Archive for the ‘Computer science’ Category.

The power and terror of imagination

Reading notes. From: Quelques éléments d’histoire des nombres négatifs (Elements of a history of negative numbers) by Anne Boyé, Proyecto Pénélope, 2002, revision available here; On Solving Equations, Negative Numbers, and Other Absurdities: Part II by Ralph Raimi, available  here; Note sur l’histoire des nombres entiers négatifs (Note on the History of Negative Numbers) by Rémi Lajugie, 2016, hereThe History of Negative Numbers by Leo Rogers, here; Historical Objections against the Number Line, by Albrecht Heeffer, here; Making Sense of Negative Numbers by Cecilia Kilhamn, 2011 PhD thesis at the University of Gothenburg, here.  Also the extensive book by Gert Schubring on Number Concepts Underlying the Development of Analysis in 17-19th Century France and Germany, here. Translations are mine (including from Maclaurin and De Morgan, retranslated from Lajugie’s and Boyé’s French citations). This excursion was spurred by a side remark in the article How to Take Advantage of the Blur Between the Finite and the Infinite by the recently deceased mathematician Pierre Cartier, available here.

negative_numbers

At dinner recently, with non-scientists, discussion revolved about ages and a very young child, not even able to read yet, volunteered about his forthcoming little brother that “when he comes out his age will be zero”. An adult remarked “indeed, and right now his age is minus five months”, which everyone young and old seemingly found self-evident. How remarkable!

From a elite concept to grade school topic

It is a characteristic of potent advances in human understanding that for a while they are understandable to a few geniuses only, or, if not geniuses, to a handful of forward-thinking luminaries, and a generation later, sometimes less, they are taught in grade school. When I came across object-oriented programming, those of us who had seen the light, so to speak, were very few. Feeling very much like plotting Carbonari, we would excitedly meet once in a while in exotic locations (for my Simula-fueled band usually in Scandinavia, although for the Smalltalk crowd it must have been California) to share our shared passion and commiserate about the decades it would take for the rest of humankind to see the truth. Then at some point, almost overnight, without any noticeable harbinger, the whole thing exploded and from then on it was object-oriented everything. Nowadays every beginning programmer talks objects — I did not write “understands”, they do not, but that will be for another article.

Zero too was a major invention. Its first recorded use as a number (not just a marker for absent entities) was in India in the first centuries of our era. It is not hard to imagine the mockeries. “Manish here has twenty sheep, Rahul has twelve sheep, and look at that nitwit Shankar, he sold all his sheep and still claims he has some, zero of them he says! Can you believe the absurdity? Ha ha ha.”

That dialog is imaginary, but for another momentous concept, negative numbers, we have written evidence of the resistance. From the best quarters!

The greatest minds on the attack

The great Italian mathematician Cardan (Gerolamo Cardano), in his Ars Magna from 1545, was among the skeptics. As told in a 1758 French History of Mathematics by Montucla (this quote and the next few ones are from Boyé):

In his article 7 Cardan proposes an equation which in our language would be x2 + 4 x = 21 and observes that the value of x can equally be +3 or -7, and that by changing the sign of the second term it becomes -3 or +7. The name he gives to such values is “fake”.

The words I am translating here as “fake values” are, in Montucla, valeurs feintes, where feint in French means feigned, or pretended (“pretend values”). Although I have not seen the text of Ars Magna, which is in Latin anyway, I like to think that Cardan was thinking of the Italian word finto. (Used for example  in the title of an opera composed by Mozart at the age of 19, La Finta Giardinera, the fake girl gardener — English has no feminine for “gardener”. The false gardenerette in question is a disguised marchioness.) It is fun to think of negative roots as feigned.

Cardan also uses terms like “abundant” versus “failing” quantities (abondantes and défaillantes in French texts) for positive and negative:

Simple advice: do not confuse failing quantities with abundant quantities. One must add the abundant quantities between themselves, also subtract failing quantities between themselves, and subtract failing quantities from abundant quantities but only by taking species into account, that is to say, only operate same with same […]

There is a recognition of negative values, but with a lot of apprehension. Something strange, the author seems to feel, is at play here. Boyé cites the precedent of Chinese accountants who could manipulate positive values through black sticks and negative ones through red sticks and notes that it resembles what Cardan seems to be thinking here. In the fifteenth century, Nicolas Chuquet “used negative numbers as exponents but referred to them as `absurd numbers’”.

For all his precautions, Cardan did consider negative quantities. No lesser mind as Descartes, a century later (La Géométrie, 1637), is more circumspect. In discussing roots of equations he writes:

Often it turns out that some of those roots are false, or less than nothing [“moindres que rien”] as if one supposes that x can also denote the lack of a quantity, for example 5, in which case we have x + 5 = 0, which, if we multiply it by x3 − 9 x2  + 26 x − 24 = 0 yields  x4 − 4 x3 − 19 x2 + 106 x − 120 = 0, an equation for which there are four roots, as follows: three true ones, namely 2, 3, 4, and a false one, namely 5.

Note the last value: “5”. Not a -5, but a 5 dismissed as “false”. The list of exorcising adjectives continues to grow: negative values are no longer “failing”, or “fake”, or “absurd”, now for Descartes they are “false”!  To the modern mind they are neither more nor less true than the “true” ones, but to him they are still hot potatoes, to be handled with great suspicion.

Carnot cannot take the heat

One more century later we are actually taking a step back with Lazare Carnot. Not the one of the thermodynamic cycle — that would be his son, as both were remarkable mathematicians and statesmen. Lazare in 1803 cannot hide his fear of negative numbers:

If we really were to obtain a negative quantity by itself, we would have to deduct an effective quantity from zero, that is to say, remove something from nothing : an impossible operation. How then can one conceived a negative quantity by itself?.

(Une quantité négative isolée : an isolated negative quantity, meaning a negative quantity considered in isolation). How indeed! What a scary thought!

The authors of all these statements, even when they consider negative values, cannot bring themselves to talk of negative numbers, only of negative quantities. Numbers, of course, are positive: who has ever heard of a shepherd who is guarding a herd of minus 7 lambs? Negative quantities are a slightly crazy concoction to be used only reluctantly as a kind of kludge.

Lajugie mentions another example, mental arithmetic: to compute 19 x 31  in your head, it is clever to multiply (20 -1) by (30 + 1), but then as you expand the product by applying the laws of distributivity you get negative values.

De Morgan too

We move on by three decades to England and Augustus De Morgan, yes, the one who came up with the two famous laws of logic duality. De Morgan in 1803, as cited by Raimi:

8-3 is easily understood; 3 can be taken from 8 and the remainder is 5; but 3-8 is an impossibility; it requires you to take from 3 more than there is in 3, which is absurd. If such an expression as 3-8 should be the answer to a problem, it would denote either that there was some absurdity inherent in the problem itself, or in the manner of putting it into an equation.

Raimi points out that “De Morgan is not naïve” but wants to caution students about possible errors. Maybe, but we are back to fear and to words such as “absurd”, as used by Chuquet three centuries before. De Morgan (cited by Boyé) doubles down in his reluctance to accept negatives as numbers:

0 − a is just as inconceivable as -a.

Here is an example. A father is 56 years old and his [son] is 29 years old. In how many years will the father’s age be twice his son’s age? Let x be that number of years; x satisfies 56 +x = 2 (29 + x). We find x = -2.

Great, we say, he got it! This simple result is screaming at De Morgan but he has to reject it:

This result is absurd. However if we change x into -x and correspondingly resolve 56−x = 2 (29−x), we find x = -2. The [previous] negative answer shows that we had made an error in the initial phrasing of the equation.

In other words, if you do not like the solution, change the problem! I too can remember a few exam situations in which I would have loved to make an equation more sympathetic by replacing a plus sign with a minus. Too bad no one told me I could.

De Morgan’s comment is remarkable as the “phrasing of  the equation” contained no “error” whatsoever.   The equation correctly reflected the problem as posed. One could find the statement of the problem mischievous (“in how many years” suggests a solution in the future whereas there is only one in the past), but the equation is meaningful and  has a solution — one, however, that horrifies De Morgan. As a result, when discussing the quadratic (second-degree) equation ax2 + bx + c = 0, instead of accepting that a, b and c can be negative, he distinguishes no fewer than 6 cases, such as ax2 – bx + c = 0, ax2 + bx – c = 0 etc. The coefficients are always non-negative, it is the operators that change between + and  -. As a consequence, the determinant actually has two possible values, the one familiar to us, b2 – 4ac, but also b2 + 4ac for some of the cases. According to Raimi, many American textbooks of the 19th century taught that approach, forcing students to remember all six cases. (For a report about a current teaching distortion of the same topic, see a recent article on the present blog, “Mathematics Is Not a Game of Hit and Miss”, here.)

De Morgan (cited here by Boyé) feels the need to turn this reluctance to use negative numbers into a general rule:

When the answer to a problem is negative, by changing the sign of x in the equation that produced the result, we can discover that an error was made in the method that served to form this equation, or show that the question asked by the problem is too limited.

Sure! It is no longer “if the facts do not fit the theory, change the facts” (a sarcastic definition of bad science), but also “if you do not like the solution, change the problem”. All the more unnecessary (to a modern reader, who thanks to the work of countless mathematicians over centuries learned negative numbers in grade school, and does not spend time wondering whether they mean something) that if we keep the original problem the computed solution, x = -2, makes perfect sense: the father was twice his son’s age two years ago. The past is a negative future. But to see things this way, and to accept that there is nothing fishy here, requires a mindset for which an early 19-th century mathematician was obviously not ready.

And Pascal, and Maclaurin

Not just a mathematician but a great mathematical innovator. What is remarkable in all such statements against negative numbers is that they do not emanate from little minds, unable to grasp abstractions. Quite the contrary! These negative-number-skeptics are outstanding mathematicians. Lajugie gives more examples from the very top. Blaise Pascal in 1670:

Too much truth surprises; I know people who cannot understand that when you deduct 4 from zero, what remains is zero.

(Oh yes?, one is tempted to tell the originator of probability theory, who was fascinated by betting and games of chance: then I put the 4 back and get 4? Quick way to get rich. Give me the address of that casino please.) A friend of Pascal, skeptical about the equality -1 / 1 = 1 / -1: “How could a smaller number be to a larger one as a larger one to a smaller one?”. An English contemporary, John Wallis, one of the creators of infinitesimal calculus — again, not a nitwit! — complains that a / 0 is infinity, but since in a / -1 the denominator is lesser than zero it must follow that a / -1, which is less than zero (since it is negative by the rule of signs), must also be greater than infinity! Nice one actually.

This apparent paradox also bothered the great scientist D’Alembert, the 18-th century co-editor of the Encyclopédie, who resolves it, so to speak, by stating (as cited by Heeffer) that “One can only go from positive to negative through either zero or through infinity”; so unlike Wallis he accepts that 1 / -a is negative, but only because it becomes negative when it passes through infinity. D’Alembert concludes (I am again going after Heeffer) that it is wrong to say that negative numbers are always smaller than zero. Euler was similarly bothered and similarly looking for explanations through infinity: what does Leibniz’s expansion of 1 / (1 – x)  into 1 + x + x2 + x3 + … become for x = 2? Well, the sum 1 + 2 + 4 + 8 + … diverges, so 1 / -1 is infinity!

We all know the name “Maclaurin” from the eponymous series. Colin Maclaurin  wrote in 1742, decades after Pascal (Boyé):

The use of the negative sign in algebra leads to several consequences that one initially has trouble accepting and has led to ideas that seem not to have any real foundation.

Again the supposed trouble is the absence of an immediately visible connection to everyday reality (a “real foundation”). And again Maclaurin accepts that quantities can be negative, but numbers cannot:

While abstract quantities can be both negative and positive, concrete quantities are not always capable of being the opposite of each other.

(cited by Kilhamn). Apparently Colin’s wife Anne never thought of buying him a Réaumur thermometer (see below) for his birthday.

Yes, two negatives make a positive

We may note that the authors cited above, and many of their contemporaries, had no issue manipulating negative quantities in some contexts, and to accept the law of signs, brilliantly expressed by the Indian mathematician Brahmagupta  in the early 7th century (not a typo); as cited by Rogers:

A debt minus zero is a debt.
A fortune minus zero is a fortune.
Zero minus zero is a zero.
A debt subtracted from zero is a fortune.
A fortune subtracted from zero is a debt.
The product of zero multiplied by a debt or fortune is zero.
The product of zero multiplied by zero is zero.
The product or quotient of two fortunes is one fortune.
The product or quotient of two debts is one fortune.
The product or quotient of a debt and a fortune is a debt.
The product or quotient of a fortune and a debt is a debt.

That view must have been clear to accountants. Whatever Pascal may have thought, 4 francs removed from nothing do not vanish; they become a debt. What the great mathematicians cited above could not fathom was that there is such a thing as a negative number. You can count up as far as your patience will let you; you can then count down, but you will inevitably stop. Everyone knows that, and even Pascal or Euler have trouble going beyond. (Old mathematical joke: “Do you know about the mathematician who was afraid of negative numbers? He will stop at nothing to avoid them”.)

The conceptual jump that took centuries to achieve was to accept that there are not only negative quantities, but negative numbers: numbers in their own right, not just temporarily  negated positive numbers (that is, the only ones to which we commonly rely in everyday life), prefaced with a minus sign because we want to use them as “debts”, but with the firm intention to move them back to the other side so as to restore their positivity  — their supposed naturalness —  at the end of the computation. We have seen superior minds “stopping at nothing” to avoid that step.

Others were bolder; Schubring has a long presentation of how Fontenelle, an 18-th century French scientist and philosopher who contributed to many fields of knowledge,  made the leap.

Not everyone may yet get it

While I implied above that today even small children understand the concept, we may note in passing that there may still be people for whom it remains a challenge. Lajugie notes that the Fahrenheit temperature scale frees people from having to think about negative temperatures in ordinary circumstances, but since the 18-th century the (much more reasonable) Réaumur thermometer and Celsius scale goes under as well as above zero, helping people get familiar with negative values as something quite normal and not scary. (Will the US ever switch?)

Maybe the battle is not entirely won.  Thanks to Rogers I learned about the 2018 Lottery Incident in the United Kingdom of Great Britain and Northern Ireland, where players could win by scratching away, on a card, a temperature lower than the displayed figure. Some temperatures were below freezing. The game had to be pulled after less than a week as a result of player confusion. Example complaints included this one from a  23-year-old who was adamant she should have won:

On one of my cards it said I had to find temperatures lower than -8. The numbers I uncovered were -6 and -7 so I thought I had won, and so did the woman in the shop. But when she scanned the card the machine said I hadn’t. I phoned Camelot [the lottery office] and they fobbed me off with some story that -6 is higher – not lower – than -8 but I’m not having it. I think Camelot are giving people the wrong impression – the card doesn’t say to look for a colder or warmer temperature, it says to look for a higher or lower number. Six is a lower number than 8. Imagine how many people have been misled.

Again, quantities versus numbers. As we have seen, she could claim solid precedent for this reasoning. Most people, of course, have figured out that while 8 is greater than 6 (actually, because of that), -6 is greater than -8. But as Lajugie points out the modern, rigorous definition of negative numbers is (in the standard approach) far from the physical intuition (which typically looks like the two-directional line pictured at the beginning of this article, with numbers spreading away from zero towards both the right and the left). The picture helps, but it is only a picture.

Away from the perceptible world

If we ignore the intuition coming from observing a Réaumur or Celsius thermometer (which does provide a “real world” guide), the early deniers of negative numbers were right that this concept does not directly reflect the experiential understanding of numbers, readily accessible to everyone. The general progress of science, however, has involved moving away from such immediate intuition. Everyday adventures (such as falling on the floor) absolutely do not suggest to us that matter is made of sparse atoms interacting through electrical and magnetic phenomena. This march towards abstraction has guided the evolution of modern science — most strikingly, the evolution of modern mathematics.

Some lament this trend; think of the negative reactions to the so-called “new math”. (Not from me. I was caught by the  breaking of the wave and loved every minute of it.) But there is no going back; in addition, it is well known that some of the initially most abstract mathematical development, initially pursued without any perceived connection with reality, found momentous unexpected applications later on; two famous examples are Minkowski’s space-time formalism, which provided the mathematical framework for specifying relativity, and number-theoretical research about factoring large numbers into primes, which made modern cryptography (and hence e-commerce) possible.

Negative numbers too required abstraction to acquire mathematical activity. That step required setting aside the appeal to intuition and considering the purely concepts solely through its posited properties. We computer scientists would say “applying the abstract data type approach”. The switch took place sometime in the middle of the 19th century, spurred among others by Évariste Galois. The German mathematician Hermann Hankel — who lived only a little longer than Galois — explained clearly how this transition occurred for negative numbers (cited by Boyé among others):

The [concept of] number is no longer today a thing, a substance that is supposed to exist outside of the thinking subject or the objects that lead to it being considered; it is no longer an independent principle, as the Pythagoreans thought. […] The mathematician considers as impossible only that which is logically impossible, in the sense of implying a contradiction. […] But if the numbers under study are logically possible, if the underlying concept is defined clearly and distinctly, the question can no longer be whether a substrate exists in the world of reality.

A very modern view: if you can dream it, and you can make it free of contradiction (well, Hankel lived in the blissful times before Gödel), then you can consider it exists. An engineer might replace the second of these conditions by: if you can build it. And a software engineer, by: if you can compile and run it. In the end it is all the same idea.

Formally: a general integer is an equivalence class

In modern mathematics, while no one forbids you from clinging for help to some concrete intuition such as the Celsius scale, it is not part of the definition. Negative numbers are formally defined members of the zoo.

For those interested (and not remembering the details), the rigorous definition goes like this. We start from zero-or-positive integers (the set N of “natural” numbers) and consider pairs [a, b] of numbers (as we would do to define rationals, but the sequel quickly diverges). We define an equivalence relation which holds with another pair [a’, b’] if a + b’ = a’ + b. Then we can define the set Z of all integers (positive, zero, negative) as the quotient of N x N by that relation. The intuition if that the characteristic property of an equivalence class, such as [1, 4], [2, 5],  [3, 6]… , is that b – a, the difference between the second and first values, is the same for all pairs: 3 in this example (4 – 1, 5 – 2, 6 – 3 etc.). At least that property holds for b >= a; since we are starting from N, subtraction is defined only in that case. But then if we take that quotient as the definition of Z, we call members of that set “negative”, by pure convention, whenever b < a (if this property holds for one of the pairs in an equivalence class it holds for all of them), and positive if b > a. Zero is obtained for a = b.

We reestablish the connection with our good old natural integers by identifying N with the subset of Z for which b >= a. (This is an informal statement; the correct technical phrasing is that there is a “bijection” — a one-to-one correspondence, in fact an isomorphism — between that subset and N.) So we have plunged, or “embedded”, N into something bigger, to which most of its treasured properties (associativity and commutativity of addition etc.) immediately spread, while some limitations disappear; in particular, unlike in N, we can now subtract any Z integer from any other.

We also get the opposites of numbers as a result: for any m in Z, we can easily prove that there is another one n such that m + n = 0. That n can be written -m. The property is true for both positive and negative numbers, concepts that are also easy to define: we show that “>” is one of those operations that extend from N to Z, and the positive numbers are those m such that m > 0. Then if m is positive -m is negative, and conversely; 0 is the only number for which m = -m.

Remarkably, Z too is in one-to-one correspondence with N. (It is one of the definitions of an infinite set that it can be in one-to-one correspondence with one of its strict subsets, something that is obviously not possible for a finite set. To shine in cocktail parties you can refer to this property as “Dedekind-infinite”.) In other words, we have uncovered yet a new attraction of Hilbert’s Grand Hotel: the hotel has an annex, ready for the case of a guest coming with an unannounced companion. The companion will be hosted in the annex, in a room uniquely paired with the original guest’s room. The annex is a second hotel, but it is not exactly like the first: it does not have an annex of its own in the form of yet another hotel. It does have an annex, but that is the original hotel (the hotel of which it itself is the annex).

If you were not aware of the construction through equivalence classes of pairs and your reaction is “so much ado about so little! I do not need any of this to understand negative numbers and to know that m + -m = 0”, well, maybe, but you are missing part of the story: the observation that even the “natural” numbers are not that natural. Those we can readily apprehend as part of “natural” reality are the ones from 1 to something like 1000,  denoting quantities that we can reasonably count. If you really have extraordinary patience and time make this 1000,000 or even 1 million, that does not change the argument.

Even zero, as noted, took millennia to be recognized as a number. Beyond the numbers that we can readily fathom in relation to our experience at human scale, the set of natural integers is also an intellectual fiction. (Its official construction in the modern mathematical canon is seemingly even more contorted than the extension to Z sketched above: N, in the so-called Zermelo-Fraenkel theory (more pickup lines for cocktail parties!) contains the empty set for 0, and then sets each containing the previous one and a set made of that previous one. It is clearer with symbols: ø, {ø}, {ø, {ø}}, {ø, {ø}, {ø, {ø}}}, ….)

Coming back to negative numbers, Riemann (1861, cited by Schubring) held their construction as a fundamental step in the generalization process that characterizes mathematics, beautifully explaining the process:

The original object of mathematics is the integer number; the field of study increases only gradually. This extension does not happen arbitrarily, however; it is always motivated by the fact that the initially restricted view leads toward a need for such an extension. Thus the task of subtraction requires us to seek such quantities, or to extend our concept of quantity in such a way that its execution is always possible, thus guiding us to the concept of the negative.

Nature and nurture

The generalization process is also a process of abstraction. The move away from the “natural” and “intuitive” is inevitable to understand negative numbers. All the misunderstandings and fears by great minds, reviewed above, were precisely caused by an exaggerated, desperate attempt to cling to supposedly natural concepts. And we only talked about negative numbers! Similar or worse resistance met the introduction of imaginary and complex numbers (the names themselves reflect the trepidation!), quaternions and other fruitful but artificial creation of mathematics. Millenia before, the Greeks experienced shock when they realized that numbers such as π and the square root of 2 could not be expressed as ratios of integers.

Innovation occurs when someone sets out to disprove a statement of impossibility. (This technique also lies behind one approach to solving puzzles and riddles: you despair that there is no way out; then try to prove that there is no solution. Failing to complete that proof might end up opening for you the path to one.)

Parallels exist between innovators and children. Children do not know yet that some things are impossible; they make up ways. Right now I am sitting next to the Rhine and I would gladly take a short walk on the other bank, but I do not want to go all the way to the bridge and back. If I were 4 years old, I would dream up some magic carpet or other fancy device, inferred from bedtime stories, that would instantly transport me there. We grow up and learn that there are no magic carpets, but true innovators who see an unsolved problem refuse to accept that state of affairs.

In their games, children often use the conditional: “I would be a princess, and you would be a magician!”. Innovators do this too when they refuse to be stopped by conventional-wisdom statements of impossibility. They set out to disprove the statements. The French expression “prouver le mouvement en marchant”, prove movement by walking, refers to the Greek philosophers Diogenes of Sinope and  Zeno of Elea. Zeno, the story goes, used the paradox of Achilles and the tortoise to claim he had proved that movement is impossible. Diogenes proved the reverse by starting to walk.

In mathematics and in computer science, we are even more like children because we can in fact summon our magic carpets — build anything we dream of, provided we can define it properly. Mathematics and computer science are among the best illustrations of Yuval Noah Harari’s thesis that a defining characteristic of the human race is our ability to tell ourselves stories, including very large and complex stories. A mathematical theory is a story that we tell ourselves and to which we can convert other mathematicians (plus, if the theory is really successful, generations of future students). Computer programs are the same with the somewhat lateral extra condition that we must also enable some computing system to execute it, although that system is itself a powerful story that has undergone the same process. You can find variants of these observations in such famous pronouncements as Butler Lampson’s “in computer science, we can solve any problem by introducing an extra level of indirection” and Alan Kay‘s  “the best way to predict the future is to invent it”.

There is a difference, however, with children’s role-playing; and it can have dramatic effects. Children can indulge in make-believe for quite some time, continuing to live their illusions until they grow up and become reasonable. Normally they will not experience bad consequences (well, apart from the child who believes a little too hard, or from a window little too high, that his arms really are wings.) In adult innovation, sooner or later you have to reconcile the products of your imagination with the world. It may be the physical world (your autonomous robot was fantastic in the lab but it requires heavy batteries making it impractical), but things are just as bad with the virtual world of mathematics or software. It is great to define and extend your own freaky artificial worlds, but at some point you have to make sure they are consistent not just with already defined worlds but with themselves. As noted earlier, a mathematical concoction, however audacious, should be free of contradictions; and a software concept, however powerful, should be implementable. (Efficiently implementable.)

