Archive for the ‘Software design’ Category.

Doing it right or doing it over?

(Adapted from an article in the Communications of the ACM blog.)

I have become interested in agile methods because they are all the rage now in industry and, upon dispassionate examination, they appear to be a pretty amazing mix of good and bad ideas. I am finishing a book that tries to sort out the nuggets from the gravel [1].

An interesting example is the emphasis on developing a system by successive increments covering expanding slices of user functionality. This urge to deliver something that can actually be shown — “Are we shipping yet?” — is excellent. It is effective in focusing the work of a team, especially once the foundations of the software have been laid. But does it have to be the only way of working? Does it have to exclude the time-honored engineering practice of building the infrastructure first? After all, when a building gets constructed, it takes many months before any  “user functionality” becomes visible.

In a typical exhortation [2], the Poppendiecks argue that:

The right the first time approach may work for well-structured problems, but the try-it, test-it, fix-it approach is usually the better approach for ill-structured problems.

Very strange. It is precisely ill-structured problems that require deeper analysis before you jump in into wrong architectural decisions which may require complete rework later on. Doing prototypes to try possible solutions can be a great way to evaluate potential solutions, but a prototype is an experiment, something quite different from an increment (an early version of the future system).

One of the problems with the agile literature is that its enthusiastic admonitions to renounce standard software engineering practices are largely based on triumphant anecdotes of successful projects. I am willing to believe all these anecdotes, but they are only anecdotes. In the present case systematic empirical evidence does not seem to support the agile view. Boehm and Turner [3] write:

Experience to date indicates that low-cost refactoring cannot be depended upon as projects scale up.

and

The only sources of empirical data we have encountered come from less-expert early adopters who found that even for small applications the percentage of refactoring and defect-correction effort increases with [the size of requirements].

They do not cite references here, and I am not aware of any empirical study that definitely answers the question. But their argument certainly fits my experience. In software as in engineering of any kind, experimenting with various solutions is good, but it is critical to engage in the appropriate Big Upfront Thinking to avoid starting out with the wrong decisions. Some of the worst project catastrophes I have seen were those in which the customer or manager was demanding to see something that worked right away — “it doesn’t matter if it’s not the whole thing, just demonstrate a piece of it! — and criticized the developers who worked on infrastructure that did not produce immediately visible results (in other words, were doing their job of responsible software professionals). The inevitable result: feel-good demos throughout the project, reassured customer, and nothing to deliver at the end because the difficult problems have been left to rot. System shelved and never to be heard of again.

When the basis has been devised right, perhaps with nothing much to show for months, then it becomes critical to insist on regular visible releases. Doing it prematurely is just sloppy engineering.

The problem here is extremism. Software engineering is a difficult balance between conflicting criteria. The agile literature’s criticism of teams that spend all their time on design or on foundations and never deliver any usable functionality is unfortunately justified. It does not mean that we have to fall into the other extreme and discard upfront thinking.

In the agile tradition of argument by anecdote, here is an extract from James Surowiecki’s  “Financial Page” article in last month’s New Yorker. It’s not about software but about the current Boeing 787 “Dreamliner” debacle:

Determined to get the Dreamliners to customers quickly, Boeing built many of them while still waiting for the Federal Aviation Administration to certify the plane to fly; then it had to go back and retrofit the planes in line with the FAA’s requirements. “If the saying is check twice and build once, this was more like build twice and check once”, [an industry analyst] said to me. “With all the time and cost pressures, it was an alchemist’s recipe for trouble.”

(Actually, the result is “build twice and check twice”, or more, since every time you rebuild you must also recheck.) Does that ring a bell?

Erich Kästner’s ditty about reaching America, cited in a previous article [5], is once again the proper commentary here.

References

[1] Bertrand Meyer: Agile! The Good, the Hype and the Ugly, Springer, 2013, to appear.

[2] Mary and Tom Poppendieck: Lean Software Development — An Agile Toolkit, Addison-Wesley, 2003.

[3] Barry W. Boehm and Richard Turner: Balancing Agility with Discipline — A Guide for the Perplexed, Addison-Wesley, 2004. (Second citation slightly abridged.)

[4] James Surowiecki, in the New Yorker, 4 February 2013, available here.

[5] Hitting on America, article from this blog, 5 December 2012, available here.

VN:F [1.9.10_1130]
Rating: 8.9/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +5 (from 5 votes)

How good are strong specifications? (New paper, ICSE 2013)

 

A core aspect of our verification work is the use of “strong” contracts, which express sophisticated specification properties without requiring a separate specification language: even for advanced properties, there is no need for a separate specification language, with special notations such as those of first-order logic; instead, one can continue to rely, in the tradition of Design by Contract, on the built-in notations of the programming language, Eiffel.

This is the idea of domain theory, as discussed in earlier posts on this blog, in particular [1]. An early description of the approach, part of Bernd Schoeller’s PhD thesis work, was [2]; the next step was [3], presented at VSTTE in 2010.

