Archive for the ‘Eiffel’ Category.

Towards a Calculus of Object Programs

I posted here a draft of a new article, Towards a Calculus of Object Programs.

Here is the abstract:

Verifying properties of object-oriented software requires a method for handling references in a simple and intuitive way, closely related to how O-O programmers reason about their programs. The method presented here, a Calculus of Object Programs, combines four components: compositional logic, a framework for describing program semantics and proving program properties; negative variables to address the specifics of O-O programming, in particular qualified calls; the alias calculus, which determines whether reference expressions can ever have the same value; and the calculus of object structures, a specification technique for the structures that arise during the execution of an object-oriented program.
The article illustrates the Calculus by proving the standard algorithm for reversing a linked list.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

If I’m not pure, at least my functions are

..

If I’m not pure, at least my jewels are [1].

..

We often need to be reassured that a routine, usually a function, is “pure”, meaning that it does not change the state of the computation. For example, a function used in a contract element (precondition, postcondition, class invariant, loop invariant) should be purely descriptive, since it is a specification element; evaluating it, typically for testing and debugging, should not create a change of behavior — a “Heisenberg effect” — in the very computation that it is intended to assess. Another application is in a concurrency context, particularly in SCOOP (see earlier posts and forthcoming ones): if one or more functions are pure, several of their executions can run  concurrently on the same object.

The notion of purity admits variants. The usual notion is what  [2] calls weak purity, which precludes changes to previously existing objects but allow creating new objects. In the EiffelBase library we also encounter routines that have another form of purity, which we may call “relative” purity: they can leave the same state on exit as they found on entry, but in-between they might change the state.  For the rest of this discussion we will rely on the standard notion of weak purity: no changes permitted on existing objects.

It is often suggested that the programming language should support specifying that a routine is pure; many people have indeed proposed the addition of a keyword such as pure to Eiffel. One of the reasons this is not — in my opinion — such a great idea is that purity is just a special case of the more general problem of framing: specifying and verifying what a routine does not change. If we can specify an arbitrary frame property, then we can, as a special case covered by the general mechanism, specify that a routine changes nothing.

To see why framing is so important, consider a class ACCOUNT with a routine deposit that has the postcondition

balance = old balance + sum………..— Where sum is the argument of deposit

Framing here means stating that nothing else than balance changes; for example the account’s owner and its number should remain the same. It is not practical to write all individual postcondition clauses such as

owner= old owner
number=
old number

and so on. But we do need to specify these properties and enforce them, if only to avoid that a descendant class (maybe MAFIA_ACCOUNT) distort the rules defined by the original.

One technique is to add a so-called “modifies clause”, introduced by verification tools such as ESC-Java [3] and JML [4]. Modifies clauses raise some theoretical issues; in particular, the list of modified expressions is often infinite, so we must restrict ourselves to an abstract-data-type view where we characterize a class by commands and queries and the modifies clause only involves queries of the class. Many people find this hard to accept at first, since anything that is not talked about can change, but it is the right approach. A modifies clause of sorts, included in the postcondition, appeared in an earlier iteration of the Eiffel specification, with the keyword only (which is indeed preferable to modifies, which in the Eiffel style favoring grammatically simple keywords would be modify, since what we want to express is not that the routine must change anything at all  but that it may only change certain specified results!). The convention worked well with inheritance, since it included the rule that a clause such as only balance, in class  ACCOUNT, prescribes that the routine may not, in its modifies version as well as in any version redefined in descendants, change any other query known at the level of ACCOUNT; but a descendant version may change, subject to its own ACCOUNT clauses, any new query introduced by a descendant.

To declare a routine as pure, it would suffice to use an empty only clause (not very elegant syntactically — “only” what? — but one can get used to it).

This construct has been discarded, as it places too heavy a burden on the programmer-specifier. Here the key observation resulted from a non-scientific but pretty extensive survey I made of all the JML code I could get my hands on. I found that every time a query appeared in a modifies clause it was also listed in the postcondition! On reflection, this seems reasonable: if you are serious about specification, as anyone bothering to write such a clause surely is, you will not just express that something changes and stop there; you will write something about how it may change. Not necessarily the exact result, as in

my_query = precise_final_value

but at least some property of that result, as in

some_property (my_query)

This observation has, however, an inescapable consequence for language design: modifies or only clauses should be inferred by the compiler from the postcondition, not imposed on the programmer as an extra burden. The convention, which we may call the Implicit Framing Rule, is simple:

A routine may change the value of a query only if the query is specified in the routine’s postcondition

(or, if you like double negation, “no routine may change the value of a query other than those specified in its postcondition”). Here we say that a feature is “specified” in a postcondition if it appears there outside of the scope of an old expression. (Clearly, an occurrence such as old balance does not imply that balance can be modified, hence this restriction to occurrences outside of an old.)

With this convention the only clause becomes implicit: it would simply list all the queries specified in the postcondition, so there is no need for the programmer to write it. For the rare case of wanting to specify that a query q may change, but not wanting to specify how, it is easy to provide a library function, say involved, that always return true and can be used in postconditions, as in involved (q).

The convention is of course not just a matter of programming methodology but, in an IDE supporting verification, such as the EVE “Verification As a Matter Of Course” environment which we are building for Eiffel [5], the compiler will enforce the definition above — no change permitted to anything not specified in the postcondition — and produce an error in case of a violation. This also means that we can easily specify that a routine is pure: it must simply not specify any query in its postcondition. It may still list it in an old clause, as happens often in practice, e.g.

Result = old balance – Minimum_balance………..— In the postcondition of a function available_funds

Note the need to use old here. Apart from this addition of old to some postconditions, a considerable advantage of the convention is that most existing code using pure functions will be suitable to the new purity enforcement without any need to provide new annotations.

I believe that this is the only sustainable convention. It does not, of course, solve the frame problem by itself (for attempts in this direction see [6, 7]), but it is a necessary condition for a solution that is simple, easily taught, fairly easily implemented, and effective. It goes well with model-based specifications [8, 9], which I believe are the technique of most promise for usable  specifications of object-oriented software. And it provides a straightforward, no-frills way to enforce purity where prescribed by the Command-Query Separation principle [10, 11]: if I’m not pure, at least my functions must be.

References

[1] From the lyrics of the aria Glitter and Be Gay in Leonard Bernstein’s Candide, text by Lillian Hellman and others. Youtube offers several performances, including  by Diana Damrau (here) and Natalie Dessay (here) . For the text see e.g. here.

[2] Adam Darvas and Peter Müller: Reasoning About Method Calls in Interface Specifications, in Journal of Object Technology, Volume 5, no. 5, jUNE 2006, pages 59-85, doi:10.5381/jot.2006.5.5.a3, available here.

[3] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata: Extended static checking for Java, in PLDI 2002 (Programming Language Design and Implementation), pages 234–245, 2002.

[4] Gary Leavens et al.: Java Modeling Language, see references here.

[5] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer: Verifying Eiffel Programs with Boogie, to appear in Boogie 2011, First International Workshop on Intermediate Verification Languages, Wroclaw, August 2011. See documentation about the EVE project on the project page.

[6] Ioannis Kassios: Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions, in Formal Methods 2006, eds. J. Misra, T. Nipkow and E. Sekerinski, Lecture Notes in Computer Science 4085, Springer Verlag, 2006, pages 268-283.

[7] Bernd Schoeller: Making Classes Provable through Contracts, Models and Frames, PhD thesis, ETH Zurich, 2007, available here

[8] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[9] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ’10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[10] Bertrand Meyer: Object-Oriented Software Construction, first (1988) and second (1997) editions, Prentice Hall.

[11] Bertrand Meyer: Touch of Class: An Introduction to Programming Well, Using Objects and Contracts, Springer Verlag, 2009.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Agile methods: the good, the bad and the ugly

It was a bit imprudent last Monday to announce the continuation of the SCOOP discussion for this week; with the TOOLS conference happening now, with many satellite events such as the Eiffel Design Feast of the past week-end and today’s “New Eiffel Technology Community” workshop, there is not enough time for a full article. Next week might also be problematic. The SCOOP series will resume, but in the meantime I will report on other matters.

As something that can be conveniently typed in while sitting in the back of the TOOLS room during fascinating presentations, here is a bit of publicity for the next round of one-day seminars for industry — “Compact Course” is the official terminology — that I will be teaching at ETH in Zurich next November (one in October), some of them with colleagues. It’s the most extensive session that we have ever done; you can see the full programs and registration information here.

  • Software Engineering for Outsourced and Distributed Development, 27 October 2011
    Taught with Peter Kolb and Martin Nordio
  • Requirements Engineering, 17 November
  • Software Testing and Verification: state of the art, 18 November
    With Carlo Furia and Sebastian Nanz
  • Agile Methods: the Good, the Bad and the Ugly, 23 November
  • Concepts and Constructs of Concurrent Computation, 24 November
    With Sebastian Nanz
  • Design by Contract, 25 November

The agile methods course is new; its summary reads almost like a little blog article, so here it is.

