Archive for the ‘Design by Contract’ Category.

Loop invariants: the musical

 

Actually it is not a musical but an extensive survey. I have long been fascinated by the notion of loop invariant, which describes the essence of a loop. Considering a loop without its invariant is like conducting an orchestra without a score.

In this submitted survey paper written with Sergey Velder and Carlo Furia [1], we study loop invariants in depth and describe many algorithms from diverse areas of computer science through their invariants. For simplicity and clarity, the specification technique uses the Domain Theory technique described in an earlier article on this blog [2] (see also [3]). The invariants were verified mechanically using Boogie, a sign of how much more realistic verification technology has become in recent years.

The survey was a major effort (we worked on it for a year and a half); it is not perfect but we hope it will prove useful in the understanding, teaching and verification of important algorithms.

Here is the article’s abstract:

At the heart of every loop, and hence of all significant algorithms, lies a loop invariant: a property ensured by the initialization and maintained by every iteration so that, when combined with the exit condition, it yields the loop’s final effect. Identifying the invariant of every loop is not only a required step for software verification, but also a key requirement for understanding the loop and the program to which it belongs. The systematic study of loop invariants of important algorithms can, as a consequence, yield insights into the nature of software.

We performed this study over a wide range of fundamental algorithms from diverse areas of computer science. We analyze the patterns according to which invariants are derived from postconditions, propose a classification of invariants according to these patterns, and present its application to the algorithms reviewed. The discussion also shows the need for high-level specification and invariants based on “domain theory”. The included invariants and the corresponding algorithms have been mechanically verified using an automatic program prover. Along with the classification and applications, the conclusions include suggestions for automatic invariant inference and general techniques for model-based specification.

 

References

[1] Carlo Furia, Bertrand Meyer and Sergey Velder: Loop invariants: analysis, classification, and examples, submitted for publication, December 2012, draft available here.

[2] Domain Theory: the Forgotten Step in Program Verification, article from this blog, 11 April 2012, available here.

[3] Domain Theory: Precedents, article from this blog, 11 April 2012, available here

VN:F [1.9.10_1130]
Rating: 9.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

A fundamental duality of software engineering

A couple of weeks ago I proposed a small quiz. (I also stated that the answer would come “on Wednesday” — please understand any such promise as “whenever I find the time”. Sorry.) Here is the answer.

The quiz was:

I have a function:

  • For 0 it yields 0.
  • For 1 it yields 1.
  • For 2 it yields 4.
  • For 3 it yields 9.
  • For 4 it yields 16.

What is the value for 5?

Shortly thereafter I added a hint: the value for 5 is 25, and changed the question to: “What is the value for 6?”. For good measure we can also ask about the value for 1000. Now compare your answer to  what follows.

A good answer for the value at 6 is: 34 . The function in this case is -10 + 5 x + |2 x – 3| + |2 x -7|. It matches the values for the given inputs.

Linear, small values

 

 

 

 

 

 

 

 

 

The value for 1000 is 8980:

Linear function, full range

 

 

 

 

 

 

 

 

 

Another good answer at position 6 is 35.6. It comes up if we assume the function is over reals rather than integers; then a possible formula, which correlates very well (R-square of 0.9997) with the values at the given inputs, is:

869.42645566111 (1 – 0.4325853145802 e-.0467615868913719  (x – 17.7342512233011))2.3116827277657443

Exponential function, initial range

 

 

 

 

 

 

 

 

 

 

with a quite different asymptotic behavior, giving the value 869.4 at position 1000:

Exponential, full range

 

 

 

 

 

 

 

 

 

 

Some readers might have thought of another possibility, the square function x2, which again matches all the given values:

Square function, initial range

 

 

 

 

 

 

 

 

 

 

So which of these answers is right? Each is as good as the others, and as bad. There is in particular no reason to believe that the values given in the quiz’s statement suggest the square function. Any function that fits the given values, exactly (if we stick to integers) or approximately (with reals as simulated on a computer) is an equally worthy candidate. Six inputs, or six thousand, do not resolve the question. At best they are hints.

This difference between a hint and a solution is at the core of software engineering. It is, for example, the difference between a test and a specification. A test tells us that the program works for some values; as Dijkstra famously pointed out, and anyone who has developed a serious program has experienced, it does not tell us that it will work for others. The more successful tests, the more hints; but they are still only hints. I have always wondered whether Dijkstra was explicitly thinking of the Popperian notion of falsifiability: no number of experiments will prove a physical theory (although a careful experiment may boost the confidence in the theory, especially if competing theories fail to explain it, as the famous Eddington expedition did for relativity in 1919 [1]); but a single experiment can disprove a theory. Similarly, being told that our function’s value at 6 is 34 disqualifies the square function and the last one (the exponential), but does not guarantee that the first function (the linear combination) is the solution.

The specification-testing duality is the extension to computer science of the basic duality of logic. It starts with the elementary boolean operators: to prove a or b it suffices to establish a or to establish b; and to disprove a and b it suffices to show that a does not hold or to show that b does not hold. The other way round, to disprove a or b we have to show that a does not hold and to show that b does not hold; to prove that a and b holds, we have to show that a holds and to show that b holds.

Predicate calculus generalizes or to , “there exists”, and and to , “for all”. To prove ∃ x | p (x) (there is an x of which p holds) it suffices to find one value a such that p (a); let’s be pretentious and say we have “skolemized” x. To disprove∀ x | p (x) (p holds of all x) it suffices to find one value for which p does not hold.

In software engineering the corresponding duality is between proofs and tests, or (equivalently) specifications and use cases. A specification is like a “for all”: it tells us what must happen for all envisioned inputs. A test is like a “there exists”: it tells us what happens for a particular input and hence, as in predicate calculus, it is interesting as a disproof mechanism:

  • A successful test brings little information (like learning the value for 5 when trying to figure out what a function is, or finding one true value in trying to prove a or a false value in trying to prove a ).
  • An unsuccessful test brings us decisive information (like a false value for a ): the program is definitely not correct. It skolemizes incorrectness.

A proof, for its part, brings the discussion to an end when it is successful. In practice, testing may still be useful in this case, but only testing that addresses issues not covered by the proof:

  • Correctness of the compiler and platform, if not themselves proved correct.
  • Correctness the proof tools themselves, since most practical proofs require software support.
  • Aspects not covered by the specification such as, typically, performance and usability.

But for the properties it does cover the proof is final.

It is as foolish, then, to use tests in lieu of specifications as it would be to ignore the limitations of a proof. Agile approaches have caused much confusion here; as often happens in the agile literature [2], the powerful insight is mixed up with harmful advice. The insight, which has significantly improved the practice of software development, is that the regression test suite is a key asset of a project and that tests should be run throughout. The bad advice is to ditch upfront requirements and specifications in favor of tests. The property that tests lack and specifications possess is generality. A test is an instance; a thousand tests can never be more than a thousand instances. As I pointed out in a short note in EiffelWorld (the precursor to this blog) a few years ago [3], the relationship is not symmetric: one can generate tests from a specification, but not the other way around.

The same relationship holds between use cases and requirements. It is stunning to see how many people think that use cases (scenarios) are a form of requirements. As requirements they are as useless as one or ten values are to defining a function. Use cases are a way to complement the requirements by describing the system’s behavior in selected important cases. A kind of reality check, to ensure that whatever abstract aims have been defined for the system it still covers the cases known to be of immediate interest. But to rely on use cases as requirements means that you will get a system that will satisfy the use cases — and possibly little else.

When I use systems designed in recent years, in particular Web-based systems, I often find myself in a stranglehold: I am stuck with the cases that the specifiers thought of. Maybe it’s me, but my needs tend, somehow, to fall outside of these cases. Actually it is not just me. Not long ago, I was sitting close to a small-business owner who was trying to find her way through an insurance site. Clearly the site had a planned execution path for employees, and another for administrators. Problem: she was both an employee and the administrator. I do not know how the session ended, but it was a clear case of misdesign: a system built in terms of standard scenarios. Good specification performs an extra step of abstraction (for example using object-oriented techniques and contracts, but this is for another article). Skipping this step means forsaking the principal responsibility of the requirements phase: to generalize from an analysis of the behavior in known cases to a definition of the desired behaviors in all relevant cases.

Once more, as everywhere else in computer science [4], abstraction is the key to solid results that stand the test of time. Definitely better than judging a book by its cover, inferring a function by its first few values, verifying a program by its tests, or specifying a system by its use cases.

References

[1] See e.g. a blog article: Einstein and Eddington, here.

[2] Bertrand Meyer: Agile! The Good, the Hype and the Ugly, 2013, to appear.

[3] Bertrand Meyer: Test or spec? Test and spec? Test from spec!, EiffelWorld column, 2004 available here.

[4] Jeff Kramer: Is Abstraction the Key to Computer Science?, in Communications of the ACM, vol. 50, no. 4, April 2007, pages 36-42,  available from CiteSeer here

VN:F [1.9.10_1130]
Rating: 9.5/10 (32 votes cast)
VN:F [1.9.10_1130]
Rating: +14 (from 14 votes)

The manhood test

 

I came across an obscure and surprisingly interesting article by Cliff Jones [1], about the history of rely-guarantee but with the following extract:

It was perhaps not fully appreciated at the time of [Hoare’s 1969 axiomatic semantics paper] that the roles of pre and post conditions differ in that a pre condition gives permission to a developer to ignore certain possibilities; the onus is on a user to prove that a component will not be initiated in a state that does not satisfy its pre condition. In contrast a post condition is an obligation on the code that is created according to the specification. This Deontic view carries over [to rely-guarantee reasoning].

I use words more proletarian than “deontic”, but this view is exactly what stands behind the concepts of Design by Contract and has been clearly emphasized in all Eiffel literature ever since the first edition of OOSC. It remains, however, misunderstood outside of the Eiffel community; many people confuse Design by Contract with its opposite, defensive programming. The criterion is simple: if you have a precondition to a routine, are you willing entirely to forsake the corresponding checks (conditionals, exceptions…) in the routine body? If not, you may be using the word “contract” as a marketing device, but that’s all. The courage to remove the checks is the true test of adulthood.

The application of Microsoft’s “Code Contracts” mechanism to the .NET libraries fails that test: a precondition may say “buffer not full” or “insertions allowed”, but the code still checks the condition and triggers an exception. The excuse I have heard is that one cannot trust those unwashed developers. But the methodological discipline is lost. Now let me repeat this using clearer terminology: it’s not deontic.