By any measure the most breathtaking virtual construction of modern mathematics is Cantor’s set theory, which scared many mathematicians,  the way negative numbers had terrified their predecessors. (Case in point: the editor of a journal to which Cantor had submitted a paper wrote that it was “a hundred years too soon”.  Cantor did not want to wait until 1984. The great mathematician Kronecker described him as “a corrupter of youth”. And so on.) More enlightened colleagues, however, soon recognized the work as ushering in a new era. Hilbert, in particular, was a great supporter, as were many of the top names in several countries. Then intellectual disaster struck.

Cantor himself and others, most famously Russell in a remark included in a letter of Frege, noticed a problem. If sets can contain other sets, and even contain themselves (the set of infinite sets must be infinite), what do we make of the set of all sets that do not contain themselves? Variants of this simple question so shook the mathematical edifice that it took a half-century to put things back in order.

Dream, check, build

Cantor, for his part, went into depression and illness. He died destitute and desperate. There may not have been a direct cause-to-effect relationship, but certainly the intellectual rejection and crisis did not help.

All the sadder that in the end set theory, after significant cleanup, turned out to be one of the biggest successes of history. We still discuss the paradoxes, but it is unlikely that today they prevent anyone from sleeping soundly at night.

Unlike those genuinely disturbing paradoxes of set theory, the paradoxes that led mathematicians of previous centuries to reject negative numbers were apparent only. They were not paradoxes but tokens of intellectual timidity.

The sole reason for fearing and skirting negative numbers was an inability to accept a construction that contradicted a simplistic view of physical reality. Like object-oriented programming and many other bold advances, all that was required was the audacity to take imagined abstractions seriously.

Dream it; check it; build it.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (10 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Freely accessible books

Recently I prepared some of my books for free access on the Web (after gaining agreement from the publishers). Here are the corresponding links. They actually point to pages that present the respective books and have further links to the actual PDF versions.

Although the texts are essentially those of the books as published, I was able in most cases to make some improvements, in particular to the formatting, and to introduce some hyperlinking, for example in table of contents, to facilitate online navigation.

If you cite any of these books please use the links given here. Then you know that you are referring your readers to a legal and up-to-date version. In particular, there are a plethora of pirated copies of Object-Oriented Software Construction on various sites, with bad formatting, no copyright acknowledgment, and none of the improvements.   academia.edu hosts one of them, downloadable. I wrote to them and they did not even answer.

Here are the books and the links.

  • Introduction to the Theory of Programming Languages (Prentice Hall, 1990):  A general introduction to formal reasoning about programs and programming languages. Written without a heavy formal baggage so as to be understandable by programmers who do not have a special mathematical background. Full text freely available from here.
  • Object Success (Prentice Hall, 1995): . A general presentation of object technology, meant in particular for managers and decision-makers, presenting the essential OO ideas and their effect on project management and corporate culture. Full text freely available from here.
  • Object-Oriented Software Construction, 2nd edition (Prentice Hall, 1997): . The best-known of my books, providing an extensive (and long!) presentation of object technology, with particular emphasis on software engineering aspects, including Design by Contract. Introduced many ideas including some of the now classic design patterns (Command, called “undo-redo”, Bridge, called “handle” etc. Full text freely available from here.

In addition, let me include links to recent books published by Springer; they are not freely available, but many people can gain free access through their institutions:

  • Touch of Class: An Introduction to Programming Well Using Objects and Contracts. My introductory programming textbook, used in particular for many years for the intro programming course, altogether to something like 6000 students over 14 years, at ETH Zurich (and nourished by experience). The Springer page with  the text (paywall) is here. There is also my own freely accessible book page with substantial extracts (read for example the chapter on recursion): here.
  • Agile! The Good, the Hype and the Ugly A widely used presentation of agile methods, serving both as tutorial and as critique. The Springer page with  the text (paywall) is here. There is also my own freely accessible book page with substantial extracts: here.
  • Handbook of Requirements and Business Analysis (Springer, 2022). A short but extensive textbook on requirements engineering. The Springer page with  the text (paywall) is here. My own book page, which will soon have substantial extracts and supplementary material, is here.

Also note the volume which I recently edited, The French School of Programming, Springer, 2024, with 13 chapters by top French computer scientists (and a chapter by me). The Springer page  is here.

My full list of books is here. Full publication list in chronological order: here.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

The French School of Programming

July 14 (still here for 15 minutes) is not a bad opportunity to announced the publication of a new book: The French School of Programming.

The book is a collection of chapters, thirteen of them, by rock stars of programming and software engineering research (plus me), preceded by a Foreword by Jim Woodcock and a Preface by me. The chapters are all by a single author, reflecting the importance that the authors attached to the project. Split into four sections after chapter 1, the chapters are, in order:

1. The French School of Programming: A Personal View, by Gérard Berry (serving as a general presentation of the subsequent chapters).

Part I: Software Engineering

2. “Testing Can Be Formal Too”: 30 Years Later, by  Marie-Claude Gaudel

3. A Short Visit to Distributed Computing Where Simplicity Is Considered a First-Class Property, by Michel Raynal

4. Modeling: From CASE Tools to SLE and Machine Learning, by Jean-Marc Jézéquel

5. At the Confluence of Software Engineering and Human-Computer Interaction: A Personal Account,  by Joëlle Coutaz

Part II:  Programming Language Mechanisms and Type Systems

6. From Procedures, Objects, Actors, Components, Services, to Agents, by  Jean-Pierre Briot

7. Semantics and Syntax, Between Computer Science and Mathematics, by Pierre-Louis Curien

8. Some Remarks About Dependent Type Theory, by Thierry Coquand

Part III: Theory

9. A Personal Historical Perspective on Abstract Interpretation, by Patrick Cousot

10. Tracking Redexes in the Lambda Calculus, by  Jean-Jacques Lévy

11. Confluence of Terminating Rewriting Computations, by  Jean-Pierre Jouannaud

Part IV: Language Design and Programming Methodology

12. Programming with Union, Intersection, and Negation Types, by Giuseppe Castagna

13, Right and Wrong: Ten Choices in Language Design, by Bertrand Meyer

What is the “French School of Programming”? As discussed in the Preface (although Jim Woodcock’s Foreword does not entirely agree) it is not anything defined in a formal sense, as the variety of approaches covered in the book amply demonstrates. What could be more different (for example) than Coq, OCaml (extensively referenced by several chapters) and Eiffel? Beyond the differences, however, there is a certain je ne sais quoi of commonality; to some extent, in fact, je sais quoi: reliance on mathematical principles, a constant quest for simplicity, a taste for elegance. It will be for the readers to judge.

Being single authors of their chapters, the authors felt free to share some of their deepest insights an thoughts. See for example Thierry Coquand’s discussion of the concepts that led to the widely successful Coq proof system, Marie-Claude Gaudel’s new look at her seminal testing work of 30 years ago, and Patrick Cousot’s detailed recounting of the intellectual path that led him and Radhia to invent abstract interpretation.


The French School of Programming
Edited by Bertrand Meyer
Springer, 2024. xxiv + 439 pages

Book page on Springer site
Amazon US page
Amazon France page
Amazon Germany page

The book is expensive (I tried hard to do something about it, and failed). But many readers should be able to download it, or individual chapters, for free through their institutions.

It was a privilege for me to take this project to completion and work with such extraordinary authors who produced such a collection of gems.

VN:F [1.9.10_1130]
Rating: 10.0/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +5 (from 5 votes)

A new scientific index

The CF-Index, or Conference Frustration index, is an integer n (n ≥ 1) defined as follows. You are at a conference where your paper submission was rejected, and sitting in the session devoted to that paper’s very topic. You think for yourself  “My paper was at least n times better than the average here”. That n is your CF-index.

It is a law of nature (like speed never exceeding that of light, or temperature never going below absolute zero) that n < 1 is impossible. (The reason is obvious: if you were not the kind to believe your work is at least as good as anyone else’s, you would have gone for another profession, one calling for modesty, realism and timidity — such as, say, politician.)  Values of n = 3 or 4 are normal. Beyond 10 you might consider seeking professional advice. (These observations have nothing to do with my being at ICSE right now.)

VN:F [1.9.10_1130]
Rating: 8.2/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

Niklaus Wirth and the Importance of Being Simple

[This is a verbatim copy of a post in the Communications of the ACM blog, 9 January 2024.]

I am still in shock from the unexpected death of Niklaus Wirth eight days ago. If you allow a personal note (not the last one in this article): January 11, two days from now, was inscribed in my mind as the date of the next time he was coming to my home for dinner. Now it is the date set for his funeral.

standing

Niklaus Wirth at the ACM Turing centenary celebration
San Francisco, 16 June 2012
(all photographs in this article are by B. Meyer)

A more composed person would wait before jotting down thoughts about Wirth’s contributions but I feel I should do it right now, even at the risk of being biased by fresh emotions.

Maybe I should first say why I have found myself, involuntarily, writing obituaries of computer scientists: Kristen Nygaard and Ole-Johan Dahl, Andrey Ershov, Jean Ichbiah, Watts Humphrey, John McCarthy, and most recently Barry Boehm (the last three in this very blog). You can find the list with comments and links to the eulogy texts on the corresponding section of my publication page. The reason is simple: I have had the privilege of frequenting giants of the discipline, tempered by the sadness of seeing some of them go away. (Fortunately many others are still around and kicking!) Such a circumstance is almost unbelievable: imagine someone who, as a student and young professional, discovered the works of Galileo, Descartes, Newton, Ampère, Faraday, Einstein, Planck and so on, devouring their writings and admiring their insights — and later on in his career got to meet all his heroes and conduct long conversations with them, for example in week-long workshops, or driving from a village deep in Bavaria (Marktoberdorf) to Munich airport. Not possible for a physicist, of course, but exactly the computer science equivalent of what happened to me. It was possible for someone of my generation to get to know some of the giants in the field, the founding fathers and mothers. In my case they included some of the heroes of programming languages and programming methodology (Wirth, Hoare, Dijkstra, Liskov, Parnas, McCarthy, Dahl, Nygaard, Knuth, Floyd, Gries, …) whom I idolized as a student without every dreaming that I would one day meet them. It is natural then to should share some of my appreciation for them.

My obituaries are neither formal, nor complete, nor objective; they are colored by my own experience and views. Perhaps you object to an author inserting himself into an obituary; if so, I sympathize, but then you should probably skip this article and its companions and go instead to Wikipedia and official biographies. (In the same vein, spurred at some point by Paul Halmos’s photographic record of mathematicians, I started my own picture gallery. I haven’t updated it recently, and the formatting shows the limits of my JavaScript skills, but it does provide some fresh, spontaneous and authentic snapshots of famous people and a few less famous but no less interesting ones. You can find it here. The pictures of Wirth accompanying this article are taken from it.)

liskov

Niklaus Wirth, Barbara Liskov, Donald Knuth
(ETH Zurich, 2005, on the occasion of conferring honorary doctorates to Liskov and Knuth)

A peculiarity of my knowledge of Wirth is that unlike his actual collaborators, who are better qualified to talk about his years of full activity, I never met him during that time. I was keenly aware of his work, avidly getting hold of anything he published, but from a distance. I only got to know him personally after his retirement from ETH Zurich (not surprisingly, since I joined ETH because of that retirement). In the more than twenty years that followed I learned immeasurably from conversations with him. He helped me in many ways to settle into the world of ETH, without ever imposing or interfering.

I also had the privilege of organizing in 2014, together with his longtime colleague Walter Gander, a symposium in honor of his 80th birthday, which featured a roster of prestigious speakers including some of the most famous of his former students (Martin Oderski, Clemens Szyperski, Michael Franz…) as well as Vint Cerf. Like all participants in this memorable event (see here for the program, slides, videos, pictures…) I learned more about his intellectual rigor and dedication, his passion for doing things right, and his fascinating personality.

Some of his distinctive qualities are embodied in a book published on the occasion of an earlier event, School of Niklaus Wirth: The Art of Simplicity (put together by his close collaborator Jürg Gutknecht together with Laszlo Boszormenyi and Gustav Pomberger; see the Amazon page). The book, with its stunning white cover, is itself a model of beautiful design achieved through simplicity. It contains numerous reports and testimonials from his former students and colleagues about the various epochs of Wirth’s work.

bauer

Niklaus Wirth (right)
with F.L. Bauer, one of the founders of German computer science
Zurich,22 June 2005

Various epochs and many different topics. Like a Renaissance man, or one of those 18-th century “philosophers” who knew no discipline boundaries, Wirth straddled many subjects. It was in particular still possible (and perhaps necessary) in his generation to pay attention to both hardware and software. Wirth is most remembered for his software work but he was also a hardware builder. The influence of his PhD supervisor, computer design pioneer and UC Berkeley professor Harry Huskey, certainly played a role.

Stirred by the discovery of a new world through two sabbaticals at Xerox PARC (Palo Alto Research Center, the mother lode of invention for many of today’s computer techniques) but unable to bring the innovative Xerox machines to Europe, Wirth developed his own modern workstations, Ceres and Lilith. (Apart from the Xerox stays, Wirth spent significant time in the US and Canada: University of Laval for his master degree, UC Berkeley for his PhD, then Stanford, but only as an assistant professor, which turned out to be Switzerland’s and ETH’s gain, as he returned in 1968,)

 

lilith

Lilith workstation and its mouse
(Public display in the CAB computer science building at ETH Zurich)

One of the Xerox contributions was the generalized use of the mouse (the invention of Doug Englebart at the nearby SRI, then the Stanford Research Institute). Wirth immediately seized on the idea and helped found the Logitech company, which soon became, and remains today, a world leader in mouse technology.
Wirth returned to hardware-software codesign late in his career, in his last years at ETH and beyond, to work on self-driving model helicopters (one might say to big drones) with a Strong-ARM-based hardware core. He was fascinated by the goal of maintaining stability, a challenge involving physics, mechanical engineering, electronic engineering in addition to software engineering.
These developments showed that Wirth was as talented as an electronics engineer and designer as he was in software. He retained his interest in hardware throughout his career; one of his maxims was indeed that the field remains driven by hardware advances, which make software progress possible. For all my pride as a software guy, I must admit that he was largely right: object-oriented programming, for example, became realistic once we had faster machines and more memory.

Software is of course what brought him the most fame. I struggle not to forget any key element of his list of major contributions. (I will come back to this article when emotions abate, and will add a proper bibliography of the corresponding Wirth publications.) He showed that it was possible to bring order to the world of machine-level programming through his introduction of the PL/360 structured assembly language for the IBM 360 architecture. He explained top-down design (“stepwise refinement“), as no one had done before, in a beautiful article that forever made the eight-queens problem famous. While David Gries had in his milestone book Compiler Construction for Digital Computers established compiler design as a systematic discipline, Wirth showed that compilers could be built simply and elegantly through recursive descent. That approach had a strong influence on language design, as will be discussed below in relation to Pascal.

The emphasis simplicity and elegance carried over to his book on compiler construction. Another book with the stunning title Algorithms + Data Structures = Programs presented a clear and readable compendium of programming and algorithmic wisdom, collecting the essentials of what was known at the time.

And then, of course, the programming languages. Wirth’s name will forever remained tied to Pascal, a worldwide success thanks in particular to its early implementations (UCSD Pascal, as well as Borland Pascal by his former student Philippe Kahn) on microcomputers, a market that was exploding at just that time. Pascal’s dazzling spread was also helped by another of Wirth’s trademark concise and clear texts, the Pascal User Manual and Report, written with Kathleen Jensen. Another key component of Pascal’s success was the implementation technique, using a specially designed intermediate language, P-Code, the ancestor of today’s virtual machines. Back then the diversity of hardware architectures was a major obstacle to the spread of any programming language; Wirth’s ETH compiler produced P-Code, enabling anyone to port Pascal to a new computer type by writing a translator from P-Code to the appropriate machine code, a relatively simple task.

Here I have a confession to make: other than the clear and simple keyword-based syntax, I never liked Pascal much. I even have a snide comment in my PhD thesis about Pascal being as small, tidy and exciting as a Swiss chalet. In some respects, cheekiness aside, I was wrong, in the sense that the limitations and exclusions of the language design were precisely what made compact implementations possible and widely successful. But the deeper reason for my lack of enthusiasm was that I had fallen in love with earlier designs from Wirth himself, who for several years, pre-Pascal, had been regularly churning out new language proposals, some academic, some (like PL/360) practical. One of the academic designs I liked was Euler, but I was particularly keen about Algol W, an extension and simplification of Algol 60 (designed by Wirth with the collaboration of Tony Hoare, and implemented in PL/360). I got to know it as a student at Stanford, which used it to teach programming. Algol W was a model of clarity and elegance. It is through Algol W that I started to understand what programming really is about; it had the right combination of freedom and limits. To me, Pascal, with all its strictures, was a step backward. As an Algol W devotee, I felt let down.
Algol W played, or more precisely almost played, a historical role. Once the world realized that Algol 60, a breakthrough in language design, was too ethereal to achieve practical success, experts started to work on a replacement. Wirth proposed Algol W, which the relevant committee at IFIP (International Federation for Information Processing) rejected in favor of a competing proposal by a group headed by the Dutch computer scientist (and somewhat unrequited Ph.D. supervisor of Edsger Dijkstra) Aad van Wijngaarden.

Wirth recognized Algol 68 for what it was, a catastrophe. (An example of how misguided the design was: Algol 68 promoted the concept of orthogonality, roughly stating that any two language mechanisms could be combined. Very elegant in principle, and perhaps appealing to some mathematicians, but suicidal: to make everything work with everything, you have to complicate the compiler to unbelievable extremes, whereas many of these combinations are of no use whatsoever to any programmer!) Wirth was vocal in his criticism and the community split for good. Algol W was a casualty of the conflict, as Wirth seems to have decided in reaction to the enormity of Algol 68 that simplicity and small size were the cardinal virtues of a language design, leading to Pascal, and then to its modular successors Modula and Oberon.

Continuing with my own perspective, I admired these designs, but when I saw Simula 67 and object-oriented programming I felt that I had come across a whole new level of expressive power, with the notion of class unifying types and modules, and stopped caring much for purely modular languages, including Ada as it was then. A particularly ill-considered feature of all these languages always irked me: the requirement that every module should be declared in two parts, interface and implementation. An example, in my view, of a good intention poorly realized and leading to nasty consequences. One of these consequences is that the information in the interface part inevitably gets repeated in the implementation part. Repetition, as David Parnas has taught us, is (particularly in the form of copy-paste) the programmer’s scary enemy. Any change needs to be checked and repeated in both the original and the duplicate. Any bug needs to be fixed in both. The better solution, instead of the interface-implementation separation, is to write everything in one place (the class of object-oriented programming) and then rely on tools to extract, from the text, the interface view but also many other interesting views abstracted from the text.

In addition, modular languages offer one implementation for each interface. How limiting! With object-oriented programming, you use inheritance to provide a general version of an abstraction and then as many variants as you like, adding them as you see fit (Open-Closed Principle) and not repeating the common information. These ideas took me towards a direction of language design completely different from Wirth’s.

One of his principles in language design was that it should be easy to write a compiler — an approach that paid off magnificently for Pascal. I mentioned above the beauty of recursive-descent parsing (an approach which means roughly that you parse a text by seeing how it starts, deducing the structure that you expect to follow, then applying the same technique recursively to the successive components of the expected structure). Recursive descent will only work well if the language is LL (1) or very close to it. (LL (1) means, again roughly, that the first element of a textual component unambiguously determines the syntactic type of that component. For example the instruction part of a language is LL (1) if an instruction is a conditional whenever it starts with the keyword if, a loop whenever it starts with the keyword while, and an assignment variable := expression whenever it starts with a variable name. Only with a near-LL (1) structure is recursive descent recursive-decent.) Pascal was designed that way.

A less felicitous application of this principle was Wirth’s insistence on one-pass compilation, which resulted in Pascal requiring any use of indirect recursion to include an early announcement of the element — procedure or data type — being used recursively. That is the kind of thing I disliked in Pascal: transferring (in my opinion) some of the responsibilities of the compiler designer onto the programmer. Some of those constraints remained long after advances in hardware and software made the insistence on one-pass compilation seem obsolete.

What most characterized Wirth’s approach to design — of languages, of machines, of software, of articles, of books, of curricula — was his love of simplicity and dislike of gratuitous featurism. He most famously expressed this view in his Plea for Lean Software article. Even if hardware progress drives software progress, he could not accept what he viewed as the lazy approach of using hardware power as an excuse for sloppy design. I suspect that was the reasoning behind the one-compilation-pass stance: sure, our computers now enable us to use several passes, but if we can do the compilation in one pass we should since it is simpler and leaner.
As in the case of Pascal, this relentless focus could be limiting at times; it also led him to distrust artificial intelligence, partly because of the grandiose promises its proponents were making at the time. For many years indeed, AI never made it into ETH computer science. I am talking here of the classical, logic-based form of AI; I had not yet had the opportunity to ask Niklaus what he thought of the modern, statistics-based form. Perhaps the engineer in him would have mollified his attitude, attracted by the practicality and well-defined scope of today’s AI methods. I will never know.

As to languages, I was looking forward to more discussions; while I wholeheartedly support his quest for simplicity, size to me is less important than simplicity of the structure and reliance on a small number of fundamental concepts (such as data abstraction for object-oriented programming), taken to their full power, permeating every facet of the language, and bringing consistency to a powerful construction.

Disagreements on specifics of language design are normal. Design — of anything — is largely characterized by decisions of where to be dogmatic and where to be permissive. You cannot be dogmatic all over, or will end with a stranglehold. You cannot be permissive all around, or will end with a mess. I am not dogmatic about things like the number of compiler passes: why care about having one, two, five or ten passes if they are fast anyway? I care about other things, such as the small number of basic concepts. There should be, for example, only one conceptual kind of loop, accommodating variants. I also don’t mind adding various forms of syntax for the same thing (such as, in object-oriented programming, x.a := v as an abbreviation for the conceptually sound x.set_a (v)). Wirth probably would have balked at such diversity.

In the end Pascal largely lost to its design opposite, C, the epitome of permissiveness, where you can (for example) add anything to almost anything. Recent languages went even further, discarding notions such as static types as dispensable and obsolete burdens. (In truth C is more a competitor to P-Code, since provides a good target for compilers: its abstraction level is close to that of the computer and operating system, humans can still with some effort decipher C code, and a C implementation is available by default on most platforms. A kind of universal assembly language. Somehow, somewhere, the strange idea creeped into people’s minds that it could also be used as a notation for human programmers.)

In any case I do not think Niklaus followed closely the evolution of the programming language field in recent years, away from principles of simplicity and consistency; sometimes, it seems, away from any principles at all. The game today is mostly “see this cute little feature in my language, I bet you cannot do as well in yours!” “Oh yes I can, see how cool my next construct is!“, with little attention being paid to the programming language as a coherent engineering construction, and even less to its ability to produce correct, robust, reusable and extendible software.

I know Wirth was horrified by the repulsive syntax choices of today’s dominant languages; he could never accept that a = b should mean something different from b = a, or that a = a + 1 should even be considered meaningful. The folly of straying away from conventions of mathematics carefully refined over several centuries (for example by distorting “=” to mean assignment and resorting to a special symbol for equality, rather than the obviously better reverse) depressed him. I remain convinced that the community will eventually come back to its senses and start treating language design seriously again.

One of the interesting features of meeting Niklaus Wirth the man, after decades of studying from the works of Professor Wirth the scientist, was to discover an unexpected personality. Niklaus was an affable and friendly companion, and most strikingly an extremely down-to-earth person. On the occasion of the 2014 symposium we were privileged to meet some of his children, all successful in various walks of life: well-known musician in the Zurich scene, specialty shop owner… I do not quite know how to characterize in words his way of speaking (excellent) English, but it is definitely impossible to forget its special character, with its slight but unmistakable Swiss-German accent (also perceptible in German). To get an idea, just watch one of the many lecture videos available on the Web. See for example the videos from the 2014 symposium mentioned above, or this full-length interview recorded in 2018 as part of an ACM series on Turing Award winners.

On the “down-to-earth” part: computer scientists, especially of the first few generations, tend to split into the mathematician types and the engineer types. He was definitely the engineer kind, as illustrated by his hardware work. One of his maxims for a successful career was that there are a few things that you don’t want to do because they are boring or feel useless, but if you don’t take care of them right away they will come back and take even more of your time, so you should devote 10% of that time to discharge them promptly. (I wish I could limit that part to 10%.)

He had a witty, subtle — sometimes caustic — humor. Here is a Niklaus Wirth story. On the seventh day of creation God looked at the result. (Side note: Wirth was an atheist, which adds spice to the choice of setting for the story.) He (God) was pretty happy about it. He started looking at the list of professions and felt good: all — policeman, minister, nurse, street sweeper, interior designer, opera singer, personal trainer, supermarket cashier, tax collector… — had some advantages and some disadvantages. But then He got to the University Professor row. The Advantages entry was impressive: long holidays, decent salary, you basically get to do what you want, and so on; but the Disadvantages entry was empty! Such a scandalous discrepancy could not be tolerated. For a moment, a cloud obscured His face. He thought and thought and finally His smile came back. At that point, He had created colleagues.