Agile methods: the Good, the Bad and the Ugly

Agile methods are wonderful. They’ll give you software in no time at all, turn your customers and users into friends, catch bugs before they catch you, change the world, and boost your love life. Do you believe these claims (even excluding the last two)? It’s really difficult to form an informed opinion, since most of the presentations of eXtreme Programming and other agile practices are intended to promote them (and the consultants to whom they provide a living), not to deliver an objective assessment.

If you are looking for a guru-style initiation to the agile religion, this is not the course for you. What it does is to describe in detail the corpus of techniques covered by the “agile” umbrella (so that you can apply them effectively to your developments), and assess their contribution to software engineering. It is neither “for” nor “against” agile methods but fundamentally descriptive, pedagogical, objective and practical. The truth is that agile methods include some demonstrably good ideas along with some whose benefits are at best dubious. In addition (and this should not be a surprise) they cannot make the fundamental laws of software engineering go away.

Agile methods have now been around for more than a decade, during which many research teams, applying proven methods of experimental science, have performed credible empirical studies of how well the methods really work and how they compare to more traditional software engineering practices. This important body of research results, although not widely known, is critical to managers and developers in industry for deciding whether and how to use agile development. The course surveys these results, emphasizing the ones most directly relevant to practitioners.

A short discussion session will enable participants with experience in agile methods to share their results.

Taking this course will give you a strong understanding of agile development, and a clear view of when, where and how to apply them.

Schedule

Morning session: A presentation of agile methods

  • eXtreme Programming, pair programming, Scrum, Test-Driven Development, continuous integration, refactoring, stakeholder involvement, feature-driven development etc.
  • The agile lifecycle.
  • Variants: lean programming etc.

Afternoon session (I): Assessment of agile methods

  • The empirical software engineering literature: review of available studies. Assessment of their value. Principles of empirical software engineering.
  • Agile methods under the scrutiny of empirical research: what helps, what harms, and what has no effect? How do agile methods fare against traditional techniques?
  • Examples: pair programming versus code reviews; tests versus specifications; iterative development versus “Big Upfront Everything”.

Afternoon session (II): Discussion and conclusion

This final part of the course will present, after a discussion session involving participants with experience in agile methods, a summary of the contribution of agile methods to software engineering.

It will conclude with advice for organizations involved in software development and interested in applying agile methods in their own environment.

Target groups

CIOs; software project leaders; software developers; software testers and QA engineers.

VN:F [1.9.10_1130]
Rating: 8.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Assessing concurrency models

By describing a  poorly conceived hypothetical experiment, last week’s article described the “Professor Smith syndrome” consisting of four risks that threaten the validity of empirical software engineering experiments relying on students in a course:

  • Professor Smith Risk 1: possible bias if the evaluator has a stake in the ideas or tools under assessment.
  • Professor Smith Risk 2: creating different levels of motivation in the different groups (Hawthorne effect).
  • Professor Smith Risk 3: extrapolating from students to professionals.
  • Professor Smith Risk 4: violation of educational ethics if the experiment may cause some students to learn better than others.

If you have developed a great new method or tool and would like to assess it, the best way to address Risk 1 is to find someone else to do the assessment. What if  this solution is not practical? Recently we wanted to get some empirical evidence on the merits of the SCOOP (Simple Concurrent Object-Oriented Programming) approach to concurrency [1, 2], on which I have worked for a long time and which is now part of EiffelStudio since the release of 6.8 a couple of weeks ago. We wanted to see if, despite the Professor Smith risks, we could do a credible study ourselves.

The ETH Software Architecture course[3], into which we introduced some introductory material on concurrency last year (as part of a general effort to push more concurrency into software courses at ETH), looked like a good place to try an evaluation; it is a second-year course, where students, or so we thought, would have little prior experience in concurrent software design.

The study’s authors — Sebastian Nanz, Faraz Torshizi and Michela Pedroni — paid special attention to the methodological issues. To judge for yourself whether we addressed them properly, you can read the current version of our paper to be presented at ESEM 2011 [4]. Do note that it is a draft and that we will improve the paper for final publication.

Here is some of what we did. I will not address the Professor Smith Risk 3, the use of students, which (as Lionel Briand has pointed out in a comment on the previous article) published work has studied; in a later article I will give  references to some of that work. But we were determined to tackle the other risks explicitly, so as to obtain credible results.

The basic experiment was a session in which the students were exposed to two different design methods for concurrent software: multithreaded programming in Java, which I’ll call “Java Threads”, and SCOOP. We wanted to explore whether it is easier to program in SCOOP than in Java. This is too general a hypothesis, so it was refined into three concrete hypotheses: is it easier to understand a SCOOP program? Is it easier to find errors in SCOOP programs? Do programmers using SCOOP make fewer errors?

A first step towards reducing the effect — Professor Smith Risk 1 — of any emotional attachment of the experimenters  to one of the approaches, SCOOP in our case, was to generalize the study. Although what directly interested us was to compare SCOOP against Java Threads, we designed the study as a general scheme to compare concurrency approaches; SCOOP and Java Threads are just an illustration, but anyone else interested in assessing concurrency techniques — say Erlang versus C# concurrency — can apply the same methodology. This decision had two benefits: it freed the study from dependency on the particular techniques, hence, we hope, reducing bias; and as side attraction of the kind that is hard for researchers to resist, it increased the publishability of the results.

Circumstances unexpectedly afforded us another protection against any for-SCOOP bias: unbeknownst to us at the time of the study’s design, a first-year course had newly added (in 2009, whereas our study was performed in 2010) an introduction to concurrent programming — using Java Threads! While we had thought that concurrency in any form would be new to most students, in fact almost all of them had now seen Java Threads before. (The new material in the first-year course was taken by ETH students only, but many transfer students had also already had an exposure to Java Threads.) On the other hand, students had not had any prior introduction to SCOOP. So any advantage that one of the approaches may have had because of students’ prior experience would work against our hypotheses. This unexpected development would not help if the study’s results heavily favored Java Threads, but if they favored SCOOP it would reinforce their credibility.

A particular pedagogical decision was made regarding the teaching of our concurrency material: it started with a self-study rather than a traditional lecture. One of the reasons for this decision was purely pedagogical: we felt (and the course evaluations confirmed) that at that stage of the semester the students would enjoy a break in the rhythm of the course. But another reason was to avoid any bias that might have arisen from any difference in the lecturers’ levels of enthusiasm and effectiveness in teaching the two approaches. In the first course session devoted to concurrency, students were handed study materials presenting Java Threads and SCOOP and containing a test to be taken; the study’s results are entirely based on their answers to these tests. The second session was a traditional lecture presenting both approaches again and comparing them. The purpose of this lecture was to make sure the students got the full picture with the benefit of a teacher’s verbal explanations.

The study material was written carefully and with a tone as descriptive and neutral as possible. To make comparisons meaningful, it does not follow a structure specific to Java Threads or  SCOOP  (as we might have used had we taught only one of these approaches); instead it relies in both cases on the same overall plan  (figure 2 of the paper), based on a neutral analysis of concurrency concepts and issues: threads, mutual exclusion, deadlock etc. Each section then presents, for one such general concurrency question, the solution proposed by Java Threads or SCOOP.

This self-study material, as well as everything else about the study, is freely available on the Web; see the paper for the links.

In the self-study, all students studied both the Java Threads and SCOOP materials. They were randomly assigned to two groups, for which the only difference was the order of studying the approaches. We feel that this decision addresses the ethical issue (Professor Smith Risk 4): any pedagogical effect of reading about A before B rather than the reverse, in the course of a few hours, has to be minimal if you end up reading about the two of them, and on the next day follow a lecture that also covers both.

Having all students study both approaches — a crossover approach in the terminology of [5] — should also address the Hawthorne effect (Professor Smith Risk 2): students have no particular incentive to feel that one of the approaches is more hip than the other. While they are not told that SCOOP is partly the work of the instructors, some of them may know or guess this information; the consequences, positive or negative, are limited, since they are asked in both cases to do as well as they can in answering the assessment questions.

The design of that evaluation is another crucial element in trying to avoid bias. We tried, to the extent possible, to base the assessment on objective criteria. For the first hypothesis (program understanding) the technique was to ask the students to predict the output of some simple concurrent programs. To address the risk of a binary correct/incorrect assessment, and get a more fine-grained view, we devised the programs so that they would produce output strings and measured the Levenshtein (edit) distance to the correct result. For the second hypothesis (ease of program debugging), we gave students programs exhibiting typical errors in both approaches and asked them to tell us both the line number of any error they found and an explanation. Assessing the explanation required human analysis; the idea of also assigning partial credit for pointing out a line number without providing a good explanation is that it may be meaningful that a student found that something is amiss even without being quite able to define what it is. The procedure for the third hypothesis (producing programs with fewer errors) was more complex and required two passes over the result; it requires some human analysis, as you will see in the article, but we hope that the two-pass process removes any bias.

This description of the study is only partial and you should read the article [4] for the full details of the procedure.

So what did we find in the end? Does SCOOP really makes concurrency easier to learn, concurrent programs easier to debug, and concurrent programmers less error-prone? Here too  I will refer you to the article. Let me simply mention that the results held some surprises.