Reference

[1] Cliff Jones: The role of auxiliary variables in the formal development of concurrent programs, in Reflections on the work of C. A. R. Hoare, eds. Jones, Roscoe and Wood, Springer Lecture Notes in Computer Science,  2009, technical report version available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

EIS: Putting into Practice the Single Model Principle

Since release 6.2 (November 2008) EiffelStudio has included the EIS system, Eiffel Information System. It has been regularly revised, and significantly improved for the recent 7.1 release.

For us EIS is a key contribution with far-reaching software engineering implications, but many users seem unaware of it, perhaps because we have not been explicit enough about why we think it is important. We would love to have more people try it and give us their feedback. (Please make sure to use the 7.1 version.) Information on EIS can be found in the documentation [1] and also in a blog entry by Tao Feng [2].

EIS connects an Eiffel system with external documents in arbitrary formats; examples of formats currently supported are Microsoft Word and PDF, but you can easily add protocols. Such a connection links an element of the Eiffel text, such as a feature, with an element of the external document, such as a paragraph. Then clicking the Eiffel element in EiffelStudio will open the document at the corresponding place in the external tool (Word, Acrobat etc.); this is the EIS “outgoing” mechanism. Conversely the external element has a back link: clicking in the external tool will open EiffelStudio at the right place; this is the EIS “incoming” mechanism.

For the outgoing mechanism, the link will appear as part of a note clause (with attributes filled by default, you need only edit the URL and any option that you wish to change):

EIS incoming note

The fundamental idea behind EIS is to support the seamless form of software development promoted and permitted by Eiffel, where all phases of a project’s lifecycle are closely linked and the code provides the ultimate reference. Since other documents are often involved, in particular a requirements document (SRS, Software Requirements Specification), it is essential to record their precise associations with elements of the software text. For example a paragraph in the SRS could state that “Whenever the tank temperature reaches 50 degrees, the valve shall be closed”. In the software text, there will be some feature, for example monitor_temperature in the class TANK, reflecting this requirement. The two elements should be linked, in particular to ensure that dependencies appear clearly and that any change in either the requirements or the code triggers the corresponding update to the other side. This is what EIS provides.

We envision further tools to track dependencies and in particular to warn users if an element of a connection (e.g. requirement or code) changes, alerting them to the need to check the linked elements on the other side. One of the key goals here is traceability: effective project management, particular during the evolution of a system, requires that all dependencies between the project’s artifact are properly recorded so that it is possible to find out the consequences of any change, proposed or carried out.

The general approach reflects the essential nature of Eiffel development, with its Single Product Principle linking all elements of a software system and minimizing, rather than exaggerating, the inevitable differences of levels of abstraction between requirements, design, code, test plans, test logs, schedules and all the other products of a software project. The core problem of software engineering is change: if we use different tools and notations at each step, and keep the documents separate, we constantly run the risk of divergence between intent and reality. Eiffel by itself offers a good part of the solution by providing a single method (with all its principles, from Design by Contract to open-closed etc.), a single notation (the Eiffel language itself) and a single integrated set of tools (the EiffelStudio IDE) supporting the entire lifecycle; the language, in particular is meant for requirements and design as much as for implementation. The graphical forms (BON and UML, as produced by the Diagram Tool of EiffelStudio in a roundtrip style, i.e. changes to the diagram immediately generate code and changes to the code are reflected in the diagram) directly support these ideas. Of course documents in other formalisms, for example SRS, remain necessary for human consumption; but they should be closely linked to the core project asset, the Eiffel code; hence the need for EIS and its connection mechanisms.

This approach, as I have often noted when presenting it in public, is hard to convey to people steeped in the mindset of the past (UML as separate from code, model-driven development) which magnify the differences between software levels, hence introducing the risk of divergence and making change painful. The Eiffel approach is innovative enough to cause incomprehension or even rejection. (“What, you are not model-driven, but everyone says model-driven is good!” – well, models are bad if they are inaccurate. In the Eiffel approach the model and the program are the same thing, or more precisely the model is the abstract view of the program, obtained through abstraction mechanisms such as deferred classes with contracts and the “contract view” tool of EiffelStudio.)

To be effective, these ideas require proper tool support, for which EIS is a start. But we would like to know if we are on the right track and hence need feedback. We would be grateful if you could try out EIS and tell us what you think, both about the current state of the mechanism and its long-term prospects in the general framework of high-quality, sustainable software development.

References

[1] EIS documentation, here.

[2] Tao Feng, Start using Eiffel Information System, Eiffelroom blog entry of 17 April 2008, available here.

VN:F [1.9.10_1130]
Rating: 9.8/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Aliasing and framing: Saint Petersburg seminar next week

In  last Thursday’s session of the seminar, Kokichi Futatsugi’s talk took longer than planned (and it would have been a pity to stop him), so I postponed my own talk on Automatic inference of frame conditions through the alias calculus to next week (Thursday local date). As usual it will be broadcast live.

Seminar page: here, including the link to follow the webcast.

Time and date: 5 April 2012, 18 Saint Petersburg time; you can see the local time at your location here.

Abstract:

Frame specifications, the description of what does not change in a routine call, are one of the most annoying components of verification, in particular for object-oriented software. Ideally frame conditions should be inferred automatically. I will present how the alias calculus, described in recent papers, can address this need.

There may be a second talk, on hybrid systems, by Sergey Velder.

VN:F [1.9.10_1130]
Rating: 10.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)

A carefully designed Result

 

In the Eiffel user discussion group [1], Ian Joyner recently asked:

A lot of people are now using Result as a variable name for the return value in many languages. I believe this first came from Eiffel, but can’t find proof. Or was it adopted from an earlier language?

Proof I cannot offer, but certainly my recollection is that the mechanism was an original design and not based on any previous language. (Many of Eiffel’s mechanisms were inspired by other languages, which I have always acknowledged as precisely as I could, but this is not one of them. If there is any earlier language with this convention — in which case a reader will certainly tell me — I was and so far am not aware of it.)

The competing conventions are a return instruction, as in C and languages based on it (C++, Java, C#), and Fortran’s practice, also used in Pascal, of using the function name as a variable within the function body. Neither is satisfactory. The return instruction suffers from two deficiencies:

  • It is an extreme form of goto, jumping out of a function from anywhere in its control structure. The rest of the language sticks to one-entry, one-exit structures, as I think all languages should.
  • In most non-trivial cases the return value is not just a simple formula but has to be computed through some algorithm, requiring the declaration of a local variable just to denote that result. In every case the programmer must invent a name for that variable and, in a typed language, include a declaration. This is tedious and suggests that the language should take care of the declaration for the programmer.

The Fortran-Pascal convention does not combine well with recursion (which Fortran for a long time did not support). In the body of the function, an occurrence of the function’s name can denote the result, or it can denote a recursive call; conventions can be defined to remove the ambiguity, but they are messy, especially for a function without arguments: in function f, does the instruction

f := f + 1

add one to the value of the function’s result as computed so far, as it would if f were an ordinary variable, or to the result of calling f recursively?

Another problem with the Fortran-Pascal approach is that in the absence of a language-defined rule for variable initialization a function can return an undefined result, if some path has failed to initialize the corresponding variable.

The Eiffel design addresses these problems. It combines several ideas:

  • No nesting of routines. This condition is essential because without it the name Result would be ambiguous. In all Algol- and Pascal-like languages it was considered really cool to be able to declare routines within routines, without limitation on the depth of recursion. I realized that in an object-oriented language such a mechanism was useless and in fact harmful: a class should be a collection of features — services offered to the rest of the world — and it would be confusing to define features within features. Simula 67 offered such a facility; I wrote an analysis of inter-module relations in Simula, including inheritance and all the mechanisms retained from Algol such as nesting (I am trying to find that document, and if I do I will post it in this blog); my conclusion was the result was too complicated and that the main culprit was nesting. Requiring classes to be flat structures was, in my opinion, one of the most effective design decisions for Eiffel.
  • Language-defined initialization. Even a passing experience with C and C++ shows that uninitialized variables are one of the major sources of bugs. Eiffel introduced a systematic rule for all variables, including Result, and it is good to see that some subsequent languages such as Java have retained that convention. For a function result, it is common to ignore the default case, relying on the standard initialization, as in if “interesting case” then Result:= “interesting value” end without an else clause (I like this convention, but some people prefer to make all cases explicit).
  • One-entry, one-exit blocks; no goto in overt or covert form (break, continue etc.).
  • Design by Contract mechanisms: postconditions usually need to refer to the result computed by a function.

The convention is then simple: in any function, you can use a language-defined local variable Result for you, of the type that you declared for the function result; you can use it as a normal variable, and the result returned by any particular call will be the final value of the variable on exit from the function body.

The convention has been widely imitated, starting with Delphi and most recently in Microsoft’s “code contracts”, a kind of poor-man’s Design by Contract emulation, achieved through libraries; it requires a Result notation to denote the function result in a postcondition, although this notation is unrelated to the mechanisms in the target languages such as C#. As the example of Eiffel’s design illustrates, a programming language is a delicate construction where all elements should fit together; the Result convention relies on many other essential concepts of the language, and in turn makes them possible.

Reference

[1] Eiffel Software discussion group, here.

VN:F [1.9.10_1130]
Rating: 8.3/10 (12 votes cast)
VN:F [1.9.10_1130]
Rating: +5 (from 9 votes)

Never design a language

It is a common occurrence in software development. Someone says: “We should design a language”. The usual context is that some part of the development requires a rich functionality set, and it appears appropriate to provide a flexible solution through a specialized language. As an example, in the development of an airline’s frequent flyer program on which I once worked the suggestion came to design a “Flyer Award Language” , with instructions appropriate for that application domain: record a trip, redeem an award, provide a statement of available miles and so on. A common term for such notations is DSL, for Domain-Specific Language.

Designing a language in such a context is almost always a bad idea (and I am not sure why I wrote “almost”). Languages are endless objects of discussion, usually on the least important aspects, which are also the most visible and those on which everyone has a strong opinion: concrete syntactic properties. People might pretend otherwise (“let’s not get bogged down on syntax, this is just one possible form”) but syntax is what the discussions will get bogged down to — keywords or symbols, this order or that order of operands, one instruction with several variants vs. several instructions… — at the expense of discussing the fundamental issues of functionality.

