New preprint: Lessons from Formally Deployed Software Systems

Li Huang, Sophie Ebersold, Alexander Kogtenkov, Bertrand Meyer and Yinling Liu, Lessons from Formally Verified Deployed Software Systems, submitted for publication (since March 2023), preprint available here for the full version (with detailed review of all 32 projects) and here for a shorter one (with same core content but only 11 detailed reviews, the others summarized in a table).

Formal methods of software construction, using mathematical techniques to ensure their correctness and (whenever possible) to prove it using automatic tools, now have a long history but they remain controversial. Questions linger, in particular, on their applicability in an industrial setting. This is the kind of question with opinions galore but limited published evidence. This article is a detailed survey of 32 formally-verified industrial systems, intended to provide firm data on the state of application of formal methods to industry —successes, challenges, limitations, lessons.

The paper resulted from an attempt to identify as many  such formally-verified systems actually deployed in industry as possible. Some of the projects were selected thanks to a questionnaire that we sent out to many forums; others were found through a variety of sources. Out of many initially identified projects the articles covers 32; other than interest and relevance, the criteria for selection included our ability to find detailed information about them and verify that information. Whenever possible we used published accounts, but for some of the most interesting systems deployed in industry little is available in the literature; we only retained those for which we could get and validate information from the projects themselves, over the course of many interactions.

The article is focused on facts and figures, not opinions. Although the authors are actively engaged in using formal methods, we have no axe to grind, if only because we know, from that very practice, what the challenges are. The article is neither for formal methods nor against formal methods; it helps readers form their own opinions by providing a wealth of carefully verified information about projects that have applied formal verification in an industrial setting. I can safely assert that there is no comparable body of work available anywhere; while there have been excellent surveys of formal methods and software verification before (the article has a dedicated section in which it reviews many of them), none has gone into the present study’s level of detailed study and analysis of actual projects, much of which not available anywhere else (particularly in the case of information gleaned from interacting with the project members themselves but not previously published).

I believe therefore that this study deserves to be known by anyone interested in software verification and formal methods. There are two versions: the long version contains the description of all selected 32 projects. The short one, cut to the page limit of the intended journal (see next) has these details for only 11 systems, chosen to be representative (typically, one example for each general category, e.g. compilers); the properties of the others are summarized in a table. The introduction, overview, general analysis, discussion and conclusions are the same, so if you just want to get an overall idea you can start with the short version.

Presenting the article as a “new preprint” is somewhat of a twist since its first version was available in March of 2023 and the current version is from last October. The paper has been under review for ACM Computing Surveys for over two years; this is not the right place to complain about the process, but let me politely say that we are a bit frustrated since on our side we did all that was requested. (I am thankful to Moshe Vardi who, alone of all people whom I solicited for help, managed to get something moving at some point.) Given the way things have been going and even though the authors did everything requested of them I would not bet that it will eventually be published; if nothing else, the more time passes the more self-fulfilling becomes the criticism of obsolescence. The study took a full year (2022), and the initial version was submitted in March 2023. All information on the selected projects was carefully checked and updated a year later (February 2024), but no new projects were added then. So the article is not meant to be the last word for eternity; rather, it presents of snapshot of the state of the art at one particular moment. In this role — and whether it ends up published or forever remains Samizdat — I hope it will be useful.

 

Reminder: my full annotated publication list is here.

The French School of Programming

July 14 (still here for 15 minutes) is not a bad opportunity to announced the publication of a new book: The French School of Programming.

The book is a collection of chapters, thirteen of them, by rock stars of programming and software engineering research (plus me), preceded by a Foreword by Jim Woodcock and a Preface by me. The chapters are all by a single author, reflecting the importance that the authors attached to the project. Split into four sections after chapter 1, the chapters are, in order:

1. The French School of Programming: A Personal View, by Gérard Berry (serving as a general presentation of the subsequent chapters).

Part I: Software Engineering

2. “Testing Can Be Formal Too”: 30 Years Later, by  Marie-Claude Gaudel

3. A Short Visit to Distributed Computing Where Simplicity Is Considered a First-Class Property, by Michel Raynal

4. Modeling: From CASE Tools to SLE and Machine Learning, by Jean-Marc Jézéquel

5. At the Confluence of Software Engineering and Human-Computer Interaction: A Personal Account,  by Joëlle Coutaz

Part II:  Programming Language Mechanisms and Type Systems

6. From Procedures, Objects, Actors, Components, Services, to Agents, by  Jean-Pierre Briot

7. Semantics and Syntax, Between Computer Science and Mathematics, by Pierre-Louis Curien

8. Some Remarks About Dependent Type Theory, by Thierry Coquand

Part III: Theory

9. A Personal Historical Perspective on Abstract Interpretation, by Patrick Cousot

10. Tracking Redexes in the Lambda Calculus, by  Jean-Jacques Lévy

11. Confluence of Terminating Rewriting Computations, by  Jean-Pierre Jouannaud

Part IV: Language Design and Programming Methodology

12. Programming with Union, Intersection, and Negation Types, by Giuseppe Castagna

13, Right and Wrong: Ten Choices in Language Design, by Bertrand Meyer

What is the “French School of Programming”? As discussed in the Preface (although Jim Woodcock’s Foreword does not entirely agree) it is not anything defined in a formal sense, as the variety of approaches covered in the book amply demonstrates. What could be more different (for example) than Coq, OCaml (extensively referenced by several chapters) and Eiffel? Beyond the differences, however, there is a certain je ne sais quoi of commonality; to some extent, in fact, je sais quoi: reliance on mathematical principles, a constant quest for simplicity, a taste for elegance. It will be for the readers to judge.

Being single authors of their chapters, the authors felt free to share some of their deepest insights an thoughts. See for example Thierry Coquand’s discussion of the concepts that led to the widely successful Coq proof system, Marie-Claude Gaudel’s new look at her seminal testing work of 30 years ago, and Patrick Cousot’s detailed recounting of the intellectual path that led him and Radhia to invent abstract interpretation.


The French School of Programming
Edited by Bertrand Meyer
Springer, 2024. xxiv + 439 pages

Book page on Springer site
Amazon US page
Amazon France page
Amazon Germany page

The book is expensive (I tried hard to do something about it, and failed). But many readers should be able to download it, or individual chapters, for free through their institutions.

It was a privilege for me to take this project to completion and work with such extraordinary authors who produced such a collection of gems.

“Object Success” now available

A full, free online version of Object Success
(1995)

success_cover

 

I am continuing the process of releasing some of my earlier books. Already available: Introduction to the Theory of Programming Languages (see here) and Object-Oriented Software Construction, 2nd edition (see here). The latest addition is Object Success, a book that introduced object technology to managers and more generally emphasized the management and organizational consequences of OO ideas.

The text (3.3 MB) is available here for download.

Copyright notice: The text is not in the public domain. It is copyrighted material (© Bertrand Meyer, 1995, 2023), made available free of charge on the Web for the convenience of readers, with the permission of the original publisher (Prentice Hall, now Pearson Education, Inc.). You are not permitted to copy it or redistribute it. Please refer others to the present version at bertrandmeyer.com/success.

(Please do not bookmark or share the above download link as it may change, but use the present page: https:/bertrandmeyer.com/success.) The text is republished identically, with minor reformatting and addition of some color. (There is only one actual change, a mention of the evolution of hardware resources, on page 136, plus a reference to a later book added to a bibliography section on page 103.) This electronic version is fully hyperlinked: clicking entries in the table of contents and index, and any element in dark red such as the page number above, will take you to the corresponding place in the text.

The book is a presentation of object technology for managers and a discussion of management issues of modern projects. While it is almost three decades old and inevitably contains some observations that will sound naïve  by today’s standards, I feel  it retains some of its value. Note in particular:

  • The introduction of a number of principles that went radically against conventional software engineering wisdom and were later included in agile methods. See Agile! The Good, the Hype and the Ugly, Springer, 2014, book page at agile.ethz.ch.
  • As an important example, the emphasis on the primacy of code. Numerous occurrences of the argument throughout the text. (Also, warnings about over-emphasizing analysis, design and other products, although unlike “lean development” the text definitely does not consider them to be “waste”. See the “bubbles and arrows of outrageous fortune”, page 80.)
  • In the same vein, the emphasis on incremental development.
  • Yet another agile-before-agile principle: Less-Is-More principle (in “CRISIS REMEDY”, page 133).
  • An analysis of the role of managers (chapters 7 to 9) which remains largely applicable, and I believe more realistic than the agile literature’s reductionist view of managers.
  • A systematic analysis of what “prototyping” means for software (chapter 4), distinguishing between desirable and less good forms.
  • Advice on how to salvage projects undergoing difficulties or crises (chapters 7 and 9).
  • A concise exposition of OO concepts (chapter 1 and appendix).
  • A systematic discussion of software lifecycle models (chapter 3), including the “cluster model”. See new developments on this topic in my recent “Handbook of Requirements and Business Analysis”, Springer, 2022, book page at bertrandmeyer.com/requirements.
  • More generally, important principles from which managers (and developers) can benefit today just as much as at the time of publication.