In obtaining these results we tried very hard to address the Professor Smith syndrome and its four risks. Since all of our materials, procedures and data are publicly accessible, described in some detail in the paper, you can determine for yourself how well we met this objective, and whether it is possible to perform credible assessments even of one’s own work.

References

Further reading: for general guidelines on how to conduct empirical research see [5]; for ethical guidelines, applied to psychological research but generalizable, see [6].

[1] SCOOP Eiffel documentation, available here.

[2] SCOOP project documentation at ETH, available here.

[3] Software Architecture course at ETH, course page (2011).

[4] Sebastian Nanz, Faraz Torshizi, Michela Pedroni and Bertrand Meyer: Design of an Empirical Study for Comparing the Usability of Concurrent Programming Languages, to appear in ESEM 2011 (ACM/IEEE International Symposium on Empirical Software Engineering and Measurement), 22-23 September 2011. Draft available here.

[5] Barbara A. Kitchenham, Shari L. Pfleeger, Lesley M. Pickard, Peter W. Jones, David C. Hoaglin, Khaled El-Emam and Jarrett Rosenberg: Preliminary Guidelines for Empirical Research in Software Engineering, national Research Council Canada (NRC-CNRC), Report ERB-1082, 2001, available here.

[6] Robert Rosenthal: Science and ethics in conducting, analyzing, and reporting psychological research, in  Psychological Science, 5, 1994, p127-134. I found a copy cached by a search engine here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +7 (from 7 votes)

Publish no loop without its invariant

 

There may be no more blatant example of  the disconnect between the software engineering community and the practice of programming than the lack of widespread recognition for the fundamental role of loop invariants. 

Let’s recall the basics, as they are taught in the fourth week or so of the ETH introductory programming course [1], from the very moment the course introduces loops. A loop is a mechanism to compute a result by successive approximations. To describe the current approximation, there is a loop invariant. The invariant must be:

  1. Weak enough that we can easily ensure it on a subset, possibly trivial, of our data set. (“Easily” means than this task is substantially easier than the full problem we are trying to solve.)
  2. Versatile enough that if it holds on some subset of the data we can easily (in the same sense) make it hold on a larger subset — even if only slightly larger.
  3. Strong enough that, when it covers the entire data, it yields the result we seek.

As a simple example, assume we seek the maximum of an array a of numbers, indexed from 1. The invariant states that Result is the maximum of the array slice from 1 to i. Indeed:

  1. We can trivially obtain the invariant by setting Result to be a [1]. (It is then the maximum of the slice a [1..1].)
  2. If the invariant holds, we can extend it to a slightly larger slice — larger by just one element — by increasing i by 1 and updating Result to be the greater of the previous Result and the element a [i] (for the new  i).
  3. When the slice covers the entire array — that is, i = n — the invariant tells us that Result is the maximum of the slice a [1..n], giving us the result we seek.

You cannot understand the corresponding program text

    from
        i := 1; Result := a [1]
    until i = n loop
        i := i + 1
        if Result < a [i] then Result := a [i] end
    end

without understanding the loop invariant. That is true even of people who have never heard the term: they will somehow form a mental image of the intermediate situation that justifies the algorithm. With the formal notion, the reasoning becomes precise and checkable. The difference is the same as between a builder who has no notion of theory, and one who has learned the laws of mechanics and construction engineering.

As another example, take Levenshtein distance (also known as edit distance). It is the shortest sequence of operations (insert, delete or replace a character) that will transform a string into another. The algorithm (a form of dynamic programming) fills in a matrix top to bottom and left to right, each entry being one plus the maximum of the three neighboring ones to the top and left, except if the corresponding characters in the strings are the same, in which case it keeps the top-left neighbor’s value. The basic operation in the loop body reads

      if source [i] = target [j] then
           dist [i, j] := dist [i -1, j -1]
      else
           dist [i, j] := min (dist [i, j-1], dist [i-1, j-1], dist [i-1, j]) + 1
      end

You can run this and see it work, filling the array cell after cell, then delivering the result at (dist [M, N] (the bottom-right entry, M and i being the lengths of the source and target strings. Or just watch the animation on page 60 of [2]. It works, but why it works remains a total mystery until someone tells you the invariant:

Every value of dist filled so far is the minimum distance from the initial substrings of the source, containing characters at position 1 to p, to the initial substring of the target, positions 1 to q.

This is the rationale for the above code: we want to compute the next value, at position [i, j]; if the corresponding characters in the source and target are the same, no operation is needed to extend the result we had in the top-left neighbor (position [i-1, j-1]); if not, the best we can do is the minimum we can get by extending the results obtained for our three neighbors: through the insertion of source [i] if the minimum comes from the neighbor to the left, [i-1, j]; through the deletion of target [j] if it comes from the neighbor above; or through a replacement if from the top-left neighbor.

With this explanation, a mysterious, almost hermetic algorithm instantly becomes crystal-clear. 

Yet another example is in-place linked list reversal. The body of the loop is a pointer ballet:

temp := previous
previous
:= next
next
:= next.right
previous.put_right
(temp)

with proper initialization (set next to the value of first and previous to Void) and finalization (set first to the value of previous). This is not the only possible implementation, but all variants of the algorithm use a very similar scheme.

The code looks again pretty abstruse, and hard to get right if you do not remember it exactly. As in the other examples, the only way to understand it is to see the invariant, describing the intermediate assumption after a typical loop iteration. If the original situation was this:

List reversal: initial state

List reversal: initial state

then after a few iterations the algorithm yields this intermediate situation: 

List reversal: intermediate state

List reversal: intermediate state

 The figure illustrates the invariant:

Starting from previous and repeatedly following right links yields the elements of some initial part of the list, but in the reverse of their original order; starting from next and following right links yields the remaining elements, in their original order. 

Then it is clear what the loop body with its pointer ballet is about: it moves by one position to the right the boundary between the two parts, making sure that the invariant holds again in the new state, with one more element in the first (yellow) part and one fewer in the second (pink) part. At the end the second part will be empty and the first part will encompass all elements, so that (after resetting first to the value of previous) we get the desired result.

This example is particularly interesting because list reversal is a standard interview questions for programmers seeking a job; as a result, dozens of  pages around the Web helpfully present algorithms for the benefit of job candidates. I ran a search  on “List reversal algorithm” [3], which yields many such pages. It is astounding to see that from the first fifteen hits or so, which include pages from programming courses at both Stanford and MIT, not a single one mentions invariants, or (even without using the word) gives the above explanation. The situation is all the more bizarre that many of these pages — read them for yourself! — go into intricate details about variants of the pointer manipulations. There are essentially no correctness arguments.

If you go a bit further down the search results, you will find some papers that do reference invariants, but here is the catch: rather than programming or algorithms papers, they are papers about software verification, such as one by Richard Bornat which uses a low-level (C) version of the example to illustrate separation logic [4]. These are good papers but they are completely distinct from those directed at ordinary programmers, who simply wish to learn a basic algorithm, understand it in depth, and remember it on the day of the interview and beyond.

This chasm is wrong. Software verification techniques are not just good for the small phalanx of experts interested in formal proofs. The basic ideas have potential applications to the daily business of programming, as the practice of Eiffel has shown (this is the concept of  “Verification As a Matter Of Course” briefly discussed in an earlier post [5]). Absurdly, the majority of programmers do not know them.

It’s not that they cannot do their job: somehow they eke out good enough results, most of the time. After all, the European cathedrals of the middle ages were built without the benefit of sophisticated mathematical models, and they still stand. But today we would not hire a construction engineer who had not studied the appropriate mathematical techniques. Why should we make things different for software engineering, and deprive practitioners from the benefits of solid, well-accepted theory?  

As a modest first step, there is no excuse, ever, for publishing a loop without the basic evidence of its adequacy: the loop invariant.

References

[1] Bertrand Meyer: Touch of Class: Learning to Program Well, Using Objects and Contracts, Springer, 2009. See course page (English version) here.

[2] Course slides on control structures,  here in PowerPoint (or here in PDF, without the animation); see example starting on page 51, particularly the animation on page 54. More recent version in German here (and in PDF here), animation on page 60.

[3] For balance I ran the search using Qrobe, which combines results from Ask, Bing and Google.

[4] Richard Bornat, Proving Pointer Programs in Hoare Logic, in  MPC ’00, 5th International Conference on Mathematics of Program Construction, 2000, available here.

[5] Bertrand Meyer, Verification as a Matter of Course, a post on this blog.

VN:F [1.9.10_1130]
Rating: 10.0/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

The Future Of Software Engineering

In case you haven’t heard about it yet, let me point you to FOSE, the Future Of Software Engineering [1] symposium in Zurich next week, organized by Sebastian Nanz. It is all made of invited talks; it is hard to think (with the possible exception of the pioneers’ conference [2]) of any previous gathering of so many software engineering innovators:

  • Barry Boehm
  • Manfred Broy
  • Patrick Cousot
  • Erich Gamma
  • Yuri Gurevich
  • Michael Jackson
  • Rustan Leino
  • David Parnas
  • Dieter Rombach
  • Joseph Sifakis
  • Niklaus Wirth
  • Pamela Zave
  • Andreas Zeller

The symposium is over two days. It is followed by a special event on “Eiffel at 25” which, as the rest of FOSE, is resolutely forward-looking, presenting a number of talks on current Eiffel developments, particularly in the areas of verification integrated in the development cycle (see “Verification As A Matter Of Course” [3]) and concurrent programming.