When the computing world finally realizes that design needs simplicity, it will do well to go back to Niklaus Wirth’s articles, books and languages. I can think of only a handful of people who have shaped the global hardware and software industry in a comparable way. Niklaus Wirth is, sadly, sadly gone — and I still have trouble accepting that he will not show up for dinner, on Thursday or ever again — but his legacy is everywhere.

VN:F [1.9.10_1130]
Rating: 9.8/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

AI will move mountains

In August I was planning for my participation in the ICTSS conference in Bergamo, Italy, and wanted to find some accommodation within walking distance of the conference place. Bergamo has a medieval “città alta”, high city, at the top of a hill, and a “città bassa”, low city, down in the valley, where modern expansion happens. I had only passed through Bergamo once before but enough to know that it is not that easy or fast to commute between the two parts, so it is better to plan your accommodation properly.

It was not immediately clear from the online map where the conference venue belonged, so I thought that maybe this was an opportunity to find some actual use for ChatGPT. (So far I am not a great fan, see here, but one has to keep one’s mind open.) I asked my question:

 

question_bergamo

and received an answer (here is the first part):

answer_bergamo

Good that I did not stop here because the answer is plain wrong; the Piazzale in question (the main site of the university, and a former convent, as I later found out) is in the high city. Even more interesting was the second part of the answer:

changed_bergamo

Now this is really good. With my Southern California experience I am not that easily surprised: it is a common joke in Santa Barbara (an area prone to mudslides, particularly when it rains after a fire) that you might go to bed in your house at the top of a hill and wake up the next morning in the same house but with a whole new set of neighbors at the bottom of a valley. The other way around, though, is quite new for me.

AI-induced levitation! Of an entire city area! Since September 2021, the Piazzale San Agostino and its historic university buildings might have moved up 250 meters from low to high city. Artificial Intelligence is so amazing.

As a codicil to this little report: at that point I had decided to drop this absurd tool and look for a reliable source, but noticed that I had made a mistake in the Italian phrase: the name of high city is “città alta”, whereas I had put the words in the reverse order (as shown above). Since I like to do things right I asked the question again with the proper order, not changing anything else, not questioning the previous results, just repeating the question with a correct phrasing:

 

question2

and got this:

answer2_bergamo

The amazement continues. I had not complained, not questioned the answer, not emitted any doubt or criticism, and here is this tool apologizing again. And leaving me with two exactly contradictory answers. Which one am I supposed to believe? If I ask again, am I going to get a new set of excuses and a reversal to the original answer? (I did not try.)

I will continue my quest to find out whatever this thing might be good for.

VN:F [1.9.10_1130]
Rating: 10.0/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

Statement Considered Harmful

I harbor no illusion about the effectiveness of airing this particular pet peeve; complaining about it has about the same chance of success as protesting against split infinitives or music in restaurants. Still, it is worth mentioning that the widespread use of the word “statement” to denote a programming language element, such as an assignment, that directs a computer to perform some change, is misleading. “Instruction” is the better term.

A “statement” is “something stated, such as a single declaration or remark, or a report of fact or opinions” (Merriam-Webster).

Why does it matter? The use of “statement” to mean “instruction” obscures a fundamental distinction of software engineering: the duality between specification and implementation. Programming produces a solution to a problem; success requires expressing both the problem, in the form of a specification, and the devised solution, in the form of an implementation. It is important at every stage to know exactly where we stand: on the problem side (the “what”) or the solution side (the “how”). In his famous Goto Statement Considered Harmful of 1968, Dijkstra beautifully characterized this distinction as the central issue of programming:

Our intellectual powers are rather geared to master static relations and our powers to visualize processes evolving in time are relatively poorly developed. For that reason we should do (as wise programmers aware of our limitations) our utmost to shorten the conceptual gap between the static program and the dynamic process, to make the correspondence between the program (spread out in text space) and the process (spread out in time) as trivial as possible.

Software verification, whether conducted through dynamic means (testing) or static techniques (static analysis, proofs of correctness), relies on having separately expressed both a specification of the intent and a proposed implementation intended to realize that intent. They have to remain distinct; otherwise we cannot even define what it means that the program should be correct (correct with respect to what?), and even less what it means to validate the program (validate it against what?).

In many approaches to verification, the properties against which we validate programs are called assertions. An assertion expresses a property that should hold at some point of program execution. For example, after the assignment instruction a := b + 1, the assertion ab will hold. This notion of assertion is used both in testing frameworks, such as JUnit for Java or PyUnit for Python, and in program proving frameworks; see, for example, the interactive Web-based version of the AutoProof program-proving framework for Eiffel at autoproof.sit.org, and of course the entire literature on axiomatic (Floyd-Hoare-Dijkstra-style) verification.

The difference between the instruction and the assertion is critical: a := b + 1 tells the computer to do something (change the value of a), as emphasized here by the “:=” notation for assignment; ab does not direct the computer or the computation to do anything, but simply states a property that should hold at a certain stage of the computation if everything went fine so far.

In the second case, the word “states” is indeed appropriate: an assertion states a certain property. The expression of that property, ab, is a “statement” in the ordinary English sense of the term. The command to the computer, a := b + 1, is an instruction whose effect is to ensure the satisfaction of the statement ab. So if we use the word “statement” at all, we should use it to mean an assertion, not an instruction.

If we start calling instructions “statements” (a usage that Merriam-Webster grudgingly accepts in its last entry for the term, although it takes care to define it as “an instruction in a computer program,” emphasis added), we lose this key distinction.

There is no reason for this usage, however, since the word “instruction” is available, and entirely appropriate.

So, please stop saying “an assignment statement” or “a print statement“; say “an assignment instruction” and so on.

Maybe you won’t, but at least you have been warned.

Recycled This article was first published in the “Communications of the ACM” blog.

VN:F [1.9.10_1130]
Rating: 9.9/10 (10 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

New book: the Requirements Handbook

cover

I am happy to announce the publication of the Handbook of Requirements and Business Analysis (Springer, 2022).

It is the result of many years of thinking about requirements and how to do them right, taking advantage of modern principles of software engineering. While programming, languages, design techniques, process models and other software engineering disciplines have progressed considerably, requirements engineering remains the sick cousin. With this book I am trying to help close the gap.

pegsThe Handbook introduces a comprehensive view of requirements including four elements or PEGS: Project, Environment, Goals and System. One of its principal contributions is the definition of a standard plan for requirements documents, consisting of the four corresponding books and replacing the obsolete IEEE 1998 structure.

The text covers both classical requirements techniques and novel topics such as object-oriented requirements and the use of formal methods.

The successive chapters address: fundamental concepts and definitions; requirements principles; the Standard Plan for requirements; how to write good requirements; how to gather requirements; scenario techniques (use cases, user stories); object-oriented requirements; how to take advantage of formal methods; abstract data types; and the place of requirements in the software lifecycle.

The Handbook is suitable both as a practical guide for industry and as a textbook, with over 50 exercises and supplementary material available from the book’s site.

You can find here a book page with the preface and sample chapters.

To purchase the book, see the book page at Springer and the book page at Amazon US.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Introduction to the Theory of Programming Languages: full book now freely available

itpl_coverShort version: the full text of my Introduction to the Theory of Programming Languages book (second printing, 1991) is now available. This page has more details including the table of chapters, and a link to the PDF (3.3MB, 448 + xvi pages).

The book is a survey of methods for language description, particularly semantics (operational, translational, denotational, axiomatic, complementary) and also serves as an introduction to formal methods. Obviously it would be written differently today but it may still have its use.

A few days ago I released the Axiomatic Semantics chapter of the book, and the chapter introducing mathematical notations. It looked at the time that I could not easily  release the rest in a clean form, because it is impossible or very hard to use the original text-processing tools (troff and such). I could do it for these two chapters because I had converted them years ago for my software verification classes at ETH.

By perusing old files, however,  I realized that around the same time (early 2000s) I actually been able to produce PDF versions of the other chapters as well, even integrating corrections to errata  reported after publication. (How I managed to do it then I have no idea, but the result looks identical, save the corrections, to the printed version.)

The figures were missing from that reconstructed version (I think they had been produced with Brian Kernighan’s PIC graphical description language , which is even more forgotten today than troff), but I scanned them from a printed copy and reinserted them into the PDFs.

Some elements were missing from my earlier resurrection: front matter, preface, bibliography, index. I was able to reconstruct them from the original troff source using plain MS Word. The downside is that they are not hyperlinked; the index has the page numbers (which may be off by 1 or 2 in some cases because of reformatting) but not hyperlinks to the corresponding occurrences as we would expect for a new book. Also, I was not able to reconstruct the table of contents; there is only a chapter-level table of contents which, however, is hyperlinked (in other words, chapter titles link to the actual chapters). In the meantime I obtained the permission of the original publisher (Prentice Hall, now Pearson Education Inc.).

Here again is the page with the book’s description and the link to the PDF:

bertrandmeyer.com/ITPL

 

 

VN:F [1.9.10_1130]
Rating: 9.6/10 (11 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Introduction to axiomatic semantics

itplI have released for general usage the chapter on axiomatic semantics of my book Introduction to the Theory of Programming Languages. It’s old but I think it is still a good introduction to the topic. It explains:

  • The notion of theory (with a nice — I think — example borrowed from an article by Luca Cardelli: axiomatizing types in lambda calculus).
  • How to axiomatize a programming language.
  • The notion of assertion.
  • Hoare-style pre-post semantics, dealing with arrays, loop invariants etc.
  • Dijkstra’s calculus of weakest preconditions.
  • Non-determinism.
  • Dealing with routines and recursion.
  • Assertion-guided program construction (in other words, correctness by construction), design heuristics (from material in an early paper at IFIP).
  • 26 exercises.

The text can be found at

https://se.inf.ethz.ch/~meyer/publications/theory/09-axiom.pdf

It remains copyrighted but can be used freely. It was available before since I used it for courses on software verification but the link from my publication page was broken. Also, the figures were missing; I added them back.

I thought I only had the original (troff) files, which I have no easy way to process today, but just found PDFs for all the chapters, likely produced a few years ago when I was still able to put together a working troff setup. They are missing the figures, which I have to scan from a printed copy and reinsert. I just did it for the chapter on mathematical notations, chapter 2, which you can find at https://se.inf.ethz.ch/~meyer/publications/theory/02-math.pdf. If there is interest I will release all chapters (with corrections of errata reported by various readers over the years).

The chapters of the book are:

  • (Preface)
  1. Basic concepts
  2. Mathematical background (available through the link above).
  3. Syntax (introduces formal techniques for describing syntax, included a simplified BNF).
  4. Semantics: the main approaches (overview of the techniques described in detail in the following chapters).
  5. Lambda calculus.
  6. Denotational semantics: fundamentals.
  7. Denotational semantics: language features (covers denotational-style specifications of records, arrays, input/output etc.).
  8. The mathematics of recursion (talks in particular about iterative methods and fixpoints, and the bottom-up interpretation of recursion, based on work by Gérard Berry).
  9. Axiomatic semantics (available through the link above).
  10. Complementary semantic definitions (establishing a clear relationship between different specifications, particular axiomatic and denotational).
  • Bibliography

Numerous exercises are included. The formal models use throughout a small example language called Graal (for “Great Relief After Ada Lessons”).  The emphasis is on understanding programming and programming languages through simple mathematical models.

VN:F [1.9.10_1130]
Rating: 8.2/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

OOSC-2 available online (officially)

My book Object-Oriented Software Construction, 2nd edition (see the Wikipedia page) has become hard to get. There are various copies floating around the Web but they often use bad typography (wrong colors) and are unauthorized.

In response to numerous requests and in anticipation of the third edition I have been able to make it available electronically (with the explicit permission of the original publisher).

You can find the link on another page on this site. (In sharing or linking please use that page, not the URL of the actual PDF which might change.)

I hope having the text freely available proves useful.

 

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

PhD and postdoc positions in verification in Switzerland

The Chair of Software Engineering, my group at the Schaffhausen Institute of Technology in Switzerland (SIT), has open positions for both PhD students and postdocs. We are looking for candidates with a passion for reliable software and a mix of theoretical knowledge and practical experience in software engineering. Candidates should have degrees in computer science or related fields: a doctorate for postdoc positions, a master’s degree for PhD positions. Postdoc candidates should have a substantial publication record. Experience is expected in one or more of the following fields:

  • Software verification (axiomatic, model-checking, abstract interpretation etc.).
  • Advanced techniques of software testing.
  • Formal methods, semantics of programming languages.
  • Concurrent programming.
  • Design by Contract, Eiffel, techniques of correctness-by-construction.

Some of the work involves the AutoProof framework, under development at SIT (earlier at ETH), although other topics are also available, particularly in static analysis.

Compensation is attractive. Candidates must have the credentials to work in Switzerland (typically, citizenship or residence in Switzerland or the EU). Although we work in part remotely like everyone else these days, the positions are residential.

Interested candidates should send a CV and relevant documents or links (and any questions) to bm@sit.org.

VN:F [1.9.10_1130]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

A standard plan for modern requirements

Requirements documents for software projects in industry, agile or not, typically follow a plan defined in a 1998 IEEE standard (IEEE 830-1998 [1]),  “reaffirmed” in 2009. IEEE 830 has the merit of simplicity, as it fits in 37 pages of which just a few (competently) describe basic requirements concepts and less than 10 are devoted to explaining the standard recommended plan, which itself consists of 3 sections with subsections. Simplicity is good but the elementary nature of the IEEE-830 plan is just not up to the challenges of modern information technology. It is time to retire this venerable precursor and move to a structure that works for the kind of ambitious, multi-faceted IT systems we build today.

For the past few years I have worked on defining a systematic approach to requirements, culminating in a book to be published in the Fall, Handbook of Requirements and Business Analysis. One of the results of this effort is a standard plan, based on the “PEGS” view of requirements where the four parts cover Project, Environment, Goals and System. The details are in the book (for some of the basic concepts see a paper at TOOLS 2019, [2]). Here I will introduce some of the key principles, since they are already  be used — as various people have done since I first started presenting the ideas in courses and seminars (particularly an ACM Webinar, organized by Will Tracz last March, whose recording is available on YouTube, and another hosted by Grady Booch for IBM).

pegs

The starting point, which gives its name to the approach, is that requirements should cover the four aspects mentioned, the four “PEGS”, defined as follows:

  • A Goal is a result desired by an organization.
  • A System is a set of related artifacts, devised to help meet certain goals.
  • A Project is the set of human processes involved in the planning, construction, revision and  operation of a system.
  • An Environment is the set of entities (such as people, organizations, devices and other material objects, regulations and other systems) external to the project and system but with the potential to affect the goals, project or system or to be affected by them.

The recommended standard plan consequently consists of four parts or books.

This proposed standard does not prescribe any particular approach to project management, software development, project lifecycle or requirements expression, and is applicable in particular to both traditional (“waterfall”) and agile projects. It treats requirements as a project activity, not necessarily a lifecycle step. One of the principles developed in the book is that requirements should be treated as a dynamic asset of the project, written in a provisional form (more or less detailed depending on the project methodology) at the beginning of the project, and then regularly extended and updated.

Similarly, the requirements can be written using any appropriate notation and method, from the most informal to the most mathematical.  In a recently published ACM Computing Surveys paper [3], my colleagues and I reviewed the various levels of formalism available  in today’s requirements approaches. The standard plan is agnostic with respect to this matter.

The books may reference each other but not arbitrarily. The permitted relations are as follows:

references

Note in particular that the description of the Goals should leave out technical details and hence may not refer to Project and System elements, although it may need to explain the properties of the Environment that influence or constrain the business goals. The Environment exists independently of the IT effort, and hence the Environment book should not reference any of the others, with the possible exception (dotted arrow in the figure) of effects of the System if it is to change the environment. (For example, a payroll IT system may affect the payroll process; a heating system may affect the ambient temperature.)

The multi-book structure of the recommended PEGS standard plan already goes beyond the traditional view of a single, linear “requirements document”. The books themselves are not necessarily written as linear texts; with today’s technology, requirements parts can and generally should be stored in a requirements repository which includes all requirements-relevant elements.  A linear form remains necessary; it can be either written as such or produced by tools from elements in the repository.

The standard plan defines the structure of the four PEGS books down to one more level, chapters. For any further levels (sections), each organization can define its own rules. Books can also include front and back matter, including for example  tables of contents, legal disclaimers, revision history etc., not covered by the standard structure. Here is that structure:

books

It is meant to be self-explanatory, but here are a few comments on each of the books:

  • One of the products of the requirements effort should be to help plan and manage  the rest of the Project. This is the goal of the Project book; note in particular P.4 and P.5 covering tasks and deadlines. P.7 starts out at the beginning of the project as a blueprint for the requirements effort, and as this effort proceeds (stakeholder interviews, stakeholder workshops, competitive analysis, requirements writing …) can be regularly updated to report on how it went. (This feature is an example of treating the requirements repository and documents as a living, dynamic asset, as noted above.)
  • In the Environment book, constraints (E.3) are properties of the environment (the problem domain) imposed on the project and system. Effects (E.5) go the other way around, describing how the system may affect the environment. Invariants (E.6) do both. Assumptions (E.4) are properties that are taken for granted to simplify the construction of the system (for example, a maximum number of simultaneous users), as distinct from actual constraints.
  • The Goals book is intended for a less technical audience than the other books: it must be understandable to decision makers and non-IT-savvy stakeholders. It includes a short summary (G.4) of functionality, a kind of capsule version of the System book trimmed down to the essentials. Note the importance of specifying (in G.6) what aspects the system is not intended to address. The Goals book can include some (G.5) usage scenarios expressed in terms meaningful to the book’s constituencies and hence remaining at a high level of generality.
  • Detailed usage scenarios will appear in the System book (S.4).  It is important to prioritize the functions (S.5), allowing a reasoned approach (rather than decisions made in a panic) if the project hits roadblocks and must sacrifice some of the functionality.

A naïve but still widely encountered view of requirements is that they serve to  “describe what the system will do” (independently of how it will do it). In the structure above, it corresponds to just one-fourth of the requirements effort, the System part. Work on requirements engineering in the past few decades has emphasized, among other concepts, the need to separate system and environment properties (Michael Jackson, Pamela Zave) and the importance of goals (Axel van Lamsweerde).

The plan reflects this richness of the requirements concept and I hope it can help many projects produce better requirements for better software.

References

[1] IEEE 830-1998, available here.

[2] Bertrand Meyer, Jean-Michel Bruel, Sophie Ebersold, Florian Galinier and Alexandr Naumchev: The Anatomy of Software Requirements, in TOOLS 2019, Springer Lecture Notes in Computer Science 11771, 2019, pages 10-40.

[3] Jean-Michel Bruel, Sophie Ebersold, Florian Galinier, Manuel Mazzara, Alexander Naumchev and Bertrand Meyer:  The Role of Formalism in System Requirements, in  Computing Surveys (ACM), vol. 54, no. 5, June 2021, pages 1-36, DOI: https://doi.org/10.1145/3448975, preprint available here.

RecycledA version of this article appeared earlier in the Communications of the ACM blog.

 

VN:F [1.9.10_1130]
Rating: 8.4/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Publication announcement: survey on requirements techniques, formal and non-formal

There is a new paper out, several years in the making:

The Role of Formalism in System Requirements
Jean-Michel Bruel, Sophie Ebersold, Florian Galinier, Manuel Mazzara, Alexander Naumchev, Bertrand Meyer
Computing Surveys (ACM), vol. 54, no. 5, June 2021, pages 1-36
DOI: https://doi.org/10.1145/3448975
Preprint available here.

The authors are from the Schaffhausen Institute of Technology in Switzerland, the University of Toulouse in France and Innopolis University in Russia. We make up a cross-institutional (and unofficial) research group which has for several years now been working on improving the state of software requirements, with both an engineering perspective and an interest in taking advantage of formal methods.

The article follows this combined formal-informal approach by reviewing the principal formal methods in requirements but also taking into consideration non-formal ones — including techniques widely used in industry, such as DOORS — and studying how they can be used in a more systematic way. It uses a significant example (a “Landing Gear System” or LGS for aircraft) to compare them and includes extensive tables comparing the approaches along a number of systematic criteria.

Here is the abstract:

A major determinant of the quality of software systems is the quality of their requirements, which should be both understandable and precise. Most requirements are written in natural language, which is good for understandability but lacks precision.

To make requirements precise, researchers have for years advocated the use of mathematics-based notations and methods, known as “formal.” Many exist, differing in their style, scope, and applicability.

The present survey discusses some of the main formal approaches and compares them to informal methods.The analysis uses a set of nine complementary criteria, such as level of abstraction, tool availability, and traceability support. It classifies the approaches into five categories based on their principal style for specifying requirements: natural-language, semi-formal, automata/graphs, mathematical, and seamless (programming-language-based). It includes examples from all of these categories, altogether 21 different approaches, including for example SysML, Relax, Eiffel, Event-B, and Alloy.

The review discusses a number of open questions, including seamlessness, the role of tools and education, and how to make industrial applications benefit more from the contributions of formal approaches.

For me, of course, this work is the continuation of a long-running interest in requirements and specifications and how to express them using the tools of mathematics, starting with a 1985 paper, still being cited today, with a strikingly similar title: On Formalism in Specifications.

Trivia: the “response to referees” (there were no fewer than eight of them!) after the first review took up 85 pages. Maybe not for the Guinness Book, but definitely a personal record. (And an opportunity to thank the referees for detailed comments that considerably helped shape the final form of the paper.)

Correction (20 July 2021): I just noted that I had forgotten to list myself among the authors! Not a sign of modesty (I don’t have any), more of absent-mindedness. Now corrected.

VN:F [1.9.10_1130]
Rating: 10.0/10 (10 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

On beauty and software (online talk on Wednesday, 17 CET / 11 EDT / 8 PDT)

This Wednesday (still “tomorrow” as I am writing this), 10 March 2021, I am giving a talk on “The Beauty of Software” on the occasion of the graduation ceremony of the first students of the Schaffhausen Institute of Technology. The event starts at 17 Schaffhausen/Zurich/Paris etc. time (11 AM New York, 8 AM San Francisco) and my own talk, starting half an hour later, will take about one hour.

The talk is (surprise!) given online. Registration is free but required: you can find the registration form on the announcement page here.

The abstract appears below. It is rather ambitious-sounding and I cannot promise the talk will live up to the promise, but I feel it necessary at least to attempt some initial steps towards a better understanding of beauty in software, which might help understand beauty in general.

The Beauty of Software

Software runs the world and delivers riches. Every passionate software engineer or computer scientist is also attuned to another of its features: the study and practice of software construction reveal gems of utter beauty.

While the concept of beauty is most naturally associated with art, scientists and engineers of all fields often invoke it. Beauty is a strong guiding principle in searching for solutions to scientific and technical problems, and arbitrating between rival candidate solutions. The reaction is often instinctive: “What an elegant theory!” “This technique is too ugly to be a viable approach”.

What do such appeals to beauty really mean? Do they pertain to the same concept of beauty as found in nature and art? Is beauty only “in the eye of the beholder”, is it conditioned by cultural prejudices, or does it submit to an objective definition?

In this talk, an initial step towards a more extensive study of what beauty means for software, I will present a few artifacts from software engineering and computer science which I find strikingly beautiful and – at the risk of breaking the charm – analyze what might make them so. This analysis will lead to a tentative definition of a notion both alluring and elusive: beauty.

VN:F [1.9.10_1130]
Rating: 5.8/10 (12 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 8 votes)

Some contributions

Science progresses through people taking advantage of others’ insights and inventions. One of the conditions that makes the game possible is that you acknowledge what you take. For the originator, it is rewarding to see one’s ideas reused, but frustrating when that happens without acknowledgment, especially when you are yourself punctilious about citing your own sources of inspiration.

I have started to record some concepts that are widely known and applied today and which I believe I originated in whole or in part, whether or not their origin is cited by those who took them. The list below is not complete and I may update it in the future. It is not a list of ideas I contributed, only of those fulfilling two criteria:

  • Others have built upon them.  (If there is an idea that I think is great but no one paid attention to it, the list does not include it.)
  • They have gained wide visibility.

There is a narcissistic aspect to this exercise and if people want to dismiss it as just showing I am full of myself so be it. I am just a little tired of being given papers to referee that state that genericity was invented by Java, that no one ever thought of refactoring before agile methods, and so on. It is finally time to state some facts.

Facts indeed: I back every assertion by precise references. So if I am wrong — i.e. someone preceded me — the claims of precedence can be refuted; if so I will update or remove them. All articles by me cited in this note are available (as downloadable PDFs) on my publication page. (The page is up to date until 2018; I am in the process of adding newer publications.)