A new paper to be presented at ICSE in May [3], part of an effort led by Nadia Polikarpova for her own thesis in progress, shows new advances in using strong specifications, demonstrating their expressive power and submitting them to empirical evaluation. The results show in particular that strong specifications justify the extra effort; in particular they enable automatic tests to find significantly more bugs.

A byproduct of this work is to show again the complementarity between various forms of verification, including not only proofs but (particularly in the contribution of two of the co-authors, Yi Wei and Yu Pei, as well as Carlo Furia) tests.

References

[1] Bertrand Meyer: Domain Theory: the forgotten step in program verification, article on this blog, see here.

[2] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[3] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ‘ 10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[4] Nadia Polikarpova, Carlo A. Furia, Yu Pei, Yi Wei and Bertrand Meyer: What Good Are Strong Specifications?, to appear in ICSE 2013 (Proceedings of 35th International Conference on Software Engineering), San Francisco, May 2013, draft available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Multirequirements (new paper)

 

As part of a Festschrift volume for Martin Glinz of the university of Zurich I wrote a paper [1] describing a general approach to requirements that I have been practicing and developing for a while, and presented in a couple of talks. The basic idea is to rely on object-oriented techniques, including contracts for the semantics, and to weave several levels of discourse: natural-language, formal and graphical.

Reference

[1] Bertrand Meyer: Multirequirements, to appear in Martin Glinz Festschrift, eds. Anne Koziolek and Norbert Scheyff, 2013, available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

ESEC/FSE 2013: 18-26 August, Saint Petersburg, Russia

The European Software Engineering Conference takes place every two years in connection with the ACM Foundations of Software Engineering symposium (which in even years is in the US). The next ESEC/FSE  will be held for the first time in Russia, where it will be the first major international software engineering conference ever. It comes at a time when the Russian software industry is ever more present through products and services offered worldwide. See the conference site here. The main conference will be held 21-23 August 2013, with associated events before and after so that the full dates are August 18 to 26. (I am the general chair.)

Other than ICSE, ESEC/FSE is second to none in the quality of the program. We already have four outstanding keynote speakers:  Georges Gonthier from Microsoft Research, Paola Inverardi from L’Aquila in Italy, David Notkin from U. of Washington (in whose honor a symposium will be held as an associated event of ESEC/FSE, chaired by Michael Ernst), and Moshe Vardi of Rice and of course Communications of the ACM.

Saint Petersburg is one of the most beautiful cities in the world, strewn with gilded palaces, canals, world-class museums (not just the Hermitage), and everywhere mementos of the great poets, novelists, musicians and scientists who built up its fame.

Hosted by ITMO National Research University, the conference will be held in the magnificent building of the Razumovsky Palace on the banks of the Moika river; see here.

The Call for Papers has a deadline of March 1st, so there is still plenty of time to polish your best paper and send it to ESEC/FSE. There is also still time to propose worskhops and other associated events. ESEC/FSE will be a memorable moment for the community and we hope to see many of the readers there.

VN:F [1.9.10_1130]
Rating: 9.7/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Why so many features?

 

It is a frequent complaint that production software contains too many features: “I use only  maybe 5% of Microsoft Word!“, with the implication that the other 95% are useless, and apparently without the consideration that maybe someone else needs them; how do you know that what is good enough for you is good enough for everyone?

The agile literature frequently makes this complaint against “software bloat“, and has turned it into a principle: build minimal software.

Is software really bloated? Rather than trying to answer this question it is useful to analyze where features come from. In my experience there are three sources: internal ideas; suggestions from the field; needs of key customers.

1. Internal ideas

A software system is always devised by a person or group, who have their own views of what it should offer. Many of the more interesting features come from these inventors and developers, not from the market. A competent group does not wait for users or prospects to propose features, but comes up with its own suggestions all the time.

This is usually the source of the most innovative ideas. Major breakthroughs do not arise from collecting customer wishes but from imagining a new product that starts from a new basis and proposing it to the market without waiting for the market to request it.

2. Suggestions from the field

Customers’ and prospects’ wishes do have a crucial role, especially for improvements to an existing product. A good marketing department will serve as the relay between the field’s wishes and the development team. Many such suggestions are of the “Check that box!” kind: customers and particularly prospects look at the competition and want to make sure that your product does everything that the others do. These suggestions push towards me-too features; they are necessary to keep up with the times, but must be balanced with suggestions from the other two sources, since if they were the only inspiration they would lead to a product that has the same functionality as everyone else’s, only delivered a few months later, not the best recipe for success.

3. Key customers

Every company has its key customers, those who give you so much business that you have to listen to them very carefully. If it’s Boeing calling, you pay more attention than to an unknown individual who has just acquired a copy. I suspect that many of the supposedly strange features, of products the ones that trigger “why would anyone ever need this?” reactions, simply come from a large customer who, at some point in the product’s history, asked for a really, truly, absolutely indispensable facility. And who are we — this includes Microsoft and Adobe and just about everyone else — to say that it is not required or not important?

