The right forms of expression

If you want to know whether your_string has at least one upper-case character, you will write this in Eiffel:

if  ∃ c: your_string ¦ c.is_upper then

Such predicate-calculus boolean expressions, using a quantifier (“for all”) or (“there exists”) are becoming common in Eiffel code. They are particularly useful in Design by Contract assertions, making it possible to characterize deep semantic properties of the code and its data structures. For example a class invariant clause in a class I wrote recently states

from_lists_exist: ∀ tf: triples_from ¦ tf Void                        — [1]

meaning that all the elements, if any, of the list triples_from  are non-void (non-null). The notation is the exact one from mathematics. (Mathematical notation sometimes uses a dot in place of the bar, but the bar is clearer, particularly in an OO context where the dot has another use.)

Programming languages should support time-honored notations from mathematics. Reaching this goal has been a driving force in the evolution of Eiffel, but not as a concession to “featurism” (the gratuitous piling up of language feature upon feature). The language must remain simple and consistent; any new feature must find its logical place in the overall edifice.

The design of programming languages is a constant search for the right balance between rigor, simplicity, consistency, formal understanding, preservation of existing code, innovation and expressiveness. The design of Eiffel has understood the last of these criteria as implying support for established notations from mathematics, not through feature accumulation but by re-interpreting these notations in terms of the language’s fundamental concepts. A typical example is the re-interpretation of the standard mathematical notation a + b as as simply an operator-based form for the object-oriented call (b), obtained simply by declaring “+” as an operator alias for the function plus in the relevant classes. There are many more such cases in today’s Eiffel. Quantifier expressions using and  are the latest example.

 They are not a one-of-a-kind trick but just as a different syntax form for loops. Expressed in a more verbose form, the only one previously available, [1] would be:

across triples_from is tf all tf /= Void end                         — [2]

It is interesting to walk back the history further. [2] is itself a simplification of

across triples_from as tf all tf.item /= Void end               — [3]

where the “.item” has a good reason for being there, but that reason is irrelevant to a beginner. The earlier use of as in [3] is also the reason for the seemingly bizarre use of is in [2], which is only explainable by the backward compatibility criterion (code exists that uses as , which has a slightly different semantics from is), and will go away. But a few years ago the across loop variant did not exist and you would have had to write the above boolean expressions as

all_non_void (triples_from)

after defining a function

all_non_void (l: LIST [T]): BOOLEAN                                    — [4]
                         — Are all the elements of `l’, if any, non-void?
                       pos: INTEGER
                              pos := l.index
                              Result := True
                    until not Result or l.after loop
                    go_ith (pos)

The road traveled from [4] to [1] is staggering. As we introduced new notations in the history of Eiffel the reaction of the user community has sometimes been between cautious and negative. With the exception of a couple of quickly discarded ideas (such as the infamous and short-lived “!!” for creation), they were generally adopted widely because they simplify people’s life without adding undue complexity to the language. The key has been to avoid featurism and choose instead to provide two kinds of innovation:

  • Major conceptual additions, which elevate the level of abstraction of the language. A typical introduction was the introduction of agents, which provide the full power of functional programming in an object-oriented context; another was the SCOOP concurrency mechanism. There have been only a few such extensions, all essential.
  • Syntactical variants for existing concepts, allowing more concise forms obtained from traditional mathematical notation. The use of quantifier expressions as in [1] is the latest example.

Complaints of featurism still occasionally happen when people first encounter the new facilities, but they fade away quickly as people start using them. After writing a few expressions such as [1], no one wants to go back to any of the other forms.

These quantifier expressions using and , as well as the “” not-equal sign for what used to be (and still commonly is) written “/=”, rely on Unicode. Eiffel started out when ASCII was the law of the land. (Or 8-bit extended ASCII, which does not help much since the extensions are rendered differently in different locales, i.e. the same 8-bit character code may mean something different on French and Swedish texts.) In recent years, Eiffel has made a quiet transition to full Unicode support. (Such support extends to manifest strings and operators, not to identifiers. The decision, which could be revisited, has been to keep the ASCII-only  policy for identifiers to favor compatible use by programmers regardless of their mother tongues.) The use of Unicode considerably extends the expressive power of the language, in particular for scientific software which can — thanks to Eiffel’s mechanism for defining free operators — rely on advanced mathematical notations.

Unicode is great, but I hear the question: how in the world can we enter the corresponding symbols, since our keyboards are still ASCII plus some extensions?

It would be tedious to have to select from a list of special symbols (as you do when inserting a mathematical symbol in Microsoft Word or, for that matter, as I did when inserting the phrase “ and ” in the preceding paragraph using WordPress).

The answer lies in the interplay between the language and the development environment. EiffelStudio, like other modern IDEs, includes an automatic completion mechanism which lets you enter the beginning of a construct and will take care of filling in the rest. Already useful for complex structures (if you type “if” the tools will create the entire “if then else end” conditional structure for you to fill in), automatic completion will take care of inserting the appropriate Unicode symbols for you. Type for example “across”,  then CTRL-Space to trigger completion, and the choices will include the “∀” and “” forms. You can see below how this works:


Programming languages can be at the same time simple, easy to learn, consistent, and expressive. Start using quantifiers now!

Acknowledgments to the Ecma Technical Committee on Eiffel and the Eiffel Software team, particularly Alexander Kogtenkov (see his blog post here) and (for the completion mechanism) Jocelyn Fiat.

VN:F [1.9.10_1130]
Rating: 10.0/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)
The right forms of expression, 10.0 out of 10 based on 5 ratings
Be Sociable, Share!

Leave a Reply

You must be logged in to post a comment.