Archive for the ‘Software engineering’ Category.

Ado About The Resource That Was (Not)

 

After a few weeks of use, Microsoft Outlook tends in my experience to go into a kind of thrashing mode where the user interface no longer quite functions as it should, although to the tool’s credit it does not lose information. Recently I have been getting pop-up warnings such as

 

A required resource was

 

A required resource was what? The message reminded me of an episode in a long-ago game of Scrabble, in which I proposed ADOABOUT as a word. “Ado about what? ”, the other players asked, and were not placated by my answer.

The message must have been trying to say  that a required resource was missing, or not found, but at the time of getting the final detail Outlook must have run out of UI resources and hence could not summon the needed text string. Not surprising, since running out of resources is precisely what caused the message to appear, in a valiant attempt to tell the user what is going on. (Valiant but not that useful: if you are not a programmer on the Outlook development team but just a customer trying to read email, it is not absolutely obvious how the message, even with the missing part, helps you.) The irony in the example is that the title bar suggests the problem arose in connection with trying to display the “Social Connector” area, a recent Outlook feature which I have never used. (Social connector? Wasn’t the deal about getting into computer science in the first place that for the rest of your life you’d be spared the nuisance of social connections? One can no longer trust anything nowadays.)

We can sympathize with whoever wrote the code. The Case Of The Resource That Was (Not) is an example of a general programming problem which we may call Space Between Your Back And Wall  or SBYBAW:  when you have your back against the wall, there is not much maneuvering space left.

A fairly difficult case of the SBYBAW problem arises in garbage collection, for example for object-oriented languages. A typical mark-and-sweep garbage collector must traverse the entire object structure to remove all the objects that have not been marked as reachable from the stack. The natural way to write a graph traversal algorithm is recursive: visit the roots; then recursively traverse their successors, flagging visited objects in some way to avoid cycling. Yes, but the implementation of a recursive routine relies on a stack of unpredictable size (the longest path length). If we got into  garbage collection, most likely it’s that we ran out of memory, precisely the kind of situation in which we cannot afford room for unpredictable stack growth.

In one of the early Eiffel garbage collectors, someone not aware of better techniques had actually written the traversal recursively; had the mistake not been caught early enough, it would no doubt have inflicted unbearable pain on humankind. Fortunately there is a solution: the Deutsch-Schorr-Waite algorithm [1], which avoids recursion on the program side by perverting the data structure to  replace some of the object links by recursion-control links; when the traversal’s execution proceeds along an edge, it reverses that edge to permit eventual return to the source. Strictly speaking, Deutsch-Schorr-Waite still requires a stack of booleans — to distinguish original edges from perverted ones — but we can avoid a separate stack (even just  a stack of booleans, which can be compactly represented in a few integers) by storing these booleans in the mark field of the objects themselves. The resulting traversal algorithm is a beauty — although it is fairly tricky, presents a challenge for verification tools, and raises new difficulties in a multi-threaded environment.

Deutsch-Schorr-Waite is a good example of “Small Memory Software” as studied in a useful book of the same title [2]. The need for Small Memory Software does not just arise for embedded programs running on small devices, but also in mainstream programming whenever we face the SBYBAW issue.

The SBYBAW lesson for the programmer is tough but simple. The resources we have at our disposal on a computing system may be huge, but they are always finite, and our programs’ appetite for resources will eventually exhaust them. At that stage, we have to deal with the SBYBAW rule, which sounds like a tautology but is an encouragement to look for clever algorithms:  techniques for freeing resources when no resources remain must not request new resources.

References

[1] Deutsch-Schorr-Waite is described in Knuth and also in [2]. Someone should start a Wikipedia entry.

[2] James Noble and Charles Weir: Small Memory Software: Patterns for Systems with Limited Memory, Addison-Wesley, 2001.

VN:F [1.9.10_1130]
Rating: 8.7/10 (13 votes cast)
VN:F [1.9.10_1130]
Rating: +7 (from 7 votes)

John McCarthy

John McCarthyJohn McCarthy, who died last week at the age of 84, was one of the true giants of computer science. Most remarkable about his contributions are their diversity, their depth, and how they span both theory and practice.

To talk about him it is necessary first to dispel an unjustly negative connotation. McCarthy was one of the founders of the discipline of artificial intelligence, its most forceful advocate and the inventor of its very name. In the “AI Winter” episode of the late 1970s and 1980s, that name suffered some disrepute as a result of a scathing report by James Lighthill blaming AI researchers for over-promising. In fact the promoters of AI may not have delivered exactly what they announced (who can accurately predict science?); but what they delivered is astounding. Many breakthroughs in computer science, both in theory (advances in lambda calculus and the theory of computation) and in the practice of programming (garbage collection, functional programming languages), can directly be traced to work in AI. Part of the problem is a phenomenon that I heard John McCarthy himself describe:  “As soon as it works, no one calls it AI any more.” Automatic garbage collection was once advanced artificial intelligence; now it is just an algorithm that makes sure your smartphone does not freeze up. In a different field, we have become used to computers routinely beating chess champions, a feat that critics of AI once deemed unthinkable.

The worst over-promises came not from researchers in the field such as McCarthy, who understood the difficulties, but from people like Herbert Simon, more of a philosopher, who in 1965 wrote that “machines will be capable, within twenty years, of doing any work a man can do.” McCarthy’s own best-known over-promise was to take up David Levy on his 1968 bet that no computer would be able to beat him within ten years. But McCarthy was only mistaken in under-estimating the time span: Deep Blue eventually proved him right.

The word that comes most naturally to mind when thinking about McCarthy is “brilliant.” He belonged to that category of scientists who produce the fundamental insights before anyone else, even if they do not always have the patience to finalize the details. The breathtaking paper that introduced Lisp [1] is labeled “Part 1”; there was never a “Part 2.” (Of course we have a celebrated example in computer science, this one from a famously meticulous author, of a seven-volume treaty which never materialized in full.) It was imprudent to announce a second part, but the first was enough to create a whole new school of programming. The Lisp 1.5 manual [2], published in 1962, was another masterpiece; as early as page 13 it introduces — an unbelievable feat, especially considering that the program takes hardly more than half a page — an interpreter for the language being defined, written in that very language! The more recent reader can only experience here the kind of visceral, poignant and inextinguishable jealously that overwhelms us the first time we realize that we will never be able to attend the première of Don Giovanni at the Estates Theater in Prague on 29 October, 1787 (exactly 224 years ago yesterday — did you remember to celebrate?). What may have been the reaction of someone in “Data Processing,” such as it was in 1962, suddenly coming across such a language manual?

These years, 1959-1963, will remain as McCarthy’s Anni Mirabiles. 1961 and 1962 saw the publication of two visionary papers [3, 4] which started the road to modern program verification (and where with the benefit of hindsight it seems that he came remarkably close to denotational semantics). In [4] he wrote

Instead of debugging a program, one should prove that it meets its specifications, and this proof should be checked by a computer program. For this to be possible, formal systems are required in which it is easy to write proofs. There is a good prospect of doing this, because we can require the computer to do much more work in checking each step than a human is willing to do. Therefore, the steps can be bigger than with present formal systems.

Words both precise and prophetic. The conclusion of [3] reads:

It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between analysis and physics in the last. The development of this relationship demands a concern for both applications and for mathematical elegance.

“A concern for both applications and mathematical elegance” is an apt characterization of McCarthy’s own work. When he was not busy designing Lisp, inventing the notion of meta-circular interpreter and developing the mathematical basis of programming, he was building the Lisp garbage collector and proposing the concept of time-sharing. He also played, again in the same period, a significant role in another milestone development, Algol 60 — yet another sign of his intellectual openness and versatility, since Algol is (in spite of the presence of recursion, which McCarthy championed) an imperative language at the antipodes of Lisp.

McCarthy was in the 1960s and 70s the head of the Artificial Intelligence Laboratory at Stanford. For some reason the Stanford AI Lab has not become as legendary as Xerox PARC, but it was also the home to early versions of  revolutionary technologies that have now become commonplace. Email, which hardly anyone outside of the community had heard about, was already the normal way of communicating, whether with a coworker next door or with a researcher at MIT; the Internet was taken for granted; everyone was using graphical displays and full-screen user interfaces; outside, robots were playing volley-ball (not very successfully, it must be said); the vending machines took no coins, but you entered your login name and received a bill at the end of the month, a setup which never failed to astonish visitors; papers were printed with sophisticated fonts on a laser printer (I remember a whole group reading the successive pages of Marvin Minsky’s  frames paper [5] directly on the lab’s XGP, Xerox Graphics Printer, as  they were coming out, one by one, straight from MIT). Arthur Samuel was perfecting his checkers program. Those who were not programming in Lisp were hooked to SAIL, “Stanford Artificial Intelligence Language,” an amazing design which among other insights convinced me once and for all that one cannot seriously deal with data structures without the benefit of an automatic serialization mechanism. The building itself, improbably set up amid the pastures of the Santa Cruz foothills, was razed in the eighties and the lab moved to the main campus, but the spirit of these early years lives on.

McCarthy ran the laboratory in an open and almost debonair way; he was a legend and somewhat intimidating, but never arrogant and in fact remarkably approachable. I took the Lisp course from him; in my second or third week at Stanford, I raised my hand and with the unflappable assurance of the fully ignorant slowly asked a long question: “In all the recursive function definitions that you have shown so far, termination was obvious because there is some ‘n’ that decreases for every recursive call, and we treat the case ‘n = 0’ or ‘n = 1’ in a special, non-recursive way. But things won’t always be so simple. Is there some kind of grammatical criterion on Lisp programs that we could use to ascertain whether a recursive definition will always lead to a terminating computation?” There was a collective gasp from the older graduate students in the audience, amazed that a greenhorn would have the audacity to interrupt the course with such an incompetent query. But instead of dismissing me, McCarthy proceeded, with a smile, to explain the basics of undecidability. He had the same attitude in the many seminars that he taught, often on topics straddling computer science and philosophy, in a Socratic style where every opinion was welcome and no one was above criticism.

He also had a facetious side. At the end of a talk by McCarthy at SRI, Tony Hoare, who was visiting for a few days, asked a question; McCarthy immediately rejoined that he had expected that question, summoned to the stage a guitar-carrying researcher from the AI Lab, and proceeded with the answer in the form of a prepared song.