The download link again (3.3 MB): here it is.

The legacy of Barry Boehm

August of last year brought the sad news of Barry Boehm’s passing away on August 20. If software engineering deserves at all to be called engineering today, it is in no small part thanks to him.

“Engineer” is what Boehm was, even though his doctorate and other degrees were all in mathematics. He looked the part (you might almost expect him to carry a slide rule in his shirt pocket, until you realized that as a software engineer he did not need one) and more importantly he exuded the seriousness, dedication, precision, respect for numbers, no-nonsense attitude and practical mindset of outstanding engineers. He was employed as an engineer or engineering manager in the first part of his career, most notably at TRW, a large aerospace company (later purchased by Northrop Grumman), turning to academia (USC) afterwards, but even as a professor he retained that fundamental engineering ethos.

 

boehm_tichy_basili

 

LASER Summer School, Elba Island (Italy), September 2010
From left: Walter Tichy, Barry Boehm, Vic Basili (photograph by Bertrand Meyer)

Boehm’s passion was to turn the study of software away from intuition and over to empirical enquiry, rooted in systematic objective studies of actual projects. He was not the only one advocating empirical methods (others from the late seventies on included Basili, Zelkowitz, Tichy, Gilb, Rombach, McConnell…) but he had an enormous asset: access to mines of significant data—not student experiments, as most researchers were using!—from numerous projects at TRW. (Basili and Zelkowitz had similar sources at NASA.) He patiently collected huge amounts of project information, analyzed them systematically, and started publishing paper after paper about what works for software development; not what we wish would work, but what actually does on the basis of project results.

Then in 1981 came his magnum opus, Software Engineering Economics (Prentice Hall), still useful reading today (many people inquired over the years about projects for a second edition, but I guess he felt it was not warranted). Full of facts and figures, the book also popularized the Cocomo model for cost prediction, still in use nowadays in a revised version developed at USC (Cocomo II, 1995, directly usable through a simple Web interface at softwarecost.org/tools/COCOMO/

Cocomo provides a way to estimate both the cost and the duration of a project from the estimated number of lines of code (alternatively, in Cocomo II, from the estimated number of function points), and some auxiliary parameters to account for each project’s specifics. Boehm derived the formula by fitting from thousands of projects.

When people first encounter the idea of Cocomo (even in a less-rudimentary form than the simplified one I just gave), their first reaction is often negative: how can one use a single formula to derive an estimate for any project? Isn’t the very concept ludicrous anyway since by definition we do not know the number of lines of code (or even of function points) before we have developed the project? With lines of code, how do we distinguish between different languages? There are answers to all of these questions (the formula is ponderated by a whole set of criteria capturing project specifics, lines of code calibrated by programming language level do correlate better than most other measures with actual development effort, a good project manager will know in advance the order of magnitude of the code size etc.). Cocomo II is not a panacea and only gives a rough order of magnitude, but remains one of the best available estimation tools.

Software Engineering Economics and the discussion of Cocomo also introduced important laws of software engineering, not folk wisdom as was too often (and sometimes remains) prevalent, but firm results. I covered one in an article in this blog some time ago, calling it the “Shortest Possible Schedule Theorem”: if a serious estimation method, for example Cocomo, has determined an optimal cost and time for a project, you can reduce the time by devoting more resources to the project, but only down to a certain limit, which is about 75% of the original. In other words, you can throw money at a project to make things happen faster, but the highest time reduction you will ever be able to gain is by a quarter. Such a result, confirmed by many studies (by Boehm and many others after him), is typical of the kind of strong empirical work that Boehm favored.

The CMM and CMMI models  of technical management are examples of important developments that clearly reflect Boehm’s influence. I am not aware that he played any direct role (the leader was Watts Humphrey, about whom I wrote a few years ago), but the models’ constant emphasis on measurement, feedback and assessment are in line with the principles  so persuasively argued in his articles and books.

Another of his famous contributions is the Spiral model of the software lifecycle. His early work and Software Engineering Economics had made Boehm a celebrity in the field, one of its titans in fact, but also gave him the reputation, deserved or not, of representing what may be called big software engineering, typified by the TRW projects from which he drew his initial results: large projects with large budgets, armies of programmers of variable levels of competence, strong quality requirements (often because of the mission- and life-critical nature of the projects) leading to heavy quality assurance processes, active regulatory bodies, and a general waterfall-like structure (analyze, then specify, then design, then implement, then verify). Starting in the eighties other kinds of software engineering blossomed, pioneered by the personal computer revolution and Unix, and often typified by projects, large or small but with high added value, carried out iteratively by highly innovative teams and sometimes by just one brilliant programmer. The spiral model is a clear move towards flexible modes of software development. I must say I was never a great fan (for reasons not appropriate for discussion here) of taking the Spiral literally, but the model was highly influential and made Boehm a star again for a whole new generation of programmers in the nineties. It also had a major effect on agile methods, whose notion of  “sprint ” can be traced directly the spiral. It is a rare distinction to have influenced both the CMM and agile camps of software engineering with all their differences.

This effort not to remain wrongly identified with the old-style massive-project software culture, together with his natural openness to new ideas and his intellectual curiosity, led Boehm to take an early interest in agile methods; he was obviously intrigued by the iconoclasm of the first agile publications and eager to understand how they could be combined with timeless laws of software engineering. The result of this enquiry was his 2004 book (with Richard Turner) Balancing Agility and Discipline: A Guide for the Perplexed, which must have been the first non-hagiographic presentation (still measured, may be a bit too respectful out of a fear of being considered old-guard) of agile approaches.

Barry Boehm was an icon of the software engineering movement, with the unique position of having been in essence present at creation (from the predecessor conference of ICSE in 1975) and accompanying, as an active participant, the stupendous growth and change of the field over half a century.

 

boehm_shanghai

Barry Boehm at a dinner at ICSE 2006, Shanghai (photograph by Bertrand Meyer)

I was privileged to meet Barry very early, as we were preparing a summer school in 1978 on Programming Methodology where the other star was Tony Hoare. It was not clear how the mix of such different personalities, the statistics-oriented UCLA-graduate American engineer and the logic-driven classically-trained (at Oxford) British professor would turn out.

Boehm could be impatient with cryptic academic pursuits; one exercise in Software Engineering Economics (I know only a few other cases of sarcasm finding its refuge in exercises from textbooks) presents a problem in software project management and asks for an answer in multiple-choice form. All the proposed choices are sensible management decisions, except for one which goes something like this: “Remember that Bob Floyd [Turing-Awarded pioneer of algorithms and formal verification] published in Communications of the ACM vol. X no. Y pages 658-670 that scheduling of the kind required can be performed in O (n3 log log n) instead of O (n3 log n) as previously known; take advantage of this result to spend 6 months writing an undecipherable algorithm, then discover that customers do not care a bit about the speed.” (Approximate paraphrase from memory [1].)

He could indeed be quite scathing of what he viewed as purely academic pursuits removed from the reality of practical projects. Anyone who attended ICSE 1979 a few months later in Munich will remember the clash between him and Dijkstra; the organizers had probably engineered it (if I can use that term), having assigned them the topics  “Software Engineering As It Is” and “Software Engineering as It Should Be”, but it certainly was spectacular. There had been other such displays of the divide before. Would we experience something of the kind at the summer school?

No clash happened; rather, the reverse, a meeting of minds. The two sets of lectures (such summer schools lasted three weeks at that time!) complemented each other marvelously, participants were delighted, and the two lecturers also got along very well. They were, I think, the only native English speakers in that group, they turned out to have many things in common (such as spouses who were also brilliant software engineers on their own), and I believe they remained in contact for many years. (I wish I had a photo from that school—if anyone reading this has one, please contact me!)

Barry was indeed a friendly, approachable, open person, aware of his contributions but deeply modest.

Few people leave a profound personal mark on a field. A significant part of software engineering as it is today is a direct consequence of Barry’s foresight.

 

Note

[1] The full text of the exercise will appear shortly as a separate article on this blog.

 

Recycled A version of this article appeared previously in the Communications of the ACM blog.

Logical beats sequential

Often,  “we do this and then we do that” is just a lazy way of stating “to do that, we must have achieved this.” The second form is more general than the first, since there may be many things you can “do” to achieve a certain condition.

The extra generality is welcome for software requirements, which should describe essential properties without over-specifying, in particular without prescribing a specific ordering of operations  when it is only one possible sequence among several, thereby restricting the flexibility of designers and implementers.

This matter of logical versus sequential constraints is at the heart of the distinction between scenario-based techniques — use cases, user stories… — and object-oriented requirements. This article analyzes the distinction. It is largely extracted from my recent textbook, the Handbook of Requirements and Business Analysis [1], which contains a more extensive discussion.

1. Scenarios versus OO

Scenario techniques, most significantly use cases and user stories, have become dominant in requirements. They obviously fill a need and are intuitive to many people. As a general requirement technique, however, they lack abstraction. Assessed against object-oriented requirements techniques, they suffer from the same limitations as procedural (pre-OO)  techniques against their OO competitors in the area of design and programming. The same arguments that make object technology subsume non-OO approaches in those areas transpose to requirements.

