoTest has found were real faults, resulting from a programmer’s mistake.

We can only apply this principle because we work with software equipped with contracts, where faults will be detected through the automatic oracle of a violated assertion clause. It is essential, however, to the credibility and practicality of any testing strategy; until I see evidence to the contrary, I will continue to disbelieve any testing insights resulting from studies based on artificial fault injection.

References

[1] Andrea Arcuri and Lionel Briand: Adaptive Random Testing: An Illusion of Effectiveness, in ISSTA 2011 (International Symposium on Software Testing and Analysis), available here.

[2] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer: ARTOO: Adaptive Random Testing for Object-Oriented Software, in ICSE 2008: Proceedings of 30th International Conference on Software Engineering, Leipzig, 10-18 May 2008, IEEE Computer Society Press, 2008, also available here.

[3] Glenford J. Myers. The Art of Software Testing. Wiley, New York, 1979. Citation:

Probably the poorest methodology of all is random-input testing: the process of testing a program by selecting, at random, some subset of all possible input values. In terms of the probability of detecting the most errors, a randomly selected collection of test cases has little chance of being an optimal, or close to optimal, subset. What we look for is a set of thought processes that allow one to select a set of test data more intelligently. Exhaustive black-box and white-box testing are, in general, impossible, but a reasonable testing strategy might use elements of both. One can develop a reasonably rigorous test by using certain black-box-oriented test-case-design methodologies and then supplementing these test cases by examining the logic of the program (i.e., using white-box methods).

[4] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, available here. For practical uses of AutoTest within EiffelStudio see here.

[5] T. Y. Chen, H Leung and I K Mak: Adaptive Random Testing, in  Advances in Computer Science, ASIAN 2004, Higher-Level Decision Making,  ed. M.J. Maher,  Lecture Notes in Computer Science 3321, Springer-Verlag, pages 320-329, 2004, available here.

[6] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008, also available here.

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 7 votes)

If I’m not pure, at least my functions are

..

If I’m not pure, at least my jewels are [1].

..

We often need to be reassured that a routine, usually a function, is “pure”, meaning that it does not change the state of the computation. For example, a function used in a contract element (precondition, postcondition, class invariant, loop invariant) should be purely descriptive, since it is a specification element; evaluating it, typically for testing and debugging, should not create a change of behavior — a “Heisenberg effect” — in the very computation that it is intended to assess. Another application is in a concurrency context, particularly in SCOOP (see earlier posts and forthcoming ones): if one or more functions are pure, several of their executions can run  concurrently on the same object.

The notion of purity admits variants. The usual notion is what  [2] calls weak purity, which precludes changes to previously existing objects but allow creating new objects. In the EiffelBase library we also encounter routines that have another form of purity, which we may call “relative” purity: they can leave the same state on exit as they found on entry, but in-between they might change the state.  For the rest of this discussion we will rely on the standard notion of weak purity: no changes permitted on existing objects.

It is often suggested that the programming language should support specifying that a routine is pure; many people have indeed proposed the addition of a keyword such as pure to Eiffel. One of the reasons this is not — in my opinion — such a great idea is that purity is just a special case of the more general problem of framing: specifying and verifying what a routine does not change. If we can specify an arbitrary frame property, then we can, as a special case covered by the general mechanism, specify that a routine changes nothing.

To see why framing is so important, consider a class ACCOUNT with a routine deposit that has the postcondition

balance = old balance + sum………..— Where sum is the argument of deposit

Framing here means stating that nothing else than balance changes; for example the account’s owner and its number should remain the same. It is not practical to write all individual postcondition clauses such as

owner= old owner
number=
old number

and so on. But we do need to specify these properties and enforce them, if only to avoid that a descendant class (maybe MAFIA_ACCOUNT) distort the rules defined by the original.

One technique is to add a so-called “modifies clause”, introduced by verification tools such as ESC-Java [3] and JML [4]. Modifies clauses raise some theoretical issues; in particular, the list of modified expressions is often infinite, so we must restrict ourselves to an abstract-data-type view where we characterize a class by commands and queries and the modifies clause only involves queries of the class. Many people find this hard to accept at first, since anything that is not talked about can change, but it is the right approach. A modifies clause of sorts, included in the postcondition, appeared in an earlier iteration of the Eiffel specification, with the keyword only (which is indeed preferable to modifies, which in the Eiffel style favoring grammatically simple keywords would be modify, since what we want to express is not that the routine must change anything at all  but that it may only change certain specified results!). The convention worked well with inheritance, since it included the rule that a clause such as only balance, in class  ACCOUNT, prescribes that the routine may not, in its modifies version as well as in any version redefined in descendants, change any other query known at the level of ACCOUNT; but a descendant version may change, subject to its own ACCOUNT clauses, any new query introduced by a descendant.

To declare a routine as pure, it would suffice to use an empty only clause (not very elegant syntactically — “only” what? — but one can get used to it).

This construct has been discarded, as it places too heavy a burden on the programmer-specifier. Here the key observation resulted from a non-scientific but pretty extensive survey I made of all the JML code I could get my hands on. I found that every time a query appeared in a modifies clause it was also listed in the postcondition! On reflection, this seems reasonable: if you are serious about specification, as anyone bothering to write such a clause surely is, you will not just express that something changes and stop there; you will write something about how it may change. Not necessarily the exact result, as in

my_query = precise_final_value

but at least some property of that result, as in

some_property (my_query)

This observation has, however, an inescapable consequence for language design: modifies or only clauses should be inferred by the compiler from the postcondition, not imposed on the programmer as an extra burden. The convention, which we may call the Implicit Framing Rule, is simple:

A routine may change the value of a query only if the query is specified in the routine’s postcondition

(or, if you like double negation, “no routine may change the value of a query other than those specified in its postcondition”). Here we say that a feature is “specified” in a postcondition if it appears there outside of the scope of an old expression. (Clearly, an occurrence such as old balance does not imply that balance can be modified, hence this restriction to occurrences outside of an old.)