It is easy to complain about software bloat, and examples of needlessly complex system abound. But your bloat may be my lifeline, and what I dismiss as superfluous may for you be essential. To paraphrase a comment by Ichbiah, the designer of Ada, small systems solve small problems. Outside of academic prototypes it is inevitable that  a successful software system will grow in complexity if it is to address the variety of users’ needs and circumstances. What matters is not size but consistency: maintaining a well-defined architecture that can sustain that growth without imperiling the system’s fundamental solidity and elegance.

VN:F [1.9.10_1130]
Rating: 8.5/10 (11 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

The manhood test

 

I came across an obscure and surprisingly interesting article by Cliff Jones [1], about the history of rely-guarantee but with the following extract:

It was perhaps not fully appreciated at the time of [Hoare’s 1969 axiomatic semantics paper] that the roles of pre and post conditions differ in that a pre condition gives permission to a developer to ignore certain possibilities; the onus is on a user to prove that a component will not be initiated in a state that does not satisfy its pre condition. In contrast a post condition is an obligation on the code that is created according to the specification. This Deontic view carries over [to rely-guarantee reasoning].

I use words more proletarian than “deontic”, but this view is exactly what stands behind the concepts of Design by Contract and has been clearly emphasized in all Eiffel literature ever since the first edition of OOSC. It remains, however, misunderstood outside of the Eiffel community; many people confuse Design by Contract with its opposite, defensive programming. The criterion is simple: if you have a precondition to a routine, are you willing entirely to forsake the corresponding checks (conditionals, exceptions…) in the routine body? If not, you may be using the word “contract” as a marketing device, but that’s all. The courage to remove the checks is the true test of adulthood.

The application of Microsoft’s “Code Contracts” mechanism to the .NET libraries fails that test: a precondition may say “buffer not full” or “insertions allowed”, but the code still checks the condition and triggers an exception. The excuse I have heard is that one cannot trust those unwashed developers. But the methodological discipline is lost. Now let me repeat this using clearer terminology: it’s not deontic.

Reference

[1] Cliff Jones: The role of auxiliary variables in the formal development of concurrent programs, in Reflections on the work of C. A. R. Hoare, eds. Jones, Roscoe and Wood, Springer Lecture Notes in Computer Science,  2009, technical report version available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

EIS: Putting into Practice the Single Model Principle

Since release 6.2 (November 2008) EiffelStudio has included the EIS system, Eiffel Information System. It has been regularly revised, and significantly improved for the recent 7.1 release.

For us EIS is a key contribution with far-reaching software engineering implications, but many users seem unaware of it, perhaps because we have not been explicit enough about why we think it is important. We would love to have more people try it and give us their feedback. (Please make sure to use the 7.1 version.) Information on EIS can be found in the documentation [1] and also in a blog entry by Tao Feng [2].

EIS connects an Eiffel system with external documents in arbitrary formats; examples of formats currently supported are Microsoft Word and PDF, but you can easily add protocols. Such a connection links an element of the Eiffel text, such as a feature, with an element of the external document, such as a paragraph. Then clicking the Eiffel element in EiffelStudio will open the document at the corresponding place in the external tool (Word, Acrobat etc.); this is the EIS “outgoing” mechanism. Conversely the external element has a back link: clicking in the external tool will open EiffelStudio at the right place; this is the EIS “incoming” mechanism.

For the outgoing mechanism, the link will appear as part of a note clause (with attributes filled by default, you need only edit the URL and any option that you wish to change):

EIS incoming note

The fundamental idea behind EIS is to support the seamless form of software development promoted and permitted by Eiffel, where all phases of a project’s lifecycle are closely linked and the code provides the ultimate reference. Since other documents are often involved, in particular a requirements document (SRS, Software Requirements Specification), it is essential to record their precise associations with elements of the software text. For example a paragraph in the SRS could state that “Whenever the tank temperature reaches 50 degrees, the valve shall be closed”. In the software text, there will be some feature, for example monitor_temperature in the class TANK, reflecting this requirement. The two elements should be linked, in particular to ensure that dependencies appear clearly and that any change in either the requirements or the code triggers the corresponding update to the other side. This is what EIS provides.

We envision further tools to track dependencies and in particular to warn users if an element of a connection (e.g. requirement or code) changes, alerting them to the need to check the linked elements on the other side. One of the key goals here is traceability: effective project management, particular during the evolution of a system, requires that all dependencies between the project’s artifact are properly recorded so that it is possible to find out the consequences of any change, proposed or carried out.