Scenario techniques describe system properties in terms of a particular sequence of interactions with the system. A staple example of a use case is ordering a product through an e-commerce site, going through a number of steps. In contrast, an OO specification presents a certain number of abstractions and operations on them, chracterized by their logical properties. This description may sound vague, so we move right away to examples.

2. Oh no, not stacks again

Yes, stacks. This example is rather computer-sciency so it is not meant to convince anyone but just to explain the ideas. (An example more similar to what we deal with in the requirements of industry projects is coming next.)

A stack is a LIFO (Last-In, First-Out) structure. You insert and remove elements at the same end.

 

Think of a stack of plates, where you can deposit one plate at a time, at the top, and retrieve one plate at a time, also at the top. We may call the two operations put and remove. Both are commands (often known under the alternative names push and pop). We will also use an integer query count giving the number of elements.

Assume we wanted to specify the behavior of a stack through use cases. Possible use cases (all starting with an empty stack) are:

/1/

put
put ; put
put ; put ; put       
— etc.: any number of successive put (our stacks are not bounded)

put ; remove
put ; put ; remove
put ; put ; remove ; remove
put ; put ; remove ; remove ; put ; remove

We should also find a way to specify that the system does not support such use cases as

/2/

remove ; put

or even just

/3/

remove

We could keep writing such use cases forever — some expressing normal sequences of operations, others describing erroneous cases — without capturing the fundamental rule that at any stage, the number of put so far has to be no less than the number of remove.

A simple way to capture this basic requirement is through logical constraints, also known as contracts, relying on assertions: preconditions which state the conditions under which an operation is permitted, and postconditions which describe properties of its outcome. In the example we can state that:

  • put has no precondition, and the postcondition

          count = old count + 1

using the old notation to refer to the value of an expression before the operation (here, the postcondition states that put increases count by one).

  • remove has the precondition

count > 0

and the postcondition

count = old count – 1

since it is not possible to remove an element from an empty stack. More generally the LIFO discipline implies that we cannot remove more than we have put.(Such illegal usage sequences are sometimes called “misuse cases.”)

(There are other properties, but the ones just given suffice for this discussion.)

The specification states what can be done with stacks (and what cannot) at a sufficiently high level of abstraction to capture all possible use cases. It enables us to keep track of the value of count in the successive steps of a use case; it tells us for example that all the use cases under /1/ above observe the constraints: with count starting at 0, taking into account the postconditions of put and remove, the precondition of every operation will be satisfied prior to all of its calls. For /2/ and /3/ that is not the case, so we know that these use cases are incorrect.

Although this example covers a data structure, not  requirements in the general sense, it illustrates how logical constraints are more general than scenarios:

  • Use cases, user stories and other  forms of scenario only describe specific instances of behavior.
  • An OO model with contracts yields a more abstract specification, to which individual scenarios can be shown to conform, or not.

3. Avoiding premature ordering decisions

As the stack example illustrates, object-oriented specifications stay away from premature time-order decisions by focusing on object types (classes) and their operations (queries and commands), without making an early commitment to the order of executing these operations.

In the book, I use in several places a use-case example from one of the best books about use cases (along with Ivar Jacobson’s original one of course): Alistair Cockburn’s Writing Effective Use Cases (Pearson Education, 2001). A simplified form of the example is:

1. A reporting party who is aware of the event registers a loss to the insurance company.

2. A clerk receives and assigns claim to a claims agent.

3. The assigned claims adjuster:

3.1 Conducts an investigation.
3.2 Evaluates damages.
3.3 Sets reserves.
3.4 Negotiates the claim.
3.5 Resolves the claim and closes it.

(A reserve in the insurance business is an amount that an insurer, when receiving a claim, sets aside as to cover the financial liability that may result from the claim.)

As a specification, this scenario is trying to express useful things; for example, you must set reserves before starting to negotiate the claim. But it expresses them in the form of a strict sequence of operations, a temporal constraint which does not cover the wide range of legitimate scenarios. As in the stack example, describing a few such scenarios is helpful as part of requirements elicitation, but to specify the resulting requirements it is more effective to state the logical constraints.

Here is a sketch (in Eiffel) of how a class INSURANCE_CLAIM could specify them in the form of contracts. Note the use of require to introduce a precondition and ensure for postconditions.

class INSURANCE_CLAIM feature

        — Boolean queries (all with default value False):
    is_investigated, is_evaluated, is_reserved,is_agreed,is_imposed, is_resolved:

BOOLEAN

    investigate
                — Conduct investigation on validity of claim. Set is_investigated.
        deferred
        ensure
            is_investigated
        end

    evaluate
                — Assess monetary amount of damages.
        require
            is_investigated
        deferred
        ensure
            is_evaluated
            — Note: is_investigated still holds (see the invariant at the end of the class text).
        end

    set_reserve
                — Assess monetary amount of damages. Set is_reserved.
        require
            is_investigated
            — Note: we do not require is_evaluated.
        deferred
        ensure
            is_reserved
        end
 

    negotiate
                — Assess monetary amount of damages. Set is_agreed only if negotiation
                — leads to an agreement with the claim originator.
        require
                   is_reserved
is_evaluated   
                   

        deferred
        ensure
            is_reserved
            — See the invariant for is_evaluated and is_investigated.
        end

    impose (amount: INTEGER)
                — Determine amount of claim if negotiation fails. Set is_imposed.
        require
            not is_agreed
            is_reserved
        deferred
        ensure
            is_imposed
        end

    resolve
                — Finalize handling of claim. Set is_resolved.
        require
            is_agreed or is_imposed
        deferred
        ensure
            is_resolved
        end

invariant                    — “⇒” is logical implication.

is_evaluated is_investigated
is_reserved 
is_evaluated
is_resolved
is_agreed or is_imposed
is_agreed
is_evaluated
is_imposed
is_evaluated
is_imposed
not is_agreed

                          — Hence, by laws of logic, is_agreed not is_imposed

end

Notice the interplay between the preconditions, postconditions and class invariant, and the various boolean-valued queries they involve (is_investigated, is_evaluated, is_reserved…). You can specify a strict order of operations o1, o2 …, as in a use case, by having a sequence of assertions pi such that operation oi has the contract clauses require pi and ensure pi+1; but assertions also enable you to specify a much broader range of allowable orderings as all acceptable.
The class specification as given is only a first cut and leaves many aspects untouched. It will be important in practice, for example, to include a query payment describing the amount to be paid for the claim; then impose has the postcondition payment = amount, and negotiate sets a certain amount for payment.
Even in this simplified form, the specification includes a few concepts that the original use case left unspecified, in particular the notion of imposing a payment (through the command impose) if negotiation fails. Using a logical style typically uncovers such important questions and provides a framework for answering them, helping to achieve one of the principal goals of requirements engineering.

4. Logical constraints are more general than sequential orderings

The specific sequence of actions described in the original use case (“main success scenario”) is compatible with the logical constraints: you can check that in the sequence

investigate
evaluate
set_reserve
negotiate
resolve

the postcondition of each step implies the precondition of the next one (the first has no precondition). In other words, the temporal specification satisfies the logical one. But you can also see that prescribing this order is a case of overspecification: other orderings also satisfy the logical specification. It may be possible for example — subject to confirmation by Subject-Matter Experts — to change the order of evaluate and set_reserve, or to perform these two operations in parallel.

The specification does cover the fundamental sequencing constraints; for example, the pre- and postcondition combinations imply that investigation must come before evaluation and resolution must be preceded by either negotiation or imposition. But they avoid the non-essential constraints which, in the use case, were only an artifact of the sequential style of specification, not a true feature of the problem.

The logical style is also more conducive to conducting a fruitful dialogue with domain experts and stakeholders:

  • With a focus on use cases, the typical question from a requirements engineer (business analyst) is “do you do A before doing B?” Often the answer will be contorted, as in “usually yes, but only if C, oh and sometimes we might start with B if D holds, or we might work on A and B in parallel…“, leading to vagueness and to more complicated requirements specifications.
  • With logic-based specifications, the two fundamental question types are: “what conditions do you need before doing B?” and “does doing A ensure condition C?”. They force stakeholders to assess their own practices and specify precisely the relations between operations of interest.

5. What use for scenarios?

Use-cases and more generally scenarios, while more restrictive than logical specifications, remain important as complements to specifications. They serve as both input and output to more abstract requirements specifications (such as OO specifications with contracts):

  • As input to requirements: initially at least, stakeholders and Subject-Matter Experts often find it intuitive to describe typical system interactions, and their own activities, in the form of scenarios. Collecting such scenarios is an invaluable requirements elicitation technique. The requirements engineer must remember that any such scenario is just one example walk through the system, and must abstract from these examples to derive general logical rules.
  • As output from requirements: from an OO specification with its contracts, the requirements engineers can produce valid use cases. “Valid” means that the operation at every step satisfies the applicable precondition, as a consequence of the previous steps’ postconditions and of the class invariant. The requirements engineers can then submit these use cases to the SMEs and through them to stakeholders to confirm that they make sense, update the logical conditions if they do not (to rule out bad use cases), and check the results they are expected to produce.