With this convention the only clause becomes implicit: it would simply list all the queries specified in the postcondition, so there is no need for the programmer to write it. For the rare case of wanting to specify that a query q may change, but not wanting to specify how, it is easy to provide a library function, say involved, that always return true and can be used in postconditions, as in involved (q).

The convention is of course not just a matter of programming methodology but, in an IDE supporting verification, such as the EVE “Verification As a Matter Of Course” environment which we are building for Eiffel [5], the compiler will enforce the definition above — no change permitted to anything not specified in the postcondition — and produce an error in case of a violation. This also means that we can easily specify that a routine is pure: it must simply not specify any query in its postcondition. It may still list it in an old clause, as happens often in practice, e.g.

Result = old balance – Minimum_balance………..— In the postcondition of a function available_funds

Note the need to use old here. Apart from this addition of old to some postconditions, a considerable advantage of the convention is that most existing code using pure functions will be suitable to the new purity enforcement without any need to provide new annotations.

I believe that this is the only sustainable convention. It does not, of course, solve the frame problem by itself (f orattempts in this direction, see [6, 7]), but it is a necessary condition for a solution that is simple, easily taught, fairly easily implemented, and effective. It goes well with model-based specifications [8, 9], which I believe are the technique of most promise for usable  specifications of object-oriented software. And it provides a straightforward, no-frills way to enforce purity where prescribed by the Command-Query Separation principle [10, 11]: if I’m not pure, at least my functions must be.

References

[1] From the lyrics of the aria Glitter and Be Gay in Leonard Bernstein’s Candide, text by Lillian Hellman and others. Youtube offers several performances, including  by Diana Damrau (here) anddsi Natalie Dessay (here) . For the text see e.g. here.

[2] Adam Darvas and Peter Müller: Reasoning About Method Calls in Interface Specifications, in Journal of Object Technology, Volume 5, no. 5, jUNE 2006, pages 59-85, doi:10.5381/jot.2006.5.5.a3, available here.

[3] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata: Extended static checking for Java, in PLDI 2002 (Programming Language Design and Implementation), pages 234–245, 2002.

[4] Gary Leavens et al.: Java Modeling Language, see references here.

[5] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer: Verifying Eiffel Programs with Boogie, to appear in Boogie 2011, First International Workshop on Intermediate Verification Languages, Wroclaw, August 2011. See documentation about the EVE project on the project page.

[6] Ioannis Kassios: Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions, in Formal Methods 2006, eds. J. Misra, T. Nipkow and E. Sekerinski, Lecture Notes in Computer Science 4085, Springer Verlag, 2006, pages 268-283.

[7] Bernd Schoeller: Making Classes Provable through Contracts, Models and Frames, PhD thesis, ETH Zurich, 2007, available here

[8] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[9] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ’10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[10] Bertrand Meyer: Object-Oriented Software Construction, first (1988) and second (1997) editions, Prentice Hall.

[11] Bertrand Meyer: Touch of Class: An Introduction to Programming Well, Using Objects and Contracts, Springer Verlag, 2009.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Assessing concurrency models

By describing a  poorly conceived hypothetical experiment, last week’s article described the “Professor Smith syndrome” consisting of four risks that threaten the validity of empirical software engineering experiments relying on students in a course:

  • Professor Smith Risk 1: possible bias if the evaluator has a stake in the ideas or tools under assessment.
  • Professor Smith Risk 2: creating different levels of motivation in the different groups (Hawthorne effect).
  • Professor Smith Risk 3: extrapolating from students to professionals.
  • Professor Smith Risk 4: violation of educational ethics if the experiment may cause some students to learn better than others.

If you have developed a great new method or tool and would like to assess it, the best way to address Risk 1 is to find someone else to do the assessment. What if  this solution is not practical? Recently we wanted to get some empirical evidence on the merits of the SCOOP (Simple Concurrent Object-Oriented Programming) approach to concurrency [1, 2], on which I have worked for a long time and which is now part of EiffelStudio since the release of 6.8 a couple of weeks ago. We wanted to see if, despite the Professor Smith risks, we could do a credible study ourselves.

The ETH Software Architecture course[3], into which we introduced some introductory material on concurrency last year (as part of a general effort to push more concurrency into software courses at ETH), looked like a good place to try an evaluation; it is a second-year course, where students, or so we thought, would have little prior experience in concurrent software design.

The study’s authors — Sebastian Nanz, Faraz Torshizi and Michela Pedroni — paid special attention to the methodological issues. To judge for yourself whether we addressed them properly, you can read the current version of our paper to be presented at ESEM 2011 [4]. Do note that it is a draft and that we will improve the paper for final publication.

Here is some of what we did. I will not address the Professor Smith Risk 3, the use of students, which (as Lionel Briand has pointed out in a comment on the previous article) published work has studied; in a later article I will give  references to some of that work. But we were determined to tackle the other risks explicitly, so as to obtain credible results.

The basic experiment was a session in which the students were exposed to two different design methods for concurrent software: multithreaded programming in Java, which I’ll call “Java Threads”, and SCOOP. We wanted to explore whether it is easier to program in SCOOP than in Java. This is too general a hypothesis, so it was refined into three concrete hypotheses: is it easier to understand a SCOOP program? Is it easier to find errors in SCOOP programs? Do programmers using SCOOP make fewer errors?

A first step towards reducing the effect — Professor Smith Risk 1 — of any emotional attachment of the experimenters  to one of the approaches, SCOOP in our case, was to generalize the study. Although what directly interested us was to compare SCOOP against Java Threads, we designed the study as a general scheme to compare concurrency approaches; SCOOP and Java Threads are just an illustration, but anyone else interested in assessing concurrency techniques — say Erlang versus C# concurrency — can apply the same methodology. This decision had two benefits: it freed the study from dependency on the particular techniques, hence, we hope, reducing bias; and as side attraction of the kind that is hard for researchers to resist, it increased the publishability of the results.

