Posts tagged ‘AutoTest’

All Bugs Great and Small

(Acknowledgment: this article came out of a discussion with Manuel Oriol, Carlo Furia and Yi Wei. The material is largely theirs but the opinions are mine.)

A paper on automatic testing, submitted some time ago, received the following referee comment:

The case study seems unrealistic and biased toward the proposed technique. 736 unique faults found in 92 classes means at least 8 unique faults per class at the same time. I have never seen in all my life a published library with so many faults …

This would be a good start for a discussion of what is wrong with refereeing in computer science today (on the negativism of our field see [1]); we have a referee who mistakes experience for expertise, prejudice for truth, and refuses to accept carefully documented evidence because “in all his life”, presumably a rich and rewarding life, he has never seen anything of the sort. That is not the focus of the present article, however; arrogant referees eventually retire and good papers eventually get published. The technical problems are what matters. The technical point here is about testing.

Specifically, what bugs are worth finding, and are high bug rates extraordinary?

The paper under review was a step in the work around the automatic testing tool AutoTest (see [2] for a slightly older overall description and [3] for the precise documentation). AutoTest applies a fully automatic strategy, exercising classes and their routines without the need to provide test cases or test oracles. What makes such automation possible is the combination of  random generation of tests and reliance on contracts to determine the success of tests.

For several years we have regularly subjected libraries, in particular the EiffelBase data structure library, to long AutoTest sessions, and we keep finding bugs (the better term is faults). The fault counts are significant; here they caught the referee’s eye. In fact we have had such comments before: I don’t believe your fault counts for production software; your software must be terrible!

Well, maybe.

My guess is that in fact EiffelBase has no more bugs, and possibly far fewer bugs, than other “production” code. The difference is that the  AutoTest framework performs far more exhaustive tests than usually practiced.

This is only a conjecture; unlike the referee I do not claim any special powers that make my guesses self-evident. Until we get test harnesses comparable to AutoTest for environments other than Eiffel and, just as importantly, libraries that are fully equipped with contracts, enabling the detection of bugs that otherwise might not come to light, we will not know whether the explanation is the badness of EiffelBase or the goodness of AutoTest.

What concrete, incontrovertible evidence demonstrates is that systematic random testing does find faults that human testers typically do not. In a 2008 paper [4] with Ilinca Ciupa, Manuel Oriol and Alexander Pretschner, we ran AutoTest on some classes and compared the results with those of human testers (as well as actual bug reports from the field, since this was released software). We found that the two categories are complementary: human testers find faults that are still beyond the reach of automated tools, but they typically never find certain faults that AutoTest, with its stubborn dedication to leaving no stone unturned, routinely uncovers. We keep getting surprised at bugs that AutoTest detects and which no one had sought to test before.

A typical set of cases that human programmers seldom test, but which frequently lead to uncovering bugs, involves boundary values. AutoTest, in its “random-plus” strategy, always exercises special values of every type, such as MAXINT, the maximum representable integer. Programmers don’t. They should — all testing textbooks tell them so — but they just don’t, and perhaps they can’t, as the task is often too tedious for a manual process. It is remarkable how many routines using integers go bezerk when you feed them MAXINT or its negative counterpart. Some of the fault counts that seem so outrageous to our referee directly come from trying such values.

Some would say the cases are so extreme as to be insignificant. Wrong. Many documented software failures and catastrophes are due to untested extreme values. Perhaps the saddest is the case of the Patriot anti-missile system, which at the beginning of the first Gulf war was failing to catch Scud missiles, resulting in one case in the killing of twenty-eight American soldiers in an army barrack. It was traced to a software error [5]. To predict the position of the incoming missile, the computation multiplied time by velocity. The time computation used multiples of the time unit, a tenth of a second, stored in a 24-bit register and hence approximated. After enough time, long enough to elapse on the battlefield, but longer than what the tests had exercised, the accumulated error became so large as to cause a significant — and in the event catastrophic — deviation. The unique poser of automatic testing is that unlike human testers it is not encumbered by a priori notions of a situation being extreme or unlikely. It tries all the possibilities it can.

The following example, less portentous in its consequences but just as instructive, is directly related to AutoTest. For his work on model-based contracts [6] performed as part of his PhD completed in 2008 at ETH, Bernd Schoeller developed classes representing the mathematical notion of set. There were two implementations; it turned out that one of them, say SET1, uses data structures that make the subset operation easy to program efficiently; in the corresponding class, the superset operation, ab, is then simply implemented as ba. In the other implementation, say SET2, it is the other way around: is directly implemented, and ab, is implemented as ba. This all uses a nice object-oriented structure, with a general class SET defining the abstract notion and the two implementations inheriting from it.

