Posts tagged ‘Research’

Nastiness in computer science


Recycled(This article was originally published in the CACM blog.)

Are we malevolent grumps? Nothing personal, but as a community computer scientists sometimes seem to succumb to negativism.

They admit it themselves. A common complaint in the profession (at least in academia) is that instead of taking a cue from our colleagues in more cogently organized fields such as physics, who band together for funds, promotion, and recognition, we are incurably fractious. In committees, for example, we damage everyone’s chances by badmouthing colleagues with approaches other than ours. At least this is a widely perceived view (“Circling the wagons and shooting inward,” as Greg Andrews put it in a recent discussion). Is it accurate?

One statistic that I have heard cited is that in 1-to-5 evaluations of projects submitted to the U.S. National Science Foundation the average grade of computer science projects is one full point lower than the average for other disciplines. This is secondhand information, however, and I would be interested to know if readers with direct knowledge of the situation can confirm or disprove it.

More such examples can be found in the material from a recent keynote by Jeffrey Naughton, full of fascinating insights (see his Powerpoint slides External Link). Naughton, a database expert, mentions that only one paper out of 350 submissions to SIGMOD 2010 received a unanimous “accept” from its referees, and only four had an average accept recommendation. As he writes, “either we all suck or something is broken!

Much of the other evidence I have seen and heard is anecdotal, but persistent enough to make one wonder if there is something special with us. I am reminded of a committee for a generously funded CS award some time ago, where we came close to not giving the prize at all because we only had “good” proposals, and none that a committee member was willing to die for. The committee did come to its senses, and afterwards several members wondered aloud what was the reason for this perfectionism that almost made us waste a great opportunity to reward successful initiatives and promote the discipline.

We come across such cases so often—the research project review that gratuitously but lethally states that you have “less than a 10% chance” of reaching your goals, the killer argument  “I didn’t hear anything that surprised me” after a candidate’s talk—that we consider such nastiness normal without asking any more whether it is ethical or helpful. (The “surprise” comment is particularly vicious. Its real purpose is to make its author look smart and knowledgeable about the ways of the world, since he is so hard to surprise; and few people are ready to contradict it: Who wants to admit that he is naïve enough to have been surprised?)

A particular source of evidence is refereeing, as in the SIGMOD example.  I keep wondering at the sheer nastiness of referees in CS venues.

We should note that the large number of rejected submissions is not by itself the problem. Naughton complains that researchers spend their entire careers being graded, as if passing exams again and again. Well, I too like acceptance better than rejection, but we have to consider the reality: with acceptance rates in the 8%-20% range at good conferences, much refereeing is bound to be negative. Nor can we angelically hope for higher acceptance rates overall; research is a competitive business, and we are evaluated at every step of our careers, whether we like it or not. One could argue that most papers submitted to ICSE and ESEC are pretty reasonable contributions to software engineering, and hence that these conferences should accept four out of five submissions; but the only practical consequence would be that some other venue would soon replace ICSE and ESEC as the publication place that matters in software engineering. In reality, rejection remains a frequent occurrence even for established authors.

Rejecting a paper, however, is not the same thing as insulting the author under the convenient cover of anonymity.

The particular combination of incompetence and arrogance that characterizes much of what Naughton calls “bad refereeing” always stings when you are on the receiving end, although after a while it can be retrospectively funny; one day I will publish some of my own inventory, collected over the years. As a preview, here are two comments on the first paper I wrote on Eiffel, rejected in 1987 by the IEEE Transactions on Software Engineering (it was later published, thanks to a more enlightened editor, Robert Glass, in the Journal of Systems and Software, 8, 1988, pp. 199-246 External Link). The IEEE rejection was on the basis of such review gems as:

  • I think time will show that inheritance (section 1.5.3) is a terrible idea.
  • Systems that do automatic garbage collection and prevent the designer from doing his own memory management are not good systems for industrial-strength software engineering.

One of the reviewers also wrote: “But of course, the bulk of the paper is contained in Part 2, where we are given code fragments showing how well things can be done in Eiffel. I only read 2.1 arrays. After that I could not bring myself to waste the time to read the others.” This is sheer boorishness passing itself off as refereeing. I wonder if editors in other, more established disciplines tolerate such attitudes. I also have the impression that in non-CS journals the editor has more personal leverage. How can the editor of IEEE-TSE have based his decision on such a biased an unprofessional review? Quis custodiet ipsoes custodes?