Worse yet, even if a language will be part of the solution it is usually just one facet to the solution. As was already explained in detail in [1], any useful functionality set will naturally be useful through several interfaces: a textual notation with concrete syntax may be one of them, but other possible ones include an API (Abstract Program Interface) for use from other software elements, a Graphical User Interface, a web user interface, yet another for web services (typically WSDL or some other XML or JSON format).

In such cases, starting with a concrete textual language is pretty silly, since it cannot yield the others directly (it would have to be parsed and further analyzed, which does not make sense). Of all the kinds of interface listed, the most fundamental one is the API: it describes the raw functionality, excluding any choice of syntax but including, thanks to contracts, elements of semantics. For example, a class AWARD in our frequent flyer application might include the feature


             redeem_for_upgrade (c: CUSTOMER; f : FLIGHT)
                                     — Upgrade c to next class of service on f.
                       require
                                    c /= holder
implies holder.allowed_substitute (c)
                                    f.permitted_for_upgrade
(Current)
                                    c.booked
( f )
                       
ensure
                                    c.class_of_service
( f ) =  old c.class_of_service ( f ) + 1

There is of course no implementation as this declaration only specifies an interface, but it says what needs to be said: to redeem the award for an upgrade, the intended customer must be either the holder of the award or an allowed substitute; the flight must be available for an upgrade with the current award (including the availability of enough miles); the intended customer must already be booked on the flight; and the upgrade will be for the next class of service.

These details are the kind of things that need to be discussed and agreed before the API is finalized. Then one can start discussing about a textual form (a DSL), a graphical interface, a web services interface. They all consist of relatively simple layers to be superimposed on a solidly defined and precisely specified basis. Once you have that basis, you can have all the fun you like arguing over everyone’s favorite forms of concrete syntax; it cannot hurt the project any more. Having these discussions early, at the expense of the more fundamental issues, is a great danger.

One of the key rules for successful software construction — as for many other ventures of course, especially in science and technology — is to distinguish the essential from the auxiliary, and consequently to devote proper attention to the essential issues while avoiding disputations of auxiliary issues. To define functionality, API is essential; language is auxiliary.

So when should you design a language? Never. Well, hardly ever.

Reference

[1] Bertrand Meyer: Introduction to the Theory of Programming Languages, Prentice Hall, 1990.

VN:F [1.9.10_1130]
Rating: 7.9/10 (18 votes cast)
VN:F [1.9.10_1130]
Rating: +8 (from 16 votes)

Webinar today: the Varieties of Loop Invariants

I did not have time to complete my Monday post this week; it will be for next Monday (title: Never design a language). In the meantime, here is the announcement for today’s Saint Petersburg Software Engineering seminar , which can be followed live at http://sel.ifmo.ru/seminar/live (19:30 Saint Petersburg time, meaning 16:30 Zurich/Paris, 7:30 PDT on 12 January 2012), duration about one hour.

I will be talking today; the topic is “The varieties of loop invariants”, reporting on joint work with Carlo Furia and Sergey Velder. The abstract appears below.

A recording of previous talks, starting from those of last week, will soon be available on the seminar page.

 

Abstract

The key practical issue in verifying software is to come up with the right loop invariants. We are performing an extensive analysis of loop invariants in important algorithms across all major areas of computer science, and have developed a taxonomy. I will present some of the results of this ongoing work, performed with Sergey Velder (ITMO) and Carlo Furia (ETH).

VN:F [1.9.10_1130]
Rating: 9.0/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

All Bugs Great and Small

(Acknowledgment: this article came out of a discussion with Manuel Oriol, Carlo Furia and Yi Wei. The material is largely theirs but the opinions are mine.)

A paper on automatic testing, submitted some time ago, received the following referee comment:

The case study seems unrealistic and biased toward the proposed technique. 736 unique faults found in 92 classes means at least 8 unique faults per class at the same time. I have never seen in all my life a published library with so many faults …

This would be a good start for a discussion of what is wrong with refereeing in computer science today (on the negativism of our field see [1]); we have a referee who mistakes experience for expertise, prejudice for truth, and refuses to accept carefully documented evidence because “in all his life”, presumably a rich and rewarding life, he has never seen anything of the sort. That is not the focus of the present article, however; arrogant referees eventually retire and good papers eventually get published. The technical problems are what matters. The technical point here is about testing.

Specifically, what bugs are worth finding, and are high bug rates extraordinary?

The paper under review was a step in the work around the automatic testing tool AutoTest (see [2] for a slightly older overall description and [3] for the precise documentation). AutoTest applies a fully automatic strategy, exercising classes and their routines without the need to provide test cases or test oracles. What makes such automation possible is the combination of  random generation of tests and reliance on contracts to determine the success of tests.

For several years we have regularly subjected libraries, in particular the EiffelBase data structure library, to long AutoTest sessions, and we keep finding bugs (the better term is faults). The fault counts are significant; here they caught the referee’s eye. In fact we have had such comments before: I don’t believe your fault counts for production software; your software must be terrible!

Well, maybe.

My guess is that in fact EiffelBase has no more bugs, and possibly far fewer bugs, than other “production” code. The difference is that the  AutoTest framework performs far more exhaustive tests than usually practiced.

This is only a conjecture; unlike the referee I do not claim any special powers that make my guesses self-evident. Until we get test harnesses comparable to AutoTest for environments other than Eiffel and, just as importantly, libraries that are fully equipped with contracts, enabling the detection of bugs that otherwise might not come to light, we will not know whether the explanation is the badness of EiffelBase or the goodness of AutoTest.

What concrete, incontrovertible evidence demonstrates is that systematic random testing does find faults that human testers typically do not. In a 2008 paper [4] with Ilinca Ciupa, Manuel Oriol and Alexander Pretschner, we ran AutoTest on some classes and compared the results with those of human testers (as well as actual bug reports from the field, since this was released software). We found that the two categories are complementary: human testers find faults that are still beyond the reach of automated tools, but they typically never find certain faults that AutoTest, with its stubborn dedication to leaving no stone unturned, routinely uncovers. We keep getting surprised at bugs that AutoTest detects and which no one had sought to test before.

A typical set of cases that human programmers seldom test, but which frequently lead to uncovering bugs, involves boundary values. AutoTest, in its “random-plus” strategy, always exercises special values of every type, such as MAXINT, the maximum representable integer. Programmers don’t. They should — all testing textbooks tell them so — but they just don’t, and perhaps they can’t, as the task is often too tedious for a manual process. It is remarkable how many routines using integers go bezerk when you feed them MAXINT or its negative counterpart. Some of the fault counts that seem so outrageous to our referee directly come from trying such values.

Some would say the cases are so extreme as to be insignificant. Wrong. Many documented software failures and catastrophes are due to untested extreme values. Perhaps the saddest is the case of the Patriot anti-missile system, which at the beginning of the first Gulf war was failing to catch Scud missiles, resulting in one case in the killing of twenty-eight American soldiers in an army barrack. It was traced to a software error [5]. To predict the position of the incoming missile, the computation multiplied time by velocity. The time computation used multiples of the time unit, a tenth of a second, stored in a 24-bit register and hence approximated. After enough time, long enough to elapse on the battlefield, but longer than what the tests had exercised, the accumulated error became so large as to cause a significant — and in the event catastrophic — deviation. The unique poser of automatic testing is that unlike human testers it is not encumbered by a priori notions of a situation being extreme or unlikely. It tries all the possibilities it can.

The following example, less portentous in its consequences but just as instructive, is directly related to AutoTest. For his work on model-based contracts [6] performed as part of his PhD completed in 2008 at ETH, Bernd Schoeller developed classes representing the mathematical notion of set. There were two implementations; it turned out that one of them, say SET1, uses data structures that make the subset operation easy to program efficiently; in the corresponding class, the superset operation, ab, is then simply implemented as ba. In the other implementation, say SET2, it is the other way around: is directly implemented, and ab, is implemented as ba. This all uses a nice object-oriented structure, with a general class SET defining the abstract notion and the two implementations inheriting from it.

Now you may see (if you have developed a hunch for automated testing) where this is heading: AutoTest knows about polymorphism and dynamic binding, and tries all the type combinations that make sense. One of the generated test cases has two variables s1 and s2 of type SET, and tries out s2s1; in one of the combinations that AutoTest tries, s1 is dynamically and polymorphically of type SET1 and s2 of type SET2. The version of that it will use is from SET2, so it actually calls s1s2; but this tests the SET1 version of , which goes back to SET2. The process would go on forever, were it not for a timeout in AutoTest that uncovers the fault. Bernd Schoeller had tried AutoTest on these classes not in the particular expectation of finding bugs, but more as a favor to the then incipient development of AutoTest, to see how well the tool could handle model-based contracts. The uncovering of the fault, testament to the power of relentless, systematic automatic testing, surprised us all.

In this case no contract was violated; the problem was infinite recursion, due to a use of O-O techniques that for all its elegance had failed to notice a pitfall. In most cases, AutoTest finds the faults through violated postconditions or class invariants. This is one more reason to be cautious about sweeping generalizations of the kind “I do not believe these bug rates, no serious software that I have seen shows anything of the sort!”. Contracts express semantic properties of the software, which the designer takes care of stating explicitly. In run-of-the-mill code that does not benefit from such care, lots of things can go wrong but remain undetected during testing, only to cause havoc much later during some actual execution.

When you find such a fault, it is irrelevant that the case is extreme, or special, or rare, or trivial. When a failure happens it no longer matter that the fault was supposed to be rare; and you will only know how harmful it is when you deal with the consequences. Testing, single-mindedly  devoted to the uncovering of faults [7], knows no such distinction: it hunts all bugs large and small.

References

[1] The nastiness problem in computer science, article on the CACM blog, 22 August 2011, available here.

[2] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[3] Online AutoTest documentation, available here at docs.eiffel.com.

[4] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol and Alexander Pretschner: Finding Faults: Manual Testing vs. Random+ Testing vs. User Reports, in ISSRE ’08, Proceedings of the 19th IEEE International Symposium on Software Reliability Engineering, Redmond, November 2008, available here.

[5] US General Accounting Office: GAO Report: Patriot Missile Defense– Software Problem Led to System Failure at Dhahran, Saudi Arabia, February 4, 1992, available here.