Now you may see (if you have developed a hunch for automated testing) where this is heading: AutoTest knows about polymorphism and dynamic binding, and tries all the type combinations that make sense. One of the generated test cases has two variables s1 and s2 of type SET, and tries out s2s1; in one of the combinations that AutoTest tries, s1 is dynamically and polymorphically of type SET1 and s2 of type SET2. The version of that it will use is from SET2, so it actually calls s1s2; but this tests the SET1 version of , which goes back to SET2. The process would go on forever, were it not for a timeout in AutoTest that uncovers the fault. Bernd Schoeller had tried AutoTest on these classes not in the particular expectation of finding bugs, but more as a favor to the then incipient development of AutoTest, to see how well the tool could handle model-based contracts. The uncovering of the fault, testament to the power of relentless, systematic automatic testing, surprised us all.

In this case no contract was violated; the problem was infinite recursion, due to a use of O-O techniques that for all its elegance had failed to notice a pitfall. In most cases, AutoTest finds the faults through violated postconditions or class invariants. This is one more reason to be cautious about sweeping generalizations of the kind “I do not believe these bug rates, no serious software that I have seen shows anything of the sort!”. Contracts express semantic properties of the software, which the designer takes care of stating explicitly. In run-of-the-mill code that does not benefit from such care, lots of things can go wrong but remain undetected during testing, only to cause havoc much later during some actual execution.

When you find such a fault, it is irrelevant that the case is extreme, or special, or rare, or trivial. When a failure happens it no longer matter that the fault was supposed to be rare; and you will only know how harmful it is when you deal with the consequences. Testing, single-mindedly  devoted to the uncovering of faults [7], knows no such distinction: it hunts all bugs large and small.


[1] The nastiness problem in computer science, article on the CACM blog, 22 August 2011, available here.

[2] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[3] Online AutoTest documentation, available here at

[4] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol and Alexander Pretschner: Finding Faults: Manual Testing vs. Random+ Testing vs. User Reports, in ISSRE ’08, Proceedings of the 19th IEEE International Symposium on Software Reliability Engineering, Redmond, November 2008, available here.

[5] US General Accounting Office: GAO Report: Patriot Missile Defense– Software Problem Led to System Failure at Dhahran, Saudi Arabia, February 4, 1992, available here.

[6] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[7] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008available here.

VN:F [1.9.10_1130]
Rating: 9.1/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

Testing insights

Lionel Briand and his group at the Simula Research Laboratory in Oslo have helped raise the standard for empirical research in testing and other software engineering practices by criticizing work that in their opinion relies on wrong assumptions or insufficiently supported evidence. In one of their latest papers [1] they take aim at “Adaptive Random Testing” (ART); one of the papers they criticize is from our group at ETH, on the ARTOO extension [2] to this testing method. Let’s examine the criticism!

We need a bit of background on random testing, ART, and ARTOO:

  • Random testing tries inputs based on a random process rather than attempting a more sophisticated strategy; it was once derided as silly [3], but has emerged in recent years as a useful technique. Our AutoTest tool [4], now integrated in EiffelStudio, has shown it to be particularly effective when applied to code equipped with contracts, which provide built-in test oracles. As a result of this combination, testing can be truly automatic: the two most tedious tasks of traditional testing, test case preparation and test oracle definition, can be performed without human intervention.
  • ART, developed by Chen and others [5], makes random testing not entirely random by ensuring that the inputs are spread reasonably evenly in the input domain.
  • ARTOO, part of Ilinca Ciupa’s PhD thesis on testing defended in 2008,   generalized ART to object-oriented programs, by defining a notion of distance between objects; the ARTOO strategy  avoids choosing objects that are too close to each other. The distance formula, which you can find in[2], combines three elementary distances: between the types of the objects involved,  the values in their primitive fields (integers etc.), and, recursively, the objects to which they have references.

Arcuri and Briand dispute the effectiveness of ART and criticize arguments that various papers have used to show its effectiveness. About the ARTOO paper they write

The authors concluded that ART was better than random testing since it needed to sample less test cases before finding the first failure. However, ART was also reported as taking on average 1.6 times longer due to the distance calculations!

To someone not having read our paper the comment and the exclamation mark would seem to suggest that the paper somehow downplays this property of random testing, but in fact it stresses it repeatedly. The property appears for example in boldface as part of the caption to Table 2: In most cases ARTOO requires significantly less tests to find a fault, but entails a time overhead, and again in boldface in the caption to Table 3: The overhead that the distance calculations introduce in the testing process causes ARTOO to require on average 1.6 times more time than RAND to find the first fault.

There is no reason, then, to criticize the paper on this point. It reports the results clearly and fairly.