The progress of science and technology is a collective effort; it takes many people to turn new insights into everyday reality. The insights themselves come from a few individuals, a handful in every generation. McCarthy was one of these undisputed pioneers.

 

References

[1] John McCarthy: Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I, in Communications of the ACM, vol. 3, no. 4, 1960, pages 184-195.

[2] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, Michael I. Levin, LISP 1.5 Programmer’s Manual, MIT, 1962. Available at Amazon  External Linkand also as a PDF External Link.

[3] John McCarthy: A Basis for a Mathematical Theory of Computation, first version in Proc. Western Joint Computer Conference, 1961, revised version in Computer Programming and Formal Systems, eds. P. Braffort and D. Hirschberg, North Holland, 1963. Available in various places on the Web, e.g. here External Link.

[4] John McCarthy: Towards a Mathematical Science of Computation, in IFIP Congress 1962, pages 21-28, available in various places on the Web, e.g. here External Link.

[5] Marvin Minsky:  A Framework for Representing Knowledge, MIT-AI Laboratory Memo 306, June 1974, available here External Link.

 

(This article was first published on my ACM blog.  I am resuming regular Monday publication.)

VN:F [1.9.10_1130]
Rating: 9.8/10 (40 votes cast)
VN:F [1.9.10_1130]
Rating: +31 (from 31 votes)

The story of our field, in a few short words

 

(With all dues to [1], but going up from four to five as it is good to be brief yet not curt.)

At the start there was Alan. He was the best of all: built the right math model (years ahead of the real thing in any shape, color or form); was able to prove that no one among us can know for sure if his or her loops — or their code as a whole — will ever stop; got to crack the Nazis’ codes; and in so doing kind of saved the world. Once the war was over he got to build his own CPUs, among the very first two or three of any sort. But after the Brits had used him, they hated him, let him down, broke him (for the sole crime that he was too gay for the time or at least for their taste), and soon he died.

There was Ed. Once upon a time he was Dutch, but one day he got on a plane and — voilà! — the next day he was a Texan. Yet he never got the twang. The first topic that had put him on  the map was the graph (how to find a path, as short as can be, from a start to a sink); he also wrote an Algol tool (the first I think to deal with all of Algol 60), and built an OS made of many a layer, which he named THE in honor of his alma mater [2]. He soon got known for his harsh views, spoke of the GOTO and its users in terms akin to libel, and wrote words, not at all kind, about BASIC and PL/I. All this he aired in the form of his famed “EWD”s, notes that he would xerox and send by post along the globe (there was no Web, no Net and no Email back then) to pals and foes alike. He could be kind, but often he stung. In work whose value will last more, he said that all we must care about is to prove our stuff right; or (to be more close to his own words) to build it so that it is sure to be right, and keep it so from start to end, the proof and the code going hand in hand. One of the keys, for him, was to use as a basis for ifs and loops the idea of a “guard”, which does imply that the very same code can in one case print a value A and in some other case print a value B, under the watch of an angel or a demon; but he said this does not have to be a cause for worry.

At about that time there was Wirth, whom some call Nick, and Hoare, whom all call Tony. (“Tony” is short for a list of no less than three long first names, which makes for a good quiz at a party of nerds — can you cite them all from rote?) Nick had a nice coda to Algol, which he named “W”; what came after Algol W was also much noted, but the onset of Unix and hence of C cast some shade over its later life. Tony too did much to help the field grow. Early on, he had shown a good way to sort an array real quick. Later he wrote that for every type of unit there must be an axiom or a rule, which gives it an exact sense and lets you know for sure what will hold after every run of your code. His fame also comes from work (based in part on Ed’s idea of the guard, noted above) on the topic of more than one run at once, a field that is very hot today as the law of Moore nears its end and every maker of chips has moved to  a mode where each wafer holds more than one — and often many — cores.

Dave (from the US, but then at work under the clime of the North) must not be left out of this list. In a paper pair, both from the same year and both much cited ever since,  he told the world that what we say about a piece of code must only be a part, often a very small part, of what we could say if we cared about every trait and every quirk. In other words, we must draw a clear line: on one side, what the rest of the code must know of that one piece; on the other, what it may avoid to know of it, and even not care about. Dave also spent much time to argue that our specs must not rely so much on logic, and more on a form of table.  In a later paper, short and sweet, he told us that it may not be so bad that you do not apply full rigor when you chart your road to code, as long as you can “fake” such rigor (his own word) after the fact.

Of UML, MDA and other such TLAs, the less be said, the more happy we all fare.

A big step came from the cold: not just one Norse but two, Ole-J (Dahl) and Kris, came up with the idea of the class; not just that, but all that makes the basis of what today we call “O-O”. For a long time few would heed their view, but then came Alan (Kay), Adele and their gang at PARC, who tied it all to the mouse and icons and menus and all the other cool stuff that makes up a good GUI. It still took a while, and a lot of hit and miss, but in the end O-O came to rule the world.

As to the math basis, it came in part from MIT — think Barb and John — and the idea, known as the ADT (not all TLAs are bad!), that a data type must be known at a high level, not from the nuts and bolts.

There also is a guy with a long first name (he hates it when they call him Bert) but a short last name. I feel a great urge to tell you all that he did, all that he does and all that he will do, but much of it uses long words that would seem hard to fit here; and he is, in any case, far too shy.

It is not all about code and we must not fail to note Barry (Boehm), Watts, Vic and all those to whom we owe that the human side (dear to Tom and Tim) also came to light. Barry has a great model that lets you find out, while it is not yet too late, how much your tasks will cost; its name fails me right now, but I think it is all in upper case.  At some point the agile guys — Kent (Beck) and so on — came in and said we had got it all wrong: we must work in pairs, set our goals to no more than a week away, stand up for a while at the start of each day (a feat known by the cool name of Scrum), and dump specs in favor of tests. Some of this, to be fair, is very much like what comes out of the less noble part of the male of the cow; but in truth not all of it is bad, and we must not yield to the urge to throw away the baby along with the water of the bath.

I could go on (and on, and on); who knows, I might even come back at some point and add to this. On the other hand I take it that by now you got the idea, and even on this last day of the week I have other work to do, so ciao.

Notes

[1] Al’s Famed Model Of the World, In Words Of Four Signs Or Fewer (not quite the exact title, but very close): find it on line here.

[2] If not quite his alma mater in the exact sense of the term, at least the place where he had a post at the time. (If we can trust this entry, his true alma mater would have been Leyde, but he did not stay long.)

VN:F [1.9.10_1130]
Rating: 10.0/10 (14 votes cast)
VN:F [1.9.10_1130]
Rating: +11 (from 11 votes)

PhD position: concurrent programming (SCOOP) for robotics

The ETH Chair of Software Engineering has won a grant from the Hasler foundation, in a joint project with the Technical University of Lucerne and the Autonomous Systems Lab of ETH, to develop a robotics framework involving concurrent computation. The project, called Roboscoop,  will produce a demonstrator system: a “SmartWalker” robot — a robotic version of  “walkers” used by elderly people and others with reduced mobility. The research proposal is available [2].

One of the major goals of the Roboscoop framework is to provide robotics applications with the full possibilities of concurrent programming. Many robotics developments use no or little concurrency because of the tricky programming involved in using threads, and the difficulty of getting applications right. With SCOOP [1] programmers have a simple, high-level mechanism that removes the risk of data races and other plagues of concurrent programming.

We are looking for someone with a strong background in both software engineering and robotics. If you are interested, please see the position announcement [3].

References

[1] On SCOOP see here and here. See also a YouTube video of a small robot programmed with  SCOOP as part of an earlier student project (by Ganesh Ramanathan).

[2] Roboscoop research proposal, here.

[2] Position announcement: here

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

The charming naïveté of an IEEE standard

The IEEE Standard for Requirements Specifications [1], a short and readable text providing concrete and useful advice, is a valuable guide for anyone writing requirements. In our course projects we always require students to follow its recommended structure.

Re-reading it recently, I noticed the following extract  in the section that argues that a  requirements specification should be verifiable (sentence labels in brackets are my addition):

[A] Nonverifiable requirements include statements such as “works well,” “good human interface,” and “shall usually happen.” [B] These requirements cannot be verified because it is impossible to define the terms “good,” “well,” or “usually.”

[C] The statement that “the program shall never enter an infinite loop” is nonverifiable because the testing of this quality is theoretically impossible.

[D] An example of a verifiable statement is
      [E] “Output of the program shall be produced within 20 s of event 60% of the time; and shall be produced within 30 s of event 100% of the time.”
[F] This statement can be verified because it uses concrete terms and measurable quantities.

[A] and [B] are good advice, deserving to be repeated in every software engineering course and to anyone writing requirements. [C], however, is puzzling.

One might initially understand that the authors are telling us that it is impossible to devise a finite set of tests guaranteeing that a program terminates. But on closer examination this cannot be what they mean. Such a statement, although correct, would be uninteresting since it can be applied to any functional requirement: if I say “the program shall accept an integer as input and print out that same integer on the output”, I also cannot test that (trivial) requirement finitely since I would have to try all integers. The same observation applies to the example given in [D, E, F]: the property [D] they laud as an example of a  “verifiable” requirement is just as impossible to test exhaustively [2].

Since the literal interpretation of [C] is trivial and applies to essentially all possible requirements, whether bad or good in the authors’ eyes, they must mean something else when they cite loop termination as their example of a nonverifiable requirement. The word “theoretically” suggests what they have in mind: the undecidability results of computation theory, specifically the undecidability of the Halting Problem. It is well known that no general mechanism exists to determine whether an arbitrary program, or even just an arbitrary loop, will terminate. This must be what they are referring to.

Except, of course, that they are wrong. And a very good thing too that they are wrong, since “The program shall never enter an infinite loop” is a pretty reasonable requirement for any system [3].

If we were to accept [C], we would also accept that it is OK for any program to enter an infinite loop every once in a while, because the authors of its requirements were not permitted to specify otherwise! Fortunately for users of software systems, this particular sentence of the standard is balderdash.