The general approach reflects the essential nature of Eiffel development, with its Single Product Principle linking all elements of a software system and minimizing, rather than exaggerating, the inevitable differences of levels of abstraction between requirements, design, code, test plans, test logs, schedules and all the other products of a software project. The core problem of software engineering is change: if we use different tools and notations at each step, and keep the documents separate, we constantly run the risk of divergence between intent and reality. Eiffel by itself offers a good part of the solution by providing a single method (with all its principles, from Design by Contract to open-closed etc.), a single notation (the Eiffel language itself) and a single integrated set of tools (the EiffelStudio IDE) supporting the entire lifecycle; the language, in particular is meant for requirements and design as much as for implementation. The graphical forms (BON and UML, as produced by the Diagram Tool of EiffelStudio in a roundtrip style, i.e. changes to the diagram immediately generate code and changes to the code are reflected in the diagram) directly support these ideas. Of course documents in other formalisms, for example SRS, remain necessary for human consumption; but they should be closely linked to the core project asset, the Eiffel code; hence the need for EIS and its connection mechanisms.

This approach, as I have often noted when presenting it in public, is hard to convey to people steeped in the mindset of the past (UML as separate from code, model-driven development) which magnify the differences between software levels, hence introducing the risk of divergence and making change painful. The Eiffel approach is innovative enough to cause incomprehension or even rejection. (“What, you are not model-driven, but everyone says model-driven is good!” – well, models are bad if they are inaccurate. In the Eiffel approach the model and the program are the same thing, or more precisely the model is the abstract view of the program, obtained through abstraction mechanisms such as deferred classes with contracts and the “contract view” tool of EiffelStudio.)

To be effective, these ideas require proper tool support, for which EIS is a start. But we would like to know if we are on the right track and hence need feedback. We would be grateful if you could try out EIS and tell us what you think, both about the current state of the mechanism and its long-term prospects in the general framework of high-quality, sustainable software development.

References

[1] EIS documentation, here.

[2] Tao Feng, Start using Eiffel Information System, Eiffelroom blog entry of 17 April 2008, available here.

VN:F [1.9.10_1130]
Rating: 9.8/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Domain Theory: the forgotten step in program verification

 

Program verification is making considerable progress but is hampered by a lack of abstraction in specifications. A crucial step is, almost always, absent from the process; this omission is the principal obstacle to making verification a standard component of everyday software development.

Steps in software verification

In the first few minutes of any introduction to program verification, you will be told that the task requires two artifacts: a program, and a specification. The program describes what executions will do; the specification, what they are supposed to do. To verify software is to ascertain that the program matches the specification: that it does is what it should.

The consequence usually drawn is that verification consists of three steps: write a specification, write a program, prove that the program satisfies the specification. The practical process is of course messier, if only because the first two steps may occur in the reverse order and, more generally, all three steps are often intertwined: the specification and the program influence each other, in particular through the introduction of “verification conditions” into the program; and initial proof attempts will often lead to changes in both the specification and the program. But by and large these are the three accepted steps.

Such a description misses a fourth step, a prerequisite to specification that is essential to a scalable verification process: Domain Theory. Any program addresses a specific domain of discourse, be it the domain of network access and communication for a mobile phone system, the domain of air travel for a flight control system, of companies and shares for a stock exchange system and so on. Even simple programs with a limited scope, such as the computation of the maximum of an array, use a specific domain beyond elementary mathematics. In this example, it is the domain of arrays, with their specific properties: an array has a range, a minimum and maximum indexes in that range, an associated sequence of values; we may define a slice a [i..j], ask for the value associated with a given index, replace an element at a given index and so on. The Domain Theory provides a formal model for any such domain, with the appropriate mathematical operations and their properties. In the example the operations are the ones just mentioned, and the properties will include the axiom that if we replace an element at a certain index i with a value v then access the element at an index j, the value we get is v if i = j, and otherwise the earlier value at j.

The role of a Domain Theory

The task of devising a Domain Theory is to describe such a domain of reference, in the spirit of abstract data types: by listing the applicable operations and their properties. If we do not treat this task as a separate step, we end up with the kind of specification that works for toy examples but quickly becomes unmanageable for real-life applications. Most of the verification literature, unfortunately, relies on such specifications. They lack abstraction since they keep using the lowest-level mathematical objects and constructs, such as numbers and quantified expressions. They are to specification what assembly language is to modern programming.

Dines Bjørner has for a long time advocated a closely related idea, domain engineering; see for example his book in progress [1]. Unfortunately, he does not take advantage of modularization through abstract data types; the book is an example of always-back-to-the-basics specification, resorting time and again to fully explicit specifications based on a small number of mathematical primitives, and as a consequence making formal specification look difficult.