References

[1] Future Of Software Engineering (FOSE): symposium home page.
[2] Broy and Denert, editors: Software Pioneers, Springer, 2002. See publisher’s page.
[3] Verification As a Matter Of Course (VAMOC): an earlier entry of this blog.

VN:F [1.9.10_1130]
Rating: 7.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Another DOSE of distributed software development

The software world is not flat; it is multipolar. Gone are the days of one-site, one-team developments. The increasingly dominant model today is a distributed team; the place where the job gets done is the place where the appropriate people reside, even if it means that different parts of the job get done in different places.

This new setup, possibly the most important change to have affected the practice of software engineering in this early part of the millennium,  has received little attention in the literature; and even less in teaching techniques. I got interested in the topic several years ago, initially by looking at the phenomenon of outsourcing from a software engineering perspective [1]. At ETH, since 2004, Peter Kolb and I, aided by Martin Nordio and Roman Mitin, have taught a course on the topic [2], initially called “software engineering for outsourcing”. As far as I know it was the first course of its kind anywhere; not the first course about outsourcing, but the first to explore the software engineering implications, rather than business or political issues. We also teach an industry course on the same issues [3], attended since 2005 by several hundred participants, and started, with Mathai Joseph from Tata Consulting Services, the SEAFOOD conference [4], Software Engineering Advances For Outsourced and Offshore Development, whose fourth edition starts tomorrow in Saint Petersburg.

After a few sessions of the ETH course we realized that the most important property of the mode of software development explored in the course is not that it involves outsourcing but that it is distributed. In parallel I became directly involved with highly distributed development in the practice of Eiffel Software’s development. In 2007 we renamed the ETH course “Distributed and Outsourced Software Engineering” (DOSE) to acknowledge the broadened scope. The topic is still new; each year we learn a little more about what to teach and how to teach it.

The 2007 session saw another important addition. We felt it was no longer sufficient to talk about distributed development, but that students should practice it. Collaboration between groups in Zurich and other groups in Zurich was not good enough. So we contacted colleagues around the world interested in similar issues, and received an enthusiastic response. The DOSE project is itself distributed: teams from students in different universities collaborate in a single development. Typically, we have two or three geographically distributed locations in each project group. The participating universities have been Politecnico di Milano (where our colleagues Carlo Ghezzi and Elisabetta di Nitto have played a major role in the current version of the project), University of Nijny-Novgorod in Russia, University of Debrecen in Hungary, Hanoi University of Technology in Vietnam, Odessa National Polytechnic in the Ukraine and (across town for us) University of Zurich. For the first time in 2010 a university from the Western hemisphere will join: University of Rio Cuarto in Argentina.

We have extensively studied how the projects actually fare (see publications [4-8]). For students, the job is hard. Often, after a couple of weeks, many want to give up: they have trouble reaching their partner teams, understanding their accents on Skype calls, agreeing on modes of collaboration, finalizing APIs, devising a proper test plan. Yet they hang on and, in most cases, succeed. At the end of the course they tell us how much they have learned about software engineering. For example I know few better way of teaching the importance of carefully documented program interfaces — including contracts — than to ask the students to integrate their modules with code from another team halfway around the globe. This is exactly what happens in industrial software development, when you can no longer rely on informal contacts at the coffee machine or in the parking lot to smooth out misunderstandings: software engineering principles and techniques come in full swing. With DOSE, students learn and practice these fundamental techniques in the controlled environment of a university project.

An example project topic, used last year, was based on an idea by Martin Nordio. He pointed out that in most countries there are some card games played in that country only. The project was to program such a game, where the team in charge of the game logic (what would be the “business model” in an industrial project) had to explain enough of their country’s game, and abstractly enough, to enable the other team to produce the user interface, based on a common game engine started by Martin. It was tough, but some of the results were spectacular, and these are students who will not need more preaching on the importance of specifications.

We are currently preparing the next session of DOSE, in collaboration with our partner universities. The more the merrier: we’d love to have other universities participate, including from the US. Adding extra spice to the project, the topic will be chosen among those from the ICSE SCORE competition [9], so that winning students have the opportunity to attend ICSE in Hawaii. If you are teaching a suitable course, or can organize a student group that will fit, please read the project description [10] and contact me or one of the other organizers listed on the page. There is a DOSE of madness in the idea, but no one, teacher or student,  ever leaves the course bored.

References

[1] Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software Engineering, in Computer (IEEE), January 2006, pages 124, 122-123. Available here.

[2] ETH course page: see here for last year’s session (description of Fall 2010 session will be added soon).

[3] Industry course page: see here for latest (June 2010( session (description of November 2010 session will be added soon).

[4] SEAFOOD 2010 home page.

[5] Bertrand Meyer and Marco Piccioni: The Allure and Risks of a Deployable Software Engineering Project: Experiences with Both Local and Distributed Development, in Proceedings of IEEE Conference on Software Engineering & Training (CSEE&T), Charleston (South Carolina), 14-17 April 2008, ed. H. Saiedian, pages 3-16. Preprint version  available online.

[6] Bertrand Meyer:  Design and Code Reviews in the Age of the Internet, in Communications of the ACM, vol. 51, no. 9, September 2008, pages 66-71. (Original version in Proceedings of SEAFOOD 2008 (Software Engineering Advances For Offshore and Outsourced Development,  Lecture Notes in Business Information Processing 16, Springer Verlag, 2009.) Available online.

[7] Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi, Elisabetta Di Nitto and Giordano Tamburelli: The Role of Contracts in Distributed Development, in Proceedings of SEAFOOD 2009 (Software Engineering Advances For Offshore and Outsourced Development), Zurich, June-July 2009, Lecture Notes in Business Information Processing 35, Springer Verlag, 2009. Available online.

[8] Martin Nordio, Roman Mitin and Bertrand Meyer: Advanced Hands-on Training for Distributed and Outsourced Software Engineering, in ICSE 2010: Proceedings of 32th International Conference on Software Engineering, Cape Town, May 2010, IEEE Computer Society Press, 2010. Available online.

[9] ICSE SCORE 2011 competition home page.

[10] DOSE project course page.

VN:F [1.9.10_1130]
Rating: 8.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

Verification As a Matter Of Course

At the ACM Symposium on Applied Computing (SAC) in Sierre last week, I gave a talk entitled “How you will be programming in 10 years”, describing a number of efforts by various people, with a special emphasis on our work at both ETH and Eiffel Software, which I think point to the future of software development. Several people have asked me for the slides, so I am making them available [1].

It occurred to me after the talk that the slogan “Verification As a Matter Of Course” (VAMOC) characterizes the general idea well. The world needs verified software, but the software development community is reluctant  to use traditional heavy-duty verification techniques. While some of the excuses are unacceptable, others sources of resistance are justified and it is our job to make verification part of the very fabric of everyday software development.

My bet, and the basis of large part of both Eiffel and the ETH verification work, is that it is possible to bring verification to practicing developers as a natural, unobtrusive component of the software development process, through the tools they use.

The talk also broaches on concurrency, where many of the same ideas apply; CAMOC is the obvious next slogan.

Reference

[1] Slides of “How you will be programming in 10 years” talk (PDF).

VN:F [1.9.10_1130]
Rating: 8.8/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Reflexivity, and other pillars of civilization

Let me start, dear reader of this blog, by probing your view of equality, and also of assignment. Two questions:  

  • Is a value x always equal to itself? (For the seasoned programmers in the audience: I am talking about a value, as in mathematics, not an expression, as in programming, which could have a side effect.)
  • In programming, if we consider an assignment

       x := y

and v is the value of y before that assignment (again, this little detour is to avoid bothering with side effects), is the value of x always equal to v after the assignment?  

Maybe I should include here one of these Web polls that one finds on newspaper sites, so that you can vote and compare your answer to the Wisdom of Crowds. My own vote is clear: yes to both. Equality is reflexive (every value is equal to itself, at any longitude and temperature, no excuses and no exceptions); and the purpose of assignment is to make the value of the target equal to the value of the source. Such properties are some of the last ramparts of civilization. If they go away, what else is left?  

754 enters the picture

Now come floating-point numbers and the famous IEEE “754” floating-point standard [1]. Because not all floating point operations yield a result usable as a floating-point number, the standard introduces a notion of “NaN”, Not a Number; certain operations involving floating-point numbers may yield a NaN. The term NaN does not denote a single value but a set of values, distinguished by their “payloads”.  

Now assume that the value of x is a NaN. If you use a programming language that supports IEEE 754 (as they all do, I think, today) the test in  

        if x = x then …  

is supposed to yield False. Yes, that is specified in the standard: NaN is never equal to NaN (even with the same payload); nor is it equal to anything else; the result of an equality comparison involving NaN will always be False.  