Circumstances unexpectedly afforded us another protection against any for-SCOOP bias: unbeknownst to us at the time of the study’s design, a first-year course had newly added (in 2009, whereas our study was performed in 2010) an introduction to concurrent programming — using Java Threads! While we had thought that concurrency in any form would be new to most students, in fact almost all of them had now seen Java Threads before. (The new material in the first-year course was taken by ETH students only, but many transfer students had also already had an exposure to Java Threads.) On the other hand, students had not had any prior introduction to SCOOP. So any advantage that one of the approaches may have had because of students’ prior experience would work against our hypotheses. This unexpected development would not help if the study’s results heavily favored Java Threads, but if they favored SCOOP it would reinforce their credibility.

A particular pedagogical decision was made regarding the teaching of our concurrency material: it started with a self-study rather than a traditional lecture. One of the reasons for this decision was purely pedagogical: we felt (and the course evaluations confirmed) that at that stage of the semester the students would enjoy a break in the rhythm of the course. But another reason was to avoid any bias that might have arisen from any difference in the lecturers’ levels of enthusiasm and effectiveness in teaching the two approaches. In the first course session devoted to concurrency, students were handed study materials presenting Java Threads and SCOOP and containing a test to be taken; the study’s results are entirely based on their answers to these tests. The second session was a traditional lecture presenting both approaches again and comparing them. The purpose of this lecture was to make sure the students got the full picture with the benefit of a teacher’s verbal explanations.

The study material was written carefully and with a tone as descriptive and neutral as possible. To make comparisons meaningful, it does not follow a structure specific to Java Threads or  SCOOP  (as we might have used had we taught only one of these approaches); instead it relies in both cases on the same overall plan  (figure 2 of the paper), based on a neutral analysis of concurrency concepts and issues: threads, mutual exclusion, deadlock etc. Each section then presents, for one such general concurrency question, the solution proposed by Java Threads or SCOOP.

This self-study material, as well as everything else about the study, is freely available on the Web; see the paper for the links.

In the self-study, all students studied both the Java Threads and SCOOP materials. They were randomly assigned to two groups, for which the only difference was the order of studying the approaches. We feel that this decision addresses the ethical issue (Professor Smith Risk 4): any pedagogical effect of reading about A before B rather than the reverse, in the course of a few hours, has to be minimal if you end up reading about the two of them, and on the next day follow a lecture that also covers both.

Having all students study both approaches — a crossover approach in the terminology of [5] — should also address the Hawthorne effect (Professor Smith Risk 2): students have no particular incentive to feel that one of the approaches is more hip than the other. While they are not told that SCOOP is partly the work of the instructors, some of them may know or guess this information; the consequences, positive or negative, are limited, since they are asked in both cases to do as well as they can in answering the assessment questions.

The design of that evaluation is another crucial element in trying to avoid bias. We tried, to the extent possible, to base the assessment on objective criteria. For the first hypothesis (program understanding) the technique was to ask the students to predict the output of some simple concurrent programs. To address the risk of a binary correct/incorrect assessment, and get a more fine-grained view, we devised the programs so that they would produce output strings and measured the Levenshtein (edit) distance to the correct result. For the second hypothesis (ease of program debugging), we gave students programs exhibiting typical errors in both approaches and asked them to tell us both the line number of any error they found and an explanation. Assessing the explanation required human analysis; the idea of also assigning partial credit for pointing out a line number without providing a good explanation is that it may be meaningful that a student found that something is amiss even without being quite able to define what it is. The procedure for the third hypothesis (producing programs with fewer errors) was more complex and required two passes over the result; it requires some human analysis, as you will see in the article, but we hope that the two-pass process removes any bias.

This description of the study is only partial and you should read the article [4] for the full details of the procedure.

So what did we find in the end? Does SCOOP really makes concurrency easier to learn, concurrent programs easier to debug, and concurrent programmers less error-prone? Here too  I will refer you to the article. Let me simply mention that the results held some surprises.

In obtaining these results we tried very hard to address the Professor Smith syndrome and its four risks. Since all of our materials, procedures and data are publicly accessible, described in some detail in the paper, you can determine for yourself how well we met this objective, and whether it is possible to perform credible assessments even of one’s own work.

References

Further reading: for general guidelines on how to conduct empirical research see [5]; for ethical guidelines, applied to psychological research but generalizable, see [6].

[1] SCOOP Eiffel documentation, available here.

[2] SCOOP project documentation at ETH, available here.

[3] Software Architecture course at ETH, course page (2011).

[4] Sebastian Nanz, Faraz Torshizi, Michela Pedroni and Bertrand Meyer: Design of an Empirical Study for Comparing the Usability of Concurrent Programming Languages, to appear in ESEM 2011 (ACM/IEEE International Symposium on Empirical Software Engineering and Measurement), 22-23 September 2011. Draft available here.

[5] Barbara A. Kitchenham, Shari L. Pfleeger, Lesley M. Pickard, Peter W. Jones, David C. Hoaglin, Khaled El-Emam and Jarrett Rosenberg: Preliminary Guidelines for Empirical Research in Software Engineering, national Research Council Canada (NRC-CNRC), Report ERB-1082, 2001, available here.

[6] Robert Rosenthal: Science and ethics in conducting, analyzing, and reporting psychological research, in  Psychological Science, 5, 1994, p127-134. I found a copy cached by a search engine here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +7 (from 7 votes)

Stendhal on abstraction

This week we step away from our usual sources of quotations — the Hoares and Dijkstras and Knuths — in favor an author who might seem like an unlikely inspiration for a technology blog: Stendhal. A scientist may like anyone else be fascinated by Balzac, Flaubert, Tolstoy or Dostoevsky, but they live in an entirely different realm; Stendhal is the mathematician’s novelist. Not particularly through the themes of his works (as could be the case with  Borges or Eco), but because of their clear structure and elegant style,  impeccable in its conciseness and razor-like in its precision. Undoubtedly his writing was shaped by his initial education; he prepared for the entrance exam of the then very young École Polytechnique, although at the last moment he yielded instead to the call of the clarion.