Maximum computed from both ends

As a simple example of modeling through an abstract theory consider an algorithm for computing the maximum of an array. We could use the standard technique that goes through the array one-way, but for variety let us take the algorithm that works from both ends, moving two integer cursors towards each other until they meet.  (This example was used in a verification competition at a recent conference, I forgot which one.) The code looks like this:

Two-way maximum

The specification, expressed by the postcondition (ensure) should state that Result is the maximum of the array; the loop invariant will be closely related to it. How do we express these properties? The obvious way is not the right way. It states the postcondition as something like

k: Z | (ka.lowerka.upper) a [k] ≤ Result

k: Z | ka.lowerka.upper a [k] = Result

In words, Result is at least as large as every element of the array, and is equal to at least one of the elements of the array. The invariant can also be expressed in this style (try it).

The preceding specification expresses the desired property, but it is of an outrageously lower level than called for. The notion of maximum is a general one for arrays over an ordered type. It can be computed through many different algorithms in addition to the one shown above, and exists independently of these algorithms. The detailed, assembly-language-like definition of its properties should not have to be repeated in every case. It should be part of the Domain Theory for the underlying notion, arrays.

A specification at the right level of abstraction

In a Domain Theory for arrays of elements from an ordered set, one of the principal operations is maximum, satisfying the above properties. The definition of maximum through these properties belongs at the Domain Theory level. The Domain Theory should include that definition, independent of any particular computational technique such as two_way_max. Then the routine’s postcondition, relying on this notion from the Domain Theory, becomes simply

Result = a.maximum

The application of this approach to the loop invariant is particularly interesting. If you tried to write it at the lowest level, as suggested above, you should have produced something like this:

a.lowerija.upper

k: Z | kikj ∧ (∀ l: Z | l a.lowerl a.upper a [l] ≤ a [k])

The first clause is appropriate but the rest is horrible! With its nested quantified expressions it gives an impression of great complexity for a property that is in fact straightforward, simple enough in fact to be explained to a 10-year-old: the maximum of the entire array can be found between indexes i and j. In other words, it is also the maximum of the array slice going from i to j. The Domain Theory will define the notion of slice and enable us to express the invariant as just

a.lowerij a.upper — This bounding clause remains

a.maximum = (a [i..j ]).maximum

(where we will write the slice a [i..j ] as a.slice (i, j ) if we do not have mechanisms for defining special syntax). To verify the routine becomes trivial: on loop exit the invariant still holds and i = j, so the maximum of the entire array is given by the maximum of the single-element slice a [i..i ], which is the value of its single element a [i ]. This last property — the maximum of a single-element array is its single value — is independent of the verification of any particular program and should be proved as a little theorem of the Domain Theory for arrays.

The comparison between the two versions is striking: without Domain Theory, we are back to the most tedious mathematical manipulations again and again; simple, clear properties look complicated and obscure. This just for a small example on basic data structures; now think what it will be for a complex application domain. Without a first step of formal modeling to develop a Domain Theory, no realistic specification and verification process is realistic.

Although the idea is illustrated here through examples of individual routines, the construction of a Domain Theory should usually occur, in an object-oriented development process, at the level of a class: the embodiment of an abstract data type, which is at the appropriate level of granularity. The theory applies to objects of a given type, and hence will be used for the verification of all operations of that type. This observation justifies the effort of devising a Domain Theory, since it will benefit a whole set of software elements.

Components of a Domain Theory

The Domain Theory should include the three ingredients illustrated in the example:

  • Operations, modeled as mathematical functions (no side effects of course, we are in the world of specification).
  • Axioms characterizing the defining properties of these operations.
  • Theorems, characterizing other important properties.

This approach is of course nothing else than abstract data types (the same thing, although few people realize it, as object-oriented analysis). Even though ADTs are a widely popularized notion, supported for example by tools such as CafeOBJ [2] and Maude [3], it is generally not taken to its full conclusions; in particular there is too often a tendency to define every new ADT from scratch, rather than building up libraries of reusable high-level mathematical components in the O-O spirit of reuse.

Results, not just definitions

In devising a Domain Theory with the three kinds of ingredient listed above, we should not forget the last one, the theorems! The most depressing characteristic of much of the work on formal specification is that it is long on definitions and short on results, while good mathematics is supposed to be the reverse. I think people who have seriously looked at formal methods and do not adopt them are turned off not so much by the need to use mathematics but by the impression they get little value for it.

That is why Eiffel contracts do get adopted: even if it’s just for testing and debugging, people see immediate returns. It suffices for a programmer to have caught one bug as the violation of a simple postcondition to be convinced for life and lose any initial math-phobia.

Quantifiers are evil

As we go beyond simple contract properties — this argument must be positive, this reference will not be void — the math needs to be at the same level of abstraction to which, as modern programmers, we are accustomed. For example, one should always be wary of program specifications relying directly on quantified expressions, as in the low-level variants of the postcondition and loop invariant of the two_way_max routine.