“More established disciplines”: Indeed, the usual excuse is that we are still a young field, suffering from adolescent aggressiveness. If so, it may be, as Lance Fortnow has argued in a more general context, “time for computer science to grow up.” After some 60 or 70 years we are not so young any more.

What is your experience? Is the grass greener elsewhere? Are we just like everyone else, or do we truly have a nastiness problem in computer science?

VN:F [1.9.10_1130]
Rating: 9.5/10 (31 votes cast)
VN:F [1.9.10_1130]
Rating: +19 (from 19 votes)

European Computer Science Summit 2011

The program for ECSS 2011 (Milan, 7-9 November) has just been put online [1]. The European Computer Science Summit, held yearly since 2005, is the annual conference of Informatics Europe and a unique opportunity to discuss issues of interest to the computer science / informatics research and education community; much of the audience is made of deans, department heads, lab directors, researchers and senior faculty. Keynote speakers this year include Stefano Ceri, Mary Fernández, Monika Henzinger, Willem Jonker, Miron Livny, John Mylopoulos, Xavier Serra and John White.

ECSS is not a typical scientific conference; like Snowbird, its counterpart in the US, it is focused on professional and policy issues, and also a place to hear from technology leaders about their research visions. For me it is one of the most interesting events of the year.


[1] ECSS home page including advance program, here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (1 vote cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

Scopus’s view of computer science research

I posted on the Informatics Europe blog  a short note about what Scopus sees as the hottest articles in computer science.

VN:F [1.9.10_1130]
Rating: 9.0/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

The other impediment to software engineering research

In the decades since structured programming, many of the advances in software engineering have come out of non-university sources, mostly of four kinds:

  • Start-up technology companies  (who played a large role, for example, in the development of object technology).
  • Industrial research labs, starting with Xerox PARC and Bell Labs.
  • Independent (non-university-based) author-consultants. 
  • Independent programmer-innovators, who start open-source communities (and often start their own businesses after a while, joining the first category).

 Academic research has had its part, honorable but limited.

Why? In earlier posts [1] [2] I analyzed one major obstacle to software engineering research: the absence of any obligation of review after major software disasters. I will come back to that theme, because the irresponsible attitude of politicial authorities hinders progress by depriving researchers of some of their most important potential working examples. But for university researchers there is another impediment: the near-impossibility of developing serious software.

If you work in theory-oriented parts of computer science, the problem is less significant: as part of a PhD thesis or in preparation of a paper you can develop a software prototype that will support your research all the way to the defense or the publication, and can be left to wither gracefully afterwards. But software engineering studies issues that arise for large systems, where  “large” encompasses not only physical size but also project duration, number of users, number of changes. A software engineering researcher who only ever works on prototypes will be denied the opportunity to study the most significant and challenging problems of the field. The occasional consulting job is not a substitute for this hands-on experience of building and maintaining large software, which is, or should be, at the core of research in our field.

The bodies that fund research in other sciences understood this long ago for physics and chemistry with their huge labs, for mechanical engineering, for electrical engineering. But in computer science or any part of it (and software engineering is generally viewed as a subset of computer science) the idea that we would actually do something , rather than talk about someone else’s artifacts, is alien to the funding process.

The result is an absurd situation that blocks progress. Researchers in experimental physics or mechanical engineering employ technicians: often highly qualified personnel who help researchers set up experiments and process results. In software engineering the equivalent would be programmers, software engineers, testers, technical writers; in the environments that I have seen, getting financing for such positions from a research agency is impossible. If you have requested a programmer position as part of a successful grant request, you can be sure that this item will be the first to go. Researchers quickly understand the situation and learn not even to bother including such requests. (I have personally never seen a counter-example. If you have a different experience, I will be interested to learn who the enlightened agency is. )

The result of this attitude of funding bodies is a catastrophe for software engineering research: the only software we can produce, if we limit ourselves to official guidelines, is demo software. The meaningful products of software engineering (large, significant, usable and useful open-source software systems) are theoretically beyond our reach. Of course many of us work around the restrictions and do manage to produce working software, but only by spending considerable time away from research on programming and maintenance tasks that would be far more efficiently handled by specialized personnel.