Assignment behavior is consistent with this: if y (a variable, or an expression with no side effect) has a NaN value, then after  

        x := y  

the test xy will yield False. 

Before commenting further let me note the obvious: I am by no means a numerics expert; I know that IEEE 754 was a tremendous advance, and that it was designed by some of the best minds in the field, headed by Velvel Kahan who received a Turing Award in part for that success. So it is quite possible that I am about to bury myself in piles of ridicule. On the other hand I have also learned that (1) ridicule does not kill, so I am game; and more importantly (2) experts are often right but not always, and it is always proper to question their reasoning. So without fear let me not stop at the arguments that “the committee must have voted on this point and they obviously knew what they were doing” and “it is the standard and implemented on zillions of machines, you cannot change it now”. Both are true enough, but not an excuse to censor questions.  

What are the criteria?

The question is: compatibility with an existing computer standard is great, but what about compatibility with a few hundred years of mathematics? Reflexivity of equality  is something that we expect for any data type, and it seems hard to justify that a value is not equal to itself. As to assignment, what good can it be if it does not make the target equal to the source value?  

The question of assignment is particularly vivid in Eiffel because we express the expected abstract properties of programs in the form of contracts. For example, the following “setter” procedure may have a postcondition (expressed by the ensure clause):  

        set_x (v: REAL)
                        — Set the value of x (an attribute, also of type REAL) the value of v.
                do
                        …
                        x := v  
                ensure
                        x = v
                end  

   
If you call this procedure with a NaN argument for a compiler that applies IEEE 754 semantics, and monitor contracts at run time for testing and debugging, the execution will report a contract violation. This is very difficult for a programmer to accept.  

A typical example arises when you have an assignment to an item of an array of REAL values. Assume you are executing a [i] := x. In an object-oriented view of the world (as in Eiffel), this is considered simplified syntax  for the routine call a.put (x, i). The postcondition is that a [i] = x. It will be violated!  

The experts’ view

I queried a number of experts on the topic. (This is the opportunity to express my gratitude to members of the IFIP working group 2.5 on numerical software [2], some of the world’s top experts in the field, for their willingness to respond quickly and with many insights.) A representative answer, from Stuart Feldman, was:  

If I remember the debate correctly (many moons ago), NaN represents an indefinite value, so there is no reason to believe that the result of one calculation with unclear value should match that of another calculation with unclear value. (Different orders of infinity, different asymptotic approaches toward 0/0, etc.)  

Absolutely correct! Only one little detail, though: this is an argument against using the value True as a result of the test; but it is not an argument for using the value False! The exact same argument can be used to assert that the result should not be False:  

… there is no reason to believe that the result of one calculation with unclear value should not match that of another calculation with unclear value.  

Just as convincing! Both arguments complement each other: there is no compelling reason for demanding that the values be equal; and there is no compelling argument either to demand that they be different. If you ignore one of the two sides, you are biased.  

What do we do then?

The conclusion is not that the result should be False. The rational conclusion is that True and False are both unsatisfactory solutions. The reason is very simple: in a proper theory (I will sketch it below) the result of such a comparison should be some special undefined below; the same way that IEEE 754 extends the set of floating-point numbers with NaN, a satisfactory solution would extend the set of booleans with some NaB (Not a Boolean). But there is no NaB, probably because no one (understandably) wanted to bother, and also because being able to represent a value of type BOOLEAN on a single bit is, if not itself a pillar of civilization, one of the secrets of a happy life.  

If both True and False are unsatisfactory solutions, we should use the one that is the “least” bad, according to some convincing criterion . That is not the attitude that 754 takes; it seems to consider (as illustrated by the justification cited above) that False is somehow less committing than True. But it is not! Stating that something is false is just as much of a commitment as stating that it is true. False is no closer to NaB than True is. A better criterion is: which of the two possibilities is going to be least damaging to time-honored assumptions embedded in mathematics? One of these assumptions is the reflexivity of equality:  come rain or shine, x is equal to itself. Its counterpart for programming is that after an assignment the target will be equal to the original value of the source. This applies to numbers, and it applies to a NaN as well. 

Note that this argument does not address equality between different NaNs. The standard as it is states that a specific NaN, with a specific payload, is not equal to itself.  

What do you think?

A few of us who had to examine the issue recently think that — whatever the standard says at the machine level — a programming language should support the venerable properties that equality is reflexive and that assignment yields equality.

Every programming language should decide this on its own; for Eiffel we think this should be the specification. Do you agree?  

Some theory

For readers who like theory, here is a mathematical restatement of the observations above. There is nothing fundamentally new in this section, so if you do not like strange symbols you can stop here.  

The math helps explain the earlier observation that neither True nor False is more“committing” than the other. A standard technique (coming from denotational semantics) for dealing with undefinedness in basic data types, is to extend every data type into a lattice, with a partial order relation meaning “less defined than”. The lattice includes a bottom element, traditionally written “” (pronounced “Bottom”) and a top element written (“Top”). represents an unknown value (not enough information) and an error value (too much information). Pictorially, the lattice for natural numbers would look like this:  

Integer lattice

The lattice of integers

On basic types, we always use very simple lattices of this form, with three kinds of element: , less than every other element; , larger than all other elements; and in-between all the normal values of the type, which for the partial order of interest are all equal. (No, this is not a new math in which all integers are equal. The order in question simply means “is less defined than”. Every integer is as defined as all other integers, more defined than , and less defined than .) Such lattices are not very exciting, but they serve as a starting point; lattices with more interesting structures are those applying to functions on such spaces — including functions of functions —, which represent programs.  

The modeling of floating-point numbers with NaN involves such a lattice; introducing NaN means introducing a value. (Actually, one might prefer to interpret NaN as , but the reasoning transposes immediately.)  More accurately, since there are many NaN values, the lattice will look more like this:

Float lattice

The lattice of floats in IEEE 754

For simplicity we can ignore the variety of NaNs and consider a single .

Functions on lattices — as implemented by programs — should satisfy a fundamental property: monotonicity. A function f  is monotone (as in ordinary analysis) if, whenever xy, then f (x) ≤ f (y). Monotonicity is a common-sense requirement: we cannot get more information from less information. If we know less about x than about y, we cannot expect that any function (with a computer, any program) f will, out of nowhere, restore the missing information.  

Demanding monotonicity of all floating-point operations reflects this exigency of monotonicity: indeed, in IEEE 754, any arithmetic operation — addition, multiplication … — that has a NaN as one of its arguments must yield a Nan as its result. Great. Now for soundness we should also have such a property for boolean-valued operations, such as equality. If we had a NaB as the  of booleans, just like NaN is the  of floating-point numbers,  then the result of NaN = NaN would be NaB. But the world is not perfect and the IEEE 754 standard does not govern booleans. Somehow (I think) the designers thought of False as somehow less defined than True. But it is not! False is just as defined as True in the very simple lattice of booleans; according to the partial order, True and False are equal for the relevant partial order:

Boolean lattice

The lattice of booleans

Because any solution that cannot use a NaB will violate monotonicity and hence will be imperfect, we must resort to heuristic criteria. A very strong criterion in favor of choosing True is reflexivity — remaining compatible with a fundamental property of equality. I do not know of any argument for choosing False. 

The Spartan approach

There is, by the way, a technique that accepts booleans as we love them (with two values and no NaB) and achieves mathematical rigor. If operations involving NaNs  truly give us pimples, we can make any such operation trigger an exception. In the absence of values,  this is an acceptable programming technique for representing undefinedness. The downside, of course, is that just about everywhere the program must be ready to handle the exception in some way. 

It is unlikely that in practice many people would be comfortable with such a solution. 

Final observations

Let me point out two objections that I have seen. Van Snyder wrote: 

NaN is not part of the set of floating-point numbers, so it doesn’t behave as if “bottom” were added to the set. 

Interesting point, but, in my opinion not applicable: is indeed not part of the mathematical set of floating point numbers, but in the form of NaN it is part of the corresponding type (float in C, REAL in Eiffel); and the operations of the type are applicable to all values, including NaN if, as noted, we have not taken the extreme step of triggering an exception every time an operation uses a NaN as one of its operands. So we cannot free ourselves from the monotonicity concern by just a sleight of hands. 

Another comment, also by Van Snyder (slightly abridged): 

Think of [the status of NaN] as a variety of dynamic run-time typing. With static typing, if  x is an integer variable and y

        x := y 

does not inevitably lead to 

        x = y

 True; and a compelling argument to require that conversions satisfy equality as a postcondition! Such  reasoning — reflexivity again — was essential in the design of the Eiffel conversion mechanism [3], which makes it possible to define conversions between various data types (not just integers and reals and the other classical examples, but also any other user types as long as the conversion does not conflict with inheritance). The same conversion rules apply to assignment and equality, so that yes, whenever the assignment x := y is permitted, including when it involves a conversion, the property x = y  is afterwards always guaranteed to hold.

It is rather dangerous indeed to depart from the fundamental laws of mathematics. 

References

[1] IEEE floating-point standard, 754-2008; see summary and references in the Wikipedia entry.  