This is not just a matter of taste, as in the choice in logic [4] between lambda expressions (more low-level but also more immediately understandable) and combinators (more abstract but, for many, more abstruse). We are talking here about the fundamental software engineering problem of scalability; more generally, of the understandability, extendibility and reusability of programs, and the same criteria for their specification and verification. Quantifiers are of course needed to express fundamental properties of a structure but in general should not directly appear in program assertions: as the example illustrated, their level of abstraction is lower than the level of discourse of a modern object-oriented program. If the rule — Quantifiers Considered Harmful — is not absolute, it must be pretty close.

Quantified expressions, “All elements of this structure possess this property” and “Some element of this structure possesses this property” — belong in the description of the structure and not in the program. They should appear in the Domain Theory, not in the verification. If you want to express that a hash table search found an element of key K, you should not write

(Result = Void ∧ (∀ i: Z | i a.loweri a.upper a.item (i).key ≠ K))

(ResultVoid ∧ (∀ i: Z | i a.loweri a.upper a.item (i).key = K ∧ Result = a.item (i))

but

Result /= Void     (Result a.elements_of_key (K))

The quantified expressions will appear in the Domain Theory for the corresponding structure, in the definition of such domain properties as elements_of_key. Then the program’s specification — the contracts to be verified — can rely on concepts that make sense to the programmer; the verification will take advantage of theorems that have been proved independently since they belong to the Domain Theory and do not depend on individual programs.

Even the simplest examples…

Practical software verification requires Domain Theory even in the simplest cases, including those often used as purely academic examples. Perhaps the most common (and convenient) way to explain the notion of loop invariant is Euclid’s algorithm to compute the greatest common divisor (gcd) of two numbers (with a structure remarkably similar to that of two_way_max):
Euclid

I have expressed the postcondition using a concept from an assumed Domain Theory for the underlying problem: gcd, the mathematical function that yields the greatest common divisor of two integers. Many specifications I have seen go back to the basics, with something like this (using \\ for integer remainder):

a \\ Result = 0 b \\ Result = 0   ∀ i: N | (a \\ i = 0) ∧ (b \\ i = 0)  i Result

This is indeed the definition of what it means for Result to be the gcd of a and b (it divides a, it divides b, and is greater than any other integer that also has these two properties). But it makes no sense to include such a detailed mathematical property in the specification of a program element. It belongs in the domain theory, where it will serve as the definition of a function gcd, which we can then use directly in the specification of the program.

Note how the invariant makes the necessity of the Domain Theory approach even more clear: try to express it in the basic mathematical form, not using the function gcd, It can be done, but the result is typical of the high complexity to usefulness ratio of traditional formal specifications mentioned above. Instead, the invariant that I have included in the program text above says exactly what there is to say, clearly and concisely: at each iteration, the gcd of our two temporary values, i and j, is the result that we are seeking, the gcd of the original values a and b. On exit from the loop, when i and j are equal, their common value is that result.

It is also thanks to the Domain Theory modeling that the verification of the program — consisting of proving that the stated property is indeed invariant — will be so simple: as part of the theory, we should have the two little theorems

i > j > 0 gcd (i, j) = gcd (ij, j)
gcd
(i, i) = i

which immediately show the implementation to be correct.

Inside of any big, fat, messy, quantifier-ridden specification there is a simple, elegant and clear Domain-Theory-based specification desperately trying to get out. Find it and use it.

From Domain Theory to domain library

One of the reasons most people working on program verification have not used the division into levels of discourse described here, with a clear role for developing a Domain Theory, is that they lack the appropriate notational support. Mathematical notation is of course available, but we are talking about programs a general verification framework cannot resort to a new special notation for every new application domain.

This is one of the places where Eiffel provides a consistent solution, through its seamless approach to integrating programs and specifications in a single notation. Thanks to mechanisms such as deferred classes (classes that describe concepts through detailed specifications without committing to an implementation), Eiffel is as much for specification as for design and implementation; a Domain Theory can be expressed though a set of deferred Eiffel classes, which we may call a domain library. The classes in a domain library should not just be deferred, meaning devoid of implementation; they should in addition describe stateless operations only — queries, not commands — since they are modeling purely mathematical concepts.

An earlier article in this blog [5] outlined the context of our verification work: the EVE project (Eiffel Verification Environment), a practical approach to integrating software verification in the day-to-day practice of modern software development, with the slogan ““Verification As a Matter Of Course”. In this project we have applied the idea of Domain Theory by building a domain library covering fundamental concepts of set theory, including functions and relations. This is the Mathematical Model Library (MML) [6, 7], which we use to verify the new data structure library EiffelBase 2 using specifications at the appropriate level of abstraction.

MML is in fact useful for the specification of a wide variety of programs, since almost every application area can benefit from the general concepts of set, subset, relation and such. But to cover a specific application domain, say flight traffic control, MML will generally not suffice; you will need to devise a Domain Theory that mathematically models the target domain, and may express it in the form of a domain library written in the same general spirit as MML: all deferred, stateless, focused on high-level abstractions.