The scientific way of thinking was not just an influence on his writing; he understood the principles of scientific reasoning and knew how to explain them. Witness the following text, which explains just about as well as anything I know the importance of abstraction. In software engineering (see for example [1]), abstraction is the key talent, a talent of a paradoxical nature: the basic ideas take a few minutes to explain, and a lifetime to master. In this effort, going back to the childhood memories of Henri Beyle (Stendhal’s real name) is not a bad start.

Stendhal’s Life of Henri Brulard is an autobiography, with only the thinnest of disguises into a novel (compare the hero’s name with the author’s). In telling the story of his morose childhood in Grenoble, the narrator grumbles about the incompetence of his first mathematics teacher, a Mr. Dupuy, who taught mathematics “as a set of recipes to make vinegar” (comme une suite de recettes pour faire du vinaigre) and tells how his father found a slightly better one, Mr. Chabert. Here is the rest of the story, already cited in [2]. The translation is mine; you can read the original below, as well as a German version. Instead of stacks and circles  — or a university’s commencement day, see last week’s posting — the examples invoke eggs and cheese, but wouldn’t you agree that this paragraph is as good a definition of abstraction, directly applicable to software abstractions, and specifically to abstract data types and object abstractions (yes, it does discuss “objects”!), as any other?

So I went to see Mr. Chabert. Mr. Chabert was indeed less ignorant than Mr. Dupuy. Through him I discovered Euler and his problems on the number of eggs that a peasant woman brings to the market where a scoundrel steals a fifth of them, then she leaves behind the entire half of the remainder and so forth. This opened my mind, I glimpsed what it means to use the tool called algebra. I’ll be damned if anyone had ever explained it to me; endlessly Mr. Dupuy spun pompous sentences on the topic, but never did he say this one simple thing: it is a division of labor, and like every division of labor it creates wonders by allowing the mind to concentrate all its forces on just one side of objects, on just one of their qualities. What difference it would have made if Mr. Dupuy had told us: This cheese is soft or is it hard; it is white, it is blue; it is old, it is young; it is mine, it is yours; it is light or it is heavy. Of so many qualities, let us only consider the weight. Whatever that weight is, let us call it A. And now, no longer thinking of cheese, let us apply to A everything we know about quantities. Such a simple thing; and yet no one was explaining it to us in that far-away province [3]. Since that time, however, the influence of the École Polytechnique and Lagrange’s ideas may have trickled down to the provinces.

References

[1] Jeff Kramer: Is abstraction the key to computing?, in Communications of The ACM, vol. 50, 2007, pages 36-42.
[2] Bertrand Meyer and Claude Baudoin: Méthodes de Programmation, Eyrolles, 1978, third edition, 1982.
[3] No doubt readers from Grenoble, site of great universities and specifically one of the shrines of French computer science, will appreciate how Stendhal calls it  “that backwater” (cette province reculée).

Original French text

J’allai donc chez M. Chabert. M. Chabert était dans le fait moins ignare que M. Dupuy. Je trouvai chez lui Euler et ses problèmes sur le nombre d’œufs qu’une paysanne apportait au marché lorsqu’un méchant lui en vole un cinquième, puis elle laisse toute la moitié du reste, etc., etc. Cela m’ouvrit l’esprit, j’entrevis ce que c’était que se servir de l’instrument nommé algèbre. Du diable si personne me l’avait jamais dit ; sans cesse M. Dupuy faisait des phrases emphatiques sur ce sujet, mais jamais ce mot simple : c’est une division du travail qui produit des prodiges comme toutes les divisions du travail et permet à l’esprit de réunir toutes ses forces sur un seul côté des objets, sur une seule de leurs qualités. Quelle différence pour nous si M. Dupuy nous eût dit : Ce fromage est mou ou il est dur ; il est blanc, il est bleu ; il est vieux, il est jeune ; il est à moi, il est à toi ; il est léger ou il est lourd. De tant de qualités ne considérons absolument que le poids. Quel que soit ce poids, appelons-le A. Maintenant, sans plus penser absolument au fromage, appliquons à A tout ce que nous savons des quantités. Cette chose si simple, personne ne nous la disait dans cette province reculée ; depuis cette époque, l’École polytechnique et les idées de Lagrange auront reflué vers la province.

German translation (by Benjamin Morandi)

Deshalb ging ich zu Herrn Chabert. In der Tat war Herr Chabert weniger ignorant als Herr Dupuy. Bei ihm fand ich Euler und seine Probleme über die Zahl von Eiern, die eine Bäuerin zum Markt brachte, als ein Schurke ihr ein Fünftel stahl, sie dann die Hälfte des Restes hinterliest u.s.w. Es hat mir die Augen geöffnet. Ich sah was es bedeutet, das Algebra genannte Werkzeug zu benutzen. Unaufhörlich machte Herr Dupuy emphatische Sätze über dieses Thema, aber niemals dieses einfache Wort: Es ist eine Arbeitsteilung, die wie alle Arbeitsteilungen Wunder herstellt und dem Geist ermöglicht seine Kraft ganz auf eine einzige Seite von Objekten zu konzentrieren, auf eine Einzige ihrer Qualitäten. Welch Unterschied für uns, wenn uns Herr Dupuy gesagt hätte: Dieser Käse ist weich oder er ist hart; er ist weiss, er ist blau; er ist alt, er ist jung; er gehört dir, er gehört mir; er ist leicht oder er ist schwer. Bei so vielen Qualitäten betrachten wir unbedingt nur das Gewicht. Was dieses Gewicht auch sei, nennen wir es A. Jetzt, ohne unbedingt weiterhin an Käse denken zu wollen, wenden wir auf A alles an, was wir über Mengen wissen. Diese einfach Sache sagte uns niemand in dieser zurückgezogenen Provinz; von dieser Epoche an werden die École Polytechnique und die Ideen von Lagrange in die Provinz zurückgeflossen sein.