6. Where do scenarios fit?

While many teams will prefer to write scenarios (for the purposes just described) in natural language, it is possible to go one step further and, in an object-oriented approach to requirements, gather scenarios in classes. But that point exceeds the scope of the present sketch. We will limit ourselves here to the core observation: logical constraints subsume sequential specifications; you can deduce the ltter from the former, but not the other way around; and focusing on abstract logical specifications leads to a better understanding of the requirements.

Reference

Bertrand Meyer: Handbook of Requirements and Business Analysis, Springer, 2022. See the book page with sample chapters and further material here.

Recycled(This article was first published on the Communications of the ACM blog.)

New book: the Requirements Handbook

cover

I am happy to announce the publication of the Handbook of Requirements and Business Analysis (Springer, 2022).

It is the result of many years of thinking about requirements and how to do them right, taking advantage of modern principles of software engineering. While programming, languages, design techniques, process models and other software engineering disciplines have progressed considerably, requirements engineering remains the sick cousin. With this book I am trying to help close the gap.

pegsThe Handbook introduces a comprehensive view of requirements including four elements or PEGS: Project, Environment, Goals and System. One of its principal contributions is the definition of a standard plan for requirements documents, consisting of the four corresponding books and replacing the obsolete IEEE 1998 structure.

The text covers both classical requirements techniques and novel topics such as object-oriented requirements and the use of formal methods.

The successive chapters address: fundamental concepts and definitions; requirements principles; the Standard Plan for requirements; how to write good requirements; how to gather requirements; scenario techniques (use cases, user stories); object-oriented requirements; how to take advantage of formal methods; abstract data types; and the place of requirements in the software lifecycle.

The Handbook is suitable both as a practical guide for industry and as a textbook, with over 50 exercises and supplementary material available from the book’s site.

You can find here a book page with the preface and sample chapters.

To purchase the book, see the book page at Springer and the book page at Amazon US.

OOSC-2 available online (officially)

My book Object-Oriented Software Construction, 2nd edition (see the Wikipedia page) has become hard to get. There are various copies floating around the Web but they often use bad typography (wrong colors) and are unauthorized.

In response to numerous requests and in anticipation of the third edition I have been able to make it available electronically (with the explicit permission of the original publisher).

You can find the link on another page on this site. (In sharing or linking please use that page, not the URL of the actual PDF which might change.)

I hope having the text freely available proves useful.

 

Some contributions

Science progresses through people taking advantage of others’ insights and inventions. One of the conditions that makes the game possible is that you acknowledge what you take. For the originator, it is rewarding to see one’s ideas reused, but frustrating when that happens without acknowledgment, especially when you are yourself punctilious about citing your own sources of inspiration.

I have started to record some concepts that are widely known and applied today and which I believe I originated in whole or in part, whether or not their origin is cited by those who took them. The list below is not complete and I may update it in the future. It is not a list of ideas I contributed, only of those fulfilling two criteria:

  • Others have built upon them.  (If there is an idea that I think is great but no one paid attention to it, the list does not include it.)
  • They have gained wide visibility.

There is a narcissistic aspect to this exercise and if people want to dismiss it as just showing I am full of myself so be it. I am just a little tired of being given papers to referee that state that genericity was invented by Java, that no one ever thought of refactoring before agile methods, and so on. It is finally time to state some facts.

Facts indeed: I back every assertion by precise references. So if I am wrong — i.e. someone preceded me — the claims of precedence can be refuted; if so I will update or remove them. All articles by me cited in this note are available (as downloadable PDFs) on my publication page. (The page is up to date until 2018; I am in the process of adding newer publications.)

Post-publication note: I have started to receive some comments and added them in a Notes section at the end; references to those notes are in the format [A].

Final disclaimer (about the narcissistic aspect): the exercise of collecting such of that information was new for me, as I do not usually spend time reflecting on the past. I am much more interested in the future and definitely hope that my next contributions will eclipse any of the ones listed below.

Programming concepts: substitution principle

Far from me any wish to under-represent the seminal contributions of Barbara Liskov, particularly her invention of the concept of abstract data type on which so much relies. As far as I can tell, however, what has come to be known as the “Liskov Substitution Principle” is essentially contained in the discussion of polymorphism in section 10.1 of in the first edition (Prentice Hall, 1988) of my book Object-Oriented Software Construction (hereafter OOSC1); for example, “the type compatibility rule implies that the dynamic type is always a descendant of the static type” (10.1.7) and “if B inherits from A, the set of objects that can be associated at run time with an entity [generalization of variable] includes instances of B and its descendants”.

Perhaps most tellingly, a key aspect of the substitution principle, as listed for example in the Wikipedia entry, is the rule on assertions: in a proper descendant, keep the invariant, keep or weaken the precondition, keep or strengthen the postcondition. This rule was introduced in OOSC1, over several pages in section 11.1. There is also an extensive discussion in the article Eiffel: Applying the Principles of Object-Oriented Design published in the Journal of Systems and Software, May 1986.

The original 1988 Liskov article cited (for example) in the Wikipedia entry on the substitution principle says nothing about this and does not in fact include any of the terms “assertion”, “precondition”, “postcondition” or “invariant”. To me this absence means that the article misses a key property of substitution: that the abstract semantics remain the same. (Also cited is a 1994 Liskov article in TOPLAS, but that was many years after OOSC1 and other articles explaining substitution and the assertion rules.)

Liskov’s original paper states that “if for each object o1 of type S there is an object o2 of type T such that for all programs P defined in terms of T, the behavior of P is unchanged when o1 is substituted for oz, then S is a subtype of T.” As stated, this property is impossible to satisfy: if the behavior is identical, then the implementations are the same, and the two types are identical (or differ only by name). Of course the concrete behaviors are different: applying the operation rotate to two different figures o1 and o2, whose types are subtypes of FIGURE and in some cases of each other, will trigger different algorithms — different behaviors. Only with assertions (contracts) does the substitution idea make sense: the abstract behavior, as characterized by preconditions, postconditions and the class invariants, is the same (modulo respective weakening and strengthening to preserve the flexibility of the different version). Realizing this was a major step in understanding inheritance and typing.

I do not know of any earlier (or contemporary) exposition of this principle and it would be normal to get the appropriate recognition.

Software design: design patterns

Two of the important patterns in the “Gang of Four” Design Patterns book (GoF) by Gamma et al. (1995) are the Command Pattern and the Bridge Pattern. I introduced them (under different names) in the following publications:

  • The command pattern appears in OOSC1 under the name “Undo-Redo” in section 12.2. The solution is essentially the same as in GoF. I do not know of any earlier exposition of the technique. See also notes [B] and [C].
  • The bridge pattern appears under the name “handle technique” in my book Reusable Software: The Base Component Libraries (Prentice Hall, 1994). It had been described several years earlier in manuals for Eiffel libraries. I do not know of an earlier reference. (The second edition of Object-Oriented Software Construction — Prentice Hall, 1997, “OOSC2” –, which also describes it, states that a similar technique is described in an article by Josef Gil and Ricardo Szmit at the TOOLS USA conference in the summer of 1994, i.e. after the publication of Reusable Software.)

Note that it is pointless to claim precedence over GoF since that book explicitly states that it is collecting known “best practices”, not introducing new ones. The relevant questions are: who, pre-GoF, introduced each of these techniques first; and which publications does the GoF cites as “prior art”  for each pattern. In the cases at hand, Command and Bridge, it does not cite OOSC1.

To be concrete: unless someone can point to an earlier reference, then anytime anyone anywhere using an interactive system enters a few “CTRL-Z” to undo commands, possibly followed by some “CTRL-Y” to redo them (or uses other UI conventions to achieve these goals), the software most likely relying on a technique that I first described in the place mentioned above.

Software design: Open-Closed Principle

Another contribution of OOSC1 (1988), section 2.3, reinforced in OOSC2 (1997) is the Open-Closed principle, which explained one of the key aspects of inheritance: the ability to keep a module both closed (immediately usable as is) and open to extension (through inheritance, preserving the basic semantics. I am mentioning this idea only in passing since in this case my contribution is usually recognized, for example in the Wikipedia entry.

Software design: OO for reuse

Reusability: the Case for Object-Oriented Design (1987) is, I believe, the first publication that clearly explained why object-oriented concepts were (and still are today — in Grady Booch’s words, “there is no other game in town”) the best answer to realize the goal of software construction from software components. In particular, the article:

  • Explains the relationship between abstract data types and OO programming, showing the former as the theoretical basis for the latter. (The CLU language at MIT originated from Liskov’s pioneering work on abstract data types, but was not OO in the full sense of the term, missing in particular a concept of inheritance.)
  • Shows that reusability implies bottom-up development. (Top-down refinement was the mantra at the time, and promoting bottom-up was quite a shock for many people.)
  • Explains the role of inheritance for reuse, as a complement to Parnas’s interface-based modular construction with information hiding.