[2] IFIP Working Group 2.5 on numerical software: home page

[3] Eiffel standard (ECMA and ISO), available on the ECMA site.

VN:F [1.9.10_1130]
Rating: 9.6/10 (21 votes cast)
VN:F [1.9.10_1130]
Rating: +17 (from 19 votes)

A couple of loop examples

(This entry originated as a post on the EiffelStudio user group mailing list.) 

Here are a couple of actual examples of the new loop variants discussed in the blog entry immediately preceding this one. They came out of my current work; I started updating a program to take advantage of the new facility.

As a typical example, I replaced

        local
                eht: HASH_TABLE [EXPRESSION, EXPRESSION]
        do
               
        from
                eht := item (e)
                eht.start
         until
                eht.off
        loop
                Result.extend (eht.key_for_iteration)
                eht.forth
        end 

 by

        across item (e) as eht loop Result.extend (eht.key) end

 which also gets rid of the local variable declaration. The second form is syntactic sugar for the first, but I find it justified. 

 Another case, involving nested loops: 

— Previously:

        from
                other.start
        until
                other.off
        loop
                oht := other.item_for_iteration
                e := other.key_for_iteration
                from
                        oht.start
                until
                        oht.off
                loop
                        put (e, oht.item_for_iteration)
                        oht.forth
                end
                other.forth
        end

— Now:

        across other as o loop
                across o.item as oht loop put (o.key, oht.item) end
        end

here getting rid of two local variable declarations (although I might for efficiency reintroduce the variable e  to compute o.key just once). 

It is important to note that these are not your grandmother’s typical loops: they iterate on complex data structures, specifically hash tables where the keys are lists and the items are themselves hash tables, with lists as both items and keys. 

The mechanism is applicable to all the relevant data structures in EiffelBase (in other words, no need for the programmer to modify anything, just apply the across  loop to any such structure), and can easily extended to any new structure that one wishes to define. In the short term at least, I still plan in my introductory teaching to show the explicit variants first, as it is important for beginners to understand how a loop works. (My hunch based on previous cases is that after a while we will feel comfortable introducing the abstract variants from the start, but it takes some time to learn how to do it right.)

VN:F [1.9.10_1130]
Rating: 6.3/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 8 votes)

More expressive loops for Eiffel

New variants of the loop construct have been introduced into Eiffel, allowing a safer, more concise and more abstract style of programming. The challenge was to remain compatible with the basic loop concept, in particular correctness concerns (loop invariant and loop variant), to provide a flexible mechanism that would cover many different cases of iteration, and to keep things simple.

Here are some examples of the new forms. Consider a structure s, such as a list, which can be traversed in sequence. The following loop prints all elements of the list:

      across s as c loop print (c.item) end

(The procedure print is available on all types, and can be adapted to any of them by redefining the out feature; item gives access to individual values of the list.) More about c in just a moment; in the meantime you can just consider consider that using “as c” and manipulating the structure through c rather than directly through s  is a simple idiom to be learned and applied systematically for such across loops.

The above example is an instruction. The all and some variants yield boolean expressions, as in

across s as c all c.item > 0 end

which denotes a boolean value, true if and only if all elements of the list are positive. To find out if at least one is positive, use

across s as c some c.item > 0 end

Such expressions could appear, for example, in a class invariant, but they may be useful in many different contexts.

In some cases, a from clause is useful, as in

        across s as c from sum := 0  loop sum := sum + c.index c.item end
— Computes Σ i * s [i]

The original form of loop in Eiffel is more explicit, and remains available; you can achieve the equivalent of the last example, on a suitable structure, as

A list and a cursor

A list and a cursor

      from
sum := 0 ; s.start
until
s.after
loop
sum := sum + s.index s.item
s.forth

        end

which directly manipulates a cursor through s, using start to move it to the beginning, forth to advance it, and after to test if it is past the last element. The forms with across achieve the same purpose in a more concise manner. More important than concision is abstraction: you do not need to worry about manipulating the cursor through start, forth and after. Under the hood, however, the effect is the same. More precisely, it is the same as in a loop of the form

from
sum := 0 ; c.start
until
c.after
loop
sum := sum + c.index c.item
c.forth

        end

where c is a cursor object associated with the loop. The advantage of using a cursor is clear: rather than keeping the state of the iteration in the object itself, you make it external, part of a cursor object that, so to speak, looks at the list. This means in particular that many traversals can be active on the same structure at the same time; with an internal cursor, they would mess up with each other, unless you manually took the trouble to save and restore cursor positions. With an external cursor, each traversal has its own cursor object, and so does not interfere with other traversals — at least as long as they don’t change the structure (I’ll come back to that point).

With the across variant, you automatically use a cursor; you do not have to declare or create it: it simply comes as a result of the “as c” part of the construct, which introduces c as the cursor.

On what structures can you perform such iterations? There is no limitation; you simply need a type based on a class that inherits, directly or indirectly, from the library class ITERABLE. All relevant classes from the EiffelBase library have been updated to provide this inheritance, so that you can apply the across scheme to lists of all kinds, hash tables, arrays, intervals etc.

One of these structures is the integer interval. The notation  m |..| n, for integers m and n, denotes the corresponding integer interval. (This is not a special language notation, simply an operator, |..|, defined with the general operator mechanism as an alias for the feature interval of INTEGER classes.) To iterate on such an interval, use the same form as in the examples above:

        across m |..| n  as c from sum := 0  loop sum := sum + a [c.item] end
— Computes Σ a [i], for i ranging from m to n, for an array (or other structure) a

The key feature in ITERABLE is new_cursor, which returns a freshly created cursor object associated with the current structure. By default it is an ITERATION_CURSOR, the most general cursor type, but every descendant of ITERABLE can redefine the result type to something more specific to the current structure. Using a cursor — c in the above examples —, rather than manipulating the structure s directly, provides considerable flexibility thanks to the property that ITERATION_CURSOR itself inherits from ITERABLE   and hence has all the iteration mechanisms. For example you may write

across s.new_cursor.reversed as c loop print (c.item) end

to print elements in reverse order. (Using Eiffel’s operator  mechanism, you may write s.new_cursor, with a minus operator, as a synonym for new_cursor.reversed.) The function reversed gives you a new cursor on the same target structure, enabling you to iterate backwards. Or you can use

        across s.new_cursor + 3 as c loop print (c.item) end

(using s.new_cursor.incremented (3) rather than s.new_cursor + 3 if you are not too keen on operator syntax) to iterate over every third item. A number of other possibilities are available in the cursor classes.

A high-level iteration mechanism is only safe if you have the guarantee that the structure remains intact throughout the iteration. Assume you are iterating through a structure

across  as c loop some_routine end

and some_routine changes the structure s: the whole process could be messed up. Thanks to Design by Contract mechanisms, the library protects you against such mistakes. Features such as item and index, accessing properties of the structure during the iteration, are equipped with a precondition clause

require
is_valid

and every operation that changes the structure sets is_valid to false. So as soon as any change happens, you cannot continue the iteration; all you can do is restart a new one; the command start, used internally to start the operation, does not have the above precondition.

Sometimes, of course, you do want to change a structure while traversing it; for example you may want to add an element just to the right of the iteration position. If you know what you are doing that’s fine. (Let me correct this: if you know what you are doing, express it through precise contracts, and you’ll be fine.) But then you should not use the abstract forms of the loop, across; you should control the iteration itself through the basic form from … until with explicit cursor manipulation, protected by appropriate contracts.

The two styles, by the way, are not distinct constructs. Eiffel has always had only one form of loop and this continues the case. The across forms are simply new possibilities added to the classical loop construct, with obvious constraints stating for example that you may not have both a some or all form and an explicit  loop body.  In particular, an across loop can still have an invariant clause , specifying the correctness properties of the loop, as in

        across s as c from sum := 0  invariant sum = sigma (s, index)  loop sum := sum + c.index c.item end

EiffelStudio 6.5 already included the language update; the library update (not yet including the is_valid preconditions for data structure classes) will be made available this week.

These new mechanisms should increase the level of abstraction and the reliability of loops, a fundamental element of  almost all programs.

VN:F [1.9.10_1130]
Rating: 7.5/10 (22 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 14 votes)

The theory and calculus of aliasing

In a previous post I briefly mentioned some work that I am doing on aliasing. There is a draft paper [1], describing the theory, calculus, graphical notation (alias diagrams) and implementation. Here I will try to give an idea of what it’s about, with the hope that you will be intrigued enough to read the article. Even before you read it you might try out the implementation[2], a simple interactive interface with all the examples of the article .

What the article does not describe in detail — that will be for a companion paper— is how the calculus will be used as part of a general framework for developing object-oriented software proved correct from the start, the focus of our overall  “Trusted Components” project’ [3]. Let me simply state that the computation of aliases is the key missing step in the effort to make correctness proofs a standard part of software development. This is a strong claim which requires some elaboration, but not here.

The alias calculus asks a simple question: given two expressions representing references (pointers),  can their values, at a given point in the program, ever reference the same object during execution?