VN:F [1.9.10_1130]
Rating: 9.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

The rise of empirical software engineering (II): what we are still missing

p> 

Recycled(This article was initially published in the CACM blog.)

The previous post under  the heading of empirical software engineering hailed the remarkable recent progress of this field, made possible in particular by the availability of large-scale open-source repositories and by the opening up of some commercial code bases.

Has the empirical side of software engineering become a full member of empirical sciences? One component of the experimental method is still not quite there: reproducibility. It is essential to the soundness of natural sciences; when you publish a result there, the expectation is that others will be able to replicate it. Perhaps such duplication does not happen as often and physicists and biologists would have us believe, but it does happen, and the mere possibility that someone could check your results (and make a name for himself, especially if you are famous, by disproving them) keeps experimenters on their toes. 

If we had the same norms in empirical software engineering, empirical papers would all contain a clause such as

Hampi’s source code and documentation, experimental data, and additional results are available at http://people.csail.mit.edu/akiezun/hampi

This example is, in fact, a real quote, from a paper [1] at the 2009 ISSTA conference. It shows exactly what we expect for an experimental software engineering publication: below are my results, if you want to rerun the experiments here is the URL where you will find the code (source and binary) and the data.

Unfortunately, such professionalism is the exception rather than the rule. I performed a quick check — entirely informal, as this is a blog post, not an empirical research paper! — in the ISSTA ’09 proceedings. ISSTA, an ACM conference is a good sample point, since it covers testing (plus other approaches to program analysis) and almost every paper has an  “experiment” section. I found only a very small number that, like the one cited above, give explicit reproducibility information. (Disclosure: one of those papers is ours [2].)

I believe that the situation will change dramatically and that in a few years it will be impossible to submit an empirical paper without including such information. Computer science, or at least some areas of software engineering, should actually consider themselves privileged when it comes to allowing reproducibility: all that we have to do to reproduce a result, in testing for example, is to run a program. That is easier than for a zoologist — wishing to reproduce a colleague’s experiment precisely — to gather in his lab the appropriate number of flies, chimpanzees or killer whales.

In some types of empirical software research, such as the assessment of process models or design techniques, reproducing an experiment’s setup is harder than when all you have to do is to rerun a program. But regardless of the area we must develop a true  culture of reproducibility. It is not yet there. I have personally come to take experimental results with a grain of salt; not that I particulary suspect foul play, but I simply know how easy it is, in the absence of external validation, to make a mistake in the experiments and, unwittingly, publish a paper with wrong results.

Developing a culture of reproducibility also has an effect on the refereeing process. In submitting papers with precise instructions to reproduce our results, we have sometimes remarked that referees never contact us. I hope this means they always succeed; I suspect, however, that in many cases they just do not try. If you think further about the implications, providing reproducibility instructions for a submitted paper is scary: after all a software run may fail to run for marginal reasons, such as the wrong hardware configuration or a misunderstanding of the instructions. You do not want to perform all the extra work (of making your results reproducible) just to have the paper summarily rejected because the referee is running Windows 95. Ideally, then, referees should have the possibility to ask technical questions — but anonymously, since this is the way most refereeing works. Conferences and journals generally do not support such a process.

These obstacles are implementation issues, however, and will go away. What matters for the growth of the discipline is that it needs, like experimental sciences before it, to embrace a true culture of reproducibility.

References

[1] Adam Kieun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, Michael D. Ernst: HAMPI: A Solver for String Constraints, Proceedings of the 2009 ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’09), July 19-23, 2009, Chicago.

[2] Nadia Polikarpova, Ilinca Ciupa  and Bertrand Meyer: A Comparative Study of Programmer-Written and Automatically Inferred Contracts, Proceedings of the 2009 ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’09), July 19-23, 2009, Chicago.

VN:F [1.9.10_1130]
Rating: 6.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

One cheer for incremental research

[Note: an updated version of this article (June 2011) appears in the Communications of the ACM blog.]

The world of research funding, always a little strange, has of late been prey to a new craze: paradigm-shift mania. We will only fund twenty curly-haired cranky-sounding visionaries in the hope that one of them will invent relativity. The rest of you — bit-players! Petty functionaries! Slaves toiling at incremental research!  — should be ashamed of even asking.

Take this from the US National Science Foundation’s current description of funding for Computer Systems Research [1]:

CSR-funded projects will enable significant progress on challenging high-impact problems, as opposed to incremental progress on familiar problems.

 The European Research Council is not to be left behind [2]:

Projects being highly ambitious, pioneering and unconventional

Research proposed for funding to the ERC should aim high, both with regard to the ambition of the envisaged scientific achievements as well as to the creativity and originality of proposed approaches, including unconventional methodologies and investigations at the interface between established disciplines. Proposals should rise to pioneering and far-reaching challenges at the frontiers of the field(s) addressed, and involve new, ground-breaking or unconventional methodologies, whose risky outlook is justified by the possibility of a major breakthrough with an impact beyond a specific research domain/discipline.

Frontiers! Breakthrough! Rise! Aim high! Creativity! Risk! Impact! Pass me the adjective bottle. Ground-breaking! Unconventional! Highly ambitious! Major! Far-reaching! Pioneering! Galileo and Pasteur only please — others need not apply.

As everyone knows including the people who write such calls, this is balderdash. First, 99.97% of all research (precise statistic derived from my own ground-breaking research, further funding welcome) is incremental. Second, when a “breakthrough” does happen — the remaining 0.03%  — it was often not planned as a breakthrough.