[6] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[7] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008available here.

VN:F [1.9.10_1130]
Rating: 9.1/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

Towards a Calculus of Object Programs

I posted here a draft of a new article, Towards a Calculus of Object Programs.

Here is the abstract:

Verifying properties of object-oriented software requires a method for handling references in a simple and intuitive way, closely related to how O-O programmers reason about their programs. The method presented here, a Calculus of Object Programs, combines four components: compositional logic, a framework for describing program semantics and proving program properties; negative variables to address the specifics of O-O programming, in particular qualified calls; the alias calculus, which determines whether reference expressions can ever have the same value; and the calculus of object structures, a specification technique for the structures that arise during the execution of an object-oriented program.
The article illustrates the Calculus by proving the standard algorithm for reversing a linked list.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Testing insights

Lionel Briand and his group at the Simula Research Laboratory in Oslo have helped raise the standard for empirical research in testing and other software engineering practices by criticizing work that in their opinion relies on wrong assumptions or insufficiently supported evidence. In one of their latest papers [1] they take aim at “Adaptive Random Testing” (ART); one of the papers they criticize is from our group at ETH, on the ARTOO extension [2] to this testing method. Let’s examine the criticism!

We need a bit of background on random testing, ART, and ARTOO:

  • Random testing tries inputs based on a random process rather than attempting a more sophisticated strategy; it was once derided as silly [3], but has emerged in recent years as a useful technique. Our AutoTest tool [4], now integrated in EiffelStudio, has shown it to be particularly effective when applied to code equipped with contracts, which provide built-in test oracles. As a result of this combination, testing can be truly automatic: the two most tedious tasks of traditional testing, test case preparation and test oracle definition, can be performed without human intervention.
  • ART, developed by Chen and others [5], makes random testing not entirely random by ensuring that the inputs are spread reasonably evenly in the input domain.
  • ARTOO, part of Ilinca Ciupa’s PhD thesis on testing defended in 2008,   generalized ART to object-oriented programs, by defining a notion of distance between objects; the ARTOO strategy  avoids choosing objects that are too close to each other. The distance formula, which you can find in[2], combines three elementary distances: between the types of the objects involved,  the values in their primitive fields (integers etc.), and, recursively, the objects to which they have references.

Arcuri and Briand dispute the effectiveness of ART and criticize arguments that various papers have used to show its effectiveness. About the ARTOO paper they write

The authors concluded that ART was better than random testing since it needed to sample less test cases before finding the first failure. However, ART was also reported as taking on average 1.6 times longer due to the distance calculations!

To someone not having read our paper the comment and the exclamation mark would seem to suggest that the paper somehow downplays this property of random testing, but in fact it stresses it repeatedly. The property appears for example in boldface as part of the caption to Table 2: In most cases ARTOO requires significantly less tests to find a fault, but entails a time overhead, and again in boldface in the caption to Table 3: The overhead that the distance calculations introduce in the testing process causes ARTOO to require on average 1.6 times more time than RAND to find the first fault.

There is no reason, then, to criticize the paper on this point. It reports the results clearly and fairly.

If we move the focus from the paper to the method, however, Arcuri and Briand have a point. As they correctly indicate, the number of tests to first fault is not a particularly useful criterion. In fact I argued against it in another paper on testing [6]

The number of tests is not that useful to managers, who need help deciding when to stop testing and ship, or to customers, who need an estimate of fault densities. More relevant is the testing time needed to uncover the faults. Otherwise we risk favoring strategies that uncover a failure quickly but only after a lengthy process of devising the test; what counts is total time. This is why, just as flies get out faster than bees, a seemingly dumb strategy such as random testing might be better overall.

(To understand the mention of flies and bees you need to read [6].) The same article states, as its final principle:

Principle 7: Assessment criteria A testing strategy’s most important property is the number of faults it uncovers as a function of time.

The ARTOO paper, which appeared early in our testing work, used “time to first failure” because it has long been a standard criterion in the testing literature, but it should have applied our own advice and focused on more important properties of testing strategies.

The “principles” paper [6] also warned against a risk awaiting anyone looking for new test strategies:

Testing research is vulnerable to a risky thought process: You hit upon an idea that seemingly promises improvements and follow your intuition. Testing is tricky; not all clever ideas prove helpful when submitted to objective evaluation.

The danger is that the clever ideas may result in so much strategy setup time that any benefit on the rest of the testing process is lost. This danger threatens testing researchers, including those who are aware of it.

The idea of ARTOO and object distance remains attractive, but more work is needed to make it an effective contributor to automated random testing and demonstrate that effectiveness. We can be grateful to Arcuri and Briand for their criticism, and I hope they continue to apply their iconoclastic zeal to empirical software engineering work, ours included.

I have objections of my own to their method. They write that “all the work in the literature is based either on simulations or case studies with unreasonably high failure rates”. This is incorrect for our work, which does not use simulations, relying instead on actual, delivered software, where AutoTest routinely finds faults in an automatic manner.

In contrast, however, Arcuri and Briand rely on fault seeding (also known as fault introduction or fault injection):

To obtain more information on how shapes appear in actual SUT, we carried out a large empirical analysis on 11 programs. For each program, a series of mutants were generated to introduce faults in these programs in a systematic way. Faults generated through mutation [allow] us to generate a large number of faults, in an unbiased and varied manner. We generated 3727 mutants and selected the 780 of them with lower detection probabilities to carry out our empirical analysis of faulty region shapes.

In the absence of objective evidence attesting to the realism of fault seeding, I do not believe any insights into testing obtained from such a methodology. In fact we adopted, from the start of our testing work, the principle that we would never rely on fault seeding. The problem with seeded faults is that there is no guarantee they reflect the true faults that programmers make, especially the significant ones. Techniques for fault seeding are understandably good at introducing typographical mistakes, such as a misspelling or the replacement of a “+” by a “-”; but these are not interesting kinds of fault, as they are easily caught by the compiler, by inspection, by low-tech static tools, or by simple tests. Interesting faults are those resulting from a logical error in the programmer’s mind, and in my experience (I do not know of good empirical studies on this topic) seeding techniques do not generate them.

For these reasons, all our testing research has worked on real software, and all the faults that AutoTest has found were real faults, resulting from a programmer’s mistake.

We can only apply this principle because we work with software equipped with contracts, where faults will be detected through the automatic oracle of a violated assertion clause. It is essential, however, to the credibility and practicality of any testing strategy; until I see evidence to the contrary, I will continue to disbelieve any testing insights resulting from studies based on artificial fault injection.

References

[1] Andrea Arcuri and Lionel Briand: Adaptive Random Testing: An Illusion of Effectiveness, in ISSTA 2011 (International Symposium on Software Testing and Analysis), available here.

[2] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer: ARTOO: Adaptive Random Testing for Object-Oriented Software, in ICSE 2008: Proceedings of 30th International Conference on Software Engineering, Leipzig, 10-18 May 2008, IEEE Computer Society Press, 2008, also available here.

[3] Glenford J. Myers. The Art of Software Testing. Wiley, New York, 1979. Citation:

Probably the poorest methodology of all is random-input testing: the process of testing a program by selecting, at random, some subset of all possible input values. In terms of the probability of detecting the most errors, a randomly selected collection of test cases has little chance of being an optimal, or close to optimal, subset. What we look for is a set of thought processes that allow one to select a set of test data more intelligently. Exhaustive black-box and white-box testing are, in general, impossible, but a reasonable testing strategy might use elements of both. One can develop a reasonably rigorous test by using certain black-box-oriented test-case-design methodologies and then supplementing these test cases by examining the logic of the program (i.e., using white-box methods).

[4] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, available here. For practical uses of AutoTest within EiffelStudio see here.

[5] T. Y. Chen, H Leung and I K Mak: Adaptive Random Testing, in  Advances in Computer Science, ASIAN 2004, Higher-Level Decision Making,  ed. M.J. Maher,  Lecture Notes in Computer Science 3321, Springer-Verlag, pages 320-329, 2004, available here.

[6] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008, also available here.

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 7 votes)

If I’m not pure, at least my functions are

..

If I’m not pure, at least my jewels are [1].

..

We often need to be reassured that a routine, usually a function, is “pure”, meaning that it does not change the state of the computation. For example, a function used in a contract element (precondition, postcondition, class invariant, loop invariant) should be purely descriptive, since it is a specification element; evaluating it, typically for testing and debugging, should not create a change of behavior — a “Heisenberg effect” — in the very computation that it is intended to assess. Another application is in a concurrency context, particularly in SCOOP (see earlier posts and forthcoming ones): if one or more functions are pure, several of their executions can run  concurrently on the same object.

The notion of purity admits variants. The usual notion is what  [2] calls weak purity, which precludes changes to previously existing objects but allow creating new objects. In the EiffelBase library we also encounter routines that have another form of purity, which we may call “relative” purity: they can leave the same state on exit as they found on entry, but in-between they might change the state.  For the rest of this discussion we will rely on the standard notion of weak purity: no changes permitted on existing objects.

It is often suggested that the programming language should support specifying that a routine is pure; many people have indeed proposed the addition of a keyword such as pure to Eiffel. One of the reasons this is not — in my opinion — such a great idea is that purity is just a special case of the more general problem of framing: specifying and verifying what a routine does not change. If we can specify an arbitrary frame property, then we can, as a special case covered by the general mechanism, specify that a routine changes nothing.

To see why framing is so important, consider a class ACCOUNT with a routine deposit that has the postcondition

balance = old balance + sum………..— Where sum is the argument of deposit

Framing here means stating that nothing else than balance changes; for example the account’s owner and its number should remain the same. It is not practical to write all individual postcondition clauses such as

owner= old owner
number=
old number

and so on. But we do need to specify these properties and enforce them, if only to avoid that a descendant class (maybe MAFIA_ACCOUNT) distort the rules defined by the original.