Software design: Design by Contract

The contribution of Design by Contract is one that is widely acknowledged so I don’t have any point to establish here — I will just recall the essentials. The notion of assertion goes back to the work of Floyd, Hoare and Dijkstra in the sixties and seventies, and correctness-by-construction to Dijktra, Gries and Wirth, but Design by Contract is a comprehensive framework providing:

  • The use of assertions in an object-oriented context. (The notion of class invariant was mentioned in a paper by Tony Hoare published back in 1972.)
  • The connection of inheritance with assertions (as sketched above). That part as far as I know was entirely new.
  • A design methodology for quality software: the core of DbC.
  • Language constructs carefully seamed into the fabric of the language. (There were precedents there, but in the form of research languages such as Alphard, a paper design only, not implemented, and Euclid.)
  • A documentation methodology.
  • Support for testing.
  • Support for a consistent theory of exception handling (see next).

Design by Contract is sometimes taken to mean simply the addition of a few assertions here and there. What the term actually denotes is a comprehensive methodology with all the above components, tightly integrated into the programming language. Note in particular that preconditions and postconditions are not sufficient; in an OO context class invariants are essential.

Software design: exceptions

Prior to the Design by Contract work, exceptions were defined very vaguely, as something special you do outside of “normal” cases, but without defining “normal”. Design by Contract brings a proper perspective by defining these concepts precisely. This was explained in a 1987 article, Disciplined Exceptions ([86] in the list), rejected by ECOOP but circulated as a technical report; they appear again in detail in OOSC1 (sections 7.10.3 to 7.10.5).

Other important foundational work on exceptions, to which I know no real precursor (as usual I would be happy to correct any omission), addressed what happens to the outcome of an exception in a concurrent or distributed context. This work was done at ETH, in particular in the PhD theses  of B. Morandi and A. Kolesnichenko, co-supervised with S. Nanz. See the co-authored papers [345] and [363].

On the verification aspect of exceptions, see below.

Software design: refactoring

I have never seen a discussion of refactoring that refers to the detailed discussion of generalization in both of the books Reusable Software (1994, chapter 3) and Object Success (Prentice Hall, 1995, from page 122 to the end of chapter 6). These discussions describe in detail how, once a program has been shown to work, it should be subject to a posteriori design improvements. It presents several of the refactoring techniques (as they were called when the idea gained traction several years later), such as moving common elements up in the class hierarchy, and adding an abstract class as parent to concrete classes ex post facto.

These ideas are an integral part of the design methodology presented in these books (and again in OOSC2 a few later). It is beyond me why people would present refactoring (or its history, as in the Wikipedia entry on the topic) without referring to these publications, which were widely circulated and are available for anyone to inspect.

Software design: built-in documentation and Single-Product principle

Another original contribution was the idea of including documentation in the code itself and relying on tools to extract the documentation-only information (leaving implementation elements aside). The idea, described in detail in OOSC1 in 1988 (sections 9.4 and 9.5) and already mentioned in the earlier Eiffel papers, is that code should be self-complete, containing elements of various levels of abstraction; some of them describe implementation, but the higher-level elements describe specification, and are distinguished syntactically in such a way that tools can extract them to produce documentation at any desired level of abstraction.

The ideas were later applied through such mechanisms as JavaDoc (with no credit as far as I know). They were present in Eiffel from the start and the underlying principles, in particular the “Single Product principle” (sometimes “Self-Documentation principle”, and also generalized by J. Ostroff and R. Paige as “Single-Model principle”). Eiffel is the best realization of these principles thanks to:

  • Contracts (as mentioned above): the “contract view” of a class (called “short form” in earlier descriptions) removes the implementations but shows the relevant preconditions, postconditions and class invariants, given a precise and abstract specification of the class.
  • Eiffel syntax has a special place for “header comments”, which describe high-level properties and remain in the contract view.
  • Eiffel library class documentation has always been based on specifications automatically extracted from the actual text of the classes, guaranteeing adequacy of the documentation. Several formats are supported (including, from 1995 on, HTML, so that documentation can be automatically deployed on the Web).
  • Starting with the EiffelCase tool in the early 90s, and today with the Diagram Tool of EiffelStudio, class structures (inheritance and client relationships) are displayed graphically, again in an automatically extracted form, using either the BON or UML conventions.

One of the core benefits of the Single-Product principle is to guard against what some of my publications called the “Dorian Gray” syndrome: divergence of an implementation from its description, a critical problem in software because of the ease of modifying stuff. Having the documentation as an integral part of the code helps ensure that when information at some level of abstraction (specification, design, implementation) changes, the other levels will be updated as well.

Crucial in the approach is the “roundtripping” requirement: specifiers or implementers can make changes in any of the views, and have them reflected automatically in the other views. For example, you can graphically draw an arrow between two bubbles representing classes B and A in the Diagram Tool, and the code of B will be updated with “inherit A”; or you can add this Inheritance clause textually in the code of class B, and the diagram will be automatically updated with an arrow.

It is important to note how contrarian and subversive these ideas were at the time of their introduction (and still to some extent today). The wisdom was that you do requirements then design then implementation, and that code is a lowly product entirely separate from specification and documentation. Model-Driven Development perpetuates this idea (you are not supposed to modify the code, and if you do there is generally no easy way to propagate the change to the model.) Rehabilitating the code (a precursor idea to agile methods, see below) was a complete change of perspective.

I am aware of no precedent for this Single Product approach. The closest earlier ideas I can think of are in Knuth’s introduction of Literate Programming in the early eighties (with a book in 1984). As in the Single-product approach, documentation is interspersed with code. But the literate programming approach is (as presented) top-down, with English-like explanations progressively being extended with implementation elements. The Single Product approach emphasizes the primacy of code and, in terms of the design process, is very much yoyo, alternating top-down (from the specification to the implementation) and bottom-up (from the implementation to the abstraction) steps. In addition, a large part of the documentation, and often the most important one, is not informal English but formal assertions. I knew about Literate Programming, of course, and learned from it, but Single-Product is something else.

Software design: from patterns to components

Karine Arnout’s thesis at ETH Zurich, resulting in two co-authored articles ([255] and [257], showed that contrary to conventional wisdom a good proportion of the classical design patterns, including some of the most sophisticated, can be transformed into reusable components (indeed part of an Eiffel library). The agent mechanism (see below) was instrumental in achieving that result.

Programming, design and specification concepts: abstract data types

Liskov’s and Zilles’s ground-breaking 1974 abstract data types paper presented the concepts without a mathematical specification, using programming language constructs instead. A 1976 paper (number [3] in my publication list, La Description des Structures de Données, i.e. the description of data structures) was as far as I know one of the first to present a mathematical formalism, as  used today in presentations of ADTs. John Guttag was taking a similar approach in his PhD thesis at about the same time, and went further in providing a sound mathematical foundation, introducing in particular (in a 1978 paper with Jim Horning) the notion of sufficient completeness, to which I devoted a full article in this blog  (Are My Requirements Complete?) about a year ago. My own article was published in a not very well known journal and in French, so I don’t think it had much direct influence. (My later books reused some of the material.)

The three-level description approach of that article (later presented in English for an ACM workshop in the US in 1981, Pingree Park, reference [28]) is not well known but still applicable, and would be useful to avoid frequent confusions between ADT specifications and more explicit descriptions.

When I wrote my 1976 paper, I was not aware of Guttag’s ongoing work (only of the Liskov and Zilles paper), so the use of a mathematical framework with functions and predicates on them was devised independently. (I remember being quite happy when I saw what the axioms should be for a queue.) Guttag and I both gave talks at a workshop organized by the French programming language interest group in 1977 and it was fun to see that our presentations were almost identical. I think my paper still reads well today (well, if you read French). Whether or not it exerted direct influence, I am proud that it independently introduced the modern way of thinking of abstract data types as characterized by mathematical functions and their formal (predicate calculus) properties.

Language mechanisms: genericity with inheritance

Every once in a while I get to referee a paper that starts “Generics, as introduced in Java…” Well, let’s get some perspective here. Eiffel from its introduction in 1985 combined genericity and inheritance. Initially, C++ users and designers claimed that genericity was not needed in an OO context and the language did not have it; then they introduced template. Initially, the designers of Java claimed (around 1995) that genericity was not needed, and the language did not have it; a few years later Java got generics. Initially, the designers of C# (around 1999) claimed that genericity was not needed, and the language did not have it; a few years later C# and .NET got generics.

Genericity existed before Eiffel of course; what was new was the combination with inheritance. I had been influenced by work on generic modules by a French researcher, Didier Bert, which I believe influenced the design of Ada as well; Ada was the language that brought genericity to a much broader audience than the somewhat confidential languages that had such a mechanism before. But Ada was not object-oriented (it only had modules, not classes). I was passionate about object-oriented programming (at a time when it was generally considered, by the few people who had heard of it as an esoteric, academic pursuit). I started — in the context of an advanced course I was teaching at UC Santa Barbara — an investigation of how the two mechanisms relate to each other. The results were a paper at the first OOPSLA in 1986, Genericity versus Inheritance, and the design of the Eiffel type system, with a class mechanism, inheritance (single and multiple), and genericity, carefully crafted to complement each other.