Incremental research is a most glorious (I have my own supply of adjectives) mode of doing science. Beginning PhD students can be forgiven for believing the myth of the lone genius who penetrates the secrets of time and space by thinking aloud during long walks with his best friend [3]; we all, at some stage, shared that delightful delusion. But every researcher, presumably including those who go on to lead research agencies,  quickly grows up and learns that it is not how things happen. You read someone else’s solution to a problem, and you improve on it. Any history of science will tell you that for every teenager who from getting hit by a falling apple intuits the structure of the universe there are hundreds of great researchers who look at the state of the art and decide they can do a trifle better.

Here is a still recent example, particularly telling because we have the account from the scientist himself. It would not be much of an exaggeration to characterize the entire field of program proving over the past four decades as a long series of variations on Tony Hoare’s 1969 Axiomatic Semantics paper [4]. Here Hoare’s recollection, from his Turing Award lecture [5]:

In October 1968, as I unpacked my papers in my new home in Belfast, I came across an obscure preprint of an article by Bob Floyd entitled “Assigning Meanings to Programs.” What a stroke of luck! At last I could see a way to achieve my hopes for my research. Thus I wrote my first paper on the axiomatic approach to computer programming, published in the Communications of the ACM in October 1969.

(See also note [6].) Had the research been submitted for funding, we can imagine the reaction: “Dear Sir, as you yourself admit, Floyd has had the basic idea [7] and you are just trying to present the result better. This is incremental research; we are in the paradigm-shift business.” And yet if Floyd had the core concepts right it is Hoare’s paper that reworked and extended them into a form that makes practical semantic specifications and proofs possible. Incremental research at its best.

The people in charge of research programs at the NSF and ERC are themselves scientists and know all this. How come they publish such absurd pronouncements? There are two reasons. One is the typical academic’s fascination with industry and its models. Having heard that venture capitalists routinely fund ten projects and expect one to succeed, they want to transpose that model to science funding; hence the emphasis on “risk”. But the transposition is doubtful because venture capitalists assess their wards all the time and, as soon as they decide a venture is not going to break out, they cut the funding overnight, often causing the company to go under. This does not happen in the world of science: most projects, and certainly any project that is supposed to break new ground, gets funded for a minimum of three to five years. If the project peters out, the purse-holder will only realize it after spending all the money.

The second reason is a sincere desire to avoid mediocrity. Here we can sympathize with the funding executives: they have seen too many “here is my epsilon addition to the latest buzzword” proposals. The last time I was at ECOOP, in 2005, it seemed every paper was about bringing some little twist to aspect-oriented programming. This kind of research benefits no one and it is understandable that the research funders want people to innovate. But telling submitters that every project has to be epochal (surprisingly, “epochal” is missing from the adjectives in the descriptions above  — I am sure this will soon be corrected) will not achieve this result.

It achieves something else, good neither for research nor for research funding: promise inflation. Being told that they have to be Darwin or nothing, researchers learn the game and promise the moon; they also get the part about “risk” and emphasize how uncertain the whole thing is and how high the likelihood it will fail. (Indeed, since — if it works — it will let cars run from water seamlessly extracted from the ambient air, and with the excedent produce free afternoon tea.)

By itself this is mostly entertainment, as no one believes the hyped promises. The real harm, however, is to honest scientists who work in the normal way, proposing to bring an important contribution to the  solution of an important problem. They risk being dismissed as small-timers with no vision.

Some funding agencies have kept their heads cool. How refreshing, after the above quotes, to read the general description of funding by the Swiss National Science Foundation [8]:

The central criteria for evaluation are the scientific quality, originality and project methodology as well as qualifications and track record of the applicants. Grants are awarded on a competitive basis.

In a few words, it says all there is to say. Quality, originality, methodology, and track record. Will the research be “ground-breaking” or “incremental”? We will know when it is done.

I am convinced that the other agencies will come to their senses and stop the paradigm-shift nonsense. One reason for hope is in the very excesses of the currently fashionable style. The European Research Council quote includes, by my count, nineteen ways of saying that proposals must be daring. Now it is a pretty universal rule of life that someone who finds it necessary to say the same thing nineteen times in a single paragraph does not feel sure about it. He is trying to convince himself. At some point the people in charge will realize that such hype does not breed breakthroughs; it breeds more hype.

Until that happens there is something that some of us can do: refuse to play the game. Of course we are all convinced that our latest idea is the most important one ever conceived by humankind, and we want to picture it in the most favorable light. But we should resist the promise inflation. Such honesty comes at a risk. (I still remember a project proposal, many years ago, which came back with glowing reviews: the topic was important, the ideas right, the team competent. The agency officer’s verdict: reject. The proposers are certain to succeed, so it’s not research.) For some people, there is really no choice but to follow the lead: if your entire career depends on getting external funding, no amount of exhortation will prevent you from saying what the purse-holders want to hear. But those of us who do have a choice (that is to say, will survive even if a project is rejected) should refuse the compromission. We should present our research ideas for what they are.

So: one cheer for incremental research.

Wait, isn’t the phrase supposed to be “two cheers” [9]?

All right, but let’s go at it incrementally. One and one-tenth cheer for incremental research. 

References

 

[1]  National Science Foundation, Division of Computer and Network Systems: Computer Systems Research  (CSR), at http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13385.

[2] European Research Council: Advanced Investigators Grant, at http://erc.europa.eu/index.cfmfuseaction=page.display&topicID=66.

[3] The Berne years; see any biography of Albert Einstein.

[4] C.A.R. Hoare: An axiomatic basis for computer programming, in Communications of the ACM, vol. 12, no 10, pages 576–580,583, October 1969.

[5] C.A.R. Hoare: The Emperor’s Old Clothes, in Communications of the ACM, vol. 24, no.  2, pages 75 – 83, February 1981.