Post-publication note: I have started to receive some comments and added them in a Notes section at the end; references to those notes are in the format [A].

Final disclaimer (about the narcissistic aspect): the exercise of collecting such of that information was new for me, as I do not usually spend time reflecting on the past. I am much more interested in the future and definitely hope that my next contributions will eclipse any of the ones listed below.

Programming concepts: substitution principle

Far from me any wish to under-represent the seminal contributions of Barbara Liskov, particularly her invention of the concept of abstract data type on which so much relies. As far as I can tell, however, what has come to be known as the “Liskov Substitution Principle” is essentially contained in the discussion of polymorphism in section 10.1 of in the first edition (Prentice Hall, 1988) of my book Object-Oriented Software Construction (hereafter OOSC1); for example, “the type compatibility rule implies that the dynamic type is always a descendant of the static type” (10.1.7) and “if B inherits from A, the set of objects that can be associated at run time with an entity [generalization of variable] includes instances of B and its descendants”.

Perhaps most tellingly, a key aspect of the substitution principle, as listed for example in the Wikipedia entry, is the rule on assertions: in a proper descendant, keep the invariant, keep or weaken the precondition, keep or strengthen the postcondition. This rule was introduced in OOSC1, over several pages in section 11.1. There is also an extensive discussion in the article Eiffel: Applying the Principles of Object-Oriented Design published in the Journal of Systems and Software, May 1986.

The original 1988 Liskov article cited (for example) in the Wikipedia entry on the substitution principle says nothing about this and does not in fact include any of the terms “assertion”, “precondition”, “postcondition” or “invariant”. To me this absence means that the article misses a key property of substitution: that the abstract semantics remain the same. (Also cited is a 1994 Liskov article in TOPLAS, but that was many years after OOSC1 and other articles explaining substitution and the assertion rules.)

Liskov’s original paper states that “if for each object o1 of type S there is an object o2 of type T such that for all programs P defined in terms of T, the behavior of P is unchanged when o1 is substituted for oz, then S is a subtype of T.” As stated, this property is impossible to satisfy: if the behavior is identical, then the implementations are the same, and the two types are identical (or differ only by name). Of course the concrete behaviors are different: applying the operation rotate to two different figures o1 and o2, whose types are subtypes of FIGURE and in some cases of each other, will trigger different algorithms — different behaviors. Only with assertions (contracts) does the substitution idea make sense: the abstract behavior, as characterized by preconditions, postconditions and the class invariants, is the same (modulo respective weakening and strengthening to preserve the flexibility of the different version). Realizing this was a major step in understanding inheritance and typing.

I do not know of any earlier (or contemporary) exposition of this principle and it would be normal to get the appropriate recognition.

Software design: design patterns

Two of the important patterns in the “Gang of Four” Design Patterns book (GoF) by Gamma et al. (1995) are the Command Pattern and the Bridge Pattern. I introduced them (under different names) in the following publications:

  • The command pattern appears in OOSC1 under the name “Undo-Redo” in section 12.2. The solution is essentially the same as in GoF. I do not know of any earlier exposition of the technique. See also notes [B] and [C].
  • The bridge pattern appears under the name “handle technique” in my book Reusable Software: The Base Component Libraries (Prentice Hall, 1994). It had been described several years earlier in manuals for Eiffel libraries. I do not know of an earlier reference. (The second edition of Object-Oriented Software Construction — Prentice Hall, 1997, “OOSC2” –, which also describes it, states that a similar technique is described in an article by Josef Gil and Ricardo Szmit at the TOOLS USA conference in the summer of 1994, i.e. after the publication of Reusable Software.)

Note that it is pointless to claim precedence over GoF since that book explicitly states that it is collecting known “best practices”, not introducing new ones. The relevant questions are: who, pre-GoF, introduced each of these techniques first; and which publications does the GoF cites as “prior art”  for each pattern. In the cases at hand, Command and Bridge, it does not cite OOSC1.

To be concrete: unless someone can point to an earlier reference, then anytime anyone anywhere using an interactive system enters a few “CTRL-Z” to undo commands, possibly followed by some “CTRL-Y” to redo them (or uses other UI conventions to achieve these goals), the software most likely relying on a technique that I first described in the place mentioned above.

Software design: Open-Closed Principle

Another contribution of OOSC1 (1988), section 2.3, reinforced in OOSC2 (1997) is the Open-Closed principle, which explained one of the key aspects of inheritance: the ability to keep a module both closed (immediately usable as is) and open to extension (through inheritance, preserving the basic semantics. I am mentioning this idea only in passing since in this case my contribution is usually recognized, for example in the Wikipedia entry.

Software design: OO for reuse

Reusability: the Case for Object-Oriented Design (1987) is, I believe, the first publication that clearly explained why object-oriented concepts were (and still are today — in Grady Booch’s words, “there is no other game in town”) the best answer to realize the goal of software construction from software components. In particular, the article:

  • Explains the relationship between abstract data types and OO programming, showing the former as the theoretical basis for the latter. (The CLU language at MIT originated from Liskov’s pioneering work on abstract data types, but was not OO in the full sense of the term, missing in particular a concept of inheritance.)
  • Shows that reusability implies bottom-up development. (Top-down refinement was the mantra at the time, and promoting bottom-up was quite a shock for many people.)
  • Explains the role of inheritance for reuse, as a complement to Parnas’s interface-based modular construction with information hiding.

Software design: Design by Contract

The contribution of Design by Contract is one that is widely acknowledged so I don’t have any point to establish here — I will just recall the essentials. The notion of assertion goes back to the work of Floyd, Hoare and Dijkstra in the sixties and seventies, and correctness-by-construction to Dijktra, Gries and Wirth, but Design by Contract is a comprehensive framework providing:

  • The use of assertions in an object-oriented context. (The notion of class invariant was mentioned in a paper by Tony Hoare published back in 1972.)
  • The connection of inheritance with assertions (as sketched above). That part as far as I know was entirely new.
  • A design methodology for quality software: the core of DbC.
  • Language constructs carefully seamed into the fabric of the language. (There were precedents there, but in the form of research languages such as Alphard, a paper design only, not implemented, and Euclid.)
  • A documentation methodology.
  • Support for testing.
  • Support for a consistent theory of exception handling (see next).

Design by Contract is sometimes taken to mean simply the addition of a few assertions here and there. What the term actually denotes is a comprehensive methodology with all the above components, tightly integrated into the programming language. Note in particular that preconditions and postconditions are not sufficient; in an OO context class invariants are essential.

Software design: exceptions

Prior to the Design by Contract work, exceptions were defined very vaguely, as something special you do outside of “normal” cases, but without defining “normal”. Design by Contract brings a proper perspective by defining these concepts precisely. This was explained in a 1987 article, Disciplined Exceptions ([86] in the list), rejected by ECOOP but circulated as a technical report; they appear again in detail in OOSC1 (sections 7.10.3 to 7.10.5).

Other important foundational work on exceptions, to which I know no real precursor (as usual I would be happy to correct any omission), addressed what happens to the outcome of an exception in a concurrent or distributed context. This work was done at ETH, in particular in the PhD theses  of B. Morandi and A. Kolesnichenko, co-supervised with S. Nanz. See the co-authored papers [345] and [363].

On the verification aspect of exceptions, see below.

Software design: refactoring

I have never seen a discussion of refactoring that refers to the detailed discussion of generalization in both of the books Reusable Software (1994, chapter 3) and Object Success (Prentice Hall, 1995, from page 122 to the end of chapter 6). These discussions describe in detail how, once a program has been shown to work, it should be subject to a posteriori design improvements. It presents several of the refactoring techniques (as they were called when the idea gained traction several years later), such as moving common elements up in the class hierarchy, and adding an abstract class as parent to concrete classes ex post facto.

These ideas are an integral part of the design methodology presented in these books (and again in OOSC2 a few later). It is beyond me why people would present refactoring (or its history, as in the Wikipedia entry on the topic) without referring to these publications, which were widely circulated and are available for anyone to inspect.

Software design: built-in documentation and Single-Product principle

Another original contribution was the idea of including documentation in the code itself and relying on tools to extract the documentation-only information (leaving implementation elements aside). The idea, described in detail in OOSC1 in 1988 (sections 9.4 and 9.5) and already mentioned in the earlier Eiffel papers, is that code should be self-complete, containing elements of various levels of abstraction; some of them describe implementation, but the higher-level elements describe specification, and are distinguished syntactically in such a way that tools can extract them to produce documentation at any desired level of abstraction.

The ideas were later applied through such mechanisms as JavaDoc (with no credit as far as I know). They were present in Eiffel from the start and the underlying principles, in particular the “Single Product principle” (sometimes “Self-Documentation principle”, and also generalized by J. Ostroff and R. Paige as “Single-Model principle”). Eiffel is the best realization of these principles thanks to:

  • Contracts (as mentioned above): the “contract view” of a class (called “short form” in earlier descriptions) removes the implementations but shows the relevant preconditions, postconditions and class invariants, given a precise and abstract specification of the class.
  • Eiffel syntax has a special place for “header comments”, which describe high-level properties and remain in the contract view.
  • Eiffel library class documentation has always been based on specifications automatically extracted from the actual text of the classes, guaranteeing adequacy of the documentation. Several formats are supported (including, from 1995 on, HTML, so that documentation can be automatically deployed on the Web).
  • Starting with the EiffelCase tool in the early 90s, and today with the Diagram Tool of EiffelStudio, class structures (inheritance and client relationships) are displayed graphically, again in an automatically extracted form, using either the BON or UML conventions.

One of the core benefits of the Single-Product principle is to guard against what some of my publications called the “Dorian Gray” syndrome: divergence of an implementation from its description, a critical problem in software because of the ease of modifying stuff. Having the documentation as an integral part of the code helps ensure that when information at some level of abstraction (specification, design, implementation) changes, the other levels will be updated as well.

Crucial in the approach is the “roundtripping” requirement: specifiers or implementers can make changes in any of the views, and have them reflected automatically in the other views. For example, you can graphically draw an arrow between two bubbles representing classes B and A in the Diagram Tool, and the code of B will be updated with “inherit A”; or you can add this Inheritance clause textually in the code of class B, and the diagram will be automatically updated with an arrow.

It is important to note how contrarian and subversive these ideas were at the time of their introduction (and still to some extent today). The wisdom was that you do requirements then design then implementation, and that code is a lowly product entirely separate from specification and documentation. Model-Driven Development perpetuates this idea (you are not supposed to modify the code, and if you do there is generally no easy way to propagate the change to the model.) Rehabilitating the code (a precursor idea to agile methods, see below) was a complete change of perspective.

I am aware of no precedent for this Single Product approach. The closest earlier ideas I can think of are in Knuth’s introduction of Literate Programming in the early eighties (with a book in 1984). As in the Single-product approach, documentation is interspersed with code. But the literate programming approach is (as presented) top-down, with English-like explanations progressively being extended with implementation elements. The Single Product approach emphasizes the primacy of code and, in terms of the design process, is very much yoyo, alternating top-down (from the specification to the implementation) and bottom-up (from the implementation to the abstraction) steps. In addition, a large part of the documentation, and often the most important one, is not informal English but formal assertions. I knew about Literate Programming, of course, and learned from it, but Single-Product is something else.

Software design: from patterns to components

Karine Arnout’s thesis at ETH Zurich, resulting in two co-authored articles ([255] and [257], showed that contrary to conventional wisdom a good proportion of the classical design patterns, including some of the most sophisticated, can be transformed into reusable components (indeed part of an Eiffel library). The agent mechanism (see below) was instrumental in achieving that result.

Programming, design and specification concepts: abstract data types

Liskov’s and Zilles’s ground-breaking 1974 abstract data types paper presented the concepts without a mathematical specification, using programming language constructs instead. A 1976 paper (number [3] in my publication list, La Description des Structures de Données, i.e. the description of data structures) was as far as I know one of the first to present a mathematical formalism, as  used today in presentations of ADTs. John Guttag was taking a similar approach in his PhD thesis at about the same time, and went further in providing a sound mathematical foundation, introducing in particular (in a 1978 paper with Jim Horning) the notion of sufficient completeness, to which I devoted a full article in this blog  (Are My Requirements Complete?) about a year ago. My own article was published in a not very well known journal and in French, so I don’t think it had much direct influence. (My later books reused some of the material.)

The three-level description approach of that article (later presented in English for an ACM workshop in the US in 1981, Pingree Park, reference [28]) is not well known but still applicable, and would be useful to avoid frequent confusions between ADT specifications and more explicit descriptions.

When I wrote my 1976 paper, I was not aware of Guttag’s ongoing work (only of the Liskov and Zilles paper), so the use of a mathematical framework with functions and predicates on them was devised independently. (I remember being quite happy when I saw what the axioms should be for a queue.) Guttag and I both gave talks at a workshop organized by the French programming language interest group in 1977 and it was fun to see that our presentations were almost identical. I think my paper still reads well today (well, if you read French). Whether or not it exerted direct influence, I am proud that it independently introduced the modern way of thinking of abstract data types as characterized by mathematical functions and their formal (predicate calculus) properties.

Language mechanisms: genericity with inheritance

Every once in a while I get to referee a paper that starts “Generics, as introduced in Java…” Well, let’s get some perspective here. Eiffel from its introduction in 1985 combined genericity and inheritance. Initially, C++ users and designers claimed that genericity was not needed in an OO context and the language did not have it; then they introduced template. Initially, the designers of Java claimed (around 1995) that genericity was not needed, and the language did not have it; a few years later Java got generics. Initially, the designers of C# (around 1999) claimed that genericity was not needed, and the language did not have it; a few years later C# and .NET got generics.

Genericity existed before Eiffel of course; what was new was the combination with inheritance. I had been influenced by work on generic modules by a French researcher, Didier Bert, which I believe influenced the design of Ada as well; Ada was the language that brought genericity to a much broader audience than the somewhat confidential languages that had such a mechanism before. But Ada was not object-oriented (it only had modules, not classes). I was passionate about object-oriented programming (at a time when it was generally considered, by the few people who had heard of it as an esoteric, academic pursuit). I started — in the context of an advanced course I was teaching at UC Santa Barbara — an investigation of how the two mechanisms relate to each other. The results were a paper at the first OOPSLA in 1986, Genericity versus Inheritance, and the design of the Eiffel type system, with a class mechanism, inheritance (single and multiple), and genericity, carefully crafted to complement each other.

With the exception of a Trellis-Owl, a  design from Digital Equipment Corporation also presented at the same OOPSLA (which never gained significant usage), there were no other OO languages with both mechanisms for several years after the Genericity versus Inheritance paper and the implementation of genericity with inheritance in Eiffel available from 1986 on. Eiffel also introduced, as far as I know, the concept of constrained genericity, the second basic mechanism for combining genericity with inheritance, described in Eiffel: The Language (Prentice Hall, 1992, section 10.8) and discussed again in OOSC2 (section 16.4 and throughout). Similar mechanisms are present in many languages today.

It was not always so. I distinctly remember people bringing their friends to our booth at some conference in the early nineties, for the sole purpose of having a good laugh with them at our poster advertising genericity with inheritance. (“What is this thing they have and no one else does? Generi-sissy-tee? Hahaha.”). A few years later, proponents of Java were pontificating that no serious language needs generics.

It is undoubtedly part of of the cycle of invention (there is a Schopenhauer citation on this, actually the only thing from Schopenhauer’s philosophy that I ever understood [D]) that people at some point will laugh at you; if it did brighten their day, why would the inventor deny them one of the little pleasures of life? But in terms of who laughs last, along the way C++ got templates, Java got generics, C# finally did too, and nowadays all typed OO languages have something of the sort.

Language mechanisms: multiple inheritance

Some readers will probably have been told that multiple inheritance is a bad thing, and hence will not count it as a contribution, but if done properly it provides a major abstraction mechanism, useful in many circumstances. Eiffel showed how to do multiple inheritance right by clearly distinguishing between features (operations) and their names, defining a class as a finite mapping between names and features, and using renaming to resolve any name clashes.

Multiple inheritance was made possible by an implementation innovation: discovering a technique (widely imitated since, including in single-inheritance contexts) to implement dynamic binding in constant time. It was universally believed at the time that multiple inheritance had a strong impact on performance, because dynamic binding implied a run-time traversal of the class inheritance structure, already bad enough for single inheritance where the structure is a tree, but prohibitive with multiple inheritance for which it is a directed acyclic graph. From its very first implementation in 1986 Eiffel used what is today known as a virtual table technique which guarantees constant-time execution of routine (method) calls with dynamic binding.

Language mechanisms: safe GC through strong static typing

Simula 67 implementations did not have automatic garbage collection, and neither had implementations of C++. The official excuse in the C++ case was methodological: C programmers are used to exerting manual control of memory usage. But the real reason was a technical impossibility resulting from the design of the language: compatibility with C precludes the provision of a good GC.

More precisely, of a sound and complete GC. A GC is sound if it will only reclaim unreachable objects; it is complete if it will reclaim all unreachable objects. With a C-based language supporting casts (e.g. between integers and pointers) and pointer arithmetic, it is impossible to achieve soundness if we aim at a reasonable level of completeness: a pointer can masquerade as an integer, only to be cast back into a pointer later on, but in the meantime the garbage collector, not recognizing it as a pointer, may have wrongly reclaimed the corresponding object. Catastrophe.

It is only possible in such a language to have a conservative GC, meaning that it renounces completeness. A conservative GC will treat as a pointer any integer whose value could possibly be a pointer (because it lies between the bounds of the program’s data addresses in memory). Then, out of precaution, the GC will refrain from reclaiming the objects at these addresses even if they appear unreachable.

This approach makes the GC sound but it is only a heuristics, and it inevitably loses completeness: every once in a while it will fail to reclaim some dead (unreachable) objects around. The result is a program with memory leaks — usually unacceptable in practice, particularly for long-running or continuously running programs where the leaks inexorably accumulate until the program starts thrashing then runs out of memory.

Smalltalk, like Lisp, made garbage collection possible, but was not a typed language and missed on the performance benefits of treating simple values like integers as a non-OO language would. Although in this case I do not at the moment have a specific bibliographic reference, I believe that it is in the context of Eiffel that the close connection between strong static typing (avoiding mechanisms such as casts and pointer arithmetic) and the possibility of sound and complete garbage collection was first clearly explained. Explained in particular around 1990 in a meeting with some of the future designers of Java, which uses a similar approach, also taken over later on by C#.

By the way, no one will laugh at you today for considering garbage collection as a kind of basic human right for programmers, but for a long time the very idea was quite sulfurous, and advocating it subjected you to a lot of scorn. Here is an extract of the review I got when I submitted the first Eiffel paper to IEEE Transactions on Software Engineering:

Systems that do automatic garbage collection and prevent the designer from doing his own memory management are not good systems for industrial-strength software engineering.

Famous last words. Another gem from another reviewer of the same paper:

I think time will show that inheritance (section 1.5.3) is a terrible idea.

Wow! I wish the anonymous reviewers would tell us what they think today. Needless to say, the paper was summarily rejected. (It later appeared in the Journal of Systems and Software — as [82] in the publication list — thanks to the enlightened views of Robert Glass, the founding editor.)

Language mechanisms: void safety

Void safety is a property of a language design that guarantees the absence of the plague of null pointer dereferencing.

The original idea came (as far as I know) from work at Microsoft Research that led to the design of a research language called C-omega; the techniques were not transferred to a full-fledged programming language. Benefiting from the existence of this proof of concept, the Eiffel design was reworked to guarantee void safety, starting from my 2005 ECOOP keynote paper (Attached Types) and reaching full type safety a few years later. This property of the language was mechanically proved in a 2016 ETH thesis by A. Kogtenkov.

Today all significant Eiffel development produces void-safe code. As far as I know this was a first among production programming languages and Eiffel remains the only production language to provide a guarantee of full void-safety.

This mechanism, carefully crafted (hint: the difficult part is initialization), is among those of which I am proudest, because in the rest of the programming world null pointer dereferencing is a major plague, threatening at any moment to crash the execution of any program that uses pointers of references. For Eiffel users it is gone.

Language mechanisms: agents/delegates/lambdas

For a long time, OO programming languages did not have a mechanism for defining objects wrapping individual operations. Eiffel’s agent facility was the first such mechanism or among the very first together the roughly contemporaneous but initially much more limited delegates of C#. The 1999 paper From calls to agents (with P. Dubois, M. Howard, M. Schweitzer and E. Stapf, [196] in the list) was as far as I know the first description of such a construct in the scientific literature.

Language mechanisms: concurrency

The 1993 Communications of the ACM paper on Systematic Concurrent Object-Oriented Programming [136] was certainly not the first concurrency proposal for OO programming (there had been pioneering work reported in particular in the 1987 book edited by Tokoro and Yonezawa), but it innovated in offering a completely data-race-free model, still a rarity today (think for example of the multi-threading mechanisms of dominant OO languages).

SCOOP, as it came to be called, was implemented a few years later and is today a standard part of Eiffel.

Language mechanisms: selective exports

Information hiding, as introduced by Parnas in his two seminal 1972 articles, distinguishes between public and secret features of a module. The first OO programming language, Simula 67, had only these two possibilities for classes and so did Ada for modules.

In building libraries of reusable components I realized early on that we need a more fine-grained mechanism. For example if class LINKED_LIST uses an auxiliary class LINKABLE to represent individual cells of a linked list (each with a value field and a “right” field containing a reference to another LINKABLE), the features of LINKABLE (such as the operation to reattach the “right” field) should not be secret, since LINKED_LIST needs them; but they should also not be generally public, since we do not want arbitrary client objects to mess around with the internal structure of the list. They should be exported selectively to LINKED_LIST only. The Eiffel syntax is simple: declare these operations in a clause of the class labeled “feature {LINKED_LIST}”.

This mechanism, known as selective exports, was introduced around 1989 (it is specified in full in Eiffel: The Language, from 1992, but was in the Eiffel manuals earlier). I think it predated the C++ “friends” mechanism which serves a similar purpose (maybe someone with knowledge of the history of C++ has the exact date). Selective exports are more general than the friends facility and similar ones in other OO languages: specifying a class as a friend means it has access to all your internals. This solution is too coarse-grained. Eiffel’s selective exports make it possible to define the specific export rights of individual operations (including attributes/fields) individually.

Language mechanisms and implementation: serialization and schema evolution

I did not invent serialization. As a student at Stanford in 1974 I had the privilege, at the AI lab, of using SAIL (Stanford Artificial Intelligence Language). SAIL was not object-oriented but included many innovative ideas; it was far ahead of its time, especially in terms of the integration of the language with (what was not yet called) its IDE. One feature of SAIL with which one could fall in love at first sight was the possibility of selecting an object and having its full dependent data structure (the entire subgraph of the object graph reached by following references from the object, recursively) stored into a file, for retrieval at the next section. After that, I never wanted again to live without such a facility, but no other language and environment had it.

Serialization was almost the first thing we implemented for Eiffel: the ability to write object.store (file) to have the entire structure from object stored into file, and the corresponding retrieval operation. OOSC1 (section 15.5) presents these mechanisms. Simula and (I think) C++ did not have anything of the sort; I am not sure about Smalltalk. Later on, of course, serialization mechanisms became a frequent component of OO environments.

Eiffel remained innovative by tackling the difficult problems: what happens when you try to retrieve an object structure and some classes have changed? Only with a coherent theoretical framework as provided in Eiffel by Design by Contract can one devise a meaningful solution. The problem and our solutions are described in detail in OOSC2 (the whole of chapter 31, particularly the section entitled “Schema evolution”). Further advances were made by Marco Piccioni in his PhD thesis at ETH and published in joint papers with him and M. Oriol, particularly [352].

Language mechanisms and implementation: safe GC through strong static typing

Simula 67 (if I remember right) did not have automatic garbage collection, and neither had C++ implementations. The official justification in the case of C++ was methodological: C programmers are used to exerting manual control of memory usage. But the real obstacle was technical: compatibility with C makes it impossible to have a good GC. More precisely, to have a sound and complete GC. A GC is sound if it will only reclaim unreachable objects; it is complete if it will reclaim all unreachable objects. With a C-based language supporting casts (e.g. between integers and pointers) and pointer arithmetic, it is impossible to achieve soundness if we aim at a reasonable level of completeness: a pointer can masquerade as an integer, only to be cast back into a pointer later on, but in the meantime the garbage collector, not recognizing it as a pointer, may have wrongly reclaimed the corresponding object. Catastrophe. It is only possible in such a language to have a conservative GC, which will treat as a pointer any integer whose value could possibly be a pointer (because its value lies between the bounds of the program’s data addresses in memory). Then, out of precaution, it will not reclaim the objects at the corresponding address. This approach makes the GC sound but it is only a heuristics, and it may be over-conservative at times, wrongly leaving dead (i.e. unreachable) objects around. The result is, inevitably, a program with memory leaks — usually unacceptable in practice.