What the halting property states, of course, is that no general mechanism exists that could examine an arbitrary program or loop and tell us whether it will always terminate. This result in no way excludes the possibility of verifying (although not through “testing”) that a particular program or loop will terminate. If the text of a program shows that it will print “Hello World” and do nothing else, we can safely determine that it will terminate. If a loop is of the form

from i := 1 until i > 10 loop
…..print (i)
…..i := i + 1
end

there is also no doubt about its termination. More complex examples require the techniques of modern program verification, such as exhibiting a loop variant in the sense of Hoare logic, but they can still be practically tractable.

Like many fundamental results of modern science (think of Heisenberg’s uncertainty principle), Turing’s demonstration of the undecidability of the Halting Problem is at the same time simple to state, striking, deep, and easy to misunderstand. It is touchingly refreshing to find such a misunderstanding in an IEEE standard.

Do not let it discourage you from applying the excellent advice of the rest of IEEE 830-1998, ; but when you write a program, do make sure — whether or not the requirements specify this property explicitly — that all its loops terminate.

Reference and notes

[1] IEEE Computer Society: IEEE Recommended Practice for Software Requirements SpeciÞcations, IEEE Standard 830-1998, revised 1998; available here (with subscription).

[2] The property [E] is actually more difficult to test, even non-exhaustively, than the authors acknowledge, if only because it is a probabilistic requirement, which can only be tested after one has defined appropriate probabilistic hypotheses.

[3] In requesting that all programs must terminate we must of course take note of the special case of systems that are non-terminating by design, such as most embedded systems. Such systems, however, are still made out of components representing individual steps that must terminate. The operating system on your smartphone may need to run forever (or until the next reboot), but the processing of an incoming text message is still, like a traditional program, required to terminate in finite time.

 

VN:F [1.9.10_1130]
Rating: 10.0/10 (11 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

All Bugs Great and Small

(Acknowledgment: this article came out of a discussion with Manuel Oriol, Carlo Furia and Yi Wei. The material is largely theirs but the opinions are mine.)

A paper on automatic testing, submitted some time ago, received the following referee comment:

The case study seems unrealistic and biased toward the proposed technique. 736 unique faults found in 92 classes means at least 8 unique faults per class at the same time. I have never seen in all my life a published library with so many faults …

This would be a good start for a discussion of what is wrong with refereeing in computer science today (on the negativism of our field see [1]); we have a referee who mistakes experience for expertise, prejudice for truth, and refuses to accept carefully documented evidence because “in all his life”, presumably a rich and rewarding life, he has never seen anything of the sort. That is not the focus of the present article, however; arrogant referees eventually retire and good papers eventually get published. The technical problems are what matters. The technical point here is about testing.

Specifically, what bugs are worth finding, and are high bug rates extraordinary?

The paper under review was a step in the work around the automatic testing tool AutoTest (see [2] for a slightly older overall description and [3] for the precise documentation). AutoTest applies a fully automatic strategy, exercising classes and their routines without the need to provide test cases or test oracles. What makes such automation possible is the combination of  random generation of tests and reliance on contracts to determine the success of tests.

For several years we have regularly subjected libraries, in particular the EiffelBase data structure library, to long AutoTest sessions, and we keep finding bugs (the better term is faults). The fault counts are significant; here they caught the referee’s eye. In fact we have had such comments before: I don’t believe your fault counts for production software; your software must be terrible!

Well, maybe.

My guess is that in fact EiffelBase has no more bugs, and possibly far fewer bugs, than other “production” code. The difference is that the  AutoTest framework performs far more exhaustive tests than usually practiced.

This is only a conjecture; unlike the referee I do not claim any special powers that make my guesses self-evident. Until we get test harnesses comparable to AutoTest for environments other than Eiffel and, just as importantly, libraries that are fully equipped with contracts, enabling the detection of bugs that otherwise might not come to light, we will not know whether the explanation is the badness of EiffelBase or the goodness of AutoTest.

What concrete, incontrovertible evidence demonstrates is that systematic random testing does find faults that human testers typically do not. In a 2008 paper [4] with Ilinca Ciupa, Manuel Oriol and Alexander Pretschner, we ran AutoTest on some classes and compared the results with those of human testers (as well as actual bug reports from the field, since this was released software). We found that the two categories are complementary: human testers find faults that are still beyond the reach of automated tools, but they typically never find certain faults that AutoTest, with its stubborn dedication to leaving no stone unturned, routinely uncovers. We keep getting surprised at bugs that AutoTest detects and which no one had sought to test before.

A typical set of cases that human programmers seldom test, but which frequently lead to uncovering bugs, involves boundary values. AutoTest, in its “random-plus” strategy, always exercises special values of every type, such as MAXINT, the maximum representable integer. Programmers don’t. They should — all testing textbooks tell them so — but they just don’t, and perhaps they can’t, as the task is often too tedious for a manual process. It is remarkable how many routines using integers go bezerk when you feed them MAXINT or its negative counterpart. Some of the fault counts that seem so outrageous to our referee directly come from trying such values.

Some would say the cases are so extreme as to be insignificant. Wrong. Many documented software failures and catastrophes are due to untested extreme values. Perhaps the saddest is the case of the Patriot anti-missile system, which at the beginning of the first Gulf war was failing to catch Scud missiles, resulting in one case in the killing of twenty-eight American soldiers in an army barrack. It was traced to a software error [5]. To predict the position of the incoming missile, the computation multiplied time by velocity. The time computation used multiples of the time unit, a tenth of a second, stored in a 24-bit register and hence approximated. After enough time, long enough to elapse on the battlefield, but longer than what the tests had exercised, the accumulated error became so large as to cause a significant — and in the event catastrophic — deviation. The unique poser of automatic testing is that unlike human testers it is not encumbered by a priori notions of a situation being extreme or unlikely. It tries all the possibilities it can.

The following example, less portentous in its consequences but just as instructive, is directly related to AutoTest. For his work on model-based contracts [6] performed as part of his PhD completed in 2008 at ETH, Bernd Schoeller developed classes representing the mathematical notion of set. There were two implementations; it turned out that one of them, say SET1, uses data structures that make the subset operation easy to program efficiently; in the corresponding class, the superset operation, ab, is then simply implemented as ba. In the other implementation, say SET2, it is the other way around: is directly implemented, and ab, is implemented as ba. This all uses a nice object-oriented structure, with a general class SET defining the abstract notion and the two implementations inheriting from it.

Now you may see (if you have developed a hunch for automated testing) where this is heading: AutoTest knows about polymorphism and dynamic binding, and tries all the type combinations that make sense. One of the generated test cases has two variables s1 and s2 of type SET, and tries out s2s1; in one of the combinations that AutoTest tries, s1 is dynamically and polymorphically of type SET1 and s2 of type SET2. The version of that it will use is from SET2, so it actually calls s1s2; but this tests the SET1 version of , which goes back to SET2. The process would go on forever, were it not for a timeout in AutoTest that uncovers the fault. Bernd Schoeller had tried AutoTest on these classes not in the particular expectation of finding bugs, but more as a favor to the then incipient development of AutoTest, to see how well the tool could handle model-based contracts. The uncovering of the fault, testament to the power of relentless, systematic automatic testing, surprised us all.

In this case no contract was violated; the problem was infinite recursion, due to a use of O-O techniques that for all its elegance had failed to notice a pitfall. In most cases, AutoTest finds the faults through violated postconditions or class invariants. This is one more reason to be cautious about sweeping generalizations of the kind “I do not believe these bug rates, no serious software that I have seen shows anything of the sort!”. Contracts express semantic properties of the software, which the designer takes care of stating explicitly. In run-of-the-mill code that does not benefit from such care, lots of things can go wrong but remain undetected during testing, only to cause havoc much later during some actual execution.

When you find such a fault, it is irrelevant that the case is extreme, or special, or rare, or trivial. When a failure happens it no longer matter that the fault was supposed to be rare; and you will only know how harmful it is when you deal with the consequences. Testing, single-mindedly  devoted to the uncovering of faults [7], knows no such distinction: it hunts all bugs large and small.

References

[1] The nastiness problem in computer science, article on the CACM blog, 22 August 2011, available here.

[2] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, also available here.

[3] Online AutoTest documentation, available here at docs.eiffel.com.

[4] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol and Alexander Pretschner: Finding Faults: Manual Testing vs. Random+ Testing vs. User Reports, in ISSRE ’08, Proceedings of the 19th IEEE International Symposium on Software Reliability Engineering, Redmond, November 2008, available here.

[5] US General Accounting Office: GAO Report: Patriot Missile Defense– Software Problem Led to System Failure at Dhahran, Saudi Arabia, February 4, 1992, available here.

[6] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[7] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008available here.

VN:F [1.9.10_1130]
Rating: 9.1/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

A safe and stable solution

Reading about the latest hullabaloo around Android’s usage of Java, and more generally following the incessant flow of news about X suing Y in the software industry (with many combinations of X and Y) over Java and other object-oriented technologies, someone with an Eiffel perspective can only smile. Throughout its history, suggestions to use Eiffel have often been met initially — along with “Will Eiffel still be around next year?”, becoming truly riotous after 25 years — with objections of proprietariness, apparently because Eiffel initially came from a startup company. In contrast, many other approaches, from C++ to Smalltalk and Java, somehow managed to get favorable vibes from the media; the respective institutions, from AT&T to Xerox and Sun, must be disinterested benefactors of humanity.

Now many who believed this are experiencing a next-morning surprise, discovering under daylight that the person next to whom they wake up is covered with patents and lawsuits.

For their part, people who adopted Eiffel over the years and went on to develop project after project  do not have to stay awake worrying about legal issues and the effects of corporate takeovers; they can instead devote their time to building the best software possible with adequate methods, notations and tools.

This is a good time to recall the regulatory situation of Eiffel. First, the Eiffel Software implementation (EiffelStudio): the product can be used through either an open-source and a proprietary licenses. With both licenses the software is exactly the same; what differs is the status of the code users generate: with the open-source license, they are requested to make their own programs open-source; to keep their code proprietary, they need the commercial license. This is a fair and symmetric requirement. It is made even more attractive by the absence of any run-time fees or royalties of the kind typically charged by database vendors.

The open-source availability of the entire environment, over 2.5 millions line of (mostly Eiffel) code, has spurred the development of countless community contributions, with many more in progress.

