The good and the ugly

Once in a while one hits a tool that is just right. An example worth publicizing is the EasyChair system for conference management [1], which  — after a first experience as reviewer —  I have selected whenever I was in a position to make the choice for a new conference in recent years.

At first sight, a conference management system does not seem so hard to put together; it is in fact a traditional project topic for software engineering courses. But this apparent simplicity is deceptive, as a usable system must accommodate countless small and large needs. To take just one example, you can be a member of a program committee for a conference and also submit a paper to it; this implies strict rules about what you can see, for example reviews of other people’s papers with the referees’ names, and what you should not see. Taking care of myriad such rules and requirements requires in-depth domain knowledge about conferences, and a thorough analysis.

EasyChair is based on such an analysis. It knows what a conference is, and understands what its users need. Here for example is my login screen on EasyChair:

easychair

EasyChair knows about me: I only have one user name and one password. It knows the conferences in which I have been involved (and found them by itself). It knows about my various roles: chair, author etc., and will let me do different things depending on the role I choose.

The rest of the tool is up to the standards set by this initial screen. Granted, the Web design is very much vintage 1994; a couple of hours on the site by a professional graphics designer would not hurt, but, really, who cares? What matters is the functionality, and it is not by accident that EasyChair’s author is a brilliant logician [2]. Here is someone who truly understands the business of organizing and refereeing a conference, has translated this understanding into a solid logical model, and has at every step put himself in the shoes of the participants in the process. As a user you feel that everything has been done to make you feel comfortable  and perform efficiently, while protecting you from hassle.

Because this is all so simple and natural, you might forget that the system required extensive design. If you need proof, it suffices to consider, by contrast, the ScholarOne system, which as punishment for our sins both ACM and IEEE use for their journals.

Even after the last user still alive has walked away, ScholarOne will remain in the annals of software engineering, as a textbook illustration of how not to design a system and its user interface. Not the visuals; no doubt that site had a graphics designer. But everything is designed to make the system as repellent as possible for its users. You keep being asked for information that you have already entered. If you are a reviewer for Communications of the ACM and submit a paper to an IEEE Computer Society journal, the system does not remember you, since CACM has its own sub-site; you must re-enter everything. Since your identifier is your email address, you will have two passwords with the same id, which confuses the browser. (I keep forgetting the appropriate password, which the site obligingly emails me, in clear.) IEEE publications have a common page, but here is how it looks:

scholarone-detail

See the menu on the right? It is impossible  to see the full names of each of the “Transactio…”. (No tooltips, of course.) Assume you just want to know what one of them is, for example “th-cs”: if you select it you are prompted to provide all kinds of information (which you have entered before for other publications), before you can even proceed.

This user interface design (the minuscule menu, an example of what Scott Meyers calls the “Keyhole problem” [3]) is only a small part of usability flaws that plague the system. The matter is one of design: the prevailing viewpoint is that of the  designers and administrators, not the users. I was not really surprised when I found out that the system comes from the same source as the ISI Web of Science system (which should never be used for computer science, see [4]).

It is such a pleasure in contrast to see a system like EasyChair  — for all I know a one-man effort — with its attention to user needs, its profound understanding of the problem domain, and its constant improvements over the years.

References

[1] EasyChair system, at http://www.easychair.org.

[2] Andrei Voronkov, http://www.voronkov.com/.

[3] Scott Meyers, The Keyhole Problem, at http://www.aristeia.com/TKP/draftPaper.pdf; see also slides at http://se.ethz.ch/~meyer/publications/OTHERS/scott_meyers/keyhole.pdf

[4]  Bertrand Meyer, Christine Choppy, Jan van Leeuwen, Jørgen Staunstrup: Research Evaluation for Computer Science, in  Communications  of the ACM, vol. 52, no. 4, pages 131-134, online at http://portal.acm.org/citation.cfm?id=1498765.1498780 (requires subscription). Longer version, available at http://www.informatics-europe.org/docs/research_evaluation.pdf (free access).