It is one of the attractions of Eiffel that you can express such a theory and library in the same notation as the programs that will use it — more precisely in a subset of that notation, since the specification classes do not need the imperative constructs of the language such as instructions and attributes. Then both the development process and the verification use a seamlessly integrated set of notations and techniques, and all use the same tools from a modern IDE, in our case EiffelStudio, for browsing, editing, working with graphical repreentation, metrics etc.

DSL libraries for specifications

A mechanism to express Domain Theories is to a general specification mechanism essentially like a Domain Specific Language (DSL) is to a general programming language: a specialization for a particular domain. Domain libraries make the approach practical by:

  • Embedding the specification language in the programming language.
  • Fundamentally relying on reuse, in the best spirit of object technology.

This approach is in line with the one I presented for handling DSLs in an earlier article of this blog [8] (thanks, by the way, for the many comments received, some of them posted here and some on Facebook and LinkedIn where the post triggered long discussions). It is usually a bad idea to invent a new language for a new application domain. A better solution is to rely on libraries, by taking advantage of the power of object-oriented mechanisms to model (in domain libraries) and implement (for DSLs) the defining features of such a domain, and to make the result widely reusable. The resulting libraries are purely descriptive in the case of a domain library expressing a Domain Theory, and directly usable by programs in the case of a library embodying a DSL, but the goal is the same.

A sound and necessary engineering practice

Many ideas superficially look similar to Domain Theory: domain engineering as mentioned above, “domain analysis” as widely discussed in the requirements literature, model-driven development, abstract data type specification… They all start from some of the same observations, but  Domain Theory as described in this article is something different: a systematic approach to modeling an arbitrary application domain mathematically, which:

  • Describes the concepts through applicable operations, axioms and (most importantly) theorems.
  • Expresses these elements in an applicative (side-effect free, i.e. equivalent to pure mathematics) subset of the programming language, for direct embedding in program specifications.
  • Relies on the class mechanism to structure the results.
  • Collects the specifications into specification libraries and promotes the reuse of specifications in the same way we promote software reuse.
  • Uses the combination of these techniques to ensure that program specifications are at a high level of abstraction, compatible with the programmers’ view of their software.
  • Promotes a clear and effective verification process.

The core idea is in line with standard engineering practices in disciplines other than software: to build a bridge, a car or a chip you need first to develop a sound model of the future system and its environment, using any useful models developed previously rather than always going back to elementary textbook mathematics.

It seems in fact easier to justify doing Domain Analysis than to justify not doing it. The power of expression and abstraction of our programs has grown by leaps and bounds; it’s time for our specifications to catch up.

References

[1] Dines Bjørner: From Domains to Requirements —The Triptych Approach to Software Engineering, “to be submitted to Springer”, available here.

[2] Kokichi Futatsugi and others: CafeObj page, here.

[3] José Meseguer and others: Maude publication page, here.

[4] J. Roger Hindley, J. P. Seldin: Introduction to Combinators and l-calculus, Cambridge University Press, 1986.

[5] Verification As a Matter Of Course, earlier article on this blog (March 2010), available here.

[6] Bernd Schoeller, Tobias Widmer and Bertrand Meyer. Making specifications complete through models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, pages 48-70, available here.

[7] Nadia Polikarpova, Carlo A. Furia and Bertrand Meyer: Specifying Reusable Components, in VSTTE’10: Verified Software: Theories, Tools and Experiments, Edinburgh, August 2010, Lecture Notes in Computer Science, Springer-Verlag, available here.

[8] Never Design a Language, earlier article on this blog (January 2012), available here.

VN:F [1.9.10_1130]
Rating: 9.3/10 (12 votes cast)
VN:F [1.9.10_1130]
Rating: +7 (from 7 votes)

ERC Advanced Investigator Grant: Concurrency Made Easy

In April we will be starting the  “Concurrency Made Easy” research project, the result of a just announced Advanced Investigator Grant from the European Research Council. Such ERC grants are awarded to a specific person, rather than a consortium of research organizations as in the usual EU funding scheme. The usual amount, which applies in my case, is 2.5 million euros (currently almost 3 .3 million dollars) over five years, on a specific theme. According to the ERC’s own description [1],

ERC Advanced Grants allow exceptional established research leaders of any nationality and any age to pursue ground-breaking, high-risk projects that open new directions in their respective research fields or other domains.

This is the most sought-after research funding instrument of the EU, with a success rate of about 12% [2], out of a group already preselected by the host institutions. What makes ERC Advanced Investigator Grants so coveted is the flexibility of the scheme (no constraints on the topic, light administrative baggage) and the trust that an award implies in a particular researcher and his ability to carry out advanced research.