Smalltalk, like Lisp, made garbage collection possible, but was not a typed language and missed on the performance benefits of treating simple values like integers as a non-OO language would. Although in this case I do not at the moment have a specific bibliographic reference, I believe that it is in the context of Eiffel that the close connection between strong static typing (avoiding mechanisms such as casts and pointer arithmetic) and the possibility of sound and complete garbage collection was first clearly explained. Explained in particular to some of the future designers of Java, which uses a similar approach, also taken over later on by C#.

By the way, no one will laugh at you today for considering garbage collection as a kind of basic human right for programmers, but for a long time it was quite sulfurous. Here is an extract of the review I got when I submitted the first Eiffel paper to IEEE <em>Transactions on Software Engineering:

Software engineering: primacy of code

Agile methods are widely and properly lauded for emphasizing the central role of code, against designs and other non-executable artifacts. By reading the agile literature you might be forgiven for believing that no one brought up that point before.

Object Success (1995) makes the argument very clearly. For example, chapter 3, page 43:

Code is to our industry what bread is to a baker and books to a writer. But with the waterfall code only appears late in the process; for a manager this is an unacceptable risk factor. Anyone with practical experience in software development knows how many things can go wrong once you get down to code: a brilliant design idea whose implementation turns out to require tens of megabytes of space or minutes of response time; beautiful bubbles and arrows that cannot be implemented; an operating system update, crucial to the project which comes five weeks late; an obscure bug that takes ages to be fixed. Unless you start coding early in the process, you will not be able to control your project.

Such discourse was subversive at the time; the wisdom in software engineering was that you need to specify and design a system to death before you even start coding (otherwise you are just a messy “hacker” in the sense this word had at the time). No one else in respectable software engineering circles was, as far as I know, pushing for putting code at the center, the way the above extract does.

Several years later, agile authors started making similar arguments, but I don’t know why they never referenced this earlier exposition, which still today I find not too bad. (Maybe they decided it was more effective to have a foil, the scorned Waterfall, and to claim that everyone else before was downplaying the importance of code, but that was not in fact everyone.)

Just to be clear, Agile brought many important ideas that my publications did not anticipate; but this particular one I did.

Software engineering: the roles of managers

Extreme Programming and Scrum have brought new light on the role of managers in software development. Their contributions have been important and influential, but here too they were for a significant part prefigured by a long discussion, altogether two chapters, in Object Success (1995).

To realize this, it is enough to read the titles of some of the sections in those chapters, describing roles for managers (some universal, some for a technical manager): “risk manager”, “interface with the rest of the world” (very scrummy!), “protector of the team’s sanity”, “method enforcer” (think Scrum Master), “mentor and critic”. Again, as far as I know, these were original thoughts at the time; the software engineering literature for the most part did not talk about these issues.

Software engineering: outsourcing

As far as I know the 2006 paper Offshore Development: The Unspoken Revolution in Software Engineering was the first to draw attention, in the software engineering community, to the peculiar software engineering challenges of distributed and outsourced development.

Software engineering: automatic testing

The AutoTest project (with many publications, involving I. Ciupa, A. Leitner, Y. Wei, M. Oriol, Y. Pei, M. Nordio and others) was not the first to generate tests automatically by creating numerous instances of objects and calling applicable operations (it was preceded by Korat at MIT), but it was the first one to apply this concept with Design by Contract mechanisms (without which it is of little practical value, since one must still produce test oracles manually) and the first to be integrated in a production environment (EiffelStudio).

Software engineering: make-less system building

One of the very first decisions in the design of Eiffel was to get rid of Make files.

Feldman’s Make had of course been a great innovation. Before Make, programmers had to produce executable systems manually by executing sequences of commands to compile and link the various source components. Make enabled them to instead  to define dependencies between components in a declarative way, resulting in a partial order, and then performed a topological sort to produce the sequence of comments. But preparing the list of dependencies remains a tedious task, particularly error-prone for large systems.

I decided right away in the design of Eiffel that we would never force programmers to write such dependencies: they would be automatically extracted from the code, through an exhaustive analysis of the dependencies between modules. This idea was present from the very the first Eiffel report in 1985 (reference [55] in the publication list): Eiffel programmers never need to write a Make file or equivalent (other than for non-Eiffel code, e.g. C or C++, that they want to integrate); they just click a Compile button and the compiler figures out the steps.

Behind this approach was a detailed theoretical analysis of possible relations between modules in software development (in many programming languages), published as the “Software Knowledge Base” at ICSE in 1985. That analysis was also quite instructive and I would like to return to this work and expand it.

Educational techniques: objects first

Towards an Object-Oriented Curriculum ( TOOLS conference, August 1993, see also the shorter JOOP paper in May of the same year) makes a carefully argued case for what was later called the Objects First approach to teaching programming. I would be interested to know if there are earlier publications advocating starting programming education with an OO language.

The article also advocated for the “inverted curriculum”, a term borrowed from work by Bernie Cohen about teaching electrical engineering. It was the first transposition of this concept to software education. In the article’s approach, students are given program components to use, then little by little discover how they are made. This technique met with some skepticism and resistance since the standard approach was to start from the very basics (write trivial programs), then move up. Today, of course, many introductory programming courses similarly provide students from day one with a full-fledged set of components enabling them to produce significant programs.

More recent articles on similar topics, taking advantage of actual teaching experience, are The Outside-In Method of Teaching Programming (2003) and The Inverted Curriculum in Practice (at ICSE 2006, with Michela Pedroni). The culmination of that experience is the textbook Touch of Class from 2009.

Educational techniques: Distributed Software Projects

I believe our team at ETH Zurich (including among others M. Nordio, J. Tschannen, P. Kolb and C. Estler and in collaboration with C. Ghezzi, E. Di Nitto and G. Tamburrelli at Politecnico di Milano, N. Aguirre at Rio Cuarto and many others in various universities) was the first to devise,  practice and document on a large scale (see publications and other details here) the idea of an educational software project conducted in common by student groups from different universities. It yielded a wealth of information on distributed software development and educational issues.

Educational techniques: Web-based programming exercises

There are today a number of cloud-based environments supporting the teaching of programming by enabling students to compile and test their programs on the Web, benefiting from a prepared environment (so that they don’t have to download any tools or prepare control files) and providing feedback. One of the first — I am not sure about absolute precedence — and still a leading one, used by many universities and applicable to many programming languages, is Codeboard.

The main developer, in my chair at ETH Zurich, was Christian Estler, supported in particular by M. Nordio and M. Piccioni, so I am only claiming a supporting role here.

Educational techniques: key CS/SE concepts

The 2001 paper Software Engineering in the Academy did a good job, I think, of defining the essential concepts to teach in a proper curriculum (part of what Jeannette Wing’s 2006 paper called Computational Thinking).

Program verification: agents (delegates etc.)

Reasoning about Function Objects (ICSE 2010, with M. Nordio, P. Müller and J. Tschannen) introduced verification techniques for objects representing functions (such as agents, delegates etc., see above) in an OO language. Not sure whether there were any such techniques before.

Specification languages: Z

The Z specification language has been widely used for formal development, particularly in the UK. It is the design of J-R Abrial. I may point out that I was a coauthor of the first publication on Z in English (1980),  describing a version that preceded the adaptation to a more graphical-style notation done later at Oxford. The first ever published description of Z, pertaining to an even earlier version, was in French, in my book Méthodes de Programmation (with C. Baudoin), Eyrolles, 1978, running over 15 pages (526-541), with the precise description of a refinement process.

Program verification: exceptions

Largely coming out of the PhD thesis of Martin Nordio, A Sound and Complete Program Logic for Eiffel (TOOLS 2009) introduces rules for dealing with exceptions in a Hoare-style verification framework.

Program verification: full library, and AutoProof

Nadia Polikarpova’s thesis at ETH, aided by the work of Carlo Furia and Julian Tschannen (they were the major contributors and my participation was less important), was as far as I know the first to produce a full functional verification of an actual production-quality reusable library. The library is EiffelBase 2, covering fundamental data structures.

AutoProof — available today, as a still experimental tool, through its Web interface, see here — relied on the AutoProof prover, built by the same team, and itself based on Microsoft Research’s Boogie and Z3 engines.

More

There are more concepts worthy of being included here, but for today I will stop here.

Notes

[A] One point of divergence between usual presentations of the substitution principle and the view in OOSC and my other publications is the covariance versus contravariance of routine argument types. It reflects a difference of views as to what the proper policy (both mathematically sound and practically usable) should be.

[B]  The GoF book does not cite OOSC for the command or bridge patterns. For the command pattern it cites (thanks to Adam Kosmaczewski for digging up the GoF text!) a 1985 SIGGRAPH paper by Henry Lieberman (There’s More to Menu Systems than Meets the Screen). Lieberman’s paper describes the notion of command object and mentions undoing in passing, but does not include the key elements of the command pattern (as explained in full in OOSC1), i.e. an abstract (deferred) command class with deferred procedures called (say) do_it and undo_it, then specific classes for each kind of command, each providing a specific implementation of those procedures, then a history list of commands supporting multiple-level undo and redo as explained in OOSC1. (Reading Lieberman’s paper with a 2021 perspective shows that it came tantalizingly close to the command pattern, but doesn’t get to it. The paper does talk about inheritance between command classes, but only to “define new commands as extensions to old commands”, not in the sense of a general template that can be implemented in many specific ways. And it does mention a list of objects kept around to enable recovery from accidental deletions, and states that the application can control its length, as is the case with a history list; but the objects in the list are not command objects, they are graphical and other objects that have been deleted.)

[C] Additional note on the command pattern: I vaguely remember seeing something similar to the OOSC1 technique in an article from a supplementary volume of the OOPSLA proceedings in the late eighties or early nineties, i.e. at the same time or slightly later, possibly from authors from Xerox PARC, but I have lost the reference.

[D] Correction: I just checked the source and learned that the actual Schopenhauer quote (as opposed to the one that is usually quoted) is different; it does not include the part about laughing. So much for my attempts at understanding philosophy.

 

VN:F [1.9.10_1130]
Rating: 8.7/10 (27 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 14 votes)

The right forms of expression

If you want to know whether your_string has at least one upper-case character, you will write this in Eiffel:

if  ∃ c: your_string ¦ c.is_upper then

Such predicate-calculus boolean expressions, using a quantifier (“for all”) or (“there exists”) are becoming common in Eiffel code. They are particularly useful in Design by Contract assertions, making it possible to characterize deep semantic properties of the code and its data structures. For example a class invariant clause in a class I wrote recently states

from_lists_exist: ∀ tf: triples_from ¦ tf Void                        — [1]

meaning that all the elements, if any, of the list triples_from  are non-void (non-null). The notation is the exact one from mathematics. (Mathematical notation sometimes uses a dot in place of the bar, but the bar is clearer, particularly in an OO context where the dot has another use.)

Programming languages should support time-honored notations from mathematics. Reaching this goal has been a driving force in the evolution of Eiffel, but not as a concession to “featurism” (the gratuitous piling up of language feature upon feature). The language must remain simple and consistent; any new feature must find its logical place in the overall edifice.

The design of programming languages is a constant search for the right balance between rigor, simplicity, consistency, formal understanding, preservation of existing code, innovation and expressiveness. The design of Eiffel has understood the last of these criteria as implying support for established notations from mathematics, not through feature accumulation but by re-interpreting these notations in terms of the language’s fundamental concepts. A typical example is the re-interpretation of the standard mathematical notation a + b as as simply an operator-based form for the object-oriented call a.plus (b), obtained by declaring “+” as an operator alias for the function plus in the relevant classes. There are many more such cases in today’s Eiffel. Quantifier expressions using and  are the latest example.

 They are not a one-of-a-kind trick but just as a different syntax form for loops. Expressed in a more verbose form, the only one previously available, [1] would be:

across triples_from is tf all tf /= Void end                         — [2]

It is interesting to walk back the history further. [2] is itself a simplification of

across triples_from as tf all tf.item /= Void end               — [3]

where the “.item” has a good reason for being there, but that reason is irrelevant to a beginner. The earlier use of as in [3] is also the reason for the seemingly bizarre use of is in [2], which is only explainable by the backward compatibility criterion (code exists that uses as , which has a slightly different semantics from is), and will go away. But a few years ago the across loop variant did not exist and you would have had to write the above boolean expressions as

all_non_void (triples_from)

after defining a function

all_non_void (l: LIST [T]): BOOLEAN                                    — [4]
                         — Are all the elements of `l’, if any, non-void?
          local
pos: INTEGER
do
from
pos := l.index
l.start
Result := True
until not Result or l.after loop
l.forth
end
go_ith (pos)
end

The road traveled from [4] to [1] is staggering. As we introduced new notations in the history of Eiffel the reaction of the user community has sometimes been between cautious and negative. With the exception of a couple of quickly discarded ideas (such as the infamous and short-lived “!!” for creation), they were generally adopted widely because they simplify people’s life without adding undue complexity to the language. The key has been to avoid featurism and choose instead to provide two kinds of innovation:

  • Major conceptual additions, which elevate the level of abstraction of the language. A typical introduction was the introduction of agents, which provide the full power of functional programming in an object-oriented context; another was the SCOOP concurrency mechanism. There have been only a few such extensions, all essential.
  • Syntactical variants for existing concepts, allowing more concise forms obtained from traditional mathematical notation. The use of quantifier expressions as in [1] is the latest example.

Complaints of featurism still occasionally happen when people first encounter the new facilities, but they fade away quickly as people start using them. After writing a few expressions such as [1], no one wants to go back to any of the other forms.

These quantifier expressions using and , as well as the “” not-equal sign for what used to be (and still commonly is) written “/=”, rely on Unicode. Eiffel started out when ASCII was the law of the land. (Or 8-bit extended ASCII, which does not help much since the extensions are rendered differently in different locales, i.e. the same 8-bit character code may mean something different on French and Swedish texts.) In recent years, Eiffel has made a quiet transition to full Unicode support. (Such support extends to manifest strings and operators, not to identifiers. The decision, which could be revisited, has been to keep the ASCII-only  policy for identifiers to favor compatible use by programmers regardless of their mother tongues.) The use of Unicode considerably extends the expressive power of the language, in particular for scientific software which can — thanks to Eiffel’s mechanism for defining free operators — rely on advanced mathematical notations.

Unicode is great, but I hear the question: how in the world can we enter the corresponding symbols, since our keyboards are still ASCII plus some extensions?

It would be tedious to have to select from a list of special symbols (as you do when inserting a mathematical symbol in Microsoft Word or, for that matter, as I did when inserting the phrase “ and ” in the preceding paragraph using WordPress).

The answer lies in the interplay between the language and the development environment. EiffelStudio, like other modern IDEs, includes an automatic completion mechanism which lets you enter the beginning of a construct and will take care of filling in the rest. Already useful for complex structures (if you type “if” the tools will create the entire “if then else end” conditional structure for you to fill in), automatic completion will take care of inserting the appropriate Unicode symbols for you. Type for example “across”,  then CTRL-Space to trigger completion, and the choices will include the “∀” and “” forms. You can see below how this works:

across_all

Programming languages can be at the same time simple, easy to learn, consistent, and expressive. Start using quantifiers now!

Acknowledgments to the Ecma Technical Committee on Eiffel and the Eiffel Software team, particularly Alexander Kogtenkov (see his blog post here) and (for the completion mechanism and its animated illustration above) Jocelyn Fiat.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Questionnaire on deployed, formally verified systems

A group of us is preparing a survey on systems that have been both formally verified and deployed for actual use. To make sure we do not forget any important development, we have devised a questionnaire. If you have experience with such a system, please help by filling the questionnaire. It only includes a few questions and takes a few minutes to fill. You can find it here.

Please also bring it to the attention of others who might have relevant information.

Thanks in advance!

VN:F [1.9.10_1130]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

New video lecture: distances, invariants and recursion

I have started a new series of video lectures, which I call “Meyer’s Object-Oriented Classes” (MOOC). The goal is to share insights I have gained over the years on various aspects of programming and software engineering. Many presentations are focused on one area, such as coding, design, analysis, theoretical computer science (even there you find a division between “Theory A”, i.e. complexity, Turing machines and the like, and “Theory B”, i.e. semantics, type theory etc.), software project management, concurrency… I have an interest in all and try to explain connections.

 

The first lecture describes the edit distance (Levenshtein) algorithm, explains its correctness by introducing the loop invariant, expands on that notion, then shows a recursive version, explores the connection with the original version (it’s the invariant), and probes further into another view of recursive computations, leading to the concept of dynamic programming.

The videos are on YouTube and can be accessed from bertrandmeyer.com/levenshtein. (The general page for all lectures is at bertrandmeyer.com/mooc.)

The lecture is recorded in four segments of about 15 minutes each. In the future I will limit myself to 8-10 minutes. In fact I may record this lecture again; for example it would be better if I had a live audience rather than talking to my screen, and in general the recording is somewhat low-tech, but circumstances command. Also, I will correct a few hiccups (at some point in the recording I notice a typo on a slide and fix it on the fly), but the content will remain the same.

Feedback is of course welcome. I hope to record about a lecture a week from now on.

VN:F [1.9.10_1130]
Rating: 10.0/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

New master program at SIT: Webinar tomorrow

The Schaffhausen Institute of Technology (SIT) is holding a Webinar tomorrow with a set of three talks by: Serguei Beloussov, founder of Acronis and president of SIT; Michael Widenius, CTO of MariaDB and creator of MySQL Server; and Mauro Pezzè, my colleague at SIT, who will present the new master program that we have just announced, combining CS/SE topics with management and marketing courses to train future technology leaders.

The talks are in the form of a Webinar, starting at 9 AM this Tuesday (9 June). You can find all the details on the corresponding SIT page at here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

Getting a program right, in nine episodes

About this article: it originated as a series of posts on the Communications of the ACM blog. I normally repost such articles here. (Even though copy-paste is usually not good, there are three reasons for this duplication: the readership seems to be largely disjoint; I can use better formatting, since their blog software is more restrictive than WordPress; and it is good to have a single repository for all my articles, including both those who originated on CACM and those who did not.) The series took the form of nine articles, where each of the first few ended with a quiz, to which the next one, published a couple of days later, provided an answer. Since all these answers are now available it would make no sense to use the same scheme, so I am instead publishing the whole thing as a single article  with nine sections, slightly adapted from the original.

I was too lazy so far to collect all the references into a single list, so numbers such as [1] refer to the list at the end of the corresponding section.


A colleague recently asked me to present a short overview of  axiomatic semantics as a guest lecture in one of his courses. I have been teaching courses on software verification for a long time (see e.g. here), so I have plenty of material; but instead of just reusing it, I decided to spend a bit of time on explaining why it is good to have a systematic approach to software verification. Here is the resulting tutorial.


 

1. Introduction and attempt #1

Say “software verification” to software professionals, or computer science students outside of a few elite departments, and most of them will think  “testing”. In a job interview, for example, show a loop-based algorithm to a programmer and ask “how would you verify it?”: most will start talking about devising clever test cases.

Far from me to berate testing [1]; in fact, I have always thought that the inevitable Dijkstra quote about testing — that it can only show the presence of errors, not their absence [2] — which everyone seems to take as an indictment and dismissal of testing (and which its author probably intended that way) is actually a fantastic advertisement for testing: a way to find bugs? Yes! Great! Where do I get it?  But that is not the same as verifying the software, which means attempting to ascertain that it has no bugs.

Until listeners realize that verification cannot just mean testing, the best course material on axiomatic semantics or other proof techniques will not attract any interest. In fact, there is somewhere a video of a talk by the great testing and public-speaking guru James Whittaker where he starts by telling his audience not to worry, this won’t be a standard boring lecture, he will not start talking about loop invariants [3]! (Loop invariants are coming in this article, in fact they are one of its central concepts, but in later sections only, so don’t bring the sleeping bags yet.) I decided to start my lecture by giving an example of what happens when you do not use proper verification. More than one example, in fact, as you will see.

A warning about this article: there is nothing new here. I am using an example from my 1990 book Introduction to the Theory of Programming Languages (exercise 9.12). Going even further back, a 1983 “Programming Pearls” Communications of the ACM article by Jon Bentley [4] addresses the same example with the same basic ideas. Yet almost forty years later these ideas are still not widely known among practitioners. So consider these articles as yet another tutorial on fundamental software engineering stuff.

The tutorial is a quiz. We start with a program text:

from

i := 1 ; j := n              — Result initialized to 0.

until i = j loop

m := (i + j) // 2         — Integer division

if t [m] ≤ x then i := m  else  j := m end

end

if x = t [i] then Result := i end

All variables are of integer type. t is an up-sorted array of integers, indexed from 1 to n . We do not let any notation get between friends. A loop from p until e loop q end executes p then, repeatedly: stops if e (the exit condition) is true, otherwise executes q. (Like {p ; while not e do {q}} in some other notations.) “:=” is assignment, “=” equality testing.  “//” is integer division, e.g. 6 //3 = 7 //3 = 2. Result is the name of a special variable whose final value will be returned by this computation (as part of a function, but we only look at the body). Result is automatically initialized to zero like all integer variables, so if execution does not assign anything to Result the function will return zero.

First question: what is this program trying to do?

OK, this is not the real quiz. I assume you know the answer: it is an attempt at “binary search”, which finds an element in the array, or determines its absence, in a sequence of about log2 (n) steps, rather than n if we were use sequential search.  (Remember we assume the array is sorted.) Result should give us a position where x appears in the array, if it does, and otherwise be zero.

Now for the real quiz: does this program meet this goal?

The answer should be either yes or no. (If no, I am not asking for a correct version, at least not yet, and in any case you can find some in the literature.) The situation is very non-symmetric, we might say Popperian:

  • To justify a no answer it suffices of a single example, a particular array t and a particular value x, for which the program fails to set Result as it should.
  • To justify a yes answer we need to provide a credible argument that for every t and  x the program sets Result as it should.

Notes to section 1

[1] The TAP conference series (Tests And Proofs), which Yuri Gurevich and I started, explores the complementarity between the two approaches.

[2] Dijkstra first published his observation in 1969. He did not need consider the case of infinite input sets: even for a trivial finite program that multiplies two 32-bit integers, the number of cases to be examined, 264, is beyond human reach. More so today with 64-bit integers. Looking at this from a 2020 perspective, we may note that exhaustive testing of a finite set of cases, which Dijkstra dismissed as impossible in practice, is in fact exactly what the respected model checking verification technique does; not on the original program, but on a simplified — abstracted — version precisely designed to keep the number of cases tractable. Dijkstra’s argument remains valid, of course, for  the original program if non-trivial. And model-checking does not get us out of the woods: while we are safe if its “testing” finds no bug, if it does find one we have to ensure that the bug is a property of the original program rather than an artifact of the abstraction process.

[3] It is somewhere on YouTube, although I cannot find it right now.

[4] Jon Bentley: Programming Pearls: Writing Correct Programs, in Communications of the ACM, vol. 26, no. 12, pp. 1040-1045, December 1983, available for example here.


2. Attempt #2

Was program #1 correct? If so it should yield the correct answer. (An answer is correct if either Result is the index in t of an element equal to x, or Result = 0 and x does not appear in t.)

This program is not correct. To prove that it is not correct it suffices of a single example (test case) for which the program does not  “yield the correct answer”. Assume x = 1 and the array t has two elements both equal to zero (n = 2, remember that arrays are indexed from 1):

t = [0   0]

The successive values of the variables and expressions are:

                                            m       i          j            i + j + 1

After initialization:                   1         2                3

i ≠ j, so enter loop:           1       1        2                 6         — First branch of “if” since t [1] ≤ x
— so i gets assigned the value of m

But then neither of the values of i and j has changed, so the loop will repeat its body identically (taking the first branch) forever. It is not even that the program yields an incorrect answer: it does not yield an answer at all!

Note (in reference to the famous Dijkstra quote mentioned in the first article), that while it is common to pit tests against proofs, a test can actually be a proof: a test that fails is a proof that the program is incorrect. As valid as the most complex mathematical proof. It may not be the kind of proof we like most (our customers tend to prefer a guarantee that the program is correct), but it is a proof all right.

We are now ready for the second attempt:

—  Program attempt #2.

from

i := 1 ; j := n

until i = j or Result > 0  loop

m := (i + j) // 2         — Integer division

if t [m] ≤ x then

i := m  + 1

elseif t [m] = x then

Result := m

else                         — In this case t [m] > x

j := m – 1

end

end

Unlike the previous one this version always changes i or j, so we may hope it does not loop forever. It has a nice symmetry between i and j.

Same question as before: does this program meet its goal?


3. Attempt #3

The question about program #2, as about program #1: was: it right?