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Methods need theory

For someone in search of a software development method, the problem is not to find answers; it’s to find out how good the proposed answers are. We have lots of methods — every year brings its new harvest — but the poor practitioner is left wondering why last year’s recipe is not good enough after all, and why he or she has to embrace this year’s buzz instead. Anyone looking for serious conceptual arguments has to break through the hype and find the precious few jewels of applicable wisdom.

This is the start of an article that Ivar Jacobson and I just wrote for Dr. Dobb’s Journal;  it is available in the online edition [1] and will appear (as I understand) in the next paper edition. The article is a plea for a rational, science-based approach to software development methodology, and a call for others to join us in establishing a sound basis.

Reference

[1] Ivar Jacobson and Bertrand Meyer, Methods Need Theory, Dr. Dobb’s Journal, August 2009, available online.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Void safety: Getting rid of the spectre of null-pointer dereferencing

A spectre is haunting programming — the spectre of null-pointer dereferencing. All the programming languages of old Europe and the New World have entered into a holy alliance to make everyone’s programs brittle:  Java, C, Pascal, C++, C# and yes, until recently, Eiffel.

The culprit is the use of references to denote objects used in calls: in

         x.f (...)

the value of x is a reference, which normally denotes an object but could at any time be void (or “null”). If this happens, the resulting “void call” will cause an exception and, usually, a crash.  No amount of testing can remove the risk entirely; the only satisfactory solution is a static one, enforcing void safety at the language level.

To this end, Eiffelists of various nationalities have assembled in the Cloud and sketched the following manifesto, to be published in the English language:

        Avoid a Void: The Eradication of Null Dereferencing
        Bertrand Meyer, Alexander Kogtenkov, Emmanuel Stapf
        White paper available here.
VN:F [1.9.10_1130]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Contracts written by people, contracts written by machines

What kind of contract do you write? Could these contracts, or some of them, be produced automatically?

The idea of inferring contracts from programs is intriguing; it also raises serious epistemological issues. In fact, one may question whether it makes any sense at all. I will leave the question of principle to another post, in connection with some of our as yet unpublished work. This is, in any case, an active research field, in particular because of the big stir that Mike Ernst’s Daikon created when it appeared a few years ago.

Daikon [1] infers loop invariants dynamically: it observes executions; by looking up a repertoire of invariant patterns, it finds out what properties the loops maintain. It may sound strange to you (it did to Mike’s PhD thesis supervisor [2] when he first heard about the idea), but it yields remarkable results.

In a recent paper presented at ISSTA [3], we took advantage of Daikon to compare the kinds of contract people write with those that a machine could infer. The work started out as Nadia Polikarpova’s master’s thesis at ITMO  in Saint Petersburg [4], in the group of Prof. Anatoly Shalyto and under the supervision of Ilinca Ciupa from ETH. (Ilinca recently completed her PhD thesis on automatic testing [5], and is co-author of the article.) The CITADEL tool — the name is an acronym, but you will have to look up the references to see what it means — applies Daikon to Eiffel program.

CITADEL is the first application of Daikon to a language where programmers can write contracts. Previous interfaces were for contract-less languages such as Java where the tool must synthesize everything. In Eiffel, programmers do write contracts (as confirmed by Chalin’s experimental study [6]). Hence the natural questions: does the tool infer the same contracts as a programmer will naturally write? If not, which kinds of contract is each best at?

To answer these questions, the study looked at three sources of contracts:

  • Contracts already present in the code (in the case of widely used libraries such as EiffelBase, equipped with contracts throughout).
  • Those devised by students, in a small-scale experiment.
  • The contracts inferred by Daikon.

What do you think? Before looking up our study, you might want to make your own guess at the answers. You will not find a spoiler here; for the study’s results, you should read our paper [3]. All right, just a hint: machines and people are (in case you had not noticed this before) good at different things.

References

 

[1] Michael Ernst and others, Daikon bibliography on Ernst’s research page at the University of Washington.

[2] David Notkin, see his web page.

[3] A Comparative Study of Programmer-Written and Automatically Inferred Contracts, by Nadia Polikarpova, Ilinca Ciupa and me, in ISSTA 2009: International Symposium on Software Testing and Analysis, Chicago, July 2009, online copy available.

[4] ITMO (Saint-Petersburg State University of Information Technologies, Mechanics and Optics), see here.