The question indeed is efficiency. Software engineering researchers should program as part of their normal work:  only by writing programs and confronting the reality of software development can we hope to make relevant contributions. But in the same way that an experimental physicist is helped by professionals for the parts of experimental work that do not carry a research value, a software engineering researcher should not have to spend time on porting the software to other architectures, performing configuration management, upgrading to new releases of the operating system, adapting to new versions of the libraries, building standard user interfaces, and all the other tasks, largely devoid of research potential, that software-based innovation requires.

Until  research funding mechanisms integrate the practical needs of software engineering research, we will continue to be stymied in our efforts to produce a substantial effect on the quality of the world’s software.


[1] The one sure way to advance software engineering: this blog, see here.
[2] Dwelling on the point: this blog, see here.

VN:F [1.9.10_1130]
Rating: 8.3/10 (18 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 8 votes)

One cheer for incremental research

[Note: an updated version of this article (June 2011) appears in the Communications of the ACM blog.]

The world of research funding, always a little strange, has of late been prey to a new craze: paradigm-shift mania. We will only fund twenty curly-haired cranky-sounding visionaries in the hope that one of them will invent relativity. The rest of you — bit-players! Petty functionaries! Slaves toiling at incremental research!  — should be ashamed of even asking.

Take this from the US National Science Foundation’s current description of funding for Computer Systems Research [1]:

CSR-funded projects will enable significant progress on challenging high-impact problems, as opposed to incremental progress on familiar problems.

 The European Research Council is not to be left behind [2]:

Projects being highly ambitious, pioneering and unconventional

Research proposed for funding to the ERC should aim high, both with regard to the ambition of the envisaged scientific achievements as well as to the creativity and originality of proposed approaches, including unconventional methodologies and investigations at the interface between established disciplines. Proposals should rise to pioneering and far-reaching challenges at the frontiers of the field(s) addressed, and involve new, ground-breaking or unconventional methodologies, whose risky outlook is justified by the possibility of a major breakthrough with an impact beyond a specific research domain/discipline.

Frontiers! Breakthrough! Rise! Aim high! Creativity! Risk! Impact! Pass me the adjective bottle. Ground-breaking! Unconventional! Highly ambitious! Major! Far-reaching! Pioneering! Galileo and Pasteur only please — others need not apply.

As everyone knows including the people who write such calls, this is balderdash. First, 99.97% of all research (precise statistic derived from my own ground-breaking research, further funding welcome) is incremental. Second, when a “breakthrough” does happen — the remaining 0.03%  — it was often not planned as a breakthrough.

Incremental research is a most glorious (I have my own supply of adjectives) mode of doing science. Beginning PhD students can be forgiven for believing the myth of the lone genius who penetrates the secrets of time and space by thinking aloud during long walks with his best friend [3]; we all, at some stage, shared that delightful delusion. But every researcher, presumably including those who go on to lead research agencies,  quickly grows up and learns that it is not how things happen. You read someone else’s solution to a problem, and you improve on it. Any history of science will tell you that for every teenager who from getting hit by a falling apple intuits the structure of the universe there are hundreds of great researchers who look at the state of the art and decide they can do a trifle better.

Here is a still recent example, particularly telling because we have the account from the scientist himself. It would not be much of an exaggeration to characterize the entire field of program proving over the past four decades as a long series of variations on Tony Hoare’s 1969 Axiomatic Semantics paper [4]. Here Hoare’s recollection, from his Turing Award lecture [5]:

In October 1968, as I unpacked my papers in my new home in Belfast, I came across an obscure preprint of an article by Bob Floyd entitled “Assigning Meanings to Programs.” What a stroke of luck! At last I could see a way to achieve my hopes for my research. Thus I wrote my first paper on the axiomatic approach to computer programming, published in the Communications of the ACM in October 1969.

(See also note [6].) Had the research been submitted for funding, we can imagine the reaction: “Dear Sir, as you yourself admit, Floyd has had the basic idea [7] and you are just trying to present the result better. This is incremental research; we are in the paradigm-shift business.” And yet if Floyd had the core concepts right it is Hoare’s paper that reworked and extended them into a form that makes practical semantic specifications and proofs possible. Incremental research at its best.

The people in charge of research programs at the NSF and ERC are themselves scientists and know all this. How come they publish such absurd pronouncements? There are two reasons. One is the typical academic’s fascination with industry and its models. Having heard that venture capitalists routinely fund ten projects and expect one to succeed, they want to transpose that model to science funding; hence the emphasis on “risk”. But the transposition is doubtful because venture capitalists assess their wards all the time and, as soon as they decide a venture is not going to break out, they cut the funding overnight, often causing the company to go under. This does not happen in the world of science: most projects, and certainly any project that is supposed to break new ground, gets funded for a minimum of three to five years. If the project peters out, the purse-holder will only realize it after spending all the money.