One technique is to add a so-called “modifies clause”, introduced by verification tools such as ESC-Java [3] and JML [4]. Modifies clauses raise some theoretical issues; in particular, the list of modified expressions is often infinite, so we must restrict ourselves to an abstract-data-type view where we characterize a class by commands and queries and the modifies clause only involves queries of the class. Many people find this hard to accept at first, since anything that is not talked about can change, but it is the right approach. A modifies clause of sorts, included in the postcondition, appeared in an earlier iteration of the Eiffel specification, with the keyword only (which is indeed preferable to modifies, which in the Eiffel style favoring grammatically simple keywords would be modify, since what we want to express is not that the routine must change anything at all  but that it may only change certain specified results!). The convention worked well with inheritance, since it included the rule that a clause such as only balance, in class  ACCOUNT, prescribes that the routine may not, in its modifies version as well as in any version redefined in descendants, change any other query known at the level of ACCOUNT; but a descendant version may change, subject to its own ACCOUNT clauses, any new query introduced by a descendant.

To declare a routine as pure, it would suffice to use an empty only clause (not very elegant syntactically — “only” what? — but one can get used to it).

This construct has been discarded, as it places too heavy a burden on the programmer-specifier. Here the key observation resulted from a non-scientific but pretty extensive survey I made of all the JML code I could get my hands on. I found that every time a query appeared in a modifies clause it was also listed in the postcondition! On reflection, this seems reasonable: if you are serious about specification, as anyone bothering to write such a clause surely is, you will not just express that something changes and stop there; you will write something about how it may change. Not necessarily the exact result, as in

my_query = precise_final_value

but at least some property of that result, as in

some_property (my_query)

This observation has, however, an inescapable consequence for language design: modifies or only clauses should be inferred by the compiler from the postcondition, not imposed on the programmer as an extra burden. The convention, which we may call the Implicit Framing Rule, is simple:

A routine may change the value of a query only if the query is specified in the routine’s postcondition

(or, if you like double negation, “no routine may change the value of a query other than those specified in its postcondition”). Here we say that a feature is “specified” in a postcondition if it appears there outside of the scope of an old expression. (Clearly, an occurrence such as old balance does not imply that balance can be modified, hence this restriction to occurrences outside of an old.)

With this convention the only clause becomes implicit: it would simply list all the queries specified in the postcondition, so there is no need for the programmer to write it. For the rare case of wanting to specify that a query q may change, but not wanting to specify how, it is easy to provide a library function, say involved, that always return true and can be used in postconditions, as in involved (q).

The convention is of course not just a matter of programming methodology but, in an IDE supporting verification, such as the EVE “Verification As a Matter Of Course” environment which we are building for Eiffel [5], the compiler will enforce the definition above — no change permitted to anything not specified in the postcondition — and produce an error in case of a violation. This also means that we can easily specify that a routine is pure: it must simply not specify any query in its postcondition. It may still list it in an old clause, as happens often in practice, e.g.

Result = old balance – Minimum_balance………..— In the postcondition of a function available_funds

Note the need to use old here. Apart from this addition of old to some postconditions, a considerable advantage of the convention is that most existing code using pure functions will be suitable to the new purity enforcement without any need to provide new annotations.

I believe that this is the only sustainable convention. It does not, of course, solve the frame problem by itself (for attempts in this direction see [6, 7]), but it is a necessary condition for a solution that is simple, easily taught, fairly easily implemented, and effective. It goes well with model-based specifications [8, 9], which I believe are the technique of most promise for usable  specifications of object-oriented software. And it provides a straightforward, no-frills way to enforce purity where prescribed by the Command-Query Separation principle [10, 11]: if I’m not pure, at least my functions must be.

References

[1] From the lyrics of the aria Glitter and Be Gay in Leonard Bernstein’s Candide, text by Lillian Hellman and others. Youtube offers several performances, including  by Diana Damrau (here) and Natalie Dessay (here) . For the text see e.g. here.

[2] Adam Darvas and Peter Müller: Reasoning About Method Calls in Interface Specifications, in Journal of Object Technology, Volume 5, no. 5, jUNE 2006, pages 59-85, doi:10.5381/jot.2006.5.5.a3, available here.

[3] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata: Extended static checking for Java, in PLDI 2002 (Programming Language Design and Implementation), pages 234–245, 2002.

[4] Gary Leavens et al.: Java Modeling Language, see references here.

[5] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer: Verifying Eiffel Programs with Boogie, to appear in Boogie 2011, First International Workshop on Intermediate Verification Languages, Wroclaw, August 2011. See documentation about the EVE project on the project page.

[6] Ioannis Kassios: Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions, in Formal Methods 2006, eds. J. Misra, T. Nipkow and E. Sekerinski, Lecture Notes in Computer Science 4085, Springer Verlag, 2006, pages 268-283.

[7] Bernd Schoeller: Making Classes Provable through Contracts, Models and Frames, PhD thesis, ETH Zurich, 2007, available here

[8] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[9] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ’10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[10] Bertrand Meyer: Object-Oriented Software Construction, first (1988) and second (1997) editions, Prentice Hall.

[11] Bertrand Meyer: Touch of Class: An Introduction to Programming Well, Using Objects and Contracts, Springer Verlag, 2009.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Another DOSE of distributed software development

The software world is not flat; it is multipolar. Gone are the days of one-site, one-team developments. The increasingly dominant model today is a distributed team; the place where the job gets done is the place where the appropriate people reside, even if it means that different parts of the job get done in different places.

This new setup, possibly the most important change to have affected the practice of software engineering in this early part of the millennium,  has received little attention in the literature; and even less in teaching techniques. I got interested in the topic several years ago, initially by looking at the phenomenon of outsourcing from a software engineering perspective [1]. At ETH, since 2004, Peter Kolb and I, aided by Martin Nordio and Roman Mitin, have taught a course on the topic [2], initially called “software engineering for outsourcing”. As far as I know it was the first course of its kind anywhere; not the first course about outsourcing, but the first to explore the software engineering implications, rather than business or political issues. We also teach an industry course on the same issues [3], attended since 2005 by several hundred participants, and started, with Mathai Joseph from Tata Consulting Services, the SEAFOOD conference [4], Software Engineering Advances For Outsourced and Offshore Development, whose fourth edition starts tomorrow in Saint Petersburg.

After a few sessions of the ETH course we realized that the most important property of the mode of software development explored in the course is not that it involves outsourcing but that it is distributed. In parallel I became directly involved with highly distributed development in the practice of Eiffel Software’s development. In 2007 we renamed the ETH course “Distributed and Outsourced Software Engineering” (DOSE) to acknowledge the broadened scope. The topic is still new; each year we learn a little more about what to teach and how to teach it.

The 2007 session saw another important addition. We felt it was no longer sufficient to talk about distributed development, but that students should practice it. Collaboration between groups in Zurich and other groups in Zurich was not good enough. So we contacted colleagues around the world interested in similar issues, and received an enthusiastic response. The DOSE project is itself distributed: teams from students in different universities collaborate in a single development. Typically, we have two or three geographically distributed locations in each project group. The participating universities have been Politecnico di Milano (where our colleagues Carlo Ghezzi and Elisabetta di Nitto have played a major role in the current version of the project), University of Nijny-Novgorod in Russia, University of Debrecen in Hungary, Hanoi University of Technology in Vietnam, Odessa National Polytechnic in the Ukraine and (across town for us) University of Zurich. For the first time in 2010 a university from the Western hemisphere will join: University of Rio Cuarto in Argentina.

We have extensively studied how the projects actually fare (see publications [4-8]). For students, the job is hard. Often, after a couple of weeks, many want to give up: they have trouble reaching their partner teams, understanding their accents on Skype calls, agreeing on modes of collaboration, finalizing APIs, devising a proper test plan. Yet they hang on and, in most cases, succeed. At the end of the course they tell us how much they have learned about software engineering. For example I know few better way of teaching the importance of carefully documented program interfaces — including contracts — than to ask the students to integrate their modules with code from another team halfway around the globe. This is exactly what happens in industrial software development, when you can no longer rely on informal contacts at the coffee machine or in the parking lot to smooth out misunderstandings: software engineering principles and techniques come in full swing. With DOSE, students learn and practice these fundamental techniques in the controlled environment of a university project.

An example project topic, used last year, was based on an idea by Martin Nordio. He pointed out that in most countries there are some card games played in that country only. The project was to program such a game, where the team in charge of the game logic (what would be the “business model” in an industrial project) had to explain enough of their country’s game, and abstractly enough, to enable the other team to produce the user interface, based on a common game engine started by Martin. It was tough, but some of the results were spectacular, and these are students who will not need more preaching on the importance of specifications.

We are currently preparing the next session of DOSE, in collaboration with our partner universities. The more the merrier: we’d love to have other universities participate, including from the US. Adding extra spice to the project, the topic will be chosen among those from the ICSE SCORE competition [9], so that winning students have the opportunity to attend ICSE in Hawaii. If you are teaching a suitable course, or can organize a student group that will fit, please read the project description [10] and contact me or one of the other organizers listed on the page. There is a DOSE of madness in the idea, but no one, teacher or student,  ever leaves the course bored.

References

[1] Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software Engineering, in Computer (IEEE), January 2006, pages 124, 122-123. Available here.

[2] ETH course page: see here for last year’s session (description of Fall 2010 session will be added soon).

[3] Industry course page: see here for latest (June 2010( session (description of November 2010 session will be added soon).

[4] SEAFOOD 2010 home page.

[5] Bertrand Meyer and Marco Piccioni: The Allure and Risks of a Deployable Software Engineering Project: Experiences with Both Local and Distributed Development, in Proceedings of IEEE Conference on Software Engineering & Training (CSEE&T), Charleston (South Carolina), 14-17 April 2008, ed. H. Saiedian, pages 3-16. Preprint version  available online.

[6] Bertrand Meyer:  Design and Code Reviews in the Age of the Internet, in Communications of the ACM, vol. 51, no. 9, September 2008, pages 66-71. (Original version in Proceedings of SEAFOOD 2008 (Software Engineering Advances For Offshore and Outsourced Development,  Lecture Notes in Business Information Processing 16, Springer Verlag, 2009.) Available online.

[7] Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi, Elisabetta Di Nitto and Giordano Tamburelli: The Role of Contracts in Distributed Development, in Proceedings of SEAFOOD 2009 (Software Engineering Advances For Offshore and Outsourced Development), Zurich, June-July 2009, Lecture Notes in Business Information Processing 35, Springer Verlag, 2009. Available online.

[8] Martin Nordio, Roman Mitin and Bertrand Meyer: Advanced Hands-on Training for Distributed and Outsourced Software Engineering, in ICSE 2010: Proceedings of 32th International Conference on Software Engineering, Cape Town, May 2010, IEEE Computer Society Press, 2010. Available online.