[5] Ilinca Ciupa, Strategies for random contract-based testing; PhD thesis, ETH Zurich, December 2008. For a link to the text and to her other publications see Ilinca’s ETH page.

[6] Patrice Chalin,  Are practitioners writing contracts? In Rigorous Development of Complex Fault-Tolerant Systems, eds. Jones et al.,  Lecture Notes in Computer Science 4157, Springer Verlag, 2006, pages 100-113.

VN:F [1.9.10_1130]
Rating: 9.3/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Long AND clear?

recycled-small (Originally a Risks forum posting, 1998.)

Although complaints about Microsoft Word’s eagerness to correct what it sees as mistakes are not new in the Risks forum, I think it is still useful to protest vehemently the way recent versions of Word promote the dumbing down of English writing by flagging (at least when you use their default options) any sentence that, according to some mysterious criterion, it deems too long, even if the sentence is made of several comma- or semicolon-separated clauses, and even though it is perfectly obvious to anyone, fan of Proust or not, that clarity is not a direct function of length, since it is just as easy to write obscurely with short sentences as with longish ones and, conversely, quite possible to produce an absolutely limpid sentence that is very, very long.

VN:F [1.9.10_1130]
Rating: 9.0/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +5 (from 5 votes)

Computer technology: making mozzies out of betties

Are you a Beethoven or a Mozart? If you’ll pardon the familarity, are you more of a betty or more of a mozzy? I am a betty. I am not referring to my musical abilities but to my writing style; actually, not the style of my writings (I haven’t completed any choral fantasies yet) but the style of my writing process. Mozart is famous for impeccable manuscripts; he could be writing in a stagecoach bumping its way through the Black Forest, on the kitchen table in the miserable lodgings of his second, ill-fated Paris trip, or in the antechamber of Archbishop Colloredo — no matter: the score comes out immaculate, not reflecting any of the doubts, hesitations and remorse that torment mere mortals. 

 Mozart

Beethoven’s music, note-perfect in its final form, came out of a very different process. Manuscripts show notes overwritten, lines struck out in rage, pages torn apart. He wrote and rewrote and gave up and tried again and despaired and came back until he got it the way it had to be.

Beethoven

How I sympathize! I seldom get things right the first time, and when I had to use a pen and paper I  almost never could produce a clean result; there always was one last detail to change. As soon as I could, I got my hands on typewriters, which removed the effects of ugly handwriting, but did not solve the problem of second thoughts followed by third thoughts and many more. Only with computers did it become possible to work sensibly. Even with a primitive text editor, the ability to try out ideas then correct and correct and correct is a profound change of the creation process. Once you have become used to the electronic medium, using a pen and paper seems as awkard and insufferable as, for someone accustomed to driving a car, being forced to travel in an oxen cart.

This liberating effect, the ability to work on your creations as a sculptor kneading an infinitely malleable material, is one of the greatest contributions of computer technology. Here we are talking about text, but the effect is just as profound on other media, as any architect or graphic artist will testify.

The electronic medium does not just give us more convenience; it changes the nature of writing (or composing, or designing). With paper, for example, there is a great practical difference between introducing new material at the end of the existing text,  which is easy, and inserting it at some unforeseen position, which is cumbersome and sometimes impossible. With computerized tools, it doesn’t matter. The change of medium changes the writing process and ultimately the writing: with paper the author ends up censoring himself to avoid practically painful revisions; with software tools, you work in whatever order suits you.

Technical texts, with their numbered sections and subsections, are another illustration of the change: with a text processor you do not need to come up with the full plan first, in an effort to avoid tedious renumbering later. You will use such a top-down scheme if it fits your natural way of working, but you can use any other  one you like, and renumber the existing sections at the press of a key. And just think of the pain it must have been to produce an index in the old days: add a page (or, worse, a paragraph, since it moves the following ones in different ways) and you would  have to recheck every single entry.

Recent Web tools have taken this evolution one step further, by letting several people revise a text collaboratively and concurrently (and, thanks to the marvels of  longest-common-subsequence algorithms and the resulting diff tools, retreat to an earlier version if in our enthusiasm to change our design we messed it up) . Wikis and Google Docs are the most impressive examples of these new techniques for collective revision.