With the exception of a Trellis-Owl, a  design from Digital Equipment Corporation also presented at the same OOPSLA (which never gained significant usage), there were no other OO languages with both mechanisms for several years after the Genericity versus Inheritance paper and the implementation of genericity with inheritance in Eiffel available from 1986 on. Eiffel also introduced, as far as I know, the concept of constrained genericity, the second basic mechanism for combining genericity with inheritance, described in Eiffel: The Language (Prentice Hall, 1992, section 10.8) and discussed again in OOSC2 (section 16.4 and throughout). Similar mechanisms are present in many languages today.

It was not always so. I distinctly remember people bringing their friends to our booth at some conference in the early nineties, for the sole purpose of having a good laugh with them at our poster advertising genericity with inheritance. (“What is this thing they have and no one else does? Generi-sissy-tee? Hahaha.”). A few years later, proponents of Java were pontificating that no serious language needs generics.

It is undoubtedly part of of the cycle of invention (there is a Schopenhauer citation on this, actually the only thing from Schopenhauer’s philosophy that I ever understood [D]) that people at some point will laugh at you; if it did brighten their day, why would the inventor deny them one of the little pleasures of life? But in terms of who laughs last, along the way C++ got templates, Java got generics, C# finally did too, and nowadays all typed OO languages have something of the sort.

Language mechanisms: multiple inheritance

Some readers will probably have been told that multiple inheritance is a bad thing, and hence will not count it as a contribution, but if done properly it provides a major abstraction mechanism, useful in many circumstances. Eiffel showed how to do multiple inheritance right by clearly distinguishing between features (operations) and their names, defining a class as a finite mapping between names and features, and using renaming to resolve any name clashes.

Multiple inheritance was made possible by an implementation innovation: discovering a technique (widely imitated since, including in single-inheritance contexts) to implement dynamic binding in constant time. It was universally believed at the time that multiple inheritance had a strong impact on performance, because dynamic binding implied a run-time traversal of the class inheritance structure, already bad enough for single inheritance where the structure is a tree, but prohibitive with multiple inheritance for which it is a directed acyclic graph. From its very first implementation in 1986 Eiffel used what is today known as a virtual table technique which guarantees constant-time execution of routine (method) calls with dynamic binding.

Language mechanisms: safe GC through strong static typing

Simula 67 implementations did not have automatic garbage collection, and neither had implementations of C++. The official excuse in the C++ case was methodological: C programmers are used to exerting manual control of memory usage. But the real reason was a technical impossibility resulting from the design of the language: compatibility with C precludes the provision of a good GC.

More precisely, of a sound and complete GC. A GC is sound if it will only reclaim unreachable objects; it is complete if it will reclaim all unreachable objects. With a C-based language supporting casts (e.g. between integers and pointers) and pointer arithmetic, it is impossible to achieve soundness if we aim at a reasonable level of completeness: a pointer can masquerade as an integer, only to be cast back into a pointer later on, but in the meantime the garbage collector, not recognizing it as a pointer, may have wrongly reclaimed the corresponding object. Catastrophe.

It is only possible in such a language to have a conservative GC, meaning that it renounces completeness. A conservative GC will treat as a pointer any integer whose value could possibly be a pointer (because it lies between the bounds of the program’s data addresses in memory). Then, out of precaution, the GC will refrain from reclaiming the objects at these addresses even if they appear unreachable.

This approach makes the GC sound but it is only a heuristics, and it inevitably loses completeness: every once in a while it will fail to reclaim some dead (unreachable) objects around. The result is a program with memory leaks — usually unacceptable in practice, particularly for long-running or continuously running programs where the leaks inexorably accumulate until the program starts thrashing then runs out of memory.

Smalltalk, like Lisp, made garbage collection possible, but was not a typed language and missed on the performance benefits of treating simple values like integers as a non-OO language would. Although in this case I do not at the moment have a specific bibliographic reference, I believe that it is in the context of Eiffel that the close connection between strong static typing (avoiding mechanisms such as casts and pointer arithmetic) and the possibility of sound and complete garbage collection was first clearly explained. Explained in particular around 1990 in a meeting with some of the future designers of Java, which uses a similar approach, also taken over later on by C#.

By the way, no one will laugh at you today for considering garbage collection as a kind of basic human right for programmers, but for a long time the very idea was quite sulfurous, and advocating it subjected you to a lot of scorn. Here is an extract of the review I got when I submitted the first Eiffel paper to IEEE Transactions on Software Engineering:

Systems that do automatic garbage collection and prevent the designer from doing his own memory management are not good systems for industrial-strength software engineering.

Famous last words. Another gem from another reviewer of the same paper:

I think time will show that inheritance (section 1.5.3) is a terrible idea.

Wow! I wish the anonymous reviewers would tell us what they think today. Needless to say, the paper was summarily rejected. (It later appeared in the Journal of Systems and Software — as [82] in the publication list — thanks to the enlightened views of Robert Glass, the founding editor.)

Language mechanisms: void safety

Void safety is a property of a language design that guarantees the absence of the plague of null pointer dereferencing.

The original idea came (as far as I know) from work at Microsoft Research that led to the design of a research language called C-omega; the techniques were not transferred to a full-fledged programming language. Benefiting from the existence of this proof of concept, the Eiffel design was reworked to guarantee void safety, starting from my 2005 ECOOP keynote paper (Attached Types) and reaching full type safety a few years later. This property of the language was mechanically proved in a 2016 ETH thesis by A. Kogtenkov.

Today all significant Eiffel development produces void-safe code. As far as I know this was a first among production programming languages and Eiffel remains the only production language to provide a guarantee of full void-safety.

This mechanism, carefully crafted (hint: the difficult part is initialization), is among those of which I am proudest, because in the rest of the programming world null pointer dereferencing is a major plague, threatening at any moment to crash the execution of any program that uses pointers of references. For Eiffel users it is gone.

Language mechanisms: agents/delegates/lambdas

For a long time, OO programming languages did not have a mechanism for defining objects wrapping individual operations. Eiffel’s agent facility was the first such mechanism or among the very first together the roughly contemporaneous but initially much more limited delegates of C#. The 1999 paper From calls to agents (with P. Dubois, M. Howard, M. Schweitzer and E. Stapf, [196] in the list) was as far as I know the first description of such a construct in the scientific literature.

Language mechanisms: concurrency

The 1993 Communications of the ACM paper on Systematic Concurrent Object-Oriented Programming [136] was certainly not the first concurrency proposal for OO programming (there had been pioneering work reported in particular in the 1987 book edited by Tokoro and Yonezawa), but it innovated in offering a completely data-race-free model, still a rarity today (think for example of the multi-threading mechanisms of dominant OO languages).

SCOOP, as it came to be called, was implemented a few years later and is today a standard part of Eiffel.

Language mechanisms: selective exports

Information hiding, as introduced by Parnas in his two seminal 1972 articles, distinguishes between public and secret features of a module. The first OO programming language, Simula 67, had only these two possibilities for classes and so did Ada for modules.

In building libraries of reusable components I realized early on that we need a more fine-grained mechanism. For example if class LINKED_LIST uses an auxiliary class LINKABLE to represent individual cells of a linked list (each with a value field and a “right” field containing a reference to another LINKABLE), the features of LINKABLE (such as the operation to reattach the “right” field) should not be secret, since LINKED_LIST needs them; but they should also not be generally public, since we do not want arbitrary client objects to mess around with the internal structure of the list. They should be exported selectively to LINKED_LIST only. The Eiffel syntax is simple: declare these operations in a clause of the class labeled “feature {LINKED_LIST}”.

This mechanism, known as selective exports, was introduced around 1989 (it is specified in full in Eiffel: The Language, from 1992, but was in the Eiffel manuals earlier). I think it predated the C++ “friends” mechanism which serves a similar purpose (maybe someone with knowledge of the history of C++ has the exact date). Selective exports are more general than the friends facility and similar ones in other OO languages: specifying a class as a friend means it has access to all your internals. This solution is too coarse-grained. Eiffel’s selective exports make it possible to define the specific export rights of individual operations (including attributes/fields) individually.

Language mechanisms and implementation: serialization and schema evolution

I did not invent serialization. As a student at Stanford in 1974 I had the privilege, at the AI lab, of using SAIL (Stanford Artificial Intelligence Language). SAIL was not object-oriented but included many innovative ideas; it was far ahead of its time, especially in terms of the integration of the language with (what was not yet called) its IDE. One feature of SAIL with which one could fall in love at first sight was the possibility of selecting an object and having its full dependent data structure (the entire subgraph of the object graph reached by following references from the object, recursively) stored into a file, for retrieval at the next section. After that, I never wanted again to live without such a facility, but no other language and environment had it.

Serialization was almost the first thing we implemented for Eiffel: the ability to write object.store (file) to have the entire structure from object stored into file, and the corresponding retrieval operation. OOSC1 (section 15.5) presents these mechanisms. Simula and (I think) C++ did not have anything of the sort; I am not sure about Smalltalk. Later on, of course, serialization mechanisms became a frequent component of OO environments.