[9] ICSE SCORE 2011 competition home page.

[10] DOSE project course page.

VN:F [1.9.10_1130]
Rating: 8.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

Programming on the cloud?

I am blogging live from the “Cloud Futures” conference organized by Microsoft in Redmond [1]. We had two excellent keynotes today, by Ed Lazowska [1] and David Patterson.

Lazowska emphasized the emergence of a new kind of science — eScience — based on analysis of enormous amounts of data. His key point was that this approach is a radical departure from “computational science” as we know it, based mostly on large simulations. With the eScience paradigm, the challenge is to handle the zillions of bytes of data that are available, often through continuous streams, in such fields as astronomy, oceanography or biology. It is unthinkable in his view to process such data through super-computing architectures specific to an institution; the Cloud is the only solution. One of the reasons (developed more explicitly in Patterson’s talk) is that cloud computing supports scaling down as well as scaling up. If your site experiences sudden bursts of popularity — say you get slashdotted — followed by downturns, you just cannot size the hardware right.

Lazowska also noted that it is impossible to convince your average  university president that Cloud is the way to go, as he will get his advice from the science-by-simulation  types. I don’t know who the president is at U. of Washington, but I wonder if the comment would apply to Stanford?

The overall argument for cloud computing is compelling. Of course the history of IT is a succession of swings of the pendulum between centralization and delocalization: mainframes, minis, PCs, client-server, “thin clients”, “The Network Is The Computer” (Sun’s slogan in the late eighties), smart clients, Web services and so on. But this latest swing seems destined to define much of the direction of computing for a while.

Interestingly, no speaker so far has addressed issues of how to program reliably for the cloud, even though cloud computing seems only to add orders of magnitude to the classical opportunities for messing up. Eiffel and contracts have a major role to play here.

More generally the opportunity to improve quality should not be lost. There is a widespread feeling (I don’t know of any systematic studies) that a non-negligible share of results generated by computational science are just bogus, the product of old Fortran programs built by generations of graduate students with little understanding of software principles. At the very least, moving to cloud computing should encourage the use of 21-th century tools, languages and methods. Availability on the cloud should also enhance a critical property of good scientific research: reproducibility.

Software engineering is remarkably absent from the list of scientific application areas that speaker after speaker listed for cloud computing. Maybe software engineering researchers are timid, and do not think of themselves as deserving large computing resources; consider, however, all the potential applications, for example in program verification and empirical software engineering. The cloud is a big part of our own research in verification; in particular the automated testing paradigm pioneered by AutoTest [3] fits ideally with the cloud and we are actively working in this direction.

Lazowska mentioned that development environments are the ultimate application of cloud computing. Martin Nordio at ETH has developed, with the help of Le Minh Duc, a Master’s student at Hanoi University of Technology, a cloud-based version of EiffelStudio: CloudStudio, which I will present in my talk at the conference tomorrow. I’ll write more about it in later posts; just one note for the moment: no one should ever be forced again to update or commit.

References

[1] Program of the Cloud Futures conference.

[2] Keynote by Ed Lazowska. You can see his slides here.

[3] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, Emmanuel Stapf: Programs That Test Themselves. IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009; online version here.

VN:F [1.9.10_1130]
Rating: 7.7/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Reflexivity, and other pillars of civilization

Let me start, dear reader of this blog, by probing your view of equality, and also of assignment. Two questions:  

  • Is a value x always equal to itself? (For the seasoned programmers in the audience: I am talking about a value, as in mathematics, not an expression, as in programming, which could have a side effect.)
  • In programming, if we consider an assignment

       x := y

and v is the value of y before that assignment (again, this little detour is to avoid bothering with side effects), is the value of x always equal to v after the assignment?  

Maybe I should include here one of these Web polls that one finds on newspaper sites, so that you can vote and compare your answer to the Wisdom of Crowds. My own vote is clear: yes to both. Equality is reflexive (every value is equal to itself, at any longitude and temperature, no excuses and no exceptions); and the purpose of assignment is to make the value of the target equal to the value of the source. Such properties are some of the last ramparts of civilization. If they go away, what else is left?  

754 enters the picture

Now come floating-point numbers and the famous IEEE “754” floating-point standard [1]. Because not all floating point operations yield a result usable as a floating-point number, the standard introduces a notion of “NaN”, Not a Number; certain operations involving floating-point numbers may yield a NaN. The term NaN does not denote a single value but a set of values, distinguished by their “payloads”.  

Now assume that the value of x is a NaN. If you use a programming language that supports IEEE 754 (as they all do, I think, today) the test in  

        if x = x then …  

is supposed to yield False. Yes, that is specified in the standard: NaN is never equal to NaN (even with the same payload); nor is it equal to anything else; the result of an equality comparison involving NaN will always be False.  

Assignment behavior is consistent with this: if y (a variable, or an expression with no side effect) has a NaN value, then after  

        x := y  

the test xy will yield False. 

Before commenting further let me note the obvious: I am by no means a numerics expert; I know that IEEE 754 was a tremendous advance, and that it was designed by some of the best minds in the field, headed by Velvel Kahan who received a Turing Award in part for that success. So it is quite possible that I am about to bury myself in piles of ridicule. On the other hand I have also learned that (1) ridicule does not kill, so I am game; and more importantly (2) experts are often right but not always, and it is always proper to question their reasoning. So without fear let me not stop at the arguments that “the committee must have voted on this point and they obviously knew what they were doing” and “it is the standard and implemented on zillions of machines, you cannot change it now”. Both are true enough, but not an excuse to censor questions.  

What are the criteria?

The question is: compatibility with an existing computer standard is great, but what about compatibility with a few hundred years of mathematics? Reflexivity of equality  is something that we expect for any data type, and it seems hard to justify that a value is not equal to itself. As to assignment, what good can it be if it does not make the target equal to the source value?  

The question of assignment is particularly vivid in Eiffel because we express the expected abstract properties of programs in the form of contracts. For example, the following “setter” procedure may have a postcondition (expressed by the ensure clause):  

        set_x (v: REAL)
                        — Set the value of x (an attribute, also of type REAL) the value of v.
                do
                        …
                        x := v  
                ensure
                        x = v
                end  

   
If you call this procedure with a NaN argument for a compiler that applies IEEE 754 semantics, and monitor contracts at run time for testing and debugging, the execution will report a contract violation. This is very difficult for a programmer to accept.  

A typical example arises when you have an assignment to an item of an array of REAL values. Assume you are executing a [i] := x. In an object-oriented view of the world (as in Eiffel), this is considered simplified syntax  for the routine call a.put (x, i). The postcondition is that a [i] = x. It will be violated!  

The experts’ view

I queried a number of experts on the topic. (This is the opportunity to express my gratitude to members of the IFIP working group 2.5 on numerical software [2], some of the world’s top experts in the field, for their willingness to respond quickly and with many insights.) A representative answer, from Stuart Feldman, was:  

If I remember the debate correctly (many moons ago), NaN represents an indefinite value, so there is no reason to believe that the result of one calculation with unclear value should match that of another calculation with unclear value. (Different orders of infinity, different asymptotic approaches toward 0/0, etc.)  

Absolutely correct! Only one little detail, though: this is an argument against using the value True as a result of the test; but it is not an argument for using the value False! The exact same argument can be used to assert that the result should not be False:  

… there is no reason to believe that the result of one calculation with unclear value should not match that of another calculation with unclear value.  

Just as convincing! Both arguments complement each other: there is no compelling reason for demanding that the values be equal; and there is no compelling argument either to demand that they be different. If you ignore one of the two sides, you are biased.  

What do we do then?

The conclusion is not that the result should be False. The rational conclusion is that True and False are both unsatisfactory solutions. The reason is very simple: in a proper theory (I will sketch it below) the result of such a comparison should be some special undefined below; the same way that IEEE 754 extends the set of floating-point numbers with NaN, a satisfactory solution would extend the set of booleans with some NaB (Not a Boolean). But there is no NaB, probably because no one (understandably) wanted to bother, and also because being able to represent a value of type BOOLEAN on a single bit is, if not itself a pillar of civilization, one of the secrets of a happy life.  

If both True and False are unsatisfactory solutions, we should use the one that is the “least” bad, according to some convincing criterion . That is not the attitude that 754 takes; it seems to consider (as illustrated by the justification cited above) that False is somehow less committing than True. But it is not! Stating that something is false is just as much of a commitment as stating that it is true. False is no closer to NaB than True is. A better criterion is: which of the two possibilities is going to be least damaging to time-honored assumptions embedded in mathematics? One of these assumptions is the reflexivity of equality:  come rain or shine, x is equal to itself. Its counterpart for programming is that after an assignment the target will be equal to the original value of the source. This applies to numbers, and it applies to a NaN as well. 

Note that this argument does not address equality between different NaNs. The standard as it is states that a specific NaN, with a specific payload, is not equal to itself.  

What do you think?

A few of us who had to examine the issue recently think that — whatever the standard says at the machine level — a programming language should support the venerable properties that equality is reflexive and that assignment yields equality.

Every programming language should decide this on its own; for Eiffel we think this should be the specification. Do you agree?  

Some theory

For readers who like theory, here is a mathematical restatement of the observations above. There is nothing fundamentally new in this section, so if you do not like strange symbols you can stop here.  

The math helps explain the earlier observation that neither True nor False is more“committing” than the other. A standard technique (coming from denotational semantics) for dealing with undefinedness in basic data types, is to extend every data type into a lattice, with a partial order relation meaning “less defined than”. The lattice includes a bottom element, traditionally written “” (pronounced “Bottom”) and a top element written (“Top”). represents an unknown value (not enough information) and an error value (too much information). Pictorially, the lattice for natural numbers would look like this:  

Integer lattice

The lattice of integers

On basic types, we always use very simple lattices of this form, with three kinds of element: , less than every other element; , larger than all other elements; and in-between all the normal values of the type, which for the partial order of interest are all equal. (No, this is not a new math in which all integers are equal. The order in question simply means “is less defined than”. Every integer is as defined as all other integers, more defined than , and less defined than .) Such lattices are not very exciting, but they serve as a starting point; lattices with more interesting structures are those applying to functions on such spaces — including functions of functions —, which represent programs.  