As an example  application, consider two linked lists x and y, which can be manipulated with operations such as extend, which creates a new cell and adds it at the end of the list:

lists

 The calculus makes it possible to prove that if  x and y are not aliased to each other, then none of the pointers in any of the cells in either of the lists can point to  (be aliased to) any cell of  the other. If  x is initially aliased to y, the property no longer holds. You can run the proof (examples 18 and 19) in the downloadable implementation.

The calculus gives a set of rules, each applying to a particular construct of the language, and listed below.

The rule for a construct p is of the form

          a |= p      =   a’
 

where a and a’ are alias relations; this states that executing p  in a state where the alias relation is a will yield the alias relation a’ in the resulting state. An alias relation is a symmetric, irreflexive relation; it indicates which expressions and variables can be aliased to each other in a given state.

The constructs p considered in the discussion are those of a simplified programming language; a modern object-oriented language such as Eiffel can easily be translated into that language. Some precision will be lost in the process, meaning that the alias calculus (itself precise) can find aliases that would not exist in the original program; if this prevents proofs of desired properties, the cut instruction discussed below serves to correct the problem.

The first rule is for the forget instruction (Eiffel: x := Void):

          a |= forget x       =   a \- {x}

where the \- operator removes from a relation all the elements belonging to a given set A. In the case of object-oriented programming, with multidot expressions x.y.z, the application of this rule must remove all elements whose first component, here x, belongs to A.

The rule for creation is the same as for forget:

         a |= create x          =   a \- {x}

The two instructions have different semantics, but the same effect on aliasing.

The calculus has a rule for the cut instruction, which removes the connection between two expressions:

        a |= cut x, y       =   a — <x, y>

where is set difference and <x, y> includes the pairs [x, y] and [y, x] (this is a special case of a general notation defined in the article, using the overline symbol). The cut   instruction corresponds, in Eiffel, to cut   x /=end:  a hint given to the alias calculus (and proved through some other means, such as standard axiomatic semantics) that some references will not be aliased.

The rule for assignment is

      a |= (x := y)      =   given  b = a \- {x}   then   <b È {x} x (b / y)}> end

where b /y (“quotient”), similar to an equivalence class in an equivalence relation, is the set of elements aliased to y in b, plus y itself (remember that the relation is irreflexive). This rule works well for object-oriented programming thanks to the definition of the \- operator: in x := x.y, we must not alias x to x.y, although we must alias it to any z that was aliased to x.y.

The paper introduces a graphical notation, alias diagrams, which makes it possible to reason effectively about such situations. Here for example is a diagram illustrating the last comment:

Alias diagram for a multidot assignment

Alias diagram for a multidot assignment

(The grayed elements are for explanation and not part of the final alias relation.)

For the compound instruction, the rule is:

           a |= (p ;  q)      =   (a |= p) |= q)

For the conditional instruction, we get:

           a |= (then p else  q end)      =   (a |= p) È  (a |= q)

Note the form of the instruction: the alias calculus ignores information from the then clause present in the source language. The union operator is the reason why  alias relations,  irreflexive and symmetric, are not  necessarily transitive.

The loop instruction, which also ignores the test (exit or continuation condition), is governed by the following rule:

           a |= (loop p end)       =   tN

where span style=”color: #0000ff;”>N is the first value such that tN = tN+1 (in other words, tN is the fixpoint) in the following sequence:

            t0          =    a
           tn+1       =   (tn È (tn |= p))     

The existence of a fixpoint and the correctness of this formula to compute it are the result of a theorem in the paper, the “loop aliasing theorem”; the proof is surprisingly elaborate (maybe I missed a simpler one).

For procedures, the rule is

         a |= call p        =   a |= p.body

where p.body is the body of the procedure. In the presence of recursion, this gives rise to a set of equations, whose solution is the fixpoint; again a theorem is needed to demonstrate that the fixpoint exists. The implementation directly applies fixpoint computation (see examples 11 to 13 in the paper and implementation).

The calculus does not directly consider routine arguments but treats them as attributes of the corresponding class; so a call is considered to start with assignments of the form f : = a for every pair of formal and actual arguments f and a. Like the omission of conditions in loops and conditionals, this is a source of possible imprecision in translating from an actual programming language into the calculus, since values passed to recursive activations of the same routine will be conflated.

Particularly interesting is the last rule, which generalizes the previous one to qualified calls of the form x. f (…)  as they exist in object-oriented programming. The rule involves the new notion of inverse variable, written x’ where x is a variable. Laws of the calculus (with Current denoting the current object, one of the fundamental notions of object-oriented programming) are

        Current.x            = x   
        x.Current            = x
        x.x’                      = Current
        x’.x                      = Current

In other words, Current plays the role of zero element for the dot operator, and variable inversion is the inverse operation. In a call x.f, where x denotes the supplier object (the target of the call), the inverse variable provides a back reference to the client object (the caller), indispensable to interpret references in the original context. This property is reflected by the qualified client rule, which uses  the auxiliary operator n (where x n a, for a relation a and a variable x, is the set of pairs [x.u, y.v] such that the pair [u, v] is in a). The rule is:

         a |= call x.r       =   x n ((x’ n a ) |= call r)

You need to read the article for the full explanation, but let me offer the following quote from the corresponding section (maybe you will note a familiar turn of phrase):

Thus we are permitted to prove that the unqualified call creates certain aliasings, on the assumption that it starts in its own alias environment but has access to the caller’s environment through the inverted variable, and then to assert categorically that the qualified call has the same aliasings transposed back to the original environment. This change of environment to prove the unqualified property, followed by a change back to the original environment to prove the qualified property, explains well the aura of magic which attends a programmer’s first introduction to object-oriented programming.

I hope you will enjoy the calculus and try the examples in the implementation. It is fun to apply, and there seems to be no end to the potential applications.

Reference

[1] Bertrand Meyer: The Theory and Calculus of Aliasing, draft paper, first published 12 January 2009 (revised 21 January 2010), available here and also at arxiv.org.
[2] Implementation (interactive version to try all the examples of the paper): downloadable Windows executable here.
[3] Bertrand Meyer: The Grand Challenge of Trusted Components, in 2003 International Conference on Software Engineering, available here.

VN:F [1.9.10_1130]
Rating: 7.9/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +7 (from 7 votes)

Just another day at the office

In the past few weeks I wrote a program to compute the aliases of variables and expressions in an object-oriented program (based on a new theory [1]).

For one of the data structures, I needed a specific notion of equality, so I did the standard thing in Eiffel: redefine the is_equal function inherited from the top class ANY, to implement the desired variant.

The first time I ran the result, I got a postcondition violation. The violated postcondition clauses was not even any that I wrote: it was an original postcondition of is_equal (other: like Current)  in ANY, which my redefinition inherited as per the rules of Design by Contract; it reads

symmetric: Result implies other ~ Current

meaning: equality is symmetric, so if Result is true, i.e. the Current object is equal to other, then other must also be equal to Current. (~ is object equality, which applies the local version is is_equal).  What was I doing wrong? The structure is a list, so the code iterates on both the current list and the other list:

from
    start ; other.start ; Result := True
until (not Result) or after loop
        if other.after then Result := False else
              Result := (item ~ other.item)
              forth ; other.forth
        end
end

Simple enough: at each position check whether the item in the current list is equal to the item in the other list, and if so move forth in both the current list and the other one; stop whenever we find two unequal elements, or we exhaust either list as told by after list. (Since is_equal is a function and not produce any side effect, the actual code saves the cursors before the iteration and restores them afterwards. Thanks to Ian Warrington for asking about this point in a comment to this post. The new across loop variant described in  two later postings uses external cursors and manages them automatically, so this business of maintaining the cursor manually goes away.)

The problem is that with this algorithm it is possible to return True if the first list was exhausted but not the second, so that the first list is a subset of the other rather than identical. The correction is immediate: add

Result and other_list.after

after the loop; alternatively, enclose the loop in a conditional so that it is only executed if count = other.count (this solution is  better since it saves much computation in cases of lists of different sizes, which cannot be equal).

The lesson (other than that I need to be more careful) is that the error was caught immediately, thanks to a postcondition violation — and one that I did not even have to write. Just another day at the office; and let us shed a tear for the poor folks who still program without this kind of capability in their language and development environment.

Reference

[1] Bertrand Meyer: The Theory and Calculus of Aliasing, draft paper, available here.

VN:F [1.9.10_1130]
Rating: 9.6/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

“Touch of Class” published

My textbook Touch of Class: An Introduction to Programming Well Using Objects and Contracts [1] is now available from Springer Verlag [2]. I have been told of many bookstores in Europe that have it by now; for example Amazon Germany [3] offers immediate delivery. Amazon US still lists the book as not yet published [4], but I think this will be corrected very soon.

touch_of_class

The book results from six years of teaching introductory programming at ETH Zurich. It is richly illustrated in full color (not only with technical illustrations but with numerous photographs of people and artefacts). It is pretty big, but designed so that a typical one-semester introductory course can cover most of the material.