If we move the focus from the paper to the method, however, Arcuri and Briand have a point. As they correctly indicate, the number of tests to first fault is not a particularly useful criterion. In fact I argued against it in another paper on testing [6]

The number of tests is not that useful to managers, who need help deciding when to stop testing and ship, or to customers, who need an estimate of fault densities. More relevant is the testing time needed to uncover the faults. Otherwise we risk favoring strategies that uncover a failure quickly but only after a lengthy process of devising the test; what counts is total time. This is why, just as flies get out faster than bees, a seemingly dumb strategy such as random testing might be better overall.

(To understand the mention of flies and bees you need to read [6].) The same article states, as its final principle:

Principle 7: Assessment criteria A testing strategy’s most important property is the number of faults it uncovers as a function of time.

The ARTOO paper, which appeared early in our testing work, used “time to first failure” because it has long been a standard criterion in the testing literature, but it should have applied our own advice and focused on more important properties of testing strategies.

The “principles” paper [6] also warned against a risk awaiting anyone looking for new test strategies:

Testing research is vulnerable to a risky thought process: You hit upon an idea that seemingly promises improvements and follow your intuition. Testing is tricky; not all clever ideas prove helpful when submitted to objective evaluation.

The danger is that the clever ideas may result in so much strategy setup time that any benefit on the rest of the testing process is lost. This danger threatens testing researchers, including those who are aware of it.

The idea of ARTOO and object distance remains attractive, but more work is needed to make it an effective contributor to automated random testing and demonstrate that effectiveness. We can be grateful to Arcuri and Briand for their criticism, and I hope they continue to apply their iconoclastic zeal to empirical software engineering work, ours included.

I have objections of my own to their method. They write that “all the work in the literature is based either on simulations or case studies with unreasonably high failure rates”. This is incorrect for our work, which does not use simulations, relying instead on actual, delivered software, where AutoTest routinely finds faults in an automatic manner.

In contrast, however, Arcuri and Briand rely on fault seeding (also known as fault introduction or fault injection):

To obtain more information on how shapes appear in actual SUT, we carried out a large empirical analysis on 11 programs. For each program, a series of mutants were generated to introduce faults in these programs in a systematic way. Faults generated through mutation [allow] us to generate a large number of faults, in an unbiased and varied manner. We generated 3727 mutants and selected the 780 of them with lower detection probabilities to carry out our empirical analysis of faulty region shapes.

In the absence of objective evidence attesting to the realism of fault seeding, I do not believe any insights into testing obtained from such a methodology. In fact we adopted, from the start of our testing work, the principle that we would never rely on fault seeding. The problem with seeded faults is that there is no guarantee they reflect the true faults that programmers make, especially the significant ones. Techniques for fault seeding are understandably good at introducing typographical mistakes, such as a misspelling or the replacement of a “+” by a “-”; but these are not interesting kinds of fault, as they are easily caught by the compiler, by inspection, by low-tech static tools, or by simple tests. Interesting faults are those resulting from a logical error in the programmer’s mind, and in my experience (I do not know of good empirical studies on this topic) seeding techniques do not generate them.

For these reasons, all our testing research has worked on real software, and all the faults that AutoTest has found were real faults, resulting from a programmer’s mistake.

We can only apply this principle because we work with software equipped with contracts, where faults will be detected through the automatic oracle of a violated assertion clause. It is essential, however, to the credibility and practicality of any testing strategy; until I see evidence to the contrary, I will continue to disbelieve any testing insights resulting from studies based on artificial fault injection.


[1] Andrea Arcuri and Lionel Briand: Adaptive Random Testing: An Illusion of Effectiveness, in ISSTA 2011 (International Symposium on Software Testing and Analysis), available here.

[2] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer: ARTOO: Adaptive Random Testing for Object-Oriented Software, in ICSE 2008: Proceedings of 30th International Conference on Software Engineering, Leipzig, 10-18 May 2008, IEEE Computer Society Press, 2008, also available here.

[3] Glenford J. Myers. The Art of Software Testing. Wiley, New York, 1979. Citation:

Probably the poorest methodology of all is random-input testing: the process of testing a program by selecting, at random, some subset of all possible input values. In terms of the probability of detecting the most errors, a randomly selected collection of test cases has little chance of being an optimal, or close to optimal, subset. What we look for is a set of thought processes that allow one to select a set of test data more intelligently. Exhaustive black-box and white-box testing are, in general, impossible, but a reasonable testing strategy might use elements of both. One can develop a reasonably rigorous test by using certain black-box-oriented test-case-design methodologies and then supplementing these test cases by examining the logic of the program (i.e., using white-box methods).

[4] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, available here. For practical uses of AutoTest within EiffelStudio see here.

[5] T. Y. Chen, H Leung and I K Mak: Adaptive Random Testing, in  Advances in Computer Science, ASIAN 2004, Higher-Level Decision Making,  ed. M.J. Maher,  Lecture Notes in Computer Science 3321, Springer-Verlag, pages 320-329, 2004, available here.

[6] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008, also available here.

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 7 votes)