Now for the general picture on the language, separate from any particular implementation. Java’s evolution has always been tightly controlled by Sun and now its successor Oracle. There may actually be technical arguments in favor of the designers retaining a strong say in the evolution of a language, but they no longer seem to apply any more now that most of the Java creators have left the company. Contrast this with Eiffel, which is entirely under the control of an international standards committee at ECMA International, the oldest and arguably the most prestigious international standards body for information technology. The standard is freely available online from the ECMA site [1]. It is also an ISO standard [2].

The standardization process is the usual ECMA setup, enabling any interested party to participate. This is not just a statement of principle but the reality, to which I can personally testify since, in spite of being the language’s original designer and author of the reference book, I lost countless battles in the discussions that led to the current standard and continue in preparation of the next version. While I was not always pleased on the moment, the committee’s collegial approach has led to a much more solid result than any single person could have achieved.

The work of ECMA TC49-TG4 (the Eiffel standard committee) has disproved the conventional view that committees can only design camels. In fact TC49-TG4 has constantly worked to keep the language simple and manageable, not hesitating to remove features deemed obsolete or problematic, while extending the range of the language and increasing the Eiffel programmer’s power of expression. As a result, Eiffel today is an immensely better language than when we started our work in 2002. Without a strong community-based process we would never, for example, have made Eiffel the first widespread language to guarantee void-safety (the compile-time removal of null-pointer-dereferencing errors), a breakthrough for software reliability.

Open, fair, free from lawsuits and commercial fights, supported by an enthusiastic community: for projects that need a modern quality-focused software framework, Eiffel is a safe and stable solution.

References

[1] ECMA International: Standard ECMA-367: Eiffel: Analysis, Design and Programming Language, 2nd edition (June 2006), available here (free download).

[2] International Organization for Standardization: ISO/IEC 25436:2006: Information technology — Eiffel: Analysis, Design and Programming Language, available here (for a fee; same text as [1], different formatting).

VN:F [1.9.10_1130]
Rating: 5.0/10 (33 votes cast)
VN:F [1.9.10_1130]
Rating: -2 (from 28 votes)

Specification explosion

To verify software, we must specify it; otherwise there is nothing to verify against. People often cite the burden of specification as the major obstacle toward making verification practical. At issue are not only the effort required to express the goals of software elements (their contracts) but also intermediate assertions, or “verification conditions”, including loop invariants, required by the machinery of verification.

At a Microsoft Software Verification summer school [1] in Moscow on July 18 — the reason why there was no article on this blog last week — Stefan Tobies, one of the lecturers, made the following observation about the specification effort needed to produce fully verified software. In his experience, he said, the ratio of specification lines to program lines is three to one.

Such a specification explosion, to coin a phrase, has to be addressed by any practical approach to verification. It would be interesting to get estimates from others with verification experience.

Reducing specification explosion  is crucial to the Eiffel effort to provide “Verification As a Matter Of Course” [2]. The following three techniques should go a long way:

  • Loop invariant inference. Programmers can be expected to write contracts expressing the purpose of routines (preconditions, postconditions) and classes (class invariants), but often balk at writing the intermediate assertions necessary to prove the correctness of loops. An earlier article [3] mentioned some ongoing work on this problem and I hope to come back to the topic.
  • Frame conventions. As another recent article has discussed [4], a simple language convention can dramatically reduce the number of assertions by making frame conditions explicit.
  • Model-based contracts. This technique calls for a separate article; the basic idea is to express the effect of operations through high-level mathematical models relying on a library that describe such mathematical abstractions as sets, relations, functions and graphs.

The risk of specification explosion is serious enough to merit a concerted defense.

 

References

[1] Summer School in Software Engineering and Verification, details here.

[2] Verification As a Matter Of Course, slides of a March 2010 talk, see an earlier article on this blog.

[3] Contracts written by people, contracts written by machines, an earlier article on this blog.

[4] If I’m not pure, at least my functions are, an earlier article on this blog.

VN:F [1.9.10_1130]
Rating: 9.3/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)

Towards a Calculus of Object Programs

I posted here a draft of a new article, Towards a Calculus of Object Programs.

Here is the abstract:

Verifying properties of object-oriented software requires a method for handling references in a simple and intuitive way, closely related to how O-O programmers reason about their programs. The method presented here, a Calculus of Object Programs, combines four components: compositional logic, a framework for describing program semantics and proving program properties; negative variables to address the specifics of O-O programming, in particular qualified calls; the alias calculus, which determines whether reference expressions can ever have the same value; and the calculus of object structures, a specification technique for the structures that arise during the execution of an object-oriented program.
The article illustrates the Calculus by proving the standard algorithm for reversing a linked list.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Testing insights

Lionel Briand and his group at the Simula Research Laboratory in Oslo have helped raise the standard for empirical research in testing and other software engineering practices by criticizing work that in their opinion relies on wrong assumptions or insufficiently supported evidence. In one of their latest papers [1] they take aim at “Adaptive Random Testing” (ART); one of the papers they criticize is from our group at ETH, on the ARTOO extension [2] to this testing method. Let’s examine the criticism!

We need a bit of background on random testing, ART, and ARTOO:

  • Random testing tries inputs based on a random process rather than attempting a more sophisticated strategy; it was once derided as silly [3], but has emerged in recent years as a useful technique. Our AutoTest tool [4], now integrated in EiffelStudio, has shown it to be particularly effective when applied to code equipped with contracts, which provide built-in test oracles. As a result of this combination, testing can be truly automatic: the two most tedious tasks of traditional testing, test case preparation and test oracle definition, can be performed without human intervention.
  • ART, developed by Chen and others [5], makes random testing not entirely random by ensuring that the inputs are spread reasonably evenly in the input domain.
  • ARTOO, part of Ilinca Ciupa’s PhD thesis on testing defended in 2008,   generalized ART to object-oriented programs, by defining a notion of distance between objects; the ARTOO strategy  avoids choosing objects that are too close to each other. The distance formula, which you can find in[2], combines three elementary distances: between the types of the objects involved,  the values in their primitive fields (integers etc.), and, recursively, the objects to which they have references.

Arcuri and Briand dispute the effectiveness of ART and criticize arguments that various papers have used to show its effectiveness. About the ARTOO paper they write

The authors concluded that ART was better than random testing since it needed to sample less test cases before finding the first failure. However, ART was also reported as taking on average 1.6 times longer due to the distance calculations!

To someone not having read our paper the comment and the exclamation mark would seem to suggest that the paper somehow downplays this property of random testing, but in fact it stresses it repeatedly. The property appears for example in boldface as part of the caption to Table 2: In most cases ARTOO requires significantly less tests to find a fault, but entails a time overhead, and again in boldface in the caption to Table 3: The overhead that the distance calculations introduce in the testing process causes ARTOO to require on average 1.6 times more time than RAND to find the first fault.

There is no reason, then, to criticize the paper on this point. It reports the results clearly and fairly.

If we move the focus from the paper to the method, however, Arcuri and Briand have a point. As they correctly indicate, the number of tests to first fault is not a particularly useful criterion. In fact I argued against it in another paper on testing [6]

The number of tests is not that useful to managers, who need help deciding when to stop testing and ship, or to customers, who need an estimate of fault densities. More relevant is the testing time needed to uncover the faults. Otherwise we risk favoring strategies that uncover a failure quickly but only after a lengthy process of devising the test; what counts is total time. This is why, just as flies get out faster than bees, a seemingly dumb strategy such as random testing might be better overall.

(To understand the mention of flies and bees you need to read [6].) The same article states, as its final principle:

Principle 7: Assessment criteria A testing strategy’s most important property is the number of faults it uncovers as a function of time.

The ARTOO paper, which appeared early in our testing work, used “time to first failure” because it has long been a standard criterion in the testing literature, but it should have applied our own advice and focused on more important properties of testing strategies.

The “principles” paper [6] also warned against a risk awaiting anyone looking for new test strategies:

Testing research is vulnerable to a risky thought process: You hit upon an idea that seemingly promises improvements and follow your intuition. Testing is tricky; not all clever ideas prove helpful when submitted to objective evaluation.

The danger is that the clever ideas may result in so much strategy setup time that any benefit on the rest of the testing process is lost. This danger threatens testing researchers, including those who are aware of it.

The idea of ARTOO and object distance remains attractive, but more work is needed to make it an effective contributor to automated random testing and demonstrate that effectiveness. We can be grateful to Arcuri and Briand for their criticism, and I hope they continue to apply their iconoclastic zeal to empirical software engineering work, ours included.

I have objections of my own to their method. They write that “all the work in the literature is based either on simulations or case studies with unreasonably high failure rates”. This is incorrect for our work, which does not use simulations, relying instead on actual, delivered software, where AutoTest routinely finds faults in an automatic manner.

In contrast, however, Arcuri and Briand rely on fault seeding (also known as fault introduction or fault injection):

To obtain more information on how shapes appear in actual SUT, we carried out a large empirical analysis on 11 programs. For each program, a series of mutants were generated to introduce faults in these programs in a systematic way. Faults generated through mutation [allow] us to generate a large number of faults, in an unbiased and varied manner. We generated 3727 mutants and selected the 780 of them with lower detection probabilities to carry out our empirical analysis of faulty region shapes.

In the absence of objective evidence attesting to the realism of fault seeding, I do not believe any insights into testing obtained from such a methodology. In fact we adopted, from the start of our testing work, the principle that we would never rely on fault seeding. The problem with seeded faults is that there is no guarantee they reflect the true faults that programmers make, especially the significant ones. Techniques for fault seeding are understandably good at introducing typographical mistakes, such as a misspelling or the replacement of a “+” by a “-”; but these are not interesting kinds of fault, as they are easily caught by the compiler, by inspection, by low-tech static tools, or by simple tests. Interesting faults are those resulting from a logical error in the programmer’s mind, and in my experience (I do not know of good empirical studies on this topic) seeding techniques do not generate them.

For these reasons, all our testing research has worked on real software, and all the faults that AutoTest has found were real faults, resulting from a programmer’s mistake.

We can only apply this principle because we work with software equipped with contracts, where faults will be detected through the automatic oracle of a violated assertion clause. It is essential, however, to the credibility and practicality of any testing strategy; until I see evidence to the contrary, I will continue to disbelieve any testing insights resulting from studies based on artificial fault injection.