The modeling of floating-point numbers with NaN involves such a lattice; introducing NaN means introducing a value. (Actually, one might prefer to interpret NaN as , but the reasoning transposes immediately.)  More accurately, since there are many NaN values, the lattice will look more like this:

Float lattice

The lattice of floats in IEEE 754

For simplicity we can ignore the variety of NaNs and consider a single .

Functions on lattices — as implemented by programs — should satisfy a fundamental property: monotonicity. A function f  is monotone (as in ordinary analysis) if, whenever xy, then f (x) ≤ f (y). Monotonicity is a common-sense requirement: we cannot get more information from less information. If we know less about x than about y, we cannot expect that any function (with a computer, any program) f will, out of nowhere, restore the missing information.  

Demanding monotonicity of all floating-point operations reflects this exigency of monotonicity: indeed, in IEEE 754, any arithmetic operation — addition, multiplication … — that has a NaN as one of its arguments must yield a Nan as its result. Great. Now for soundness we should also have such a property for boolean-valued operations, such as equality. If we had a NaB as the  of booleans, just like NaN is the  of floating-point numbers,  then the result of NaN = NaN would be NaB. But the world is not perfect and the IEEE 754 standard does not govern booleans. Somehow (I think) the designers thought of False as somehow less defined than True. But it is not! False is just as defined as True in the very simple lattice of booleans; according to the partial order, True and False are equal for the relevant partial order:

Boolean lattice

The lattice of booleans

Because any solution that cannot use a NaB will violate monotonicity and hence will be imperfect, we must resort to heuristic criteria. A very strong criterion in favor of choosing True is reflexivity — remaining compatible with a fundamental property of equality. I do not know of any argument for choosing False. 

The Spartan approach

There is, by the way, a technique that accepts booleans as we love them (with two values and no NaB) and achieves mathematical rigor. If operations involving NaNs  truly give us pimples, we can make any such operation trigger an exception. In the absence of values,  this is an acceptable programming technique for representing undefinedness. The downside, of course, is that just about everywhere the program must be ready to handle the exception in some way. 

It is unlikely that in practice many people would be comfortable with such a solution. 

Final observations

Let me point out two objections that I have seen. Van Snyder wrote: 

NaN is not part of the set of floating-point numbers, so it doesn’t behave as if “bottom” were added to the set. 

Interesting point, but, in my opinion not applicable: is indeed not part of the mathematical set of floating point numbers, but in the form of NaN it is part of the corresponding type (float in C, REAL in Eiffel); and the operations of the type are applicable to all values, including NaN if, as noted, we have not taken the extreme step of triggering an exception every time an operation uses a NaN as one of its operands. So we cannot free ourselves from the monotonicity concern by just a sleight of hands. 

Another comment, also by Van Snyder (slightly abridged): 

Think of [the status of NaN] as a variety of dynamic run-time typing. With static typing, if  x is an integer variable and y

        x := y 

does not inevitably lead to 

        x = y

 True; and a compelling argument to require that conversions satisfy equality as a postcondition! Such  reasoning — reflexivity again — was essential in the design of the Eiffel conversion mechanism [3], which makes it possible to define conversions between various data types (not just integers and reals and the other classical examples, but also any other user types as long as the conversion does not conflict with inheritance). The same conversion rules apply to assignment and equality, so that yes, whenever the assignment x := y is permitted, including when it involves a conversion, the property x = y  is afterwards always guaranteed to hold.

It is rather dangerous indeed to depart from the fundamental laws of mathematics. 

References

[1] IEEE floating-point standard, 754-2008; see summary and references in the Wikipedia entry.  

[2] IFIP Working Group 2.5 on numerical software: home page

[3] Eiffel standard (ECMA and ISO), available on the ECMA site.

VN:F [1.9.10_1130]
Rating: 9.6/10 (21 votes cast)
VN:F [1.9.10_1130]
Rating: +17 (from 19 votes)

More expressive loops for Eiffel

New variants of the loop construct have been introduced into Eiffel, allowing a safer, more concise and more abstract style of programming. The challenge was to remain compatible with the basic loop concept, in particular correctness concerns (loop invariant and loop variant), to provide a flexible mechanism that would cover many different cases of iteration, and to keep things simple.

Here are some examples of the new forms. Consider a structure s, such as a list, which can be traversed in sequence. The following loop prints all elements of the list:

      across s as c loop print (c.item) end

(The procedure print is available on all types, and can be adapted to any of them by redefining the out feature; item gives access to individual values of the list.) More about c in just a moment; in the meantime you can just consider consider that using “as c” and manipulating the structure through c rather than directly through s  is a simple idiom to be learned and applied systematically for such across loops.

The above example is an instruction. The all and some variants yield boolean expressions, as in

across s as c all c.item > 0 end

which denotes a boolean value, true if and only if all elements of the list are positive. To find out if at least one is positive, use

across s as c some c.item > 0 end

Such expressions could appear, for example, in a class invariant, but they may be useful in many different contexts.

In some cases, a from clause is useful, as in

        across s as c from sum := 0  loop sum := sum + c.index c.item end
— Computes Σ i * s [i]

The original form of loop in Eiffel is more explicit, and remains available; you can achieve the equivalent of the last example, on a suitable structure, as

A list and a cursor

A list and a cursor

      from
sum := 0 ; s.start
until
s.after
loop
sum := sum + s.index s.item
s.forth

        end

which directly manipulates a cursor through s, using start to move it to the beginning, forth to advance it, and after to test if it is past the last element. The forms with across achieve the same purpose in a more concise manner. More important than concision is abstraction: you do not need to worry about manipulating the cursor through start, forth and after. Under the hood, however, the effect is the same. More precisely, it is the same as in a loop of the form

from
sum := 0 ; c.start
until
c.after
loop
sum := sum + c.index c.item
c.forth

        end

where c is a cursor object associated with the loop. The advantage of using a cursor is clear: rather than keeping the state of the iteration in the object itself, you make it external, part of a cursor object that, so to speak, looks at the list. This means in particular that many traversals can be active on the same structure at the same time; with an internal cursor, they would mess up with each other, unless you manually took the trouble to save and restore cursor positions. With an external cursor, each traversal has its own cursor object, and so does not interfere with other traversals — at least as long as they don’t change the structure (I’ll come back to that point).

With the across variant, you automatically use a cursor; you do not have to declare or create it: it simply comes as a result of the “as c” part of the construct, which introduces c as the cursor.

On what structures can you perform such iterations? There is no limitation; you simply need a type based on a class that inherits, directly or indirectly, from the library class ITERABLE. All relevant classes from the EiffelBase library have been updated to provide this inheritance, so that you can apply the across scheme to lists of all kinds, hash tables, arrays, intervals etc.

One of these structures is the integer interval. The notation  m |..| n, for integers m and n, denotes the corresponding integer interval. (This is not a special language notation, simply an operator, |..|, defined with the general operator mechanism as an alias for the feature interval of INTEGER classes.) To iterate on such an interval, use the same form as in the examples above:

        across m |..| n  as c from sum := 0  loop sum := sum + a [c.item] end
— Computes Σ a [i], for i ranging from m to n, for an array (or other structure) a

The key feature in ITERABLE is new_cursor, which returns a freshly created cursor object associated with the current structure. By default it is an ITERATION_CURSOR, the most general cursor type, but every descendant of ITERABLE can redefine the result type to something more specific to the current structure. Using a cursor — c in the above examples —, rather than manipulating the structure s directly, provides considerable flexibility thanks to the property that ITERATION_CURSOR itself inherits from ITERABLE   and hence has all the iteration mechanisms. For example you may write

across s.new_cursor.reversed as c loop print (c.item) end

to print elements in reverse order. (Using Eiffel’s operator  mechanism, you may write s.new_cursor, with a minus operator, as a synonym for new_cursor.reversed.) The function reversed gives you a new cursor on the same target structure, enabling you to iterate backwards. Or you can use

        across s.new_cursor + 3 as c loop print (c.item) end

(using s.new_cursor.incremented (3) rather than s.new_cursor + 3 if you are not too keen on operator syntax) to iterate over every third item. A number of other possibilities are available in the cursor classes.

A high-level iteration mechanism is only safe if you have the guarantee that the structure remains intact throughout the iteration. Assume you are iterating through a structure

across  as c loop some_routine end

and some_routine changes the structure s: the whole process could be messed up. Thanks to Design by Contract mechanisms, the library protects you against such mistakes. Features such as item and index, accessing properties of the structure during the iteration, are equipped with a precondition clause

require
is_valid

and every operation that changes the structure sets is_valid to false. So as soon as any change happens, you cannot continue the iteration; all you can do is restart a new one; the command start, used internally to start the operation, does not have the above precondition.

Sometimes, of course, you do want to change a structure while traversing it; for example you may want to add an element just to the right of the iteration position. If you know what you are doing that’s fine. (Let me correct this: if you know what you are doing, express it through precise contracts, and you’ll be fine.) But then you should not use the abstract forms of the loop, across; you should control the iteration itself through the basic form from … until with explicit cursor manipulation, protected by appropriate contracts.

The two styles, by the way, are not distinct constructs. Eiffel has always had only one form of loop and this continues the case. The across forms are simply new possibilities added to the classical loop construct, with obvious constraints stating for example that you may not have both a some or all form and an explicit  loop body.  In particular, an across loop can still have an invariant clause , specifying the correctness properties of the loop, as in

        across s as c from sum := 0  invariant sum = sigma (s, index)  loop sum := sum + c.index c.item end

EiffelStudio 6.5 already included the language update; the library update (not yet including the is_valid preconditions for data structure classes) will be made available this week.

These new mechanisms should increase the level of abstraction and the reliability of loops, a fundamental element of  almost all programs.

VN:F [1.9.10_1130]
Rating: 7.5/10 (22 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 14 votes)

Just another day at the office

In the past few weeks I wrote a program to compute the aliases of variables and expressions in an object-oriented program (based on a new theory [1]).

For one of the data structures, I needed a specific notion of equality, so I did the standard thing in Eiffel: redefine the is_equal function inherited from the top class ANY, to implement the desired variant.