The second reason is a sincere desire to avoid mediocrity. Here we can sympathize with the funding executives: they have seen too many “here is my epsilon addition to the latest buzzword” proposals. The last time I was at ECOOP, in 2005, it seemed every paper was about bringing some little twist to aspect-oriented programming. This kind of research benefits no one and it is understandable that the research funders want people to innovate. But telling submitters that every project has to be epochal (surprisingly, “epochal” is missing from the adjectives in the descriptions above  — I am sure this will soon be corrected) will not achieve this result.

It achieves something else, good neither for research nor for research funding: promise inflation. Being told that they have to be Darwin or nothing, researchers learn the game and promise the moon; they also get the part about “risk” and emphasize how uncertain the whole thing is and how high the likelihood it will fail. (Indeed, since — if it works — it will let cars run from water seamlessly extracted from the ambient air, and with the excedent produce free afternoon tea.)

By itself this is mostly entertainment, as no one believes the hyped promises. The real harm, however, is to honest scientists who work in the normal way, proposing to bring an important contribution to the  solution of an important problem. They risk being dismissed as small-timers with no vision.

Some funding agencies have kept their heads cool. How refreshing, after the above quotes, to read the general description of funding by the Swiss National Science Foundation [8]:

The central criteria for evaluation are the scientific quality, originality and project methodology as well as qualifications and track record of the applicants. Grants are awarded on a competitive basis.

In a few words, it says all there is to say. Quality, originality, methodology, and track record. Will the research be “ground-breaking” or “incremental”? We will know when it is done.

I am convinced that the other agencies will come to their senses and stop the paradigm-shift nonsense. One reason for hope is in the very excesses of the currently fashionable style. The European Research Council quote includes, by my count, nineteen ways of saying that proposals must be daring. Now it is a pretty universal rule of life that someone who finds it necessary to say the same thing nineteen times in a single paragraph does not feel sure about it. He is trying to convince himself. At some point the people in charge will realize that such hype does not breed breakthroughs; it breeds more hype.

Until that happens there is something that some of us can do: refuse to play the game. Of course we are all convinced that our latest idea is the most important one ever conceived by humankind, and we want to picture it in the most favorable light. But we should resist the promise inflation. Such honesty comes at a risk. (I still remember a project proposal, many years ago, which came back with glowing reviews: the topic was important, the ideas right, the team competent. The agency officer’s verdict: reject. The proposers are certain to succeed, so it’s not research.) For some people, there is really no choice but to follow the lead: if your entire career depends on getting external funding, no amount of exhortation will prevent you from saying what the purse-holders want to hear. But those of us who do have a choice (that is to say, will survive even if a project is rejected) should refuse the compromission. We should present our research ideas for what they are.

So: one cheer for incremental research.

Wait, isn’t the phrase supposed to be “two cheers” [9]?

All right, but let’s go at it incrementally. One and one-tenth cheer for incremental research. 



[1]  National Science Foundation, Division of Computer and Network Systems: Computer Systems Research  (CSR), at

[2] European Research Council: Advanced Investigators Grant, at

[3] The Berne years; see any biography of Albert Einstein.

[4] C.A.R. Hoare: An axiomatic basis for computer programming, in Communications of the ACM, vol. 12, no 10, pages 576–580,583, October 1969.

[5] C.A.R. Hoare: The Emperor’s Old Clothes, in Communications of the ACM, vol. 24, no.  2, pages 75 – 83, February 1981.

[6] In the first version of this essay I wrote “Someone should celebrate the anniversary!”. Moshe Vardi, editor of Communications of the ACM, has informed me that the October 2009 issue will include a retrospective by Hoare on the 1969 paper. I cannot wait to see it.

[7] Robert W. Floyd: Assigning meanings to programs, in Proceedings of the American Mathematical Society Symposia on Applied Mathematics, vol. 19, pp. 19–31, 1967.

[8] Swiss National Science Foundation:  Projects – Investigator-Driven Research, at Disclosure: The SNSF kindly funds some of my research.

[9] E.M. Forster: Two Cheers for Democracy, Edward Arnold, 1951.

VN:F [1.9.10_1130]
Rating: 8.3/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)