Again no.  A trivial example disproves it: n = 1, the array t contains a single element t [1] = 0, x = 0. Then the initialization sets both i and j to 1, i = j holds on entry to the loop which stops immediately, but Result is zero whereas it should be 1 (the place where x appears).

Here now is attempt #3, let us see it if fares better:

—  Program attempt #3.

from

i := 1 ; j := n

until i = j loop

m := (i + j + 1) // 2

if t [m] ≤ x then

i := m  + 1

else

j := m

end

end

if 1  ≤ i  and i ≤ n then Result := i end
       — If not, Result remains 0.

What about this one?


3. Attempt #4 (also includes 3′)

The first two program attempts were wrong. What about the third?

I know, you have every right to be upset at me, but the answer is no once more.

Consider a two-element array t = [0 0] (so n = 2, remember that our arrays are indexed from 1 by convention) and a search value x = 1. The successive values of the variables and expressions are:

                                                  m          i          j            i + j + 1

After initialization:                            1        2           4

i ≠ j, so enter loop:               2           3        2          6                  — First branch of “if” since t [2] < x

i ≠ j,  enter loop again:        3           ⚠                                       — Out-of-bounds memory access!
— (trying to access non-existent t [3])

Oops!

Note that we could hope to get rid of the array overflow by initializing i to 0 rather than 1. This variant (version #3′) is left as a bonus question to the patient reader. (Hint: it is also not correct. Find a counter-example.)

OK, this has to end at some point. What about the following version (#4): is it right?

—  Program attempt #4.

from

i := 0 ; j := n + 1

until i = j loop

m := (i + j) // 2

if t [m] ≤ x then

i := m  + 1

else

j := m

end

end

if 1 ≤ i  and i ≤ n then Result := i end


5. Attempt #5

Yes, I know, this is dragging on. But that’s part of the idea: witnessing how hard it is to get a program right if you just judging by the seat of your pants. Maybe we can get it right this time?

Are we there yet? Is program attempt #4 finally correct?

Sorry to disappoint, but no. Consider a two-element array t = [0 0], so n = 2, and a search value x = 1 (yes, same counter-example as last time, although here we could also use x = 0). The successive values of the variables and expressions are:

                                                 m          i          j            i + j

After initialization:                           0        3           3

i ≠ j, so enter loop:               1           2       3          5            — First branch of “if

i ≠ j, enter loop again:         2         3        3         6            — First branch again

i = j, exit loop

The condition of the final “if” is true, so Result gets the value 3. This is quite wrong, since there is no element at position 3, and in any case x does not appear in t.

But we are so close! Something like this should work, should it not?

So patience, patience, let us tweak it just one trifle more, OK?

—  Program attempt #5.

from

i := 1 ; j := n + 1

until i ≥ j or Result > 0 loop

m := (i + j) // 2

if t [m] < x then

i := m + 1

elseif  t [m] > x then

j := m

else

Result := m

end

end

Does it work now?


6. Attempt #6

The question about program #5  was the same as before: is it right, is it wrong?

Well, I know you are growing more upset at me with each section, but the answer is still that this program is wrong. But the way it is wrong is somewhat specific; and it applies, in fact, to all previous variants as well.

This particular wrongness (fancy word for “bug”) has a history. As I pointed out in the first article, there is a long tradition of using binary search to illustrate software correctness issues. A number of versions were published and proved correct, including one in the justly admired Programming Pearls series by Jon Bentley. Then in 2006 Joshua Bloch, then at Google, published a now legendary blog article [2] which showed that all these versions suffered from a major flaw: to obtain m, the approximate mid-point between i and j, they compute

(i + j) // 2

which, working on computer integers rather than mathematical integers, might overflow! This in a situation in which both i and j, and hence m as well, are well within the range of the computer’s representable integers, 2-n to 2n (give or take 1) where n is typically 31 or, these days, 63, so that there is no conceptual justification for the overflow.

In the specification that I have used for this article, i starts at 1, so the problem will only arise for an array that occupies half of the memory or more, which is a rather extreme case (but still should be handled properly). In the general case, it is often useful to use arrays with arbitrary bounds (as in Eiffel), so we can have even a small array, with high indices, for which the computation will produce an overflow and bad results.

The Bloch gotcha is a stark reminder that in considering the correctness of programs we must include all relevant aspects and consider programs as they are executed on a real computer, not as we wish they were executed in an ideal model world.

(Note that Jon Bentley alluded to this requirement in his original article: while he did not explicitly mention integer overflow, he felt it necessary to complement his proof by the comment that that  “As laborious as our proof of binary search was, it is still unfinished by some standards. How would you prove that the program is free of runtime errors (such as division by zero, word overflow, or array indices out of bounds)?” Prescient words!)

It is easy to correct the potential arithmetic overflow bug: instead of (i + j) // 2, Bloch suggested we compute the average as

i + (j – i) // 2

which is the same from a mathematician’s viewpoint, and indeed will compute the same value if both variants compute one, but will not overflow if both i and j are within range.

So we are ready for version 6, which is the same as version 5 save for that single change:

—  Program attempt #6.

from

i := 1 ; j := n + 1

until i ≥ j or Result > 0 loop

m := i + (j – i) // 2

if t [m] < x then

i := m + 1

elseif  t [m] > x then

j := m

else

Result := m

end

end

Now is probably the right time to recall the words by which Donald Knuth introduces binary search in the original 1973 tome on Sorting and Searching of his seminal book series The Art of Computer Programming:knuth

Although the basic idea of binary search is comparatively straightforward, the details can be somewhat tricky, and many good programmers have done it wrong the first few times they tried.

Do you need more convincing? Be careful what you answer, I have more variants up my sleeve and can come up with many more almost-right-but-actually-wrong program attempts if you nudge me. But OK, even the best things have an end. This is not the last section yet, but that was the last program attempt. To the naturally following next question in this running quiz,  “is version 6 right or wrong”, I can provide the answer: it is, to the best of my knowledge, a correct program. Yes! [3].

But the quiz continues. Since answers to the previous questions were all  that the programs were not correct, it sufficed in each case to find one case for which the program did not behave as expected. Our next question is of a different nature: can you find an argument why version #6 is correct?

References for section 6

[1] (In particular) Jon Bentley: Programming Pearls — Writing Correct Programs, in Communications of the ACM, vol. 26, no. 12, December 1983, pages 1040-1045, available here.

[2] Joshua Bloch: Extra, Extra — Read All About It: Nearly All Binary Searches and Mergesorts are Broken, blog post, on the Google AI Blog, 2 June 2006, available here.

[3] A caveat: the program is correct barring any typos or copy-paste errors — I am starting from rigorously verified programs (see the next posts), but the blogging system’s UI and text processing facilities are not the best possible for entering precise technical text such as code. However carefully I check, I cannot rule out a clerical mistake, which of course would be corrected as soon as it is identified.


7. Using a program prover

Preceding sections presented candidate binary search algorithms and asked whether they are correct. “Correct” means something quite precise: that for an array t and a value x, the final value of the variable Result is a valid index of t (that is to say, is between 1 and n, the size of t) if and only if x appears at that index in t.

The last section boldly stated that program attempt #6 was correct. The question was: why?

In the case of the preceding versions, which were incorrect, you could prove that property, and I do mean prove, simply by exhibiting a single counter-example: a single t and x for which the program does not correctly set Result. Now that I asserting the program to be correct, one example, or a million examples, do not suffice. In fact they are almost irrelevant. Test as much as you like and get correct results every time, you cannot get rid of the gnawing fear that if you had just tested one more time after the millionth test you would have produced a failure. Since the set of possible tests is infinite there is no solution in sight [1].

We need a proof.

I am going to explain that proof in the next section, but before that I would like to give you an opportunity to look at the proof by yourself. I wrote in one of the earlier articles that most of what I have to say was already present in Jon Bentley’s 1983 Programming Pearls contribution [2], but a dramatic change did occur in the four decades since: the appearance of automated proof system that can handle significant, realistic programs. One such system, AutoProof, was developed at the Chair of Software engineering at ETH Zurich [3] (key project members were Carlo Furia, Martin Nordio, Nadia Polikarpova and Julian Tschannen, with initial contributions by Bernd Schoeller) on the basis of the Boogie proof technology from Microsoft Research).

AutoProof is available for online use, and it turns out that one of the basic tutorial examples is binary search. You can go to the corresponding page and run the proof.

I am going to let you try this out (and, if you are curious, other online AutoProof examples as well) without too many explanations; those will come in the next section. Let me simply name the basic proof technique: loop invariant. A loop invariant is a property INV associated with a loop, such that:

  • A. After the loop’s initialization, INV will hold.
  • B. One execution of the loop’s body, if started with INV satisfied (and the loop’s exit condition not satisfied, otherwise we wouldn’t be executing the body!), satisfies INV again when it terminates.

This idea is of course the same as that of a proof by induction in mathematics: the initialization corresponds to the base step (proving that P (0) holds) and the body property to the induction step (proving that from P (n) follows P (n + 1). With a traditional induction proof we deduce that the property (P (n)) holds for all integers. For the loop, we deduce that when the loop finishes its execution:

  • The invariant still holds, since executing the loop means executing the initialization once then the loop body zero or more times.
  • And of course the exit condition also holds, since otherwise we would still be looping.

That is how we prove the correctness of a loop: the conjunction of the invariant and the exit condition must yield the property that we seek (in the example, the property, stated above of Result relative to t and x).

We also need to prove that the loop does terminate. This part involves another concept, the loop’s variant, which I will explain in the next section.

For the moment I will not say anything more and let you look at the AutoProof example page (again, you will find it here), run the verification, and read the invariant and other formal elements in the code.

To “run the verification” just click the Verify button on the page. Let me emphasize (and emphasize again and again and again) that clicking Verify will not run the code. There is no execution engine in AutoProof, and the verification does not use any test cases. It processes the text of the program as it appears on the page and below. It applies mathematical techniques to perform the proof; the core property to be proved is that the proposed loop invariant is indeed invariant (i.e. satisfies properties A and B above).

The program being proved on the AutoProof example page is version #6 from the last section, with different variable names. So far for brevity I have used short names such as i, j and m but the program on the AutoProof site applies good naming practices with variables called low, up, middle and the like. So here is that version again with the new variable names:

—  Program attempt #7  (identical to #6 with different variable names) .

from

low := 0 ; up := n

until low ≥ up or Result > 0 loop

middle := low + ((up – low) // 2)

if a [middle] < value then      — The array is now called a rather than t

low := middle + 1

elseif  a [middle] > value then

up := middle

else

Result := middle

end

end

This is exactly the algorithm text on the AutoProof page, the one that you are invited to let AutoProof verify for you. I wrote “algorithm text” rather than “program text” because the actual program text (in Eiffel) includes variant and invariant clauses which do not affect the program’s execution but make the proof possible.

Whether or not these concepts (invariant, variant, program proof) are completely new to you, do try the prover and take a look at the proof-supporting clauses. In the next article I will remove any remaining mystery.

Note and references for section 7

[1] Technically the set of possible [array, value] pairs is finite, but of a size defying human abilities. As I pointed out in the first section, the “model checking” and “abstract interpretation” verification techniques actually attempt to perform an exhaustive test anyway, after drastically reducing the size of the search space. That will be for some other article.

[2]  Jon Bentley: Programming Pearls: Writing Correct Programs, in Communications of the ACM, vol. 26, no. 12, pp. 1040-1045, December 1983, available for example here.

[3] The AutoProof page contains documentations and numerous article references.


8. Understanding the proof

The previous section invited you to run the verification on the AutoProof tutorial page dedicated to the example. AutoProof is an automated proof system for programs. This is just a matter of clicking  “Verify”, but more importantly, you should read the annotations added to the program text, particularly the loop invariant, which make the verification possible. (To avoid any confusion let me emphasize once more that clicking “Verify” does not run the program, and that no test cases are used; the effect is to run the verifier, which attempts to prove the correctness of the program by working solely on the program text.)

Here is the program text again, reverting for brevity to the shorter identifiers (the version on the AutoProof page has more expressive ones):

from

i := 1 ; j := n + 1

until i ≥ j or Result > 0 loop

m := i + (j – i) // 2

if t [m] < x then

i := m + 1

elseif  t [m] > x then

j := m

else

Result := m

end

end

Let us now see what makes the proof possible. The key property is the loop invariant, which reads

A:   1  ≤ i  ≤ j  ≤ n + 1
B:   0  ≤ Result  ≤ n
C:   ∀ k: 1 .. i –1  |  t [k] < x
D:   ∀ k: j .. n  |  t [k] > x
E:    (Result > 0)   ⇒   (t [Result] = x)

The notation is slightly different on the Web page to adapt to the Eiffel language as it existed at the time it was produced; in today’s Eiffel you can write the invariant almost as shown above. Long live Unicode, allowing us to use symbols such as (obtained not by typing them but by using smart completion, e.g. you start typing “forall” and you can select the symbol that pops up), for  “implies” and many others

Remember that the invariant has to be established by the loop’s initialization and preserved by every iteration. The role of each of its clauses is as follows:

  • A: keep the indices in range.
  • B: keep the variable Result, whose final value will be returned by the function, in range.
  • C and D: eliminate index intervals in which we have determined that the sought value, x, does not appear. Before i, array values are smaller; starting at j, they are greater. So these two intervals, 1..i and j..n, cannot contain the sought value. The overall idea of the algorithm (and most other search algorithms) is to extend one of these two intervals, so as to narrow down the remaining part of 1..n where x may appear.
  • E: express that as soon as we find a positive (non-zero) Result, its value is an index in the array (see B) where x does appear.

Why is this invariant useful? The answer is that on exit it gives us what we want from the algorithm. The exit condition, recalled above, is

i ≥ j or Result > 0

Combined with the invariant, it tells us that on exit one of the following will hold:

  • Result > 0, but then because of E we know that x appears at position Result.
  • i < j, but then A,  C and D  imply that x does not appear anywhere in t. In that case it cannot be true that Result > 0, but then because of B Result must be zero.

What AutoProof proves, mechanically, is that under the function’s precondition (that the array is sorted):

  • The initialization ensures the invariant.
  • The loop body, assuming that the invariant is satisfied but the exit condition is not, ensures the loop invariant again after it executes.
  • The combination of the invariant and the exit condition ensures, as just explained, the postcondition of the function (the property that Result will either be positive and the index of an element equal to x, or zero with the guarantee that x appears nowhere in t).

Such a proof guarantees the correctness of the program if it terminates. We (and AutoProof) must prove separately that it does terminate. The technique is simple: find a “loop variant”, an integer quantity v  which remains non-negative throughout the loop (in other words, the loop invariant includes or implies v ≥ 0) and decreases on each iteration, so that the loop cannot continue executing forever. An obvious variant here is j – i + 1 (where the + 1 is needed because j – i may go down to -1 on the last iteration if x does not appear in the array). It reflects the informal idea of the algorithm: repeatedly decrease an interval i .. j – 1 (initially, 1 .. n) guaranteed to be such that x appears in t if and only if it appears at an index in that interval. At the end, either we already found x or the interval is empty, implying that x does not appear at all.

A great reference on variants and the techniques for proving program termination is a Communications of the ACM article of 2011: [3].

The variant gives an upper bound on the number of iterations that remain at any time. In sequential search, j – i + 1 would be our best bet; but for binary search it is easy to show that  log(j – i + 1) is also a variant, extending the proof of correctness with a proof of performance (the key goal of binary search being to ensure a logarithmic rather than linear execution time).

This example is, I hope, enough to highlight the crucial role of loop invariants and loop variants in reasoning about loops. How did we get the invariant? It looks like I pulled it out of a hat. But in fact if we go the other way round (as advocated in classic books [1] [2]) and develop the invariant and the loop together the process unfolds itself naturally and there is nothing mysterious about the invariant.

Here I cannot resist quoting (thirty years on!) from my own book Introduction to the Theory of Programming Languages [4]. It has a chapter on axiomatic semantics (also known as Hoare logic, the basis for the ideas used in this discussion), which I just made available: see here [5]. Its exercise 9.12 is the starting point for this series of articles. Here is how the book explains how to design the program and the invariant [6]:

In the general case [of search, binary or not] we aim for a loop body of the form

m := ‘‘Some value in 1.. n such that i ≤ m < j’’;

if t [m] ≤ x then

i := m + 1

else

j := m

end

It is essential to get all the details right (and easy to get some wrong):

  • The instruction must always decrease the variant j – i, by increasing i or decreasing j. If the the definition of m specified just m ≤ j rather than m < j, the second branch would not meet this goal.
  •  This does not transpose directly to i: requiring i < m < j would lead to an impossibility when j – i is equal to 1. So we accept i ≤ m but then we must take m + 1, not m, as the new value of i in the first branch.
  •  The conditional’s guards are tests on t [m], so m must always be in the interval 1 . . n. This follows from the clause 0 ≤ i ≤ j ≤ n + 1 which is part of the invariant.
  •  If this clause is satisfied, then m ≤ n and m > 0, so the conditional instruction indeed leaves this clause invariant.
  • You are invited to check that both branches of the conditional also preserve the rest of the invariant.
  • Any policy for choosing m is acceptable if it conforms to the above scheme. Two simple choices are i  and j – 1; they lead to variants of the sequential search algorithm [which the book discussed just before binary search].

For binary search, m will be roughly equal to the average of i and j.

“Roughly” because we need an integer, hence the // (integer division).

In the last section, I will reflect further on the lessons we can draw from this example, and the practical significance of the key concept of invariant.

References and notes for section 8

[1] E.W. Dijkstra: A Discipline of Programming, Prentice Hall, 1976.

[2] David Gries: The Science of Programming, Springer, 1989.

[3] Byron Cook, Andreas  Podelski and Andrey Rybalchenko: Proving program termination, in Communications of the ACM, vol. 54, no. 11, May 2011, pages 88-98, available here.

[4] Bertrand Meyer, Introduction to the Theory of Programming Languages, Prentice Hall, 1990. The book is out of print but can be found used, e.g. on Amazon. See the next entry for an electronic version of two chapters.

[5] Bertrand Meyer Axiomatic semantics, chapter 9 from [3], available here. Note that the PDF was reconstructed from an old text-processing system (troff); the figures could not be recreated and are missing. (One of these days I might have the patience of scanning them from a book copy and adding them. Unless someone wants to help.) I also put online, with the same caveat, chapter 2 on notations and mathematical basis: see here.

[6] Page 383 of [4] and [5]. The text is verbatim except a slight adaptation of the programming notation and a replacement of the variables: i in the book corresponds to i – 1 here, and j to j – 1. As a matter of fact I prefer the original conventions from the book (purely as a matter of taste, since the two are rigorously equivalent), but I changed here to the conventions of the program as it appears in the AutoProof page, with the obvious advantage that you can verify it mechanically. The text extract is otherwise exactly as in the 1990 book.

9. Lessons learned

What was this journey about?

We started with a succession of attempts that might have “felt right” but were in fact all wrong, each in its own way: giving the wrong answer in some cases, crashing (by trying to access an array outside of its index interval) in some cases, looping forever in some cases. Always “in some cases”,  evidencing the limits of testing, which can never guarantee that it exercises all the problem cases. A correct program is one that works in all cases. The final version was correct; you were able to prove its correctness with an online tool and then to understand (I hope) what lies behind that proof.

To show how to prove such correctness properties, I have referred throughout the series to publications from the 1990s (my own Introduction to The Theory of Programming Languages), the 1980s (Jon Bentley’s Programming Pearls columns, Gries’s Science of Programming), and even the 1970s (Dijkstra’s Discipline of Programming). I noted that the essence of my argument appeared in a different form in one of Bentley’s Communications articles. What is the same and what has changed?

The core concepts have been known for a long time and remain applicable: assertion, invariant, variant and a few others, although they are much better understood today thanks to decades of theoretical work to solidify the foundation. Termination also has a more satisfactory theory.

On the practical side, however, the progress has been momentous. Considerable engineering has gone into making sure that the techniques scaled up. At the time of Bentley’s article, binary search was typical of the kind of programs that could be proved correct, and the proof had to proceed manually. Today, we can tackle much bigger programs, and use tools to perform the verification.

Choosing binary search again as an example today has the obvious advantage that everyone can understand all the details, but should not be construed as representative of the state of the art. Today’s proof systems are far more sophisticated. Entire operating systems, for example, have been mechanically (that is to say, through a software tool) proved correct. In the AutoProof case, a major achievement was the proof of correctness [1] of an entire data structure (collections) library, EiffelBase 2. In that case, the challenge was not so much size (about 8,000 source lines of code), but the complexity of both:

  • The scope of the verification, involving the full range of mechanisms of a modern object-oriented programming language, with classes,  inheritance (single and multiple), polymorphism, dynamic binding, generics, exception handling etc.
  • The code itself, using sophisticated data structures and algorithms, involving in particular advanced pointer manipulations.

In both cases, progress has required advances on both the science and engineering sides. For example, the early work on program verification assumed a bare-bones programming language, with assignments, conditionals, loops, routines, and not much more. But real programs use many other constructs, growing ever richer as programming languages develop. To cover exception handling in AutoProof required both theoretical modeling of this construct (which appeared in [2]) and implementation work.

More generally, scaling up verification capabilities from the small examples of 30 years ago to the sophisticated software that can be verified today required the considerable effort of an entire community. AutoProof, for example, sits at the top of a tool stack relying on the Boogie environment from Microsoft Research, itself relying on the Z3 theorem prover. Many person-decades of work make the result possible.

tool_stack

Beyond the tools, the concepts are esssential. One of them, loop invariants, has been illustrated in the final version of our program. I noted in the first article the example of a well-known expert and speaker on testing who found no better way to announce that a video would not be boring than  “relax, we are not going to talk about loop invariants.” Funny perhaps, but unfair. Loop invariants are one of the most beautiful concepts of computer science. Not so surprisingly, because loop invariants are the application to programming of the concept of mathematical induction. According to the great mathematician Henri Poincaré, all of mathematics rests on induction; maybe he exaggerated, maybe not, but who would think of teaching mathematics without explaining induction? Teaching programming without explaining loop invariants is no better.

Below is an illustration (if you will accept my psychedelic diagram) of what a loop is about, as a problem-solving technique. Sometimes we can get the solution directly. Sometimes we identify several steps to the solution; then we use a sequence (A ; B; C). Sometimes we can find two (or more) different ways of solving the problem in different cases; then we use a conditional (if c then A else B end). And sometimes we can only get a solution by getting closer repeatedly, not necessarily knowing in advance how many times we will have to advance towards it; then, we use a loop.

loop_strategy

We identify an often large (i.e. very general) area where we know the solution will lie; we call that area the loop invariant. The solution or solutions (there may be more than one) will have to satisfy a certain condition; we call it the exit condition. From wherever we are, we shoot into the invariant region, using an appropriate operation; we call it the initialization. Then we execute as many times as needed (maybe zero if our first shot was lucky) an operation that gets us closer to that goal; we call it the loop body. To guarantee termination, we must have some kind of upper bound of the distance to the goal, decreasing each time discretely; we call it the loop variant.

This explanation is only an illustration, but I hope it makes the ideas intuitive. The key to a loop is its invariant. As the figure suggests, the invariant is always a generalization of the goal. For example, in binary search (and many other search algorithms, such as sequential search), our goal is to find a position where either x appears or, if it does not, we can be sure that it appears nowhere. The invariant says that we have an interval with the same properties (either x appears at a position belonging to that interval or, if it does not, it appears nowhere). It obviously includes the goal as a special case: if the interval has length 1, it defines a single position.

An invariant should be:

  1. Strong enough that we can devise an exit condition which in the end, combined with the invariant, gives us the goal we seek (a solution).
  2. Weak enough that we can devise an initialization that ensures it (by shooting into the yellow area) easily.
  3. Tuned so that we can devise a loop body that, from a state satifying the invariant, gets us to a new one that is closer to the goal.

In the example:

  1. The exit condition is simply that the interval’s length is 1. (Technically, that we have computed Result as the single interval element.) Then from the invariant and the exit condition, we get the goal we want.
  2. Initialization is easy, since we can just take the initial interval to be the whole index range of the array, which trivially satisfies the invariant.
  3. The loop body simply decreases the length of the interval (which can serve as loop variant to ensure termination). How we decrease the length depends on the search strategy; in sequential search, each iteration decreases the length by 1, correct although not fast, and binary search decreases it by about half.

The general scheme always applies. Every loop algorithm is characterized by an invariant. The invariant may be called the DNA of the algorithm.

To demonstrate the relevance of this principle, my colleagues Furia, Velder, and I published a survey paper [6] in ACM Computing Surveys describing the invariants of important algorithms in many areas of computer science, from search algorithms to sorting (all major algorithms), arithmetic (long integer addition, squaring), optimization and dynamic programming  (Knapsack, Levenshtein/Edit distance), computational geometry (rotating calipers), Web (Page Rank)… I find it pleasurable and rewarding to go deeper into the basis of loop algorithms and understand their invariants; like a geologist who does not stop at admiring the mountain, but gets to understand how it came to be.