The first time I ran the result, I got a postcondition violation. The violated postcondition clauses was not even any that I wrote: it was an original postcondition of is_equal (other: like Current)  in ANY, which my redefinition inherited as per the rules of Design by Contract; it reads

symmetric: Result implies other ~ Current

meaning: equality is symmetric, so if Result is true, i.e. the Current object is equal to other, then other must also be equal to Current. (~ is object equality, which applies the local version is is_equal).  What was I doing wrong? The structure is a list, so the code iterates on both the current list and the other list:

from
    start ; other.start ; Result := True
until (not Result) or after loop
        if other.after then Result := False else
              Result := (item ~ other.item)
              forth ; other.forth
        end
end

Simple enough: at each position check whether the item in the current list is equal to the item in the other list, and if so move forth in both the current list and the other one; stop whenever we find two unequal elements, or we exhaust either list as told by after list. (Since is_equal is a function and not produce any side effect, the actual code saves the cursors before the iteration and restores them afterwards. Thanks to Ian Warrington for asking about this point in a comment to this post. The new across loop variant described in  two later postings uses external cursors and manages them automatically, so this business of maintaining the cursor manually goes away.)

The problem is that with this algorithm it is possible to return True if the first list was exhausted but not the second, so that the first list is a subset of the other rather than identical. The correction is immediate: add

Result and other_list.after

after the loop; alternatively, enclose the loop in a conditional so that it is only executed if count = other.count (this solution is  better since it saves much computation in cases of lists of different sizes, which cannot be equal).

The lesson (other than that I need to be more careful) is that the error was caught immediately, thanks to a postcondition violation — and one that I did not even have to write. Just another day at the office; and let us shed a tear for the poor folks who still program without this kind of capability in their language and development environment.

Reference

[1] Bertrand Meyer: The Theory and Calculus of Aliasing, draft paper, available here.

VN:F [1.9.10_1130]
Rating: 9.6/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

“Touch of Class” published

My textbook Touch of Class: An Introduction to Programming Well Using Objects and Contracts [1] is now available from Springer Verlag [2]. I have been told of many bookstores in Europe that have it by now; for example Amazon Germany [3] offers immediate delivery. Amazon US still lists the book as not yet published [4], but I think this will be corrected very soon.

touch_of_class

The book results from six years of teaching introductory programming at ETH Zurich. It is richly illustrated in full color (not only with technical illustrations but with numerous photographs of people and artefacts). It is pretty big, but designed so that a typical one-semester introductory course can cover most of the material.

Many topics are addressed (see table of contents below), including quite a few that are seldom seen at the introductory level. Some examples, listed here in random order: a fairly extensive introduction to software engineering including things like requirements engineering (not usually mentioned in programming courses, with results for everyone to see!) and CMMI, a detailed discussion of how to implement recursion, polymorphism and dynamic binding and their role for software architecture, multiple inheritance, lambda calculus (at an introductory level of course), a detailed analysis of the Observer and Visitor patterns, event-driven programming, the lure and dangers of references and aliasing, topological sort as an example of both algorithm and API design, high-level function closures, software tools, properties of computer hardware relevant for programmers, undecidability etc.

The progression uses an object-oriented approach throughout; the examples are in Eiffel, and four appendices present the details of Java, C#, C++ and C. Concepts of Design by Contract and rigorous development are central to the approach; for example, loops are presented as a technique for computing a result by successive approximation, with a central role for the concept of loop invariant. This is not a “formal methods” book in the sense of inflicting on the students a heavy mathematical apparatus, but it uses preconditions, postconditions and invariants throughout to alert them to the importance of reasoning rigorously about programs. The discussion introduces many principles of sound design, in line with the book’s subtitle, “Learning to Program Well”.

The general approach is “Outside-In” (also known as “Inverted Curriculum” and described at some length in some of my articles, see e.g. [5]): students have, right from the start, the possibility of working with real software, a large (150,000-line) library that has been designed specifically for that purpose. Called Traffic, this library simulates traffic in a city; it is graphical and of good enough visual quality to be attractive to today’s “Wii generation” students, something that traditional beginners’ exercises, like computing the 7-th Fibonacci number, cannot do (although we have these too as well). Using the Traffic software through its API, students can right from the first couple of weeks produce powerful applications, without understanding the internals of the library. But they do not stop there: since the whole thing is available in open source, students learn little by little how the software is made internally. Hence the name “Outside-In”: understand the interface first, then dig into the internals. Two advantages of the approach are particularly worth noting:

  • It emphasizes the value of abstraction, and particular contracts, not by preaching but by showing to students that abstraction helps them master a large body of professional-level software, doing things that would otherwise be unthinkable at an introductory level.
  • It addresses what is probably today the biggest obstacle to teaching introductory programming: the wide diversity of initial student backgrounds. The risk with traditional approaches is either to fly too high and lose the novices, or stay too low and bore those who already have programming experience. With the Outside-In method the novices can follow the exact path charted from them, from external API to internal implementation; those who already know something about programming can move ahead of the lectures and start digging into the code by themselves for information and inspiration.

(We have pretty amazing data on students’ prior programming knowledge, as  we have been surveying students for the past six years, initially at ETH and more recently at the University of York in England thanks to our colleague Manuel Oriol; some day I will post a blog entry about this specific topic.)

The book has been field-tested in its successive drafts since 2003 at ETH, for the Introduction to Programming course (which starts again in a few weeks, for the first time with the benefit of the full text in printed form). Our material, such as a full set of slides, plus exercises, video recordings of the lectures etc. is available to any instructor selecting the text. I must say that Springer did an outstanding job with the quality of the printing and I hope that instructors, students, and even some practitioners already in industry will like both form and content.

Table of contents

Front matter: Community resource, Dedication (to Tony Hoare and Niklaus Wirth), Prefaces, Student_preface, Instructor_preface, Note to instructors: what to cover?, Contents

PART I: Basics
1 The industry of pure ideas
2 Dealing with objects
3 Program structure basics
4 The interface of a class
5 Just Enough Logic
6 Creating objects and executing systems
7 Control structures
8 Routines, functional abstraction and information hiding
9 Variables, assignment and references
PART II: How things work
10 Just enough hardware
11 Describing syntax
12 Programming languages and tools
PART III: Algorithms and data structures
13 Fundamental data structures, genericity, and algorithm complexity
14 Recursion and trees
15 Devising and engineering an algorithm: Topological Sort
PART IV: Object-Oriented Techniques
16 Inheritance
17 Operations as objects: agents and lambda calculus
18 Event-driven design
PART V: Towards software engineering
19 Introduction to software engineering
PART VI: Appendices
A An introduction to Java (from material by Marco Piccioni)
B An introduction to C# (from material by Benjamin Morandi)
C An introduction to C++ (from material by Nadia Polikarpova)
D From C++ to C
E Using the EiffelStudio environment
Picture credits
Index

References

[1] Bertrand Meyer, Touch of Class: An Introduction to Programming Well Using Objects and Contracts, Springer Verlag, 2009, 876+lxiv pages, Hardcover, ISBN: 978-3-540-92144-8.

[2] Publisher page for [1]: see  here. List price: $79.95. (The page says “Ships in 3 to 4 weeks” but I think this is incorrect as the book is available; I’ll try to get the mention corrected.)

[3] Amazon.de page: see here. List price: EUR 53.45 (with offers starting at EUR 41.67).

[4] Amazon.com page: see here. List price: $63.96.

[5] Michela Pedroni and Bertrand Meyer: The Inverted Curriculum in Practice, in Proceedings of SIGCSE 2006, ACM, Houston (Texas), 1-5 March 2006, pages 481-485; available online.

VN:F [1.9.10_1130]
Rating: 7.4/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Contracts written by people, contracts written by machines

What kind of contract do you write? Could these contracts, or some of them, be produced automatically?

The idea of inferring contracts from programs is intriguing; it also raises serious epistemological issues. In fact, one may question whether it makes any sense at all. I will leave the question of principle to another post, in connection with some of our as yet unpublished work. This is, in any case, an active research field, in particular because of the big stir that Mike Ernst’s Daikon created when it appeared a few years ago.

Daikon [1] infers loop invariants dynamically: it observes executions; by looking up a repertoire of invariant patterns, it finds out what properties the loops maintain. It may sound strange to you (it did to Mike’s PhD thesis supervisor [2] when he first heard about the idea), but it yields remarkable results.

In a recent paper presented at ISSTA [3], we took advantage of Daikon to compare the kinds of contract people write with those that a machine could infer. The work started out as Nadia Polikarpova’s master’s thesis at ITMO  in Saint Petersburg [4], in the group of Prof. Anatoly Shalyto and under the supervision of Ilinca Ciupa from ETH. (Ilinca recently completed her PhD thesis on automatic testing [5], and is co-author of the article.) The CITADEL tool — the name is an acronym, but you will have to look up the references to see what it means — applies Daikon to Eiffel program.

CITADEL is the first application of Daikon to a language where programmers can write contracts. Previous interfaces were for contract-less languages such as Java where the tool must synthesize everything. In Eiffel, programmers do write contracts (as confirmed by Chalin’s experimental study [6]). Hence the natural questions: does the tool infer the same contracts as a programmer will naturally write? If not, which kinds of contract is each best at?

To answer these questions, the study looked at three sources of contracts:

  • Contracts already present in the code (in the case of widely used libraries such as EiffelBase, equipped with contracts throughout).
  • Those devised by students, in a small-scale experiment.
  • The contracts inferred by Daikon.

What do you think? Before looking up our study, you might want to make your own guess at the answers. You will not find a spoiler here; for the study’s results, you should read our paper [3]. All right, just a hint: machines and people are (in case you had not noticed this before) good at different things.

References

 

[1] Michael Ernst and others, Daikon bibliography on Ernst’s research page at the University of Washington.

[2] David Notkin, see his web page.

[3] A Comparative Study of Programmer-Written and Automatically Inferred Contracts, by Nadia Polikarpova, Ilinca Ciupa and me, in ISSTA 2009: International Symposium on Software Testing and Analysis, Chicago, July 2009, online copy available.

[4] ITMO (Saint-Petersburg State University of Information Technologies, Mechanics and Optics), see here.

[5] Ilinca Ciupa, Strategies for random contract-based testing; PhD thesis, ETH Zurich, December 2008. For a link to the text and to her other publications see Ilinca’s ETH page.

[6] Patrice Chalin,  Are practitioners writing contracts? In Rigorous Development of Complex Fault-Tolerant Systems, eds. Jones et al.,  Lecture Notes in Computer Science 4157, Springer Verlag, 2006, pages 100-113.

VN:F [1.9.10_1130]
Rating: 9.3/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)