Eiffel remained innovative by tackling the difficult problems: what happens when you try to retrieve an object structure and some classes have changed? Only with a coherent theoretical framework as provided in Eiffel by Design by Contract can one devise a meaningful solution. The problem and our solutions are described in detail in OOSC2 (the whole of chapter 31, particularly the section entitled “Schema evolution”). Further advances were made by Marco Piccioni in his PhD thesis at ETH and published in joint papers with him and M. Oriol, particularly [352].

Language mechanisms and implementation: safe GC through strong static typing

Simula 67 (if I remember right) did not have automatic garbage collection, and neither had C++ implementations. The official justification in the case of C++ was methodological: C programmers are used to exerting manual control of memory usage. But the real obstacle was technical: compatibility with C makes it impossible to have a good GC. More precisely, to have a sound and complete GC. A GC is sound if it will only reclaim unreachable objects; it is complete if it will reclaim all unreachable objects. With a C-based language supporting casts (e.g. between integers and pointers) and pointer arithmetic, it is impossible to achieve soundness if we aim at a reasonable level of completeness: a pointer can masquerade as an integer, only to be cast back into a pointer later on, but in the meantime the garbage collector, not recognizing it as a pointer, may have wrongly reclaimed the corresponding object. Catastrophe. It is only possible in such a language to have a conservative GC, which will treat as a pointer any integer whose value could possibly be a pointer (because its value lies between the bounds of the program’s data addresses in memory). Then, out of precaution, it will not reclaim the objects at the corresponding address. This approach makes the GC sound but it is only a heuristics, and it may be over-conservative at times, wrongly leaving dead (i.e. unreachable) objects around. The result is, inevitably, a program with memory leaks — usually unacceptable in practice.

Smalltalk, like Lisp, made garbage collection possible, but was not a typed language and missed on the performance benefits of treating simple values like integers as a non-OO language would. Although in this case I do not at the moment have a specific bibliographic reference, I believe that it is in the context of Eiffel that the close connection between strong static typing (avoiding mechanisms such as casts and pointer arithmetic) and the possibility of sound and complete garbage collection was first clearly explained. Explained in particular to some of the future designers of Java, which uses a similar approach, also taken over later on by C#.

By the way, no one will laugh at you today for considering garbage collection as a kind of basic human right for programmers, but for a long time it was quite sulfurous. Here is an extract of the review I got when I submitted the first Eiffel paper to IEEE <em>Transactions on Software Engineering:

Software engineering: primacy of code

Agile methods are widely and properly lauded for emphasizing the central role of code, against designs and other non-executable artifacts. By reading the agile literature you might be forgiven for believing that no one brought up that point before.

Object Success (1995) makes the argument very clearly. For example, chapter 3, page 43:

Code is to our industry what bread is to a baker and books to a writer. But with the waterfall code only appears late in the process; for a manager this is an unacceptable risk factor. Anyone with practical experience in software development knows how many things can go wrong once you get down to code: a brilliant design idea whose implementation turns out to require tens of megabytes of space or minutes of response time; beautiful bubbles and arrows that cannot be implemented; an operating system update, crucial to the project which comes five weeks late; an obscure bug that takes ages to be fixed. Unless you start coding early in the process, you will not be able to control your project.

Such discourse was subversive at the time; the wisdom in software engineering was that you need to specify and design a system to death before you even start coding (otherwise you are just a messy “hacker” in the sense this word had at the time). No one else in respectable software engineering circles was, as far as I know, pushing for putting code at the center, the way the above extract does.

Several years later, agile authors started making similar arguments, but I don’t know why they never referenced this earlier exposition, which still today I find not too bad. (Maybe they decided it was more effective to have a foil, the scorned Waterfall, and to claim that everyone else before was downplaying the importance of code, but that was not in fact everyone.)

Just to be clear, Agile brought many important ideas that my publications did not anticipate; but this particular one I did.

Software engineering: the roles of managers

Extreme Programming and Scrum have brought new light on the role of managers in software development. Their contributions have been important and influential, but here too they were for a significant part prefigured by a long discussion, altogether two chapters, in Object Success (1995).

To realize this, it is enough to read the titles of some of the sections in those chapters, describing roles for managers (some universal, some for a technical manager): “risk manager”, “interface with the rest of the world” (very scrummy!), “protector of the team’s sanity”, “method enforcer” (think Scrum Master), “mentor and critic”. Again, as far as I know, these were original thoughts at the time; the software engineering literature for the most part did not talk about these issues.

Software engineering: outsourcing

As far as I know the 2006 paper Offshore Development: The Unspoken Revolution in Software Engineering was the first to draw attention, in the software engineering community, to the peculiar software engineering challenges of distributed and outsourced development.

Software engineering: automatic testing

The AutoTest project (with many publications, involving I. Ciupa, A. Leitner, Y. Wei, M. Oriol, Y. Pei, M. Nordio and others) was not the first to generate tests automatically by creating numerous instances of objects and calling applicable operations (it was preceded by Korat at MIT), but it was the first one to apply this concept with Design by Contract mechanisms (without which it is of little practical value, since one must still produce test oracles manually) and the first to be integrated in a production environment (EiffelStudio).

Software engineering: make-less system building

One of the very first decisions in the design of Eiffel was to get rid of Make files.

Feldman’s Make had of course been a great innovation. Before Make, programmers had to produce executable systems manually by executing sequences of commands to compile and link the various source components. Make enabled them to instead  to define dependencies between components in a declarative way, resulting in a partial order, and then performed a topological sort to produce the sequence of comments. But preparing the list of dependencies remains a tedious task, particularly error-prone for large systems.

I decided right away in the design of Eiffel that we would never force programmers to write such dependencies: they would be automatically extracted from the code, through an exhaustive analysis of the dependencies between modules. This idea was present from the very the first Eiffel report in 1985 (reference [55] in the publication list): Eiffel programmers never need to write a Make file or equivalent (other than for non-Eiffel code, e.g. C or C++, that they want to integrate); they just click a Compile button and the compiler figures out the steps.

Behind this approach was a detailed theoretical analysis of possible relations between modules in software development (in many programming languages), published as the “Software Knowledge Base” at ICSE in 1985. That analysis was also quite instructive and I would like to return to this work and expand it.

Educational techniques: objects first

Towards an Object-Oriented Curriculum ( TOOLS conference, August 1993, see also the shorter JOOP paper in May of the same year) makes a carefully argued case for what was later called the Objects First approach to teaching programming. I would be interested to know if there are earlier publications advocating starting programming education with an OO language.

The article also advocated for the “inverted curriculum”, a term borrowed from work by Bernie Cohen about teaching electrical engineering. It was the first transposition of this concept to software education. In the article’s approach, students are given program components to use, then little by little discover how they are made. This technique met with some skepticism and resistance since the standard approach was to start from the very basics (write trivial programs), then move up. Today, of course, many introductory programming courses similarly provide students from day one with a full-fledged set of components enabling them to produce significant programs.

More recent articles on similar topics, taking advantage of actual teaching experience, are The Outside-In Method of Teaching Programming (2003) and The Inverted Curriculum in Practice (at ICSE 2006, with Michela Pedroni). The culmination of that experience is the textbook Touch of Class from 2009.

Educational techniques: Distributed Software Projects

I believe our team at ETH Zurich (including among others M. Nordio, J. Tschannen, P. Kolb and C. Estler and in collaboration with C. Ghezzi, E. Di Nitto and G. Tamburrelli at Politecnico di Milano, N. Aguirre at Rio Cuarto and many others in various universities) was the first to devise,  practice and document on a large scale (see publications and other details here) the idea of an educational software project conducted in common by student groups from different universities. It yielded a wealth of information on distributed software development and educational issues.

Educational techniques: Web-based programming exercises

There are today a number of cloud-based environments supporting the teaching of programming by enabling students to compile and test their programs on the Web, benefiting from a prepared environment (so that they don’t have to download any tools or prepare control files) and providing feedback. One of the first — I am not sure about absolute precedence — and still a leading one, used by many universities and applicable to many programming languages, is Codeboard.

The main developer, in my chair at ETH Zurich, was Christian Estler, supported in particular by M. Nordio and M. Piccioni, so I am only claiming a supporting role here.

Educational techniques: key CS/SE concepts

The 2001 paper Software Engineering in the Academy did a good job, I think, of defining the essential concepts to teach in a proper curriculum (part of what Jeannette Wing’s 2006 paper called Computational Thinking).

Program verification: agents (delegates etc.)

Reasoning about Function Objects (ICSE 2010, with M. Nordio, P. Müller and J. Tschannen) introduced verification techniques for objects representing functions (such as agents, delegates etc., see above) in an OO language. Not sure whether there were any such techniques before.

Specification languages: Z

The Z specification language has been widely used for formal development, particularly in the UK. It is the design of J-R Abrial. I may point out that I was a coauthor of the first publication on Z in English (1980),  describing a version that preceded the adaptation to a more graphical-style notation done later at Oxford. The first ever published description of Z, pertaining to an even earlier version, was in French, in my book Méthodes de Programmation (with C. Baudoin), Eyrolles, 1978, running over 15 pages (526-541), with the precise description of a refinement process.