Many topics are addressed (see table of contents below), including quite a few that are seldom seen at the introductory level. Some examples, listed here in random order: a fairly extensive introduction to software engineering including things like requirements engineering (not usually mentioned in programming courses, with results for everyone to see!) and CMMI, a detailed discussion of how to implement recursion, polymorphism and dynamic binding and their role for software architecture, multiple inheritance, lambda calculus (at an introductory level of course), a detailed analysis of the Observer and Visitor patterns, event-driven programming, the lure and dangers of references and aliasing, topological sort as an example of both algorithm and API design, high-level function closures, software tools, properties of computer hardware relevant for programmers, undecidability etc.

The progression uses an object-oriented approach throughout; the examples are in Eiffel, and four appendices present the details of Java, C#, C++ and C. Concepts of Design by Contract and rigorous development are central to the approach; for example, loops are presented as a technique for computing a result by successive approximation, with a central role for the concept of loop invariant. This is not a “formal methods” book in the sense of inflicting on the students a heavy mathematical apparatus, but it uses preconditions, postconditions and invariants throughout to alert them to the importance of reasoning rigorously about programs. The discussion introduces many principles of sound design, in line with the book’s subtitle, “Learning to Program Well”.

The general approach is “Outside-In” (also known as “Inverted Curriculum” and described at some length in some of my articles, see e.g. [5]): students have, right from the start, the possibility of working with real software, a large (150,000-line) library that has been designed specifically for that purpose. Called Traffic, this library simulates traffic in a city; it is graphical and of good enough visual quality to be attractive to today’s “Wii generation” students, something that traditional beginners’ exercises, like computing the 7-th Fibonacci number, cannot do (although we have these too as well). Using the Traffic software through its API, students can right from the first couple of weeks produce powerful applications, without understanding the internals of the library. But they do not stop there: since the whole thing is available in open source, students learn little by little how the software is made internally. Hence the name “Outside-In”: understand the interface first, then dig into the internals. Two advantages of the approach are particularly worth noting:

  • It emphasizes the value of abstraction, and particular contracts, not by preaching but by showing to students that abstraction helps them master a large body of professional-level software, doing things that would otherwise be unthinkable at an introductory level.
  • It addresses what is probably today the biggest obstacle to teaching introductory programming: the wide diversity of initial student backgrounds. The risk with traditional approaches is either to fly too high and lose the novices, or stay too low and bore those who already have programming experience. With the Outside-In method the novices can follow the exact path charted from them, from external API to internal implementation; those who already know something about programming can move ahead of the lectures and start digging into the code by themselves for information and inspiration.

(We have pretty amazing data on students’ prior programming knowledge, as  we have been surveying students for the past six years, initially at ETH and more recently at the University of York in England thanks to our colleague Manuel Oriol; some day I will post a blog entry about this specific topic.)

The book has been field-tested in its successive drafts since 2003 at ETH, for the Introduction to Programming course (which starts again in a few weeks, for the first time with the benefit of the full text in printed form). Our material, such as a full set of slides, plus exercises, video recordings of the lectures etc. is available to any instructor selecting the text. I must say that Springer did an outstanding job with the quality of the printing and I hope that instructors, students, and even some practitioners already in industry will like both form and content.

Table of contents

Front matter: Community resource, Dedication (to Tony Hoare and Niklaus Wirth), Prefaces, Student_preface, Instructor_preface, Note to instructors: what to cover?, Contents

PART I: Basics
1 The industry of pure ideas
2 Dealing with objects
3 Program structure basics
4 The interface of a class
5 Just Enough Logic
6 Creating objects and executing systems
7 Control structures
8 Routines, functional abstraction and information hiding
9 Variables, assignment and references
PART II: How things work
10 Just enough hardware
11 Describing syntax
12 Programming languages and tools
PART III: Algorithms and data structures
13 Fundamental data structures, genericity, and algorithm complexity
14 Recursion and trees
15 Devising and engineering an algorithm: Topological Sort
PART IV: Object-Oriented Techniques
16 Inheritance
17 Operations as objects: agents and lambda calculus
18 Event-driven design
PART V: Towards software engineering
19 Introduction to software engineering
PART VI: Appendices
A An introduction to Java (from material by Marco Piccioni)
B An introduction to C# (from material by Benjamin Morandi)
C An introduction to C++ (from material by Nadia Polikarpova)
D From C++ to C
E Using the EiffelStudio environment
Picture credits
Index

References

[1] Bertrand Meyer, Touch of Class: An Introduction to Programming Well Using Objects and Contracts, Springer Verlag, 2009, 876+lxiv pages, Hardcover, ISBN: 978-3-540-92144-8.

[2] Publisher page for [1]: see  here. List price: $79.95. (The page says “Ships in 3 to 4 weeks” but I think this is incorrect as the book is available; I’ll try to get the mention corrected.)

[3] Amazon.de page: see here. List price: EUR 53.45 (with offers starting at EUR 41.67).

[4] Amazon.com page: see here. List price: $63.96.

[5] Michela Pedroni and Bertrand Meyer: The Inverted Curriculum in Practice, in Proceedings of SIGCSE 2006, ACM, Houston (Texas), 1-5 March 2006, pages 481-485; available online.

VN:F [1.9.10_1130]
Rating: 7.4/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Void safety: Getting rid of the spectre of null-pointer dereferencing

A spectre is haunting programming — the spectre of null-pointer dereferencing. All the programming languages of old Europe and the New World have entered into a holy alliance to make everyone’s programs brittle:  Java, C, Pascal, C++, C# and yes, until recently, Eiffel.

The culprit is the use of references to denote objects used in calls: in

         x.f (...)

the value of x is a reference, which normally denotes an object but could at any time be void (or “null”). If this happens, the resulting “void call” will cause an exception and, usually, a crash.  No amount of testing can remove the risk entirely; the only satisfactory solution is a static one, enforcing void safety at the language level.

To this end, Eiffelists of various nationalities have assembled in the Cloud and sketched the following manifesto, to be published in the English language:

        Avoid a Void: The Eradication of Null Dereferencing
        Bertrand Meyer, Alexander Kogtenkov, Emmanuel Stapf
        White paper available here.
VN:F [1.9.10_1130]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Contracts written by people, contracts written by machines

What kind of contract do you write? Could these contracts, or some of them, be produced automatically?

The idea of inferring contracts from programs is intriguing; it also raises serious epistemological issues. In fact, one may question whether it makes any sense at all. I will leave the question of principle to another post, in connection with some of our as yet unpublished work. This is, in any case, an active research field, in particular because of the big stir that Mike Ernst’s Daikon created when it appeared a few years ago.

Daikon [1] infers loop invariants dynamically: it observes executions; by looking up a repertoire of invariant patterns, it finds out what properties the loops maintain. It may sound strange to you (it did to Mike’s PhD thesis supervisor [2] when he first heard about the idea), but it yields remarkable results.

In a recent paper presented at ISSTA [3], we took advantage of Daikon to compare the kinds of contract people write with those that a machine could infer. The work started out as Nadia Polikarpova’s master’s thesis at ITMO  in Saint Petersburg [4], in the group of Prof. Anatoly Shalyto and under the supervision of Ilinca Ciupa from ETH. (Ilinca recently completed her PhD thesis on automatic testing [5], and is co-author of the article.) The CITADEL tool — the name is an acronym, but you will have to look up the references to see what it means — applies Daikon to Eiffel program.

CITADEL is the first application of Daikon to a language where programmers can write contracts. Previous interfaces were for contract-less languages such as Java where the tool must synthesize everything. In Eiffel, programmers do write contracts (as confirmed by Chalin’s experimental study [6]). Hence the natural questions: does the tool infer the same contracts as a programmer will naturally write? If not, which kinds of contract is each best at?

To answer these questions, the study looked at three sources of contracts:

  • Contracts already present in the code (in the case of widely used libraries such as EiffelBase, equipped with contracts throughout).
  • Those devised by students, in a small-scale experiment.
  • The contracts inferred by Daikon.

What do you think? Before looking up our study, you might want to make your own guess at the answers. You will not find a spoiler here; for the study’s results, you should read our paper [3]. All right, just a hint: machines and people are (in case you had not noticed this before) good at different things.

References

 

[1] Michael Ernst and others, Daikon bibliography on Ernst’s research page at the University of Washington.

[2] David Notkin, see his web page.

[3] A Comparative Study of Programmer-Written and Automatically Inferred Contracts, by Nadia Polikarpova, Ilinca Ciupa and me, in ISSTA 2009: International Symposium on Software Testing and Analysis, Chicago, July 2009, online copy available.

[4] ITMO (Saint-Petersburg State University of Information Technologies, Mechanics and Optics), see here.

[5] Ilinca Ciupa, Strategies for random contract-based testing; PhD thesis, ETH Zurich, December 2008. For a link to the text and to her other publications see Ilinca’s ETH page.

[6] Patrice Chalin,  Are practitioners writing contracts? In Rigorous Development of Complex Fault-Tolerant Systems, eds. Jones et al.,  Lecture Notes in Computer Science 4157, Springer Verlag, 2006, pages 100-113.

VN:F [1.9.10_1130]
Rating: 9.3/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)