References

[1] Andrea Arcuri and Lionel Briand: Adaptive Random Testing: An Illusion of Effectiveness, in ISSTA 2011 (International Symposium on Software Testing and Analysis), available here.

[2] Ilinca Ciupa, Andreas Leitner, Manuel Oriol and Bertrand Meyer: ARTOO: Adaptive Random Testing for Object-Oriented Software, in ICSE 2008: Proceedings of 30th International Conference on Software Engineering, Leipzig, 10-18 May 2008, IEEE Computer Society Press, 2008, also available here.

[3] Glenford J. Myers. The Art of Software Testing. Wiley, New York, 1979. Citation:

Probably the poorest methodology of all is random-input testing: the process of testing a program by selecting, at random, some subset of all possible input values. In terms of the probability of detecting the most errors, a randomly selected collection of test cases has little chance of being an optimal, or close to optimal, subset. What we look for is a set of thought processes that allow one to select a set of test data more intelligently. Exhaustive black-box and white-box testing are, in general, impossible, but a reasonable testing strategy might use elements of both. One can develop a reasonably rigorous test by using certain black-box-oriented test-case-design methodologies and then supplementing these test cases by examining the logic of the program (i.e., using white-box methods).

[4] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, Arno Fiva, Yi Wei and Emmanuel Stapf: Programs that Test Themselves, IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009, available here. For practical uses of AutoTest within EiffelStudio see here.

[5] T. Y. Chen, H Leung and I K Mak: Adaptive Random Testing, in  Advances in Computer Science, ASIAN 2004, Higher-Level Decision Making,  ed. M.J. Maher,  Lecture Notes in Computer Science 3321, Springer-Verlag, pages 320-329, 2004, available here.

[6] Bertrand Meyer: Seven Principles of Software testing, in IEEE Computer, vol. 41, no. 10, pages 99-101, August 2008, also available here.

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 7 votes)

If I’m not pure, at least my functions are

..

If I’m not pure, at least my jewels are [1].

..

We often need to be reassured that a routine, usually a function, is “pure”, meaning that it does not change the state of the computation. For example, a function used in a contract element (precondition, postcondition, class invariant, loop invariant) should be purely descriptive, since it is a specification element; evaluating it, typically for testing and debugging, should not create a change of behavior — a “Heisenberg effect” — in the very computation that it is intended to assess. Another application is in a concurrency context, particularly in SCOOP (see earlier posts and forthcoming ones): if one or more functions are pure, several of their executions can run  concurrently on the same object.

The notion of purity admits variants. The usual notion is what  [2] calls weak purity, which precludes changes to previously existing objects but allow creating new objects. In the EiffelBase library we also encounter routines that have another form of purity, which we may call “relative” purity: they can leave the same state on exit as they found on entry, but in-between they might change the state.  For the rest of this discussion we will rely on the standard notion of weak purity: no changes permitted on existing objects.

It is often suggested that the programming language should support specifying that a routine is pure; many people have indeed proposed the addition of a keyword such as pure to Eiffel. One of the reasons this is not — in my opinion — such a great idea is that purity is just a special case of the more general problem of framing: specifying and verifying what a routine does not change. If we can specify an arbitrary frame property, then we can, as a special case covered by the general mechanism, specify that a routine changes nothing.

To see why framing is so important, consider a class ACCOUNT with a routine deposit that has the postcondition

balance = old balance + sum………..— Where sum is the argument of deposit

Framing here means stating that nothing else than balance changes; for example the account’s owner and its number should remain the same. It is not practical to write all individual postcondition clauses such as

owner= old owner
number=
old number

and so on. But we do need to specify these properties and enforce them, if only to avoid that a descendant class (maybe MAFIA_ACCOUNT) distort the rules defined by the original.

One technique is to add a so-called “modifies clause”, introduced by verification tools such as ESC-Java [3] and JML [4]. Modifies clauses raise some theoretical issues; in particular, the list of modified expressions is often infinite, so we must restrict ourselves to an abstract-data-type view where we characterize a class by commands and queries and the modifies clause only involves queries of the class. Many people find this hard to accept at first, since anything that is not talked about can change, but it is the right approach. A modifies clause of sorts, included in the postcondition, appeared in an earlier iteration of the Eiffel specification, with the keyword only (which is indeed preferable to modifies, which in the Eiffel style favoring grammatically simple keywords would be modify, since what we want to express is not that the routine must change anything at all  but that it may only change certain specified results!). The convention worked well with inheritance, since it included the rule that a clause such as only balance, in class  ACCOUNT, prescribes that the routine may not, in its modifies version as well as in any version redefined in descendants, change any other query known at the level of ACCOUNT; but a descendant version may change, subject to its own ACCOUNT clauses, any new query introduced by a descendant.

To declare a routine as pure, it would suffice to use an empty only clause (not very elegant syntactically — “only” what? — but one can get used to it).

This construct has been discarded, as it places too heavy a burden on the programmer-specifier. Here the key observation resulted from a non-scientific but pretty extensive survey I made of all the JML code I could get my hands on. I found that every time a query appeared in a modifies clause it was also listed in the postcondition! On reflection, this seems reasonable: if you are serious about specification, as anyone bothering to write such a clause surely is, you will not just express that something changes and stop there; you will write something about how it may change. Not necessarily the exact result, as in

my_query = precise_final_value

but at least some property of that result, as in

some_property (my_query)

This observation has, however, an inescapable consequence for language design: modifies or only clauses should be inferred by the compiler from the postcondition, not imposed on the programmer as an extra burden. The convention, which we may call the Implicit Framing Rule, is simple:

A routine may change the value of a query only if the query is specified in the routine’s postcondition

(or, if you like double negation, “no routine may change the value of a query other than those specified in its postcondition”). Here we say that a feature is “specified” in a postcondition if it appears there outside of the scope of an old expression. (Clearly, an occurrence such as old balance does not imply that balance can be modified, hence this restriction to occurrences outside of an old.)

With this convention the only clause becomes implicit: it would simply list all the queries specified in the postcondition, so there is no need for the programmer to write it. For the rare case of wanting to specify that a query q may change, but not wanting to specify how, it is easy to provide a library function, say involved, that always return true and can be used in postconditions, as in involved (q).

The convention is of course not just a matter of programming methodology but, in an IDE supporting verification, such as the EVE “Verification As a Matter Of Course” environment which we are building for Eiffel [5], the compiler will enforce the definition above — no change permitted to anything not specified in the postcondition — and produce an error in case of a violation. This also means that we can easily specify that a routine is pure: it must simply not specify any query in its postcondition. It may still list it in an old clause, as happens often in practice, e.g.

Result = old balance – Minimum_balance………..— In the postcondition of a function available_funds

Note the need to use old here. Apart from this addition of old to some postconditions, a considerable advantage of the convention is that most existing code using pure functions will be suitable to the new purity enforcement without any need to provide new annotations.

I believe that this is the only sustainable convention. It does not, of course, solve the frame problem by itself (for attempts in this direction see [6, 7]), but it is a necessary condition for a solution that is simple, easily taught, fairly easily implemented, and effective. It goes well with model-based specifications [8, 9], which I believe are the technique of most promise for usable  specifications of object-oriented software. And it provides a straightforward, no-frills way to enforce purity where prescribed by the Command-Query Separation principle [10, 11]: if I’m not pure, at least my functions must be.

References

[1] From the lyrics of the aria Glitter and Be Gay in Leonard Bernstein’s Candide, text by Lillian Hellman and others. Youtube offers several performances, including  by Diana Damrau (here) and Natalie Dessay (here) . For the text see e.g. here.

[2] Adam Darvas and Peter Müller: Reasoning About Method Calls in Interface Specifications, in Journal of Object Technology, Volume 5, no. 5, jUNE 2006, pages 59-85, doi:10.5381/jot.2006.5.5.a3, available here.

[3] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe and R. Stata: Extended static checking for Java, in PLDI 2002 (Programming Language Design and Implementation), pages 234–245, 2002.

[4] Gary Leavens et al.: Java Modeling Language, see references here.

[5] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer: Verifying Eiffel Programs with Boogie, to appear in Boogie 2011, First International Workshop on Intermediate Verification Languages, Wroclaw, August 2011. See documentation about the EVE project on the project page.

[6] Ioannis Kassios: Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions, in Formal Methods 2006, eds. J. Misra, T. Nipkow and E. Sekerinski, Lecture Notes in Computer Science 4085, Springer Verlag, 2006, pages 268-283.

[7] Bernd Schoeller: Making Classes Provable through Contracts, Models and Frames, PhD thesis, ETH Zurich, 2007, available here

[8] Bernd Schoeller, Tobias Widmer and Bertrand Meyer: Making Specifications Complete Through Models, in Architecting Systems with Trustworthy Components, eds. Ralf Reussner, Judith Stafford and Clemens Szyperski, Lecture Notes in Computer Science, Springer-Verlag, 2006, available here.

[9] Nadia Polikarpova, Carlo Furia and Bertrand Meyer: Specifying Reusable Components, in Verified Software: Theories, Tools, Experiments (VSTTE ’10), Edinburgh, UK, 16-19 August 2010, Lecture Notes in Computer Science, Springer Verlag, 2010, available here.

[10] Bertrand Meyer: Object-Oriented Software Construction, first (1988) and second (1997) editions, Prentice Hall.

[11] Bertrand Meyer: Touch of Class: An Introduction to Programming Well, Using Objects and Contracts, Springer Verlag, 2009.

VN:F [1.9.10_1130]
Rating: 10.0/10 (7 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Agile methods: the good, the bad and the ugly

It was a bit imprudent last Monday to announce the continuation of the SCOOP discussion for this week; with the TOOLS conference happening now, with many satellite events such as the Eiffel Design Feast of the past week-end and today’s “New Eiffel Technology Community” workshop, there is not enough time for a full article. Next week might also be problematic. The SCOOP series will resume, but in the meantime I will report on other matters.

As something that can be conveniently typed in while sitting in the back of the TOOLS room during fascinating presentations, here is a bit of publicity for the next round of one-day seminars for industry — “Compact Course” is the official terminology — that I will be teaching at ETH in Zurich next November (one in October), some of them with colleagues. It’s the most extensive session that we have ever done; you can see the full programs and registration information here.