Such techniques are inevitable if we want to get our programs right, the topic of this article. Even putting aside the Bloch average-computation overflow issue, I started with 5 program attempts, all kind of friendly-looking but wrong in different ways. I could have continued fiddling with the details, following my gut feeling to fix the flaws and running more and more tests. Such an approach can be reasonable in some cases (if you have an algorithm covering a well-known and small set of cases), but will not work for non-trivial algorithms.

Newcomers to the concept of loop invariant sometimes panic: “this is all fine, you gave me the invariants in your examples, how do I find my own invariants for my own loops?” I do not have a magic  recipe (nor does anyone else), but there is no reason to be scared. Once you have understood the concept and examined enough examples (just a few of those in [6] should be enough), writing the invariant at the same time as you are devising a loop will come as a second nature to you.

As the fumbling attempts in the first few sections should show, there is not much of an alternative. Try this approach. If you are reaching these final lines after reading what preceded them, allow me to thank you for your patience, and to hope that this rather long chain of reflections on verification will have brought you some new insights into the fascinating challenge of writing correct programs.

References

[1] Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia: A Fully Verified Container Library, in Proceedings of 20th International Symposium on Formal Methods (FM 15), 2015. (Best paper award.)

[2] Martin Nordio, Cristiano Calcagno, Peter Müller and Bertrand Meyer: A Sound and Complete Program Logic for Eiffel, in Proceedings of TOOLS 2009 (Technology of Object-Oriented Languages and Systems), Zurich, June-July 2009, eds. M. Oriol and B. Meyer, Springer LNBIP 33, June 2009.

[3] Boogie page at MSR, see here for publications and other information.

[4] Z3 was also originally from MSR and has been open-sourced, one can get access to publications and other information from  its Wikipedia page.

[5] Carlo Furia, Bertrand Meyer and Sergey Velder: Loop invariants: Analysis, Classification and Examples, in ACM Computing Surveys, vol. 46, no. 3, February 2014. Available here.

[6] Dynamic programming is a form of recursion removal, turning a recursive algorithm into an iterative one by using techniques known as “memoization” and  “bottom-up computation” (Berry). In this transformation, the invariant plays a key role. I will try to write this up some day as it is a truly elegant and illuminating explanation.

VN:F [1.9.10_1130]
Rating: 10.0/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Call for suggestions: beauty

On April 29 in the early evening at the Schaffhausen Institute of Technology I will give a talk on “The Beauty of Software”, exploring examples of what makes some concepts, algorithms, data structures etc. produce a sense of esthetics. (Full abstract below.) I gave a first version at TOOLS last year but am revising and expanding the talk extensively.

I obviously have my own examples but am interested in more. If you have some that you feel should be considered for inclusion, perhaps because you experienced a “Wow!” effect when you encountered them, please tell me. I am only asking for names or general pointers, not an in-depth analysis (that’s my job). To avoid having my thunder stolen I would prefer that you alert me by email. I will give credit for examples not previously considered.

Thanks!

Abstract of the talk as published:

Scientists often cite the search for beauty as one of their primary guiding forces. Programming and software engineering offer an inexhaustible source of astoundingly beautiful ideas, from strikingly elegant algorithms and data structures to powerful principles of methodology and language design.

Defining beauty is elusive, but true beauty imposes itself in such a way as to remove any doubt. Drawing comparisons from art, literature and other endeavours. He will show a sample of ideas from all walks of software, directly understandable to a wide audience of non-software-experts, offering practical applications in technology that we use daily, and awe-inspiring in their simplicity and elegance.

VN:F [1.9.10_1130]
Rating: 9.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

LASER 2020 in Elba Island: DevOps, Microservices and more, first week of June

The page for the 2020 LASER summer school (31 May to 7 June) now has the basic elements (some additions still forthcoming) and registration at the early price is open. The topic is DevOps, Microservices and Software Development for the Age of the Web with both conceptual lectures and contributions from industry, by technology leaders from Amazon, Facebook and ServiceNow. The confirmed speakers are:

  • Fabio Casati, ServiceNow and University of Trento, and Kannan Govindarajan from ServiceNow on Taking AI from research to production – at scale.
  • Adrian Cockcroft, Amazon Web Services, on Building and Operating Modern Applications.
  • Elisabetta Di Nitto, Politecnico di Milano.
  • Valérie Issarny, INRIA, on The Web for the age of the IoT.
  • Erik Meijer, Facebook, on Software Development At Scale.
  • Me, on Software from beginning to end: a comprehensive method.

As always, the setup is the incomparable environment of the Hotel del Golfo in Procchio, Elba Island off the coast of Tuscany, ideal at that time of year (normally good weather, warm but not hot, few tourists). The school is intensive but there is time to enjoy the beach, the hotel’s amenities and the wonderful of environment of Elba (wake up your inner Napoleon). The school has a fairly small size and everyone lives under the same (beautiful) roof, so there is plenty of time for interaction with the speakers and other participants.

About these participants: the school is intended for engineers and managers in industry as well as researchers and PhD student. In fact it’s a mix that one doesn’t find that often, allowing for much cross-learning.

Another way to put it is that this is now the 16th edition of the school (it started in 2004 but we skipped one year), so it cannot be doing everything wrong.

 

VN:F [1.9.10_1130]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Talk on requirements at UC Santa Barbara tomorrow

I am giving a “distinguished lecture” at the University of California, Santa Barbara, January 10 (Friday, tomorrow) at 14. The title is A Comprehensive Approach to Requirements Engineering.

The abstract and rest of the information are here.

I will spend the last few minutes of the talk discussing other current developments (verification, concurrency).

VN:F [1.9.10_1130]
Rating: 7.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Defining and classifying requirements (new publication)

Software engineering has improved a lot in the past couple of decades, but there remains an area where the old doomsday style of starting a software engineering paper (software crisis, everything is rotten…) still fits: requirements engineering. Just see the chasm between textbook advice and the practice of most projects.

I have written on requirements in this blog, including very recently, and will continue in forthcoming installments. For today I  want to point to a recent article [1],  presented at the newly revived TOOLS conference in October. It attempts to bring some order and rigor to the basic definitions in the field.

From the abstract:

Requirements engineering is crucial to software development but lacks a precise definition of its fundamental concepts. Even the basic definitions in the literature and in industry standards are often vague and verbose.

To remedy this situation and provide a solid basis for discussions of requirements, this work provides precise definitions of the fundamental requirements concepts and two systematic classifications: a taxonomy of requirement elements (such as components, goals, constraints…) ; and a taxonomy of possible relations between these elements (such as “extends”, “excepts”, “belongs”…).

The discussion evaluates the taxonomies on published requirements documents; readers can test the concepts in two online quizzes.

The intended result of this work is to spur new advances in the study and practice of software requirements by clarifying the fundamental concepts.

This version is a first step; we are aware of its limitations and are already revising the definitions and taxonomy. The project is aimed at providing a solid foundation for a delicate area of software engineering and it will take some time to get it completely right. Still, I think the paper as it is already introduces important concepts. I will within the next two weeks write a more detailed blog article summarizing some of them.

References

[1] Bertrand Meyer, Jean-Michel Bruel, Sophie Ebersold, Florian Galinier, Alexandr Naumchev, The Anatomy of Requirements, in TOOLS 51, Software Technology: Methods and Tools
Innopolis, Russia, October 15–17, 2019, pages 10-40, available here (Springer site, paywall) and here (arXiv draft).

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

Are my requirements complete?

Some important concepts of software engineering, established over the years, are not widely known in the community. One use of this blog is to provide tutorials on such overlooked ideas. An earlier article covered one pertaining to project management: the Shortest Possible Schedule property . Here is another, this time in the area of requirements engineering, also based on a publication that I consider to be a classic (it is over 40 years old) but almost unknown to practitioners.

Practitioners are indeed, as in most of my articles, the intended audience. I emphasize this point right at the start because if you glance at the rest of the text you will see that it contains (horror of horrors) some mathematical formulae, and might think “this is not for me”. It is! The mathematics is very simple and my aim is practical: to shed light on an eternal question that faces anyone writing requirements (whatever the style, traditional or agile): how can I be sure that a requirements specification is complete?

To a certain extent you cannot. But there is better answer, a remarkably simple one which, while partial, helps.

Defining completeness

The better answer is called “sufficient completeness” and comes from the theory of abstract data types. It was introduced in a 1978 article by Guttag and Horning [1]. It is also implicit in a more down-to-earth document, the 1998 IEEE standard on how to write requirements [2].

There is nothing really new in the present article; in fact my book Object-Oriented Software Construction [3] contains an extensive discussion of sufficient completeness (meant to be more broadly accessible than Guttag and Horning’s scholarly article). But few people know the concepts; in particular very few practitioners have heard of sufficient completeness (if they have heard at all of abstract data types). So I hope the present introduction will be useful.

The reason the question of determining completeness of requirements seems hopeless at first is the natural reaction: complete with respect to what? To know that the specification is complete we would need a more general description of all that our stakeholders want and all the environment constraints, but this would only push the problem further: how do we know that such description itself is complete?

That objection is correct in principle: we can never be sure that we did not forget something someone wanted, or some property that the environment imposes. But there also exist more concrete and assessable notions of completeness.

The IEEE standard gives three criteria of completeness. The first states that “all requirements” have been included, and is useless, since it  runs into the logical paradox mentioned above, and is tautological anyway (the requirements are complete if they include all requirements, thank you for the information!). The second is meaningful but of limited interest (a “bureaucratic” notion of completeness): every element in the requirements document is numbered, every cross-reference is defined and so on. The last criterion is the interesting one: “Definition of the responses of the software to all realizable classes of input data in all realizable classes of situations”. Now this is meaningful. To understand this clause we need to step back to sufficient completeness and, even before that, to abstract data types.

Abstract data types will provide our little mathematical excursion (our formal picnic in the words of an earlier article) in our study of requirements and completeness. If you are not familiar with this simple mathematical theory, which every software practitioner should know, I hope you will benefit from the introduction and example. They will enable us to introduce the notion of sufficient completeness formally before we come back to its application to requirements engineering.

Specifying an abstract data type

 Abstract data types are the mathematical basis for object-oriented programming. In fact, OO programming but also OO analysis and OO design are just a realization of this mathematical concept at various levels of abstraction, even if few OO practitioners are aware of it. (Renewed reference to [3] here if you want to know more.)

An ADT (abstract data type) is a set of objects characterized not by their internal properties (what they are) but by the operations applicable to them (what they have), and the properties of these operations. If you are familiar with OO programming you will recognize that this is exactly, at the implementation level, what a class is. But here we are talking about mathematical objects and we do not need to consider implementation.

An example  of a type defined in this way, as an ADT, is a notion of POINT on a line. We do not say how this object is represented (a concept that is irrelevant at the specification level) but how it appears to the rest of the world: we can create a new point at the origin, ask for the coordinate of a point, or move the point by a certain displacement. The example is the simplest meaningful one possible, but it gives the ideas.

adt

An ADT specification has three part: Functions, Preconditions and Axioms. Let us see them (skipping Preconditions for the moment) for the definition of the POINT abstract data type.

The functions are the operations that characterize the type. There are three kinds of function, defined by where the ADT under definition, here POINT, appears:

  • Creators, where the type appears only among the results.
  • Queries, where it appears only among the arguments.
  • Commands, where it appears on both sides.

There is only one creator here:

new: → POINT

new is a function that takes no argument, and yields a point (the origin). We will write the result as just new (rather than using empty parentheses as in new ()).

Creators correspond in OO programming to constructors of a class (creation procedures in Eiffel). Like constructors, creators may have arguments: for example instead of always creating a point at the origin we could decide that new creates a point with a given coordinate, specifying it as INTEGER → POINT and using it as new (i) for some integer i (our points will have integer coordinates). Here for simplicity we choose a creator without arguments. In any case the new type, here POINT, appears only on the side of the results.

Every useful ADT specification needs at least one creator, without which we would never obtain any objects of the type (here any points) to work with.

There is also only one query:

x: POINT → INTEGER

 which gives us the position of a point, written x (p) for a point p. More generally, a query enables us to obtain properties of objects of the new type. These properties must be expressed in terms of types that we have already defined, like INTEGER here. Again there has to be at least one query, otherwise we could never obtain usable information (information expressed in terms of what we already know) about objects of the new type. In OO programming, queries correspond to fields (attributes) of a class and functions without side effects.

And we also have just one command:

move: POINT × INTEGER → POINT

a function that for any point p and integer i and yields a new point, move (p, i).  Again an ADT specification is not interesting unless it has at least one command, representing ways to modify objects. (In mathematics we do not actually modify objects, we get new objects. In imperative programming we will actually update existing objects.) In the classes of object-oriented programming, commands correspond to procedures (methods which may change objects).

You see the idea: define the notion of POINT through the applicable operations.

Listing their names and the types of their arguments types results (as in POINT × INTEGER → POINT) is not quite enough to specify these operations: we must specify their fundamental properties, without of course resorting to a programming implementation. That is the role of the second component of an ADT specification, the axioms.

For example I wrote above that new yields the origin, the point for which x = 0,  but you only had my word for it. My word is good but not good enough. An axiom will give you this property unambiguously:

x (new) = 0                                    — A0

The second axiom, which is also the last, tells us what move actually does. It applies to any point p and any integer m:

x (move (p, m)) = x (p) + m       — A1

In words: the coordinate of the point resulting from moving p by m is the coordinate of p plus m.

That’s it! (Except for the notion of precondition, which will wait a bit.) The example is trivial but this approach can be applied to any number of  data types, with any number of applicable operations and any level of complexity. That is what we do, at the design and implementation level, when writing classes in OO programming.

Is my ADT sufficiently complete?

Sufficient completeness is a property that we can assess on such specifications. An ADT specification for a type T (here POINT) is sufficiently complete if the axioms are powerful enough to yield the value of any well-formed query expression in a form not involving T. This definition contains a few new terms but the concepts are very simple; I will explain what it means through an example.

With an ADT specification we can form all kinds of expressions, representing arbitrarily complex specifications. For example:

x (move (move (move (new, 3), x (move (move (new, -2), 4))), -6))

This expression will yield an integer (since function x has INTEGER as its result type) describing the result of a computation with points. We can visualize this computation graphically; note that it involves creating two points (since there are two occurrences of new) and moving them, using in one case the current coordinate of one of them as displacement for the other. The following figure illustrates the process.

computation

The result, obtained informally by drawing this picture, is the x of P5, that is to say -1. We will derive it mathematically below.

Alternatively, if like most programmers (and many other people) you find it more intuitive to reason operationally than mathematically, you may think of the previous expression as describing the result of the following OO program (with variables of type POINT):

create p                                — In C++/Java syntax: p = new POINT();
create q
p.move (3)
q.move (-2)
q.move (4)
p.move (q.x)
p.move (-6)

Result := p.x

You can run this program in your favorite OO programming language, using a class POINT with new, x and move, and print the value of Result, which will be -1.

Here, however, we will stay at the mathematical level and simplify the expression using the axioms of the ADT, the same way we would compute any other mathematical formula, applying the rules without needing to rely on intuition or operational reasoning. Here is the expression again (let’s call it i, of type INTEGER):

ix (move (move (move (new, 3), x (move (move (new, -2), 4))), -6))

A query expression is one in which the outermost function being applied, here x, is a query function. Remember that a query function is one which the new type, here POINT, appears only on the left. This is the case with x, so the above expression i is indeed a query expression.

For sufficient completeness, query expressions are the ones of interest because their value is expressed in terms of things we already know, like INTEGERs, so they are the only way we can concretely obtain directly usable information the ADT (to de-abstract it, so to speak).

But we can only get such a value by applying the axioms. So the axioms are “sufficiently complete” if they always give us the answer: the value of any such query expression.

 Let us see if the above expression i satisfies this condition of sufficient completeness. To make it more tractable let us write  it in terms of simpler expressions (all of type POINT), as illustrated by the figure below:

p1 = move (new, 3)
p2= move (new, -2)
p3= move (p2, 4)
p4= move (p1, x (p3))
p5= move (p4, -6)
i = x (p5)

expression

(You may note that the intermediate expressions roughly correspond to the steps in the above interpretation of the computation as a program. They also appear in the illustrative figure repeated below.)

computation

Now we start applying the axioms to evaluating the expressions. Remember that we have two axioms: A0 tells us that x (new) = 0 and A1 that x (move (p, m)) = x (p) + m. Applying A1 to the definition the expression i yields

i = x (p4) – 6
= i4 – 6

if we define

i4 = x (p4)      — Of type INTEGER

We just have to compute i4. Applying A1 to the definion of p4 tells us that

i4 = x (p1) + x (p3)

To compute the two terms:

  • Applying A1 again, we see that the first term x (p1) is x (new) + 3, but then A0 tells us that x (new) is zero, so x (p1) is 3.
  • As to x (p3), it is, once more from A1, x (p2) + 4, and x (p2) is (from A1 then A0), just -2, so x (p3) is 2.

In the end, then, i4 is 5, and the value of the entire expression i = i4 – 6 is -1. Good job!

Proving sufficient completeness

The successful computation of i was just a derivation for one example, showing that in that particular case the axioms yield the answer in terms of an INTEGER. How do we go from one example to an entire specification?

The bad news first: like all interesting problems in programming, sufficient completeness of an ADT specification is theoretically undecidable. There is no general automatic procedure that will process an ADT specification and print out ““sufficiently complete” or “not sufficiently complete”.

Now that you have recovered from the shock, you can share the computer scientist’s natural reaction to such an announcement: so what. (In fact we might define the very notion of computer scientist as someone who, even before he brushes his teeth in the morning — if he brushes them at all — has already built the outline of a practical solution to an undecidable problem.) It is enough that we can find a way to determine if a given specification is sufficiently complete. Such a proof is, in fact, the computer scientist’s version of dental hygiene: no ADT is ready for prime time unless it is sufficiently complete.

The proof is usually not too hard and will follow the general style illustrated for our simple example.

We note that the definition of sufficient completeness said: “the axioms are powerful enough to yield the value of any well-formed query expression in a form not involving the type”. I have not defined “well-formed” yet. It simply means that the expressions are properly structured, with the proper syntax (basically the correct matching of parentheses) and proper number and types of arguments. For example the following are not well-formed (if p is an expression of type POINT):

move (p, 55(     — Bad use of parentheses.
move (p)            — Wrong number of arguments.
move (p, p)       — Wrong type: second argument should be an integer.

Such expressions are nonsense, so we only care about well-formed expressions. Note that in addition to new, x and move , an expression can use integer constants as in the example (although we could generalize to arbitrary integer expressions). We consider an integer constant as a query expression.

We have to prove that with the two axioms A0 and A1 we can determine the value of any query expression i. Note that since the only query functions is x, the only possible form for i, other than an integer constant, is x (p) for some expression p of type POINT.

The proof proceeds by induction on the number n of parenthesis pairs in a query expression i.

There are two base steps:

  • n = 0: in that case i can only be an integer constant. (The only expression with no parentheses built out of the ADT’s functions is new, and it is not a query expression.) So the value is known. In all other cases i will be of the form x (p) as noted.
  • n = 1: in that case p  can only be new, in other words i = x (new), since the only function that yields points, other than new, is move, and any use of it would add parentheses. In this case axiom A0 gives us the value of i: zero.

For the induction step, we consider i with n + 1 parenthesis pairs for n > 1. As noted, i is of the form x (p), so p has exactly n parenthesis pairs. p cannot be new (which would give 0 parenthesis pairs and was taken care of in the second base step), so p has to be of the form

p =  move (p’, i’)    — For expressions p’ of type POINT and i’ of type INTEGER.

implying (since i = x (p)) that by axiom A1, the value of i is

x (p’) + i’

So we will be able to determine the value of i if we can determine the value of both x (p’) and i’. Since p has n parenthesis pairs and p =  move (p’, i’), both p’ and i’ have at most n – 1 parenthesis pairs. (This use of n – 1 is legitimate because we have two base steps, enabling us to assume n > 1.) As a consequence, both x (p’) and i’ have at most n parenthesis pairs, enabling us to deduce their values, and hence the value of i, by the induction hypothesis.

Most proofs of sufficient completeness in my experience follow this style: induction on the number of parenthesis pairs (or the maximum nesting level).

Preconditions

I left until now the third component of a general ADT specification: preconditions. The need for preconditions arises because most practical specifications need some of their functions to be partial. A partial function from X to Y is a function that may not yield a value for some elements of X. For example, the inverse function on real numbers, which yields 1 / a for x, is partial  since it is not defined for a = 0 (or, on a computer, for non-zero but very small a).

Assume that in our examples we only want to accept points that lie in the interval [-4, +4]:

limited

 We can simply model this property by turning move into a partial function. It was specified above as

move: POINT × INTEGER → POINT

The ordinary arrow → introduces a total (always defined) function. For a partial function we will use a crossed arrow ⇸, specifying the function as

move: POINT × INTEGER ⇸ POINT

Other functions remain unchanged. Partial functions cause trouble: for f in X ⇸ Y we can no longer cheerfully use f (x) if f is a partial function, even for x of the appropriate type X. We have to make sure that x belongs to the domain of f, meaning the set of values for which f is defined. There is no way around it: if you want your specification to be meaningful and it uses partial functions, you must specify explicitly the domain of each of them. Here is how to do it, in the case of move:

move (p: POINT; d: INTEGER) require |x (p) + d | < 5    — where |…| is absolute value

To adapt the definition (and proofs) of sufficient completeness to the possible presence of partial functions:

  • We only need to consider (for the rule that axioms must yield the value of query expressions) well-formed expressions that satisfy the associated preconditions.
  • The definition must, however, include the property that axioms always enable us to determine whether an expression satisfies the associated preconditions (normally a straightforward part of the proof since preconditions are themselves query expressions).

Updating the preceding proof accordingly is not hard.

Back to requirements

The definition of sufficient completeness is of great help to assess the completeness of a requirements document. We must first regretfully note that for many teams today requirements stop at  “use cases” (scenarios) or  “user stories”. Of course these are not requirements; they only describe individual cases and are to requirements what tests are to programs. They can serve to check requirements, but do not suffice as requirements. I am assuming real requirements, which include descriptions of behavior (along with other elements such as environment properties and project properties). To describe behaviors, you will define operations and their effects. Now we know what the old IEEE standard is telling us by stating that complete requirements should include

definition of the responses of the software to all realizable classes of input data in all realizable classes of situations

Whether or not we have taken the trouble to specify the ADTs, they are there in the background; our system’s operations reflect the commands, and the effects we can observe reflect the queries. To make our specification complete, we should draw as much as possible of the (mental or explicit) matrix of possible effects of all commands on all queries. “As much as possible” because software engineering is engineering and we will seldom be able to reach perfection. But the degree of fullness of the matrix tells us a lot (possible software metric here?) about how close our requirements are to completeness.

I should note that there are other aspects to completeness of requirements. For example the work of Michael Jackson, Pamela Zave and Axel van Lamsweerde (more in some later article, with full references) distinguishes between business goals, environment constraints and system properties, leading to a notion of completeness as how much the system properties meet the goals and obey the constraints [4]. Sufficient completeness operates at the system level and, together with its theoretical basis, is one of those seminal concepts that every practicing software engineer or project manager should master.

References and notes

[1] John V. Guttag, Jim J. Horning: The Algebraic Specification of Abstract Data Types, in Acta Informatica, vol. 10, no. 1, pages 27-52, 1978, available here from the Springer site. This is a classic paper but I note that few people know it today; in Google Scholar I see over 700 citations but less than 100 of them in the past 8 years.

[2]  IEEE: Recommended Practice for Software Requirements Specifications, IEEE Standard 830-1998, 1998. This standard is supposed to be obsolete and replaced by newer ones, more detailed and verbose, but it remains the better reference: plain, modest and widely applied by the industry. It does need an update, but a good one.

[3] Bertrand Meyer, Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997. The discussion of sufficient completeness was in fact already there in the first edition from 1988.

[4] With thanks to Elisabetta Di Nitto from Politecnico di Milano for bringing up this notion of requirements completeness.

Recycled A version of this article was first published on the Communications of the ACM blog.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Formality in requirements: new publication

The best way to make software requirements precise is to use one of the available “formal” approaches. Many have been proposed; I am not aware of a general survey published so far. Over the past two years, we have been working on a comprehensive survey of the use of formality in requirements, of which we are now releasing a draft. “We” is a joint informal research group from Innopolis University and the University of Toulouse, whose members have been cooperating on requirements issues, resulting in publications listed  under “References” below and in several scientific events.

The survey is still being revised, in particular because it is longer than the page limit of its intended venue (ACM Computing Surveys), and some sections are in need of improvement. We think, however, that the current draft can already provide a solid reference in this fundamental area of software engineering.