[6] In the first version of this essay I wrote “Someone should celebrate the anniversary!”. Moshe Vardi, editor of Communications of the ACM, has informed me that the October 2009 issue will include a retrospective by Hoare on the 1969 paper. I cannot wait to see it.

[7] Robert W. Floyd: Assigning meanings to programs, in Proceedings of the American Mathematical Society Symposia on Applied Mathematics, vol. 19, pp. 19–31, 1967.

[8] Swiss National Science Foundation:  Projects – Investigator-Driven Research, at http://www.snf.ch/E/funding/projects/Pages/default.aspx. Disclosure: The SNSF kindly funds some of my research.

[9] E.M. Forster: Two Cheers for Democracy, Edward Arnold, 1951.

VN:F [1.9.10_1130]
Rating: 8.3/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)

The good and the ugly

Once in a while one hits a tool that is just right. An example worth publicizing is the EasyChair system for conference management [1], which  — after a first experience as reviewer —  I have selected whenever I was in a position to make the choice for a new conference in recent years.

At first sight, a conference management system does not seem so hard to put together; it is in fact a traditional project topic for software engineering courses. But this apparent simplicity is deceptive, as a usable system must accommodate countless small and large needs. To take just one example, you can be a member of a program committee for a conference and also submit a paper to it; this implies strict rules about what you can see, for example reviews of other people’s papers with the referees’ names, and what you should not see. Taking care of myriad such rules and requirements requires in-depth domain knowledge about conferences, and a thorough analysis.

EasyChair is based on such an analysis. It knows what a conference is, and understands what its users need. Here for example is my login screen on EasyChair:

easychair

EasyChair knows about me: I only have one user name and one password. It knows the conferences in which I have been involved (and found them by itself). It knows about my various roles: chair, author etc., and will let me do different things depending on the role I choose.

The rest of the tool is up to the standards set by this initial screen. Granted, the Web design is very much vintage 1994; a couple of hours on the site by a professional graphics designer would not hurt, but, really, who cares? What matters is the functionality, and it is not by accident that EasyChair’s author is a brilliant logician [2]. Here is someone who truly understands the business of organizing and refereeing a conference, has translated this understanding into a solid logical model, and has at every step put himself in the shoes of the participants in the process. As a user you feel that everything has been done to make you feel comfortable  and perform efficiently, while protecting you from hassle.

Because this is all so simple and natural, you might forget that the system required extensive design. If you need proof, it suffices to consider, by contrast, the ScholarOne system, which as punishment for our sins both ACM and IEEE use for their journals.

Even after the last user still alive has walked away, ScholarOne will remain in the annals of software engineering, as a textbook illustration of how not to design a system and its user interface. Not the visuals; no doubt that site had a graphics designer. But everything is designed to make the system as repellent as possible for its users. You keep being asked for information that you have already entered. If you are a reviewer for Communications of the ACM and submit a paper to an IEEE Computer Society journal, the system does not remember you, since CACM has its own sub-site; you must re-enter everything. Since your identifier is your email address, you will have two passwords with the same id, which confuses the browser. (I keep forgetting the appropriate password, which the site obligingly emails me, in clear.) IEEE publications have a common page, but here is how it looks:

scholarone-detail

See the menu on the right? It is impossible  to see the full names of each of the “Transactio…”. (No tooltips, of course.) Assume you just want to know what one of them is, for example “th-cs”: if you select it you are prompted to provide all kinds of information (which you have entered before for other publications), before you can even proceed.

This user interface design (the minuscule menu, an example of what Scott Meyers calls the “Keyhole problem” [3]) is only a small part of usability flaws that plague the system. The matter is one of design: the prevailing viewpoint is that of the  designers and administrators, not the users. I was not really surprised when I found out that the system comes from the same source as the ISI Web of Science system (which should never be used for computer science, see [4]).

It is such a pleasure in contrast to see a system like EasyChair  — for all I know a one-man effort — with its attention to user needs, its profound understanding of the problem domain, and its constant improvements over the years.

References

[1] EasyChair system, at http://www.easychair.org.

[2] Andrei Voronkov, http://www.voronkov.com/.

[3] Scott Meyers, The Keyhole Problem, at http://www.aristeia.com/TKP/draftPaper.pdf; see also slides at http://se.ethz.ch/~meyer/publications/OTHERS/scott_meyers/keyhole.pdf

[4]  Bertrand Meyer, Christine Choppy, Jan van Leeuwen, Jørgen Staunstrup: Research Evaluation for Computer Science, in  Communications  of the ACM, vol. 52, no. 4, pages 131-134, online at http://portal.acm.org/citation.cfm?id=1498765.1498780 (requires subscription). Longer version, available at http://www.informatics-europe.org/docs/research_evaluation.pdf (free access).

VN:F [1.9.10_1130]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Computer technology: making mozzies out of betties

Are you a Beethoven or a Mozart? If you’ll pardon the familarity, are you more of a betty or more of a mozzy? I am a betty. I am not referring to my musical abilities but to my writing style; actually, not the style of my writings (I haven’t completed any choral fantasies yet) but the style of my writing process. Mozart is famous for impeccable manuscripts; he could be writing in a stagecoach bumping its way through the Black Forest, on the kitchen table in the miserable lodgings of his second, ill-fated Paris trip, or in the antechamber of Archbishop Colloredo — no matter: the score comes out immaculate, not reflecting any of the doubts, hesitations and remorse that torment mere mortals. 

 Mozart

Beethoven’s music, note-perfect in its final form, came out of a very different process. Manuscripts show notes overwritten, lines struck out in rage, pages torn apart. He wrote and rewrote and gave up and tried again and despaired and came back until he got it the way it had to be.