  • Software Engineering for Outsourced and Distributed Development, 27 October 2011
    Taught with Peter Kolb and Martin Nordio
  • Requirements Engineering, 17 November
  • Software Testing and Verification: state of the art, 18 November
    With Carlo Furia and Sebastian Nanz
  • Agile Methods: the Good, the Bad and the Ugly, 23 November
  • Concepts and Constructs of Concurrent Computation, 24 November
    With Sebastian Nanz
  • Design by Contract, 25 November

The agile methods course is new; its summary reads almost like a little blog article, so here it is.

Agile methods: the Good, the Bad and the Ugly

Agile methods are wonderful. They’ll give you software in no time at all, turn your customers and users into friends, catch bugs before they catch you, change the world, and boost your love life. Do you believe these claims (even excluding the last two)? It’s really difficult to form an informed opinion, since most of the presentations of eXtreme Programming and other agile practices are intended to promote them (and the consultants to whom they provide a living), not to deliver an objective assessment.

If you are looking for a guru-style initiation to the agile religion, this is not the course for you. What it does is to describe in detail the corpus of techniques covered by the “agile” umbrella (so that you can apply them effectively to your developments), and assess their contribution to software engineering. It is neither “for” nor “against” agile methods but fundamentally descriptive, pedagogical, objective and practical. The truth is that agile methods include some demonstrably good ideas along with some whose benefits are at best dubious. In addition (and this should not be a surprise) they cannot make the fundamental laws of software engineering go away.

Agile methods have now been around for more than a decade, during which many research teams, applying proven methods of experimental science, have performed credible empirical studies of how well the methods really work and how they compare to more traditional software engineering practices. This important body of research results, although not widely known, is critical to managers and developers in industry for deciding whether and how to use agile development. The course surveys these results, emphasizing the ones most directly relevant to practitioners.

A short discussion session will enable participants with experience in agile methods to share their results.

Taking this course will give you a strong understanding of agile development, and a clear view of when, where and how to apply them.

Schedule

Morning session: A presentation of agile methods

  • eXtreme Programming, pair programming, Scrum, Test-Driven Development, continuous integration, refactoring, stakeholder involvement, feature-driven development etc.
  • The agile lifecycle.
  • Variants: lean programming etc.

Afternoon session (I): Assessment of agile methods

  • The empirical software engineering literature: review of available studies. Assessment of their value. Principles of empirical software engineering.
  • Agile methods under the scrutiny of empirical research: what helps, what harms, and what has no effect? How do agile methods fare against traditional techniques?
  • Examples: pair programming versus code reviews; tests versus specifications; iterative development versus “Big Upfront Everything”.

Afternoon session (II): Discussion and conclusion

This final part of the course will present, after a discussion session involving participants with experience in agile methods, a summary of the contribution of agile methods to software engineering.

It will conclude with advice for organizations involved in software development and interested in applying agile methods in their own environment.

Target groups

CIOs; software project leaders; software developers; software testers and QA engineers.

VN:F [1.9.10_1130]
Rating: 8.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 5 votes)

Concurrent programming is easy

EiffelStudio 6.8, released last month, contains the first official implementation of the SCOOP programming model for concurrent programming. This is an important milestone; let me try to explain why.

Concurrency challenging us

Concurrency is the principal stumbling block in the progress of programming. Do not take just my word for it:

  • Intel: “Multi-core processing is taking the industry on a fast-moving and exciting ride into profoundly new territory. The defining paradigm in computing performance has shifted inexorably from raw clock speed to parallel operations and energy efficiency” [1].
  • Rick Rashid (head of Microsoft Research):  “Multicore processors represent one of the largest technology transitions in the computing industry today, with deep implications for how we develop software.” [2].
  • Bill Gates: “Multicore: This is the one which will have the biggest impact on us. We have never had a problem to solve like this. A breakthrough is needed in how applications are done on multicore devices.” [3]
  • David Patterson: “Industry has basically thrown a Hail Mary. The whole industry is betting on parallel computing. They’ve thrown it, but the big problem is catching it.” [4]
  • Gordon Bell: “I’m skeptical until I see something that gives me some hope…  the machines are here and we haven’t got it right.” [4].

What has happened? Concurrency  used to be a highly specialized domain of interest to a small minority of programmers building operating systems and networking systems and database engines. Just about everyone else could live comfortably pretending that the world was sequential. And then suddenly we all need to be aware of concurrency. The principal reason is the end of Moore’s law as we know it [5].

The end of Moore's law as we know it

This chart show that we can no longer rely on the automatic and regular improvement to our programs’ performance, roughly by a factor of two every two years, thanks to faster chips. The free lunch is over; continued performance increases require taking advantage of concurrency, in particular through multithreading.

Performance is not the only reason for getting into concurrency. Another one is user convenience: ever since the first browser showed that one could write an email and load a Web page in the same window, users have been clamoring for multithreaded applications. Yet another source of concurrency requirements is the need to produce Internet and Web applications.

How do programmers write these applications? The almost universal answer relies on threading mechanisms, typically offered through some combination of language and library mechanisms: Java Threads, .NET threading, POSIX threads, EiffelThreads. The underlying techniques are semaphores and mutexes: nineteen-sixties vintage concepts, rife with risks of data races (access conflicts to a variable or resource, leading to crashes or incorrect computations) and deadlocks (where the system hangs). These risks are worse than the classical bugs of sequential programs because they are very difficult to detect through testing.

Ways to tame the beast

Because the need is so critical, the race is on — a “frantic” race in the words of a memorable New York Times article by John Markoff [4] — to devise a modern programming framework that will bring concurrent programming under control. SCOOP is a contender in this battle. In this post and the next I will try to explain why we think it is exactly what the world needs to tame concurrency.

The usual view, from which SCOOP departs, is that concurrent programming is intrinsically hard and requires a fundamental change in the way programmers think. Indeed some of the other approaches that have attracted attention imply radical departures from accepted programming paradigm:

  • Concurrency calculi such as CSP [6, 7], CCS [8] and the π-Calculus [9] define  high-level mathematical frameworks addressing concurrency, but they are very far from the practical concerns of programmers. An even more serious problem is that they focus on only some aspects of programming, but being concurrent is only one property of a program, among many others (needing a database, relying on graphical user interface, using certain data structures, perform certain computations…). We need mechanisms that integrate concurrency with all the other mechanisms that a program uses.
  • Functional programming languages have also offered interesting idioms for concurrency, taking advantage of the non-imperative nature of functional programming. Advocacy papers have argued for Haskell [10 and Erlang [11] in this role. But should the world renounce other advances of modern software engineering, in particular object-oriented programming, for the sake of these mechanisms? Few people are prepared to take that step, and (as I have discussed in a detailed article [12]) the advantages of functional programming are counter-balanced by the superiority of the object-oriented model in its support for the modular construction of realistic systems.

What if we did not have to throw away everything and relearn programming from the ground up for concurrency? What if we could retain the benefits of five decades of software progress, as crystallized in modern object-oriented programming? This is the conjecture behind SCOOP: that we can benefit from all the techniques we have learned to make our software reliable, extendible and reusable, and add concurrency to the picture in an incremental way.

From sequential to concurrent

A detailed presentation of SCOOP will be for next Monday, but let me give you a hint and I hope whet your appetite by describing how to move a typical example from sequential to concurrent. Here is a routine for transferring money between two accounts:

transfer (amount: INTEGER ; source, target: ACCOUNT)
               -- Transfer amount dollars from source to target.
        require
               enough: source·balance >= amount
        do
         source·withdraw (amount)
         target·deposit (amount)
        ensure
               removed: source·balance = old source·balance – amount
               added: target·balance = old target·balance + amount
        end

The caller must satisfy the precondition, requiring the source account to have enough money to withdraw the requested amount; the postcondition states that the source account will then be debited, and the target account credited, by that amount.

Now assume that we naïvely apply this routine in a concurrent context, with concurrent calls

        if acc1·balance >= 100 then transfer (acc1, acc2, 100) end

and

        if acc1·balance >= 100 then transfer (acc1, acc3, 100) end

If the original balance on acc1 is 100, it would be perfectly possible in the absence of a proper concurrency mechanism that both calls, as they reach the test acc1·balance >= 100, find the property to be true and proceed to do the transfer — but incorrectly since they cannot both happen without bringing the balance of acc1 below zero, a situation that the precondition of transfer and the tests were precisely designed to rule out. This is the classic data race. To avoid it in the traditional approaches, you need complicated and error-prone applications of semaphores or conditional critical regions (the latter with their “wait-and-signal” mechanism, just as clumsy and low-level as the operations on semaphores).

In SCOOP, such data races, and data races of any other kind, cannot occur. If the various objects involved are to run in separate threads of control, the declaration of the routine will be of the form

transfer (amount: INTEGER ; source, target: separate ACCOUNT)
               -- The rest of the routine exactly as before.

where separate is the only specific language keyword of SCOOP. This addition of the separate marker does the trick. will result in the following behavior:

  • Every call to transfer is guaranteed exclusive access to both separate arguments (the two accounts).
  • This simultaneous reservation of multiple objects (a particularly tricky task when programmers must take care of it through their own programs, as they must in traditional approaches) is automatically guaranteed by the SCOOP scheduler. The calls wait as needed.
  • As a consequence, the conditional instructions (if then) are no longer needed. Just call transfer and rely on SCOOP to do the synchronization and guarantee correctness.
  • As part of this correctness guarantee, the calls may have to wait until the preconditions hold, in other words until there is enough money on the account.

This is the desired behavior in the transition from sequential to concurrent. It is achieved here not by peppering the code with low-level concurrent operations, not by moving to a completely different programming scheme, but by simply declaring which objects are “separate” (potentially running elsewhere.

The idea of SCOOP is indeed that we reuse all that we have come to enjoy in modern object-oriented programming, and simply declare what needs to be parallel, expecting things to work (“principle of least surprise”).

This is not how most of the world sees concurrency. It’s supposed to be hard. Indeed it is; very hard, in fact. But the view of the people who built SCOOP is that as much of the difficulty should be for the implementers. Hence the title of this article: for programmers, concurrency should be easy. And we think SCOOP demonstrates that it can be.