The name of the CME project clearly signals its ambition: to turn concurrent programming into a normal, unheroic part of programming. Today adding concurrency to a program, usually in the form of multithreading, is very hard, complexity and risk of all kinds. Everyone is telling us that we must rethink programming, retrain programmers and revamp curricula to put the specific reasoning modes of concurrent programming at the center. I don’t think this can work; thinking concurrently is just too hard to become the default mode. Instead, we should adapt programming languages, theories and tools so that programmers can continue to apply the reasoning schemes that have proved so successful in classical programming, especially object-oriented programming with the benefit of Design by Contract.

The starting point is the SCOOP model, to which I started an introduction in an earlier article of this blog [3], with a sequel yet to come. SCOOP is a minimal extension to the O-O framework to support concurrency, yielding very simple (the S in the acronym) solutions to concurrent programming problems. As part of the CME project we plan to develop it in many different directions and establish a sound and effective formal basis.

I have put the project description — the scientific part of the actual proposal text accepted by the ERC — online [4].

In the next few weeks I will be publishing here specific announcements for the positions we are seeking to fill very quickly; they include postdocs, PhD students, and one research engineer. We are looking for candidates with excellent knowledge and practice of concurrency, Eiffel, formal techniques etc. The formal application procedure will be Web-based and is not in place yet but you can contact me if you fit the profile and are interested.

We can defeat the curse: concurrent programming (an obligatory condition of any path towards a successful future for information technology) does not have to be black magic. It can be made simple and efficient. Such is the challenge of the CME project.

References

[1] European Research Council: Advanced Grants, available here.

[2] European Research Council: Press release on 2011 Advanced Investigator Grants, 24 January 2012, available here.

[3] Concurrent Programming is Easy, article from this blog, available here.

[4] CME Advanced Investigator Grant project description, available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Never design a language

It is a common occurrence in software development. Someone says: “We should design a language”. The usual context is that some part of the development requires a rich functionality set, and it appears appropriate to provide a flexible solution through a specialized language. As an example, in the development of an airline’s frequent flyer program on which I once worked the suggestion came to design a “Flyer Award Language” , with instructions appropriate for that application domain: record a trip, redeem an award, provide a statement of available miles and so on. A common term for such notations is DSL, for Domain-Specific Language.

Designing a language in such a context is almost always a bad idea (and I am not sure why I wrote “almost”). Languages are endless objects of discussion, usually on the least important aspects, which are also the most visible and those on which everyone has a strong opinion: concrete syntactic properties. People might pretend otherwise (“let’s not get bogged down on syntax, this is just one possible form”) but syntax is what the discussions will get bogged down to — keywords or symbols, this order or that order of operands, one instruction with several variants vs. several instructions… — at the expense of discussing the fundamental issues of functionality.

Worse yet, even if a language will be part of the solution it is usually just one facet to the solution. As was already explained in detail in [1], any useful functionality set will naturally be useful through several interfaces: a textual notation with concrete syntax may be one of them, but other possible ones include an API (Abstract Program Interface) for use from other software elements, a Graphical User Interface, a web user interface, yet another for web services (typically WSDL or some other XML or JSON format).

In such cases, starting with a concrete textual language is pretty silly, since it cannot yield the others directly (it would have to be parsed and further analyzed, which does not make sense). Of all the kinds of interface listed, the most fundamental one is the API: it describes the raw functionality, excluding any choice of syntax but including, thanks to contracts, elements of semantics. For example, a class AWARD in our frequent flyer application might include the feature


             redeem_for_upgrade (c: CUSTOMER; f : FLIGHT)
                                     — Upgrade c to next class of service on f.
                       require
                                    c /= holder
implies holder.allowed_substitute (c)
                                    f.permitted_for_upgrade
(Current)
                                    c.booked
( f )
                       
ensure
                                    c.class_of_service
( f ) =  old c.class_of_service ( f ) + 1

There is of course no implementation as this declaration only specifies an interface, but it says what needs to be said: to redeem the award for an upgrade, the intended customer must be either the holder of the award or an allowed substitute; the flight must be available for an upgrade with the current award (including the availability of enough miles); the intended customer must already be booked on the flight; and the upgrade will be for the next class of service.

These details are the kind of things that need to be discussed and agreed before the API is finalized. Then one can start discussing about a textual form (a DSL), a graphical interface, a web services interface. They all consist of relatively simple layers to be superimposed on a solidly defined and precisely specified basis. Once you have that basis, you can have all the fun you like arguing over everyone’s favorite forms of concrete syntax; it cannot hurt the project any more. Having these discussions early, at the expense of the more fundamental issues, is a great danger.

One of the key rules for successful software construction — as for many other ventures of course, especially in science and technology — is to distinguish the essential from the auxiliary, and consequently to devote proper attention to the essential issues while avoiding disputations of auxiliary issues. To define functionality, API is essential; language is auxiliary.

So when should you design a language? Never. Well, hardly ever.

Reference

[1] Bertrand Meyer: Introduction to the Theory of Programming Languages, Prentice Hall, 1990.

VN:F [1.9.10_1130]
Rating: 7.9/10 (18 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 16 votes)