Beethoven

How I sympathize! I seldom get things right the first time, and when I had to use a pen and paper I  almost never could produce a clean result; there always was one last detail to change. As soon as I could, I got my hands on typewriters, which removed the effects of ugly handwriting, but did not solve the problem of second thoughts followed by third thoughts and many more. Only with computers did it become possible to work sensibly. Even with a primitive text editor, the ability to try out ideas then correct and correct and correct is a profound change of the creation process. Once you have become used to the electronic medium, using a pen and paper seems as awkard and insufferable as, for someone accustomed to driving a car, being forced to travel in an oxen cart.

This liberating effect, the ability to work on your creations as a sculptor kneading an infinitely malleable material, is one of the greatest contributions of computer technology. Here we are talking about text, but the effect is just as profound on other media, as any architect or graphic artist will testify.

The electronic medium does not just give us more convenience; it changes the nature of writing (or composing, or designing). With paper, for example, there is a great practical difference between introducing new material at the end of the existing text,  which is easy, and inserting it at some unforeseen position, which is cumbersome and sometimes impossible. With computerized tools, it doesn’t matter. The change of medium changes the writing process and ultimately the writing: with paper the author ends up censoring himself to avoid practically painful revisions; with software tools, you work in whatever order suits you.

Technical texts, with their numbered sections and subsections, are another illustration of the change: with a text processor you do not need to come up with the full plan first, in an effort to avoid tedious renumbering later. You will use such a top-down scheme if it fits your natural way of working, but you can use any other  one you like, and renumber the existing sections at the press of a key. And just think of the pain it must have been to produce an index in the old days: add a page (or, worse, a paragraph, since it moves the following ones in different ways) and you would  have to recheck every single entry.

Recent Web tools have taken this evolution one step further, by letting several people revise a text collaboratively and concurrently (and, thanks to the marvels of  longest-common-subsequence algorithms and the resulting diff tools, retreat to an earlier version if in our enthusiasm to change our design we messed it up) . Wikis and Google Docs are the most impressive examples of these new techniques for collective revision.

Whether used by a single writer or in a collaborative development, computer tools have changed the very process of creation by freeing us from the tyranny of physical media and driving to zero the logistic cost of  one or a million changes of mind. For the betties among us, not blessed with an inborn ability to start at A, smoothly continue step by step, and end at Z, this is a life-changer. We can start where we like, continue where we like, and cover up our mistakes when we discover them. It does not matter how messy the process is, how many virtual pages we tore away, how much scribbling it took to bring a paragraph to a state that we like: to the rest of the world, we can present a result as pristine as the manuscript of a Mozart concerto.

These advances are not appreciated enough; more importantly, we do not take take enough advantage of them. It is striking, for example, to see that blogs and other Web pages too often remain riddled with typos and easily repairable mistakes. This is undoubtedly because the power of computer technology tempts us to produce ever more documents and in the euphoria to neglect the old ones. But just as importantly that technology empowers  us to go back and improve. The old schoolmaster’s advice — revise and revise again [1] — can no longer  be dismissed as an invitation to fruitless perfectionism; it is right, it is fun to apply, and at long last it is feasible.

Reference

 

[1] “Vingt fois sur le métier remettez votre ouvrage” (Twenty times back to the loom shall you bring your design), Nicolas Boileau

VN:F [1.9.10_1130]
Rating: 8.7/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

The understated breakthrough

You must have seen articles in that genre: the author collects a few  imprudent technology predictions from the past and pokes fun at their authors, the more prestigious the better. Favorites — copy-pasted, with or without fact-checking, from one  such piece to another — are Lord Kelvin’s 1895 pronouncement that “Heavier-than-air flying machines are impossible” and Bill Gates’s comment (apocryphal, but who cares?) that no one needs more than 640KB of memory. Run a Bing search for something like “wrong technology predictions” and you will find dozens of such collections.

A few years ago they often derided turn-of-the-previous-century visions of communication through a videophone, as in this depiction by Villemard:

 
Villemard_videophone

 
A bit one-sided in its view of gender roles, but delightful and amusing. “Look what in 1910 they thought the future would bring!” In 2009 it is no longer laughable: the future is here, and — other than display techniques and women’s fashions — it is exactly this.

I am amazed by the lack of hype that has been associated with Skype. With close to 500 million accounts, and 17 million of them connected at a typical time, it is not exactly a secret; but it is remarkable how little buzz it gets in the media and in our collective consciousness.  The company itself seems to be more interested in getting the job done than in glamour. If we look at the substance, however, few technologies come to mind from the past few decades that have influenced people’s lives so directly and beneficially. From the launch of Skype in 2003 it became possible to have free calls worldwide;  then in 2005 free video was included. Suddenly this videotelephony, fodder for visionaries and cartoonists, became available to anyone with an Internet connection — for free! Almost as unbelievable as the technical feat is that this all happened without headlines, without grandiose pronouncements, and without any forewarning by the technology pundits. Almost overnight we take a giant collective step, and we act as if nothing happened.

With and without video, Skype has had a profound effect on the daily communications of countless people. It also has many professional applications; in an article of last year [2] I described how we use it, together with other technologies such as Google Docs, to turn the old “Code inspection” of software engineering into something far more useful to the project and attractive to the participants.

As always with a breakthrough technology, you find the naysayers; in the universities of a large Western country, system administrators have — can anyone believe this? — banned the use of  Skype, invoking some mysterious and unsubstantiated security risks. And certainly Skype is not perfect; we still get the occasional dropped call. What is more relevant than the occasional annoyance is how well the technology is designed; I have used the audio part, with quite reasonable performance, on a dial-up line from a remote location. And successive versions keep bringing in new wonders.

If there was an award for the highest usefulness to brouhaha ratio, Skype would be the favorite. Cheers for the most practical, least hyped technology of our time.

References

 

[1] Futuristic postcards by Villemard, from an exhibition.

[2] Design and Code Reviews in the Age of the Internet (preprint of an article in Communications of the ACM, Sept. 2008).

VN:F [1.9.10_1130]
Rating: 9.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)