SCOOP in practice

A few words of caution: we are not saying that SCOOP as provided in EiffelStudio 6.8 is the last word. (Otherwise it would be called 7.0.) In fact, precisely because implementation is very hard, a number of details are still not properly handled; for example, as discussed in recent exchanges on the EiffelStudio user group [13], just printing out the contents of a separate string is non-trivial. We are working to provide all the machinery that will make everything work well, the ambitious goals and the practical details. But the basics of the mechanism are there, with a solid implementation designed to scale properly for large applications and in distributed settings.

In next week’s article I will describe in a bit more detail what makes up the SCOOP mechanisms. To get a preview, you are welcome to look at the documentation [14, 15]; I hope it will convince you that despite what everyone else says concurrent programming can be easy.

References

[1] Official Intel statement, see e.g. here.

[2] Rich Rashid, Microsoft Faculty Summit, 2008.

[3] This statement was cited at the Microsoft Faculty Summit in 2008 and is part of the official transcript; hence it can be assumed to be authentic, although I do not know the original source.

[4] Patterson and Bell citations from John Markoff, Faster Chips Are Leaving Programmers in Their Dust, New York Times, 17 December 2007, available here.

[5] The chart is from the course material of Tryggve Fossum at the LASER summer school in 2008.

[6] C.A.R. Hoare: em>Communicating Sequential Processes, Prentice Hall, 1985, also available online.

[7] Bill Roscoe: The Theory and Practice of Concurrency, revised edition, Prentice Hall, 2005, also available online.

[8] Robin Milner: Communication and Concurrency, Prentice Hall, 1989.

[9] Robin Milner: Communicating and Mobile Systems: The π-calculus, Cambridge University Press, 1999.

[10] Simon Peyton-Jones: Beautiful Concurrency, in Beautiful Code, ed. Greg Wilson, O’Reilly, 2007, also available online.

[11] Joe Armstrong: Erlang, in Communications of the ACM, vol. 53, no. 9, September 2010, pages 68-75.

[12] Bertrand Meyer: Software Architecture: Functional vs. Object-Oriented Design, in Beautiful Architecture, eds. Diomidis Spinellis and Georgios Gousios, O’Reilly, 2009, pages 315-348, available online.

[13] EiffelStudio user group; see here for a link to current discussions and to join the group.

[14] SCOOP project documentation at ETH, available here.

VN:F [1.9.10_1130]
Rating: 8.9/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 6 votes)

Assessing concurrency models

By describing a  poorly conceived hypothetical experiment, last week’s article described the “Professor Smith syndrome” consisting of four risks that threaten the validity of empirical software engineering experiments relying on students in a course:

  • Professor Smith Risk 1: possible bias if the evaluator has a stake in the ideas or tools under assessment.
  • Professor Smith Risk 2: creating different levels of motivation in the different groups (Hawthorne effect).
  • Professor Smith Risk 3: extrapolating from students to professionals.
  • Professor Smith Risk 4: violation of educational ethics if the experiment may cause some students to learn better than others.

If you have developed a great new method or tool and would like to assess it, the best way to address Risk 1 is to find someone else to do the assessment. What if  this solution is not practical? Recently we wanted to get some empirical evidence on the merits of the SCOOP (Simple Concurrent Object-Oriented Programming) approach to concurrency [1, 2], on which I have worked for a long time and which is now part of EiffelStudio since the release of 6.8 a couple of weeks ago. We wanted to see if, despite the Professor Smith risks, we could do a credible study ourselves.

The ETH Software Architecture course[3], into which we introduced some introductory material on concurrency last year (as part of a general effort to push more concurrency into software courses at ETH), looked like a good place to try an evaluation; it is a second-year course, where students, or so we thought, would have little prior experience in concurrent software design.

The study’s authors — Sebastian Nanz, Faraz Torshizi and Michela Pedroni — paid special attention to the methodological issues. To judge for yourself whether we addressed them properly, you can read the current version of our paper to be presented at ESEM 2011 [4]. Do note that it is a draft and that we will improve the paper for final publication.

Here is some of what we did. I will not address the Professor Smith Risk 3, the use of students, which (as Lionel Briand has pointed out in a comment on the previous article) published work has studied; in a later article I will give  references to some of that work. But we were determined to tackle the other risks explicitly, so as to obtain credible results.

The basic experiment was a session in which the students were exposed to two different design methods for concurrent software: multithreaded programming in Java, which I’ll call “Java Threads”, and SCOOP. We wanted to explore whether it is easier to program in SCOOP than in Java. This is too general a hypothesis, so it was refined into three concrete hypotheses: is it easier to understand a SCOOP program? Is it easier to find errors in SCOOP programs? Do programmers using SCOOP make fewer errors?

A first step towards reducing the effect — Professor Smith Risk 1 — of any emotional attachment of the experimenters  to one of the approaches, SCOOP in our case, was to generalize the study. Although what directly interested us was to compare SCOOP against Java Threads, we designed the study as a general scheme to compare concurrency approaches; SCOOP and Java Threads are just an illustration, but anyone else interested in assessing concurrency techniques — say Erlang versus C# concurrency — can apply the same methodology. This decision had two benefits: it freed the study from dependency on the particular techniques, hence, we hope, reducing bias; and as side attraction of the kind that is hard for researchers to resist, it increased the publishability of the results.

Circumstances unexpectedly afforded us another protection against any for-SCOOP bias: unbeknownst to us at the time of the study’s design, a first-year course had newly added (in 2009, whereas our study was performed in 2010) an introduction to concurrent programming — using Java Threads! While we had thought that concurrency in any form would be new to most students, in fact almost all of them had now seen Java Threads before. (The new material in the first-year course was taken by ETH students only, but many transfer students had also already had an exposure to Java Threads.) On the other hand, students had not had any prior introduction to SCOOP. So any advantage that one of the approaches may have had because of students’ prior experience would work against our hypotheses. This unexpected development would not help if the study’s results heavily favored Java Threads, but if they favored SCOOP it would reinforce their credibility.

A particular pedagogical decision was made regarding the teaching of our concurrency material: it started with a self-study rather than a traditional lecture. One of the reasons for this decision was purely pedagogical: we felt (and the course evaluations confirmed) that at that stage of the semester the students would enjoy a break in the rhythm of the course. But another reason was to avoid any bias that might have arisen from any difference in the lecturers’ levels of enthusiasm and effectiveness in teaching the two approaches. In the first course session devoted to concurrency, students were handed study materials presenting Java Threads and SCOOP and containing a test to be taken; the study’s results are entirely based on their answers to these tests. The second session was a traditional lecture presenting both approaches again and comparing them. The purpose of this lecture was to make sure the students got the full picture with the benefit of a teacher’s verbal explanations.

The study material was written carefully and with a tone as descriptive and neutral as possible. To make comparisons meaningful, it does not follow a structure specific to Java Threads or  SCOOP  (as we might have used had we taught only one of these approaches); instead it relies in both cases on the same overall plan  (figure 2 of the paper), based on a neutral analysis of concurrency concepts and issues: threads, mutual exclusion, deadlock etc. Each section then presents, for one such general concurrency question, the solution proposed by Java Threads or SCOOP.

This self-study material, as well as everything else about the study, is freely available on the Web; see the paper for the links.

In the self-study, all students studied both the Java Threads and SCOOP materials. They were randomly assigned to two groups, for which the only difference was the order of studying the approaches. We feel that this decision addresses the ethical issue (Professor Smith Risk 4): any pedagogical effect of reading about A before B rather than the reverse, in the course of a few hours, has to be minimal if you end up reading about the two of them, and on the next day follow a lecture that also covers both.

Having all students study both approaches — a crossover approach in the terminology of [5] — should also address the Hawthorne effect (Professor Smith Risk 2): students have no particular incentive to feel that one of the approaches is more hip than the other. While they are not told that SCOOP is partly the work of the instructors, some of them may know or guess this information; the consequences, positive or negative, are limited, since they are asked in both cases to do as well as they can in answering the assessment questions.

The design of that evaluation is another crucial element in trying to avoid bias. We tried, to the extent possible, to base the assessment on objective criteria. For the first hypothesis (program understanding) the technique was to ask the students to predict the output of some simple concurrent programs. To address the risk of a binary correct/incorrect assessment, and get a more fine-grained view, we devised the programs so that they would produce output strings and measured the Levenshtein (edit) distance to the correct result. For the second hypothesis (ease of program debugging), we gave students programs exhibiting typical errors in both approaches and asked them to tell us both the line number of any error they found and an explanation. Assessing the explanation required human analysis; the idea of also assigning partial credit for pointing out a line number without providing a good explanation is that it may be meaningful that a student found that something is amiss even without being quite able to define what it is. The procedure for the third hypothesis (producing programs with fewer errors) was more complex and required two passes over the result; it requires some human analysis, as you will see in the article, but we hope that the two-pass process removes any bias.

This description of the study is only partial and you should read the article [4] for the full details of the procedure.

So what did we find in the end? Does SCOOP really makes concurrency easier to learn, concurrent programs easier to debug, and concurrent programmers less error-prone? Here too  I will refer you to the article. Let me simply mention that the results held some surprises.

In obtaining these results we tried very hard to address the Professor Smith syndrome and its four risks. Since all of our materials, procedures and data are publicly accessible, described in some detail in the paper, you can determine for yourself how well we met this objective, and whether it is possible to perform credible assessments even of one’s own work.

References

Further reading: for general guidelines on how to conduct empirical research see [5]; for ethical guidelines, applied to psychological research but generalizable, see [6].

[1] SCOOP Eiffel documentation, available here.

[2] SCOOP project documentation at ETH, available here.

[3] Software Architecture course at ETH, course page (2011).

[4] Sebastian Nanz, Faraz Torshizi, Michela Pedroni and Bertrand Meyer: Design of an Empirical Study for Comparing the Usability of Concurrent Programming Languages, to appear in ESEM 2011 (ACM/IEEE International Symposium on Empirical Software Engineering and Measurement), 22-23 September 2011. Draft available here.