The paper covers a broad selection of methods, altogether 22 of them, all the way from completely informal to strictly formal. They are grouped into five categories: natural language, semi-formal, automata- or graph-based, other mathematical frameworks, programming-language based. Examples include SysML, Relax, Statecharts, VDM, Eiffel (as a requirements notation), Event-B, Alloy. For every method, the text proposes a version of a running example (the Landing Gear System, already used in some of our previous publications) expressed in the corresponding notation. It evaluates the methods using a set of carefully defined criteria.

The paper is: Jean-Michel Bruel, Sophie Ébersold, Florian Galinier, Alexandr Naumchev, Manuel Mazzara and Bertrand Meyer: Formality in Software Requirements, draft, November 2019.

The text is available here. Comments on the draft are welcome.

References

Bertrand Meyer, Jean-Michel Bruel, Sophie Ebersold, Florian Galinier and Alexandr Naumchev: Towards an Anatomy of Software Requirements, in TOOLS 2019, pages 10-40, see here (or arXiv version here). I will write a separate blog article about this publication.

Alexandr Naumchev and Bertrand Meyer: Seamless requirements. Computer Languages, Systems & Structures 49, 2017, pages 119-132, available here.

Florian Galinier, Jean-Michel Bruel, Sophie Ebersold and Bertrand Meyer: Seamless Integration of Multirequirements, in Complex Systems, 25th International Requirements Engineering Conference Workshop, IEEE, pages 21-25, 2017, available here.

Alexandr Naumchev, Manuel Mazzara, Bertrand Meyer, Jean-Michel Bruel, Florian Galinier and Sophie Ebersold: A contract-based method to specify stimulus-response requirements, Proceedings of the Institute for System Programming, vol. 29, issue 4, 2017, pp. 39-54. DOI: 10.15514, available here.

Alexandr Naumchev and Bertrand Meyer: Complete Contracts through Specification Drivers., in 10th International Symposium on Theoretical Aspects of Software Engineering (TASE), pages 160-167, 2016, available here.

Alexandr Naumchev, Bertrand Meyer and Víctor Rivera: Unifying Requirements and Code: An Example, in PSI 2015 (Ershov conference, Perspective of System Informatics), pages 233-244, available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

Publications on CS/SE/informatics education

Recently I had a need to collect my education-related publications, so I went through my publication list and extracted items devoted to issues of learning computer science (informatics) and software engineering. There turned out to be far more than I expected; I did not think of myself as primarily an education researcher but it seems I am that too. (Not so many research computer scientists take the trouble to publish in SIGCSE, ITiCSE and other top CS education venues.)

Without presuming that the list will be of interest I am reproducing it below for the record. All comes from my publication list here, which contains more information, in particular a descriptive paragraph or two for every single publication.

I have also included PhD theses in education. (Whole list of PhD theses supervised here.)

The topics include among others, in approximate chronological order (although the list below is in the reverse order):

    • Early experience teaching modern programming concepts in both industry and universities.
    • In the nineties, I was full time at Eiffel Software, the development of a general framework for teaching programming. This was written from the safe position of someone in industry advising academic colleagues on what to do (usually the advice goes the other way). I did have, however, the opportunity to practice my preaching in short stints at University of Technology, Sydney and  particularly Monash University. The concept of the Inverted Curriculum (also known as “ Outside-In”) date back to that period, with objects first (actually classes) and contracts first too.
    • When I joined ETH, a general paper on the fundamental goals and concepts of software engineering education, “Software Engineering in the Academy”, published in IEEE Computer.
    • At ETH, putting the Inverted Curriculum in practice, with 14 consecutive sessions of the introductory programming courses for all computer science students, resulting in the Touch of Class textbook and a number of papers coming out of our observations. An estimated 6000 students took the course. A variant of it has also been given several times at Innopolis University.
    • A theory of how to structure knowledge for educational purposes, leading to the notion of “Truc” (Teachable, Reusable Unit of Cognition).
    • The development by Michela Pedroni of the Trucstudio environment, similar in its form to an IDE but devoted, instead of the development of programs, to the visual development of courses, textbooks, curricula etc.
    • Empirical work by Marie-Hélène Ng Cheong Vee (Nienaltowski) and Michela Pedroni on what beginners understand easily, and not, for example according to the phrasing of compiler error messages.
    • Other empirical work, by Michela Pedroni and Manuel Oriol, on the prior knowledge of entering computer science students.
    • The DOSE course (Distributed and Outsourced Software Engineering) ran for several years a student project done by joint student teams from several cooperating universities, including Politecnico di Milano which played a key role along with us. It enabled many empirical studies on the effect on software development of having geographically distributed teams. People who played a major role in this effort are, at ETH, Martin Nordio, Julian Tschannen and Christian Estler and, at Politecnico, Elisabetta di Nitto, Giordano Tamburrelli and Carlo Ghezzi.
    • Several MOOCs, among the first at ETH, on introductory computing and agile methods. They do not appear below because they are not available at the moment on the EdX site (I do not know why and will try to get them reinstated). The key force there was Marco Piccioni. MOOCs are interesting for many reasons; they are a substitute neither for face-to-face teaching nor for textbooks, but an interesting complement offering novel educational possibilities. Thanks to codeboard, see below, our programming MOOCs provide the opportunity to compile and run program directly from the course exercise pages, compare the run’s result to correct answers for prepared tests, and get immediate feedback .
    • A comparative study of teaching effectiveness of two concurrency models, Eiffel SCOOP and JavaThreads (Sebastian Nanz, Michela Pedroni).
    • The development of the EiffelMedia multimedia library at ETH, which served as a basis for dozens of student projects over many years. Credit for both the idea and its realization, including student supervision, goes to Till Bay and Michela Pedroni.
    • The development (Christian Estler with Martin Nordio) of the Codeboard system and site, an advanced system for cloud support to teach programming, enabling students to compile, correct and run programs on the web, with support for various languages. Codeboard is used in the programming MOOCs.
    • A hint system (Paolo Antonucci, Michela Pedroni) to help students get progressive help, as in video games, when they stumble trying to write a program, e.g. with Codeboard.

Supervised PhD theses on education

The following three theses are devoted to educational topics (although many of the  other theses have educational aspects too):

Christian Estler, 2014, Understanding and Improving Collaboration in Distributed Software Development, available here.

Michela Pedroni, 2009, Concepts and Tools for Teaching Programming, available here.

Markus Brändle, 2006: GraphBench: Exploring the Limits of Complexity with Educational Software, available here. (The main supervisor in this case was Jürg Nievergelt.)

MOOCs (Massive Online Open Courses)

Internal MOOCs, and three courses on EdX (links will be added when available):

  • Computing: Art, Magic, Science? Part 1 (CAMS 1), 2013.
  • Computing: Art, Magic, Science? Part 1 (CAMS 2), 2014.
  • Agile Software Development, 2015.

Publications about education

1. Paolo Antonucci, Christian Estler, Durica Nikolic, Marco Piccioni and Bertrand Meyer: An Incremental Hint System For Automated Programming Assignments, in ITiCSE ’15, Proceedings of 2015 ACM Conference on Innovation and Technology in Computer Science Education, 6-8 July 2015, Vilnius, ACM Press, pages 320-325. (The result of a master’s thesis, a system for helping students solve online exercises, through successive hints.) Available here.

2. Jiwon Shin, Andrey Rusakov and Bertrand Meyer: Concurrent Software Engineering and Robotics Education, in 37th International Conference on Software Engineering (ICSE 2015), Florence, May 2015, IEEE Press, pages 370-379. (Describes our innovative Robotics Programming Laboratory course, where students from 3 departments, CS, Mechanical Engineering and Electrical Engineering learned how to program robots.) Available here.

3. Cristina Pereira, Hannes Werthner, Enrico Nardelli and Bertrand Meyer: Informatics Education in Europe: Institutions, Degrees, Students, Positions, Salaries — Key Data 2008-2013, Informatics Europe report, October 2014. (Not a scientific publication but a report. I also collaborated in several other editions of this yearly report series, which I started, from 2011 on. A unique source of information about the state of CS education in Europe.) Available here.

4. (One of the authors of) Informatics education: Europe cannot afford to miss the boat, edited by Walter Gander, joint Informatics Europe and ACM Europe report, April 2013. An influential report which was instrumental in the introduction of computer science in high schools and primary schools in Europe, particularly Switzerland. Emphasized the distinction between “digital literacy” and computer science. Available here.

5. Sebastian Nanz, Faraz Torshizi, Michela Pedroni and Bertrand Meyer: Design of an Empirical Study for Comparing the Usability of Concurrent Programming Languages, in Information and Software Technology Journal Elsevier, volume 55, 2013. (Journal version of conference paper listed next.) Available here.

6. Bertrand Meyer: Knowledgeable beginners, in Communications of the ACM, vol. 55, no. 3, March 2012, pages 10-11. (About a survey of prior knowledge of entering ETH CS students, over many years. Material from tech report below.) Available here.

7. Sebastian Nanz, Faraz Torshizi, Michela Pedroni and Bertrand Meyer: Design of an Empirical Study for Comparing the Usability of Concurrent Programming Languages, in ESEM 2011 (ACM/IEEE International Symposium on Empirical Software Engineering and Measurement), 22-23 September 2011 (best paper award). Reports on a carefully designed empirical study to assess the teachability of various approaches to concurrent programming. Available here.

8. Martin Nordio, H.-Christian Estler, Julian Tschannen, Carlo Ghezzi, Elisabetta Di Nitto and Bertrand Meyer: How do Distribution and Time Zones affect Software Development? A Case Study on Communication, in Proceedings of the 6th International Conference on Global Software Engineering (ICGSE), IEEE Computer Press, 2011, pages 176-184. (A study of the results of our DOSE distributed course, which involved students from different universities in different countries collaborating on a common software development project.) Available here.

9. Martin Nordio, Carlo Ghezzi, Elisabetta Di Nitto, Giordano Tamburrelli, Julian Tschannen, Nazareno Aguirre, Vidya Kulkarni and Bertrand Meyer: Teaching Software Engineering using Globally Distributed Projects: the DOSE course, in Collaborative Teaching of Globally Distributed Software Development – Community Building Workshop (CTGDSD), Hawaii (at ICSE), May 2011. (Part of the experience of our Distributed Outsourced Software Engineering course, taught over many years with colleagues from Politecnico di Milano and elsewhere, see paper in previous entry.) Available here.

10. Bertrand Meyer: From Programming to Software Engineering (slides only), material for education keynote at International Conference on Software Engineering (ICSE 2010), Cape Town, South Africa, May 2010. Available here.

11. Michela Pedroni and Bertrand Meyer: Object-Oriented Modeling of Object-Oriented Concepts, in ISSEP 2010, Fourth International Conference on Informatics in Secondary Schools, Zurich, January 2010, eds. J. Hromkovic, R. Královic, J. Vahrenhold, Lecture Notes in Computer Science 5941, Springer, 2010. Available here.

12. Michela Pedroni, Manuel Oriol and Bertrand Meyer: What Do Beginning CS Majors Know?, ETH Technical Report, 2009. (Unpublished report about the background of 1st-year ETH CS students surveyed over many years. See shorter 2012 CACM version above.) Available here.

13. Bertrand Meyer: Touch of Class: Learning to Program Well Using Object Technology and Design by Contract, Springer, 2009 (also translated into Russian). (Introductory programming textbook, used for many years at ETH Zurich and Innopolis University for the first programming course. The herecontains a long discussion of pedagogical issues of teaching programming and CS.) Book page and text of several chapters here.

14. Michela Pedroni, Manuel Oriol, Lukas Angerer and Bertrand Meyer: Automatic Extraction of Notions from Course Material, in Proceedings of SIGCSE 2008 (39th Technical Symposium on Computer Science Education), Portland (Oregon), 12-15 March 2008, ACM SIGCSE Bulletin, vol. 40, no. 1, ACM Press, 2008, pages 251-255. (As the title indicates, tools for automatic analysis of course material to extract the key pedagogical notions or “Trucs”.) Available here.

15. Marie-Hélène Nienaltowski, Michela Pedroni and Bertrand Meyer: Compiler Error Messages: What Can Help Novices?, in Proceedings of SIGCSE 2008 (39th Technical Symposium on Computer Science Education), Portland (Oregon), Texas, 12-15 March 2008, ACM SIGCSE Bulletin, vol. 40, no. 1, ACM Press, 2008, pages 168-172. (Discusses the results of experiments with different styles of compiler error messages, which can be baffling to beginners, to determine what works best.) Available here.

16. Bertrand Meyer and Marco Piccioni: The Allure and Risks of a Deployable Software Engineering Project: Experiences with Both Local and Distributed Development, in Proceedings of IEEE Conference on Software Engineering & Training (CSEE&T), Charleston (South Carolina), 14-17 April 2008, ed. H. Saiedian, pages 3-16. (Paper associated with a keynote at an SE education conference. See other papers on the DOSE distributed project experience below.) Available here.

17. Till Bay, Michela Pedroni and Bertrand Meyer: By students, for students: a production-quality multimedia library and its application to game-based teaching, in JOT (Journal of Object Technology), vol. 7, no. 1, pages 147-159, January 2008. Available here (PDF) and here (HTML).

18. Marie-Hélène Ng Cheong Vee (Marie-Hélène Nienaltowski), Keith L. Mannock and Bertrand Meyer: Empirical study of novice error paths, Proceedings of workshop on educational data mining at the 8th international conference on intelligent tutoring systems (ITS 2006), 2006, pages 13-20. (An empirical study of the kind of programming mistakes learners make.) Available here.

19. Bertrand Meyer: Testable, Reusable Units of Cognition, in Computer (IEEE), vol. 39, no. 4, April 2006, pages 20-24. (Introduced a general approach for structuring knowledge for teaching purposes: “Trucs”. Served as the basis for some other work listed, in particular papers with Michela Pedroni on the topics of her PhD thesis. Available here.

21. Michela Pedroni and Bertrand Meyer: The Inverted Curriculum in Practice, in Proceedings of SIGCSE 2006, Houston (Texas), 1-5 March 2006, ACM Press, 2006, pages 481-485. (Develops the idea of inverted curriculum which served as the basis for our teaching of programming at ETH, Innopolis etc. and led to the “Touch of Class” textbook.) Available here.

22. Bertrand Meyer: The Outside-In Method of Teaching Introductory Programming, in Perspective of System Informatics, Proceedings of fifth Andrei Ershov Memorial Conference, Akademgorodok, Novosibirsk, 9-12 July 2003, eds. Manfred Broy and Alexandr Zamulin, Lecture Notes in Computer Science 2890, Springer, 2003, pages 66-78. (An early version of the ideas presented in the previous entry.) Available here.

23. Bertrand Meyer: Software Engineering in the Academy, in Computer (IEEE), vol. 34, no. 5, May 2001, pages 28-35. Translations: Russian in Otkrytye Systemy (Open Systems Publications), #07-08-2001, October 2001. (A general discussion of the fundamental concepts to be taught in software engineering. Served as a blueprint for my teaching at ETH.) Available here.

24. Bertrand Meyer: Object-Oriented Software Construction, second edition, Prentice Hall, 1296 pages, January 1997. Translations: Spanish, French Russian, Serbian, Japanese. (Not a publication on education per se but cited here since it is a textbook that has been widely used for teaching and has many comments on pedagogy.)
23. Bertrand Meyer: The Choice for Introductory Software Education, Guest editorial in Journal of Object-Oriented Programming, vol. 7, no. 3, June 1994, page 8. (A discussion of the use of Eiffel for teaching software engineering topics.)

25. Bertrand Meyer, Towards an Object-Oriented Curriculum, in Journal of Object-Oriented Programming, vo. 6, number 2, May 1993, pages 76-81. (Journal version of paper cited next.) Available here.

26. Bertrand Meyer: Towards an Object-Oriented Curriculum, in TOOLS 11, Technology of Object-Oriented Languages and Systems, Santa Barbara, August 1993, eds. Raimund Ege, Madhu Singh and B. Meyer, Prentice Hall 1993, pages 585-594. (Early advocacy for using OO techniques in teaching programming – while I was not in academia. Much of my subsequent educational work relied on those ideas.) Available here.

27. Bertrand Meyer: Object-Oriented Software Construction, Prentice Hall, 592 pages, 1988. (First edition, translated into German, Italian, French, Dutch, Romanian, Chinese. As noted for second edition above, not about education per se, but widely used textbook with pedagogical implications.)

28. Initiation à la programmation en milieu industriel (Teaching Modern Programming Methodology in an Industrial Environment), in RAIRO, série bleue (informatique), vol. 11, no. 1, pages 21-34 1977. (Early paper on teaching advanced programming techniques in industry.) Available here.

29. Claude Kaiser, Bertrand Meyer and Etienne Pichat, L’Enseignement de la Programmation à l’IIE (Teaching Programming at the IIE engineering school), in Zéro-Un Informatique, 1977. (A paper on my first teaching experience barely out of school myself.) Available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

A theorem of software engineering

Some of the folk wisdom going around in software engineering, often cluessly repeated for decades, is just wrong.  It can be particularly damaging when it affects key aspects of software development and is contradicted by solid scientific evidence. The present discussion covers a question that meets both of these conditions: whether it makes sense to add staff to a project to shorten its delivery time.

My aim is to popularize a result that is well known in the software engineering literature, going back to the early work of Barry Boehm [1], and explained with great clarity by Steve McConnell in his 2006 book on software cost estimation [2] under the name “Shortest Possible Schedule”. While an empirical rather than a logical result, I believe it deserves to be called a theorem (McConnell stays shy of using the term) because it is as close as we have in the area of software engineering management to a universal property, confirmed by numerous experimental studies.

This article contributes no new concept since McConnell’s chapter 20 says all there is to say about the topic;  my aim is simply to make the Shortest Possible Schedule Theorem better known, in particular to practitioners.

The myth about shortening project times begins with an observation that is clearly correct, at least in an extreme form. Everyone understands that if our project has been evaluated, through accepted cost estimation techniques, to require three developers over a year we cannot magically hire 36 people to complete it in one month. Productivity does not always scale up.

But neither does common sense. Too often the conclusion from the preceding trival observation takes the form of an old  saw, “Brooks’ Law”: adding people to a late project delays it further. The explanation is that the newcomers cost more through communication overhead than they bring through actual contributions. While a few other sayings of Brooks’ Mythical Man-Month have stood the test of time, this one has always struck me as describing, rather than any actual law, a definition of bad management. Of course if you keep haplessly throwing people at deadlines you are just going to add communication problems and make things worse. But if you are a competent manager expanding the team size is one of the tools at your disposal to improve the state of a project, and it would be foolish to deprive yourself of it. A definitive refutation of the supposed law, also by McConnell, was published 20 years ago [3].

For all the criticism it deserves, Brooks’s pronouncement was at least limited in its scope: it addressed addition of staff to a project that is already late. It is even wronger to apply it to the more general issue of cost-estimating and staffing software projects, at any stage of their progress.  Forty-year-old platitudes have even less weight here. As McConnell’s book shows, cost estimation is no longer a black art. It is not an exact science either, but techniques exist for producing solid estimates.

The Shortest Possible Schedule theorem is one of the most interesting results. Much more interesting than Brooks’s purported law, because it is backed by empirical studies (rather than asking us to believe one person’s pithy pronouncement), and instead of just a general negative view it provides a positive result complemented by a limitation of that result; and both are expressed quantitatively.

Figure 1 gives the general idea of the SPS theorem. General idea only; Figure 2 will provide a more precise view.

Image4

Figure 1: General view of the Shortest Possible Schedule theorem.

The  “nominal project” is the result of a cost and schedule estimation yielding the optimum point. The figure and the theorem provide project managers with both a reason to rejoice and a reason to despair:

  • Rejoice: by putting in more money, i.e. more people (in software engineering, project costs are essentially people costs [4]), you can bring the code to fruition faster.
  • Despair: whatever you do, there is a firm limit to the time you can gain: 25%. It seems to be a kind of universal constant of software engineering.

The “despair” part typically gets the most attention at first, since it sets an absolute value on how much money can buy (so to speak) in software: try as hard as you like, you will never get below 75% of the nominal (optimal) value. The “impossible zone” in Figure 1 expresses the fundamental limitation. This negative result is the reasoned and precise modern replacement for the older folk “law”.

The positive part, however, is just as important. A 75%-empty glass is also 25%-full. It may be disappointing for a project manager to realize that no amount of extra manpower will make it possible to guarantee to higher management more than a 25% reduction in time. But it is just as important to know that such a reduction, not at all insignificant, is in fact reachable given the right funding, the right people, the right tools and the right management skills. The last point is critical: money by itself does not suffice, you need management; Brooks’ law, as noted, is mostly an observation of the effects of bad management.

Figure 1 only carries the essential idea, and is not meant to provide precise numerical values. Figure 2, the original figure from McConnell’s book, is. It plots effort against time rather than the reverse but, more importantly, it shows several curves, each corresponding to a published empirical study or cost model surveyed by the book.

Image5

Figure 2: Original illustration of the Shortest Possible Schedule
(figure 2-20 of [3], reproduced with the author’s permission)

On the left of the nominal point, the curves show how, according to each study, increased cost leads to decreased time. They differ on the details: how much the project needs to spend, and which maximal reduction it can achieve. But they all agree on the basic Shortest Possible Schedule result: spending can decrease time, and the maximal reduction will not exceed 25%.

The figure also provides an answer, although a disappointing one, to another question that arises naturally. So far this discussion has assumed that time was the critical resource and that we were prepared to spend more to get a product out sooner. But sometimes it is the other way around: the critical resource is cost, or, concretely, the number of developers. Assume that nominal analysis tells us that the project will take four developers for a year and, correspondingly, cost 600K (choose your currency).  We only have a budget of 400K. Can we spend less by hiring fewer developers, accepting that it will take longer?

On that side, right of the nominal point in Figure 2, McConnell’s survey of surveys shows no consensus. Some studies and models do lead to decreased costs, others suggest that with the increase in time the cost will actually increase too. (Here is my interpretation, based on my experience rather than on any systematic study: you can indeed achieve the original goal with a somewhat smaller team over a longer period; but the effect on the final cost can vary. If the new time is t’= t + T and the new team size s’= s – S, t and s being the nominal values, the cost difference is proportional to  Ts – t’S. It can be positive as well as negative depending on the values of the original t and s and the precise effect of reduced team size on project duration.)

The firm result, however, is the left part of the figure. The Shortest Possible Schedule theorem confirms what good project managers know: you can, within limits, shorten delivery times by bringing all hands on deck. The precise version deserves to be widely known.

References and note

[1] Barry W. Boehm: Software Engineering Economics, Prentice Hall, 1981.

[2] Steve McConnell: Software Estimation ― Demystifying the Black Art, Microsoft Press, 2006.

[3] Steve McConnell: Brooks’ Law Repealed, in IEEE Software, vol. 16, no. 6, pp. 6–8, November-December 1999, available here.

[4] This is the accepted view, even though one might wish that the industry paid more attention to investment in tools in addition to people.

Recycled A version of this article was first published on the Comm. ACM blog under the title The Shortest Possible Schedule Theorem: Yes, You Can Throw Money at Software Deadlines

VN:F [1.9.10_1130]
Rating: 9.9/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Software Engineering Education: FISEE coming up

Over the past few days I have come across several people who told me they want to attend the Frontiers In Software Engineering Education (FISEE) workshop in Villebrumier, 11-13 November, but have not registered yet. If that’s your case please register right now because:

  • The number of spots is limited (it’s a residential event, everyone is hosted onsite, and there is a set number of rooms).
  • We need a preliminary program. The format of the event is flexible, Springer LNCS proceedings come after the meeting, we make room for impromptu presentations and discussions, but still we need a basic framework and we need to finalize it now.

So please go ahead and fill in the registration form.

From the previous posting about FISEE:

The next event at the LASER center in Villebrumier (Toulouse area, Southwest France) is FISEE, Frontiers in Software Engineering Education, see the web site. This small-scale workshop, 11 to 13 November is devoted to what Software Engineering needs, what should be changed, and how new and traditional institutions can adapt to the fast pace of technology.

Workshops at the Villebrumier center favor a friendly, informal and productive interaction between participants, who are all hosted on site. There are no formal submissions, but post-event proceedings will be published as part of the LASER sub-series of Springer Lecture Notes in Computer Science.

Like other events there, FISEE is by invitation; if you are active in the field of software engineering education as an educator, as a potential employer of software engineering graduates, or as a researcher, you can request an invitation by writing to me or one of the other organizers. Attendance is limited to 15-20 participants.

Among already scheduled talks: a keynote by Alexander Tormasov, rector of Innopolis University, and a talk by me on “the 15 concepts of software engineering”.

VN:F [1.9.10_1130]
Rating: 0.0/10 (0 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)