Whether used by a single writer or in a collaborative development, computer tools have changed the very process of creation by freeing us from the tyranny of physical media and driving to zero the logistic cost of  one or a million changes of mind. For the betties among us, not blessed with an inborn ability to start at A, smoothly continue step by step, and end at Z, this is a life-changer. We can start where we like, continue where we like, and cover up our mistakes when we discover them. It does not matter how messy the process is, how many virtual pages we tore away, how much scribbling it took to bring a paragraph to a state that we like: to the rest of the world, we can present a result as pristine as the manuscript of a Mozart concerto.

These advances are not appreciated enough; more importantly, we do not take take enough advantage of them. It is striking, for example, to see that blogs and other Web pages too often remain riddled with typos and easily repairable mistakes. This is undoubtedly because the power of computer technology tempts us to produce ever more documents and in the euphoria to neglect the old ones. But just as importantly that technology empowers  us to go back and improve. The old schoolmaster’s advice — revise and revise again [1] — can no longer  be dismissed as an invitation to fruitless perfectionism; it is right, it is fun to apply, and at long last it is feasible.

Reference

 

[1] “Vingt fois sur le métier remettez votre ouvrage” (Twenty times back to the loom shall you bring your design), Nicolas Boileau

VN:F [1.9.10_1130]
Rating: 8.7/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

The understated breakthrough

You must have seen articles in that genre: the author collects a few  imprudent technology predictions from the past and pokes fun at their authors, the more prestigious the better. Favorites — copy-pasted, with or without fact-checking, from one  such piece to another — are Lord Kelvin’s 1895 pronouncement that “Heavier-than-air flying machines are impossible” and Bill Gates’s comment (apocryphal, but who cares?) that no one needs more than 640KB of memory. Run a Bing search for something like “wrong technology predictions” and you will find dozens of such collections.

A few years ago they often derided turn-of-the-previous-century visions of communication through a videophone, as in this depiction by Villemard:

 
Villemard_videophone

 
A bit one-sided in its view of gender roles, but delightful and amusing. “Look what in 1910 they thought the future would bring!” In 2009 it is no longer laughable: the future is here, and — other than display techniques and women’s fashions — it is exactly this.

I am amazed by the lack of hype that has been associated with Skype. With close to 500 million accounts, and 17 million of them connected at a typical time, it is not exactly a secret; but it is remarkable how little buzz it gets in the media and in our collective consciousness.  The company itself seems to be more interested in getting the job done than in glamour. If we look at the substance, however, few technologies come to mind from the past few decades that have influenced people’s lives so directly and beneficially. From the launch of Skype in 2003 it became possible to have free calls worldwide;  then in 2005 free video was included. Suddenly this videotelephony, fodder for visionaries and cartoonists, became available to anyone with an Internet connection — for free! Almost as unbelievable as the technical feat is that this all happened without headlines, without grandiose pronouncements, and without any forewarning by the technology pundits. Almost overnight we take a giant collective step, and we act as if nothing happened.

With and without video, Skype has had a profound effect on the daily communications of countless people. It also has many professional applications; in an article of last year [2] I described how we use it, together with other technologies such as Google Docs, to turn the old “Code inspection” of software engineering into something far more useful to the project and attractive to the participants.

As always with a breakthrough technology, you find the naysayers; in the universities of a large Western country, system administrators have — can anyone believe this? — banned the use of  Skype, invoking some mysterious and unsubstantiated security risks. And certainly Skype is not perfect; we still get the occasional dropped call. What is more relevant than the occasional annoyance is how well the technology is designed; I have used the audio part, with quite reasonable performance, on a dial-up line from a remote location. And successive versions keep bringing in new wonders.

If there was an award for the highest usefulness to brouhaha ratio, Skype would be the favorite. Cheers for the most practical, least hyped technology of our time.

References

 

[1] Futuristic postcards by Villemard, from an exhibition.

[2] Design and Code Reviews in the Age of the Internet (preprint of an article in Communications of the ACM, Sept. 2008).

VN:F [1.9.10_1130]
Rating: 8.5/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)