Program verification: exceptions

Largely coming out of the PhD thesis of Martin Nordio, A Sound and Complete Program Logic for Eiffel (TOOLS 2009) introduces rules for dealing with exceptions in a Hoare-style verification framework.

Program verification: full library, and AutoProof

Nadia Polikarpova’s thesis at ETH, aided by the work of Carlo Furia and Julian Tschannen (they were the major contributors and my participation was less important), was as far as I know the first to produce a full functional verification of an actual production-quality reusable library. The library is EiffelBase 2, covering fundamental data structures.

AutoProof — available today, as a still experimental tool, through its Web interface, see here — relied on the AutoProof prover, built by the same team, and itself based on Microsoft Research’s Boogie and Z3 engines.

More

There are more concepts worthy of being included here, but for today I will stop here.

Notes

[A] One point of divergence between usual presentations of the substitution principle and the view in OOSC and my other publications is the covariance versus contravariance of routine argument types. It reflects a difference of views as to what the proper policy (both mathematically sound and practically usable) should be.

[B]  The GoF book does not cite OOSC for the command or bridge patterns. For the command pattern it cites (thanks to Adam Kosmaczewski for digging up the GoF text!) a 1985 SIGGRAPH paper by Henry Lieberman (There’s More to Menu Systems than Meets the Screen). Lieberman’s paper describes the notion of command object and mentions undoing in passing, but does not include the key elements of the command pattern (as explained in full in OOSC1), i.e. an abstract (deferred) command class with deferred procedures called (say) do_it and undo_it, then specific classes for each kind of command, each providing a specific implementation of those procedures, then a history list of commands supporting multiple-level undo and redo as explained in OOSC1. (Reading Lieberman’s paper with a 2021 perspective shows that it came tantalizingly close to the command pattern, but doesn’t get to it. The paper does talk about inheritance between command classes, but only to “define new commands as extensions to old commands”, not in the sense of a general template that can be implemented in many specific ways. And it does mention a list of objects kept around to enable recovery from accidental deletions, and states that the application can control its length, as is the case with a history list; but the objects in the list are not command objects, they are graphical and other objects that have been deleted.)

[C] Additional note on the command pattern: I vaguely remember seeing something similar to the OOSC1 technique in an article from a supplementary volume of the OOPSLA proceedings in the late eighties or early nineties, i.e. at the same time or slightly later, possibly from authors from Xerox PARC, but I have lost the reference.

[D] Correction: I just checked the source and learned that the actual Schopenhauer quote (as opposed to the one that is usually quoted) is different; it does not include the part about laughing. So much for my attempts at understanding philosophy.

 

Time to resurrect PSP?

Let us assume for the sake of the argument that software quality matters. There are many ingredients to software quality, of which one must be the care that every programmer devotes to the job. The Personal Software Process, developed by Watts Humphrey in the 1990s [1], prescribes a discipline that software developers should apply to produce good software and improve their professional ability over their careers. It has enjoyed moderate success but was never a mass movement and rarely gets mentioned nowadays; few software developers, in my experience, even know the name. Those who do often think of it as passé, a touching memory from the era of Monica Lewinsky and the Roseanne show.

Once cleaned of a few obsolete elements, PSP deserves to be known and applied.

PSP came out of Watts Humphrey’s earlier work on the Capability Maturity Model (see my earlier article on this blog, What is wrong with CMMI), a collection of recommended practices and assessment criteria for software processes, originally developed in the mid-eighties for the U.S. military contractor community but soon thereafter embraced by software outsourcing companies (initially, Indian ones) and later by other industries. Responding to complaints that CMM/CMMI, focused on processes in large companies, ignored the needs of smaller ones, and lacked individual guidance for developers, Humphrey developed TSP, the Team Software Process, and PSP.

The most visible part of PSP is a six-step process pictured in the middle of this diagram:
cmmi

The most visible and also the most corny. Who today wants to promise always to follow such a strict sequence of steps? Always to write the code for a module in full before compiling it? (Notice there is no backward arrow, the process is sequential.) Always to test at the end only? Come on. This is the third decade of the 21st century.

Today we compile as we code, using the development environment (IDE) as a brilliant tool to check everything we do or plan to do. For my part, whenever I am writing code and have not compiled my current draft for more than a few minutes I start feeling like an addict in need of a fix; my fix is the Compile button of EiffelStudio. At some eventual stage the compiler becomes a tool to generate excutable code, but long before that it has been my friend, coach, mentor, and doppelgänger, helping me get things (types, null references, inheritance…) right and gently chiding me when I wander off the rails.

As to tests, even if you do not buy into the full dogma of Test-Driven Development (I don’t), they get written and exercised right from the start, as you are writing the code, not afterwards. Compile all the time, test all the time.

It’s not just that a process such as the above ignores the contributions of agile methods, which are largely posterior to PSP. As analyzed in [2], agile is a curious mix of good ideas and a few horrendous ones. But among its durable contributions is the realization that development must be incremental, not a strict succession of separate activities.

This old-style flavor or PSP is probably the reason why it has fallen out of favor. But (like the agile rejection of upfront lifecycle activities) such a reaction is a case of criticism gone too far, ignoring the truly beneficial contributions. Ignore PSP’s outmoded sequence of activities and you will find that PSP’s core message is as relevant today as it ever was. That message is: we should learn from the practices of traditional engineers and apply a strict professional discipline. For example:

  • Keep a log of all activities. (See “Logs” in the above figure.) Engineers are taught to record everything they do; many programmers don’t bother. This practice, however, is essential to self-improvement.
  • Keep measurements of everything you do. (There are lots of things to measure, from hours spent on every kind of task to bugs found, time to fix them etc.)
  • Estimate and plan your work.
  • Clearly define commitments, and meet them.
  • Resist pressure to make unreasonable commitments (something that agilists approach also emphasize).
  • Understand your current performance.
  • Understand your programming style and how it affects various measures. (As an example, code size, as a function of the number of routines, depends on whether you are more concise or more verbose in style).
  • Continually improve your expertise as a professional.

PSP does not limit itself to such exhortations but gives concrete tools to apply the principles, with a view to: measuring, tracking and analyzing your work; learning from your performance variations; and incorporating the lessons learned into your professional practices. On the topic of measurement, for example, PSP includes precise guidelines on what to measure and how to measure it, and how to rely on proxies for quantities that are hard to assess directly. On this last point, PSP includes PROBE (PROxy-Based Estimating, you cannot have a method coming out of the world of US government organizations without cringeworthy acronyms), a general framework for estimating size and resource parameters from directly measurable proxies.

This is what PSP is about: a discipline of personal productivity and growth, emphasizing personal discipline, tracking and constant improvement. It is not hard to learn; a technical report by Humphrey available online [3] provides a sufficient basis to understand the concepts and start a process of self-improvement.

Watts Humphrey himself, as all who had the privilege to meet him can testify, was a model of seriousness and professionalism, the quintessential engineer. (I also remember him as the author of what may be the best pun I ever heard — ask me sometime.) PSP directly reflects these qualities and — ignoring its visible but in the end unimportant remnants from outdated technical choices — should be part of every software engineering curriculum and every software engineer’s collection of fundamental practices.

References

[1] Watts Humphrey, Introduction to the Personal Software Process, Addison-Wesley, 1996.

[2] Bertrand Meyer: Agile! The Good, the Hype and the Ugly, Springer, 2014, see here.

[3] Watts Humphrey, The Personal Software Process, Software Engineering Institute Technical Report CMU/SEI-2000-TR-022, available (in PDF, free) here.

 

Recycled A version of this article was first published in the Communications of the ACM blog.

.

This Wednesday in Nice: survey talk on the Eiffel method

The “Morgenstern Colloquium” at the University of Nice / INRIA Sophia Antipolis invited me to give a talk, next Wednesday (18 December) at 11 in Sophia Antipolis, in the aptly named* “Kahn Building”. The announcement appears here. I proposed various topics but (pleasant surprise) the organizers explicitly asked me to lecture about what I really want to talk about: the Eiffel approach. I will give a general presentation describing not specifically the language but the unified view of software construction embodied in Eiffel, from modeling to requirements to design, implementation and verification. Here is the abstract:

With society’s growing reliance on IT systems, the ability to write high-quality software is ever more critical. While a posteriori verification techniques have their role, there is no substitute for methods and tools that provide built-in quality (“correctness by construction”) and scale up to very large systems. For several decades my colleagues and I have been building such a method, based in particular on the concept of Design by Contract, the associated tools and the supporting language, Eiffel. The scope is wide, encompassing all aspects of the software development process, from requirements and design to implementation and verification. I will present an overview of the approach, show what it can yield, and discuss remaining open issues.

This talk is meant for everyone, whether from industry or academia, with an interest in practical techniques for engineering high-quality software.

No registration is required. The presentation will be in English.

Note

*Gilles Kahn, a brilliant computer scientist who died too young, was for a while director of INRIA.