[5] Barbara A. Kitchenham, Shari L. Pfleeger, Lesley M. Pickard, Peter W. Jones, David C. Hoaglin, Khaled El-Emam and Jarrett Rosenberg: Preliminary Guidelines for Empirical Research in Software Engineering, national Research Council Canada (NRC-CNRC), Report ERB-1082, 2001, available here.

[6] Robert Rosenthal: Science and ethics in conducting, analyzing, and reporting psychological research, in  Psychological Science, 5, 1994, p127-134. I found a copy cached by a search engine here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (8 votes cast)
VN:F [1.9.10_1130]
Rating: +7 (from 7 votes)

The Professor Smith syndrome: Part 2

As stated in the Quiz of a few days ago (“Part 1 ”), we consider the following hypothetical report in experimental software engineering ([1], [2]):

Professor Smith has developed a new programming technique, “Suspect-Oriented Programming” (SOP). To evaluate SOP, he directs half of the students in his “Software Methodology” class to do the project using traditional techniques, and the others to use SOP.

He finds that projects by the students using SOP have, on the average, 15% fewer bugs than the others, and reports that SOP increases software reliability.

What’s wrong with this story?

Professor Smith’s attempt at empirical software engineering is problematic for at least four reasons. Others could arise, but we do not need to consider them if Professor Smith has applied the expected precautions: the number of students should be large enough (standard statistical theory will tell us how much to trust the result for various sample sizes); the students should be assigned to one of the two groups on a truly random basis; the problem should be amenable to both SOP and non-SOP techniques; and the assessment of the number of bugs should in the results should be based on fair and if possible automated evaluation. Some respondents to the quiz cited these problems, but they would apply to any empirical study and we can assume they are being taken care of.

The first problem to consider is that the evaluator and the author of the concept under evaluation are the same person. This is an approach fraught with danger. We have no reason to doubt Professor Smith’s integrity, but he is human. Deep down, he wants SOP to be better than the alternative. That is bound to affect the study. It would be much more credible if someone else, with no personal stake in SOP, had performed it.

The second problem mirrors the first on the students’ side. The students from group 1 were told that they used Professor Smith’s great idea, those from group 2 that they had to use old, conventional, boring stuff. Did both groups apply the same zeal to their work? After all, the students know that Professor Smith created SOP, and maybe he is an convincing advocate, so group 1 students will (consciously or not) do their best; those from group 2 have less incentive to go the extra mile. What we may have at play here is a phenomenon known as the Hawthorne effect [3]: if you know you are being tested for a new technique, you typically work harder and better — and may produce better results even if the technique is worthless! Experiments dedicated to studying this effect show that even  a group that is in reality using the same technique as another does better, at least at the beginning, if it is told that it is using a new, sexy technique.

The first and second problems arise in all empirical studies, software-related or not. They are the reason why medical experiments use placebos and double-blind techniques (where neither the subjects nor the experimenters themselves know who is using which variant). These techniques often do not directly transpose to software experiments, but we should all the same be careful about empirical studies of assessments of one’s own work and about possible Hawthorne effects.

The third problem, less critical, is the validity of a study relying on students. To what extent can we extrapolate from the results to a situation in industry? Software engineering students are on their way to becoming software professionals, but they are not professionals yet. This is a difficult issue because universities, rather than industry, are usually and understandably the place where experiments take place, an sometimes there is no other choice than using students. But then one can question the validity of the results. It depends on the nature of the questions being asked: if the question under study is whether a certain idea is easy to learn, using students is reasonable. But if it is, for example, whether a technique produces less buggy programs, the results can depend significantly on the subjects’ experience, which is different for students and professionals.

The last problem does not by itself affect the validity of the results, but it is a show-stopper nonetheless: Professor Smith’s experiment is unethical! If is is indeed true that SOP is better than the alternative, he is harming students from group 2; in the reverse case, he is harming students from group 1. Only in the case of the null hypothesis (using SOP makes no statistically significant difference) is the experiment ethical, but then it is also profoundly uninteresting. The rule in course-related experiments is a variant of the Hippocratic oath: before all, do not harm. The first purpose of a course is to enrich the students’ knowledge and skills; secondary aims, such as helping the professor’s research, are definitely acceptable, but must never impede the first. The setup described above is all the less acceptable that the project results presumably count towards the course grade, so the students who were forced to use the less good technique, if there demonstrably was one, have grounds to complain.

Note that Professor Smith could partially address this fairness problem by letting students choose their group, instead of assigning them randomly to group 1 or group 2 (based for example on the first letter of their names). But then the results would lose credibility, because this technique introduces self-selection and hence bias: the students who choose SOP may be the more intellectually curious students, and hence possibly the ones who do better anyway.

If Professor Smith cannot ensure fairness, he can still use students for his experiment, but has to run it outside of a course, for example by paying students, or running the experiment as a competition with some prizes for those who produce the programs with fewest bugs. This technique can work, although it introduces further dangers of self-selection. As part of a course, however, you just cannot assign students, on your own authority, to different techniques that might have an different effect on the core goal of the course: the learning experience.

So Professor Smith has a long way to go before he can run experiments that will convey a significant argument in favor of SOP.

Over the years I have seen, as a reader and sometimes as a referee, many Professor Smith papers: “empirical” evaluation of a technique by its own authors, using questionable techniques and not applying the necessary methodological precautions.

A first step is, whenever possible, to use experimenters who are from a completely different group from the developers of the ideas, as in two studies [4] [5] about the effectiveness of pair programming.

And yet! Sometimes no one else is available, and you do want to obtain objective empirical evidence about the merits of your own ideas. You are aware of the risk, and ready to face the cold reality, including if the results are unfavorable. Can you do it?

A recent attempt of ours seems to suggest that this is possible if you exert great care. It will presented in a paper at the next ESEM (Empirical Software Engineering and Measurement) and even though it discusses assessing some aspects of our own designs, using students, as part of the course project which counts for grading, and separating them into groups, we feel it was fair and ethical, and </modesty_filter_on>an ESEM referee wrote: “this is one of the best designed, conducted, and presented empirical studies I have read about recently”<modesty_filter_on>.

How did we proceed? How would you have proceeded? Think about it; feel free to express your ideas as comments to this post. In the next installment of this blog (The Professor Smith Syndrome: Part 3), I will describe our work, and let you be the judge.

References

[1] Bertrand Meyer: The rise of empirical software engineering (I): the good news, this blog, 30 July 2010, available here.
[2] Bertrand Meyer: The rise of empirical software engineering (II): what we are still missing, this blog, 31 July 2010, available here.

[3] On the Hawthorne effect, there is a good Wikipedia entry. Acknowledgment: I first heard about the Hawthorne effect from Barry Boehm.

[4] Jerzy R. Nawrocki, Michal Jasinski, Lukasz Olek and Barbara Lange: Pair Programming vs. Side-by-Side Programming, in EuroSPI 2005, pages 28-38. I do not have a URL for this article.

[5] Matthias Müller: Two controlled Experiments concerning the Comparison of Pair Programming to Peer Review, in  Journal of Systems and Software, vol. 78, no. 2, pages 166-179, November 2005; and Are Reviews an Alternative to Pair Programming ?, in  Journal of Empirical Software Engineering, vol. 9, no. 4, December 2004. I don’t have a URL for either version. I am grateful to Walter Tichy for directing me to this excellent article.

VN:F [1.9.10_1130]
Rating: 10.0/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

The Professor Smith syndrome: Part 1 – a quiz

[As a reminder, this blog is now on a regular schedule, appearing every Monday. Sometimes in mid-week there will be a lighter piece or, as here, a preparation for the following Monday’s entry.]

Consider the following hypothetical report in experimental software engineering (see earlier posts: [1], [2]):

Professor Smith has developed a new programming technique, “Suspect-Oriented Programming” (SOP). To evaluate SOP, he directs half of the students in his “Software Methodology” class to do the project using traditional techniques, and the others to use SOP.

He finds that projects by the students using SOP have, on the average, 15% fewer bugs than the others, and reports that SOP increases software reliability.

Quiz, in advance of next Monday’s post: what’s wrong with this story?

References

[1] Bertrand Meyer: The rise of empirical software engineering (I): the good news, this blog, 30 July 2010, available here.
[2] Bertrand Meyer: The rise of empirical software engineering (II): what we are still missing, this blog, 31 July 2010, available here.

VN:F [1.9.10_1130]
Rating: 10.0/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 2 votes)

Stendhal on abstraction

This week we step away from our usual sources of quotations — the Hoares and Dijkstras and Knuths — in favor an author who might seem like an unlikely inspiration for a technology blog: Stendhal. A scientist may like anyone else be fascinated by Balzac, Flaubert, Tolstoy or Dostoevsky, but they live in an entirely different realm; Stendhal is the mathematician’s novelist. Not particularly through the themes of his works (as could be the case with  Borges or Eco), but because of their clear structure and elegant style,  impeccable in its conciseness and razor-like in its precision. Undoubtedly his writing was shaped by his initial education; he prepared for the entrance exam of the then very young École Polytechnique, although at the last moment he yielded instead to the call of the clarion.

The scientific way of thinking was not just an influence on his writing; he understood the principles of scientific reasoning and knew how to explain them. Witness the following text, which explains just about as well as anything I know the importance of abstraction. In software engineering (see for example [1]), abstraction is the key talent, a talent of a paradoxical nature: the basic ideas take a few minutes to explain, and a lifetime to master. In this effort, going back to the childhood memories of Henri Beyle (Stendhal’s real name) is not a bad start.

Stendhal’s Life of Henri Brulard is an autobiography, with only the thinnest of disguises into a novel (compare the hero’s name with the author’s). In telling the story of his morose childhood in Grenoble, the narrator grumbles about the incompetence of his first mathematics teacher, a Mr. Dupuy, who taught mathematics “as a set of recipes to make vinegar” (comme une suite de recettes pour faire du vinaigre) and tells how his father found a slightly better one, Mr. Chabert. Here is the rest of the story, already cited in [2]. The translation is mine; you can read the original below, as well as a German version. Instead of stacks and circles  — or a university’s commencement day, see last week’s posting — the examples invoke eggs and cheese, but wouldn’t you agree that this paragraph is as good a definition of abstraction, directly applicable to software abstractions, and specifically to abstract data types and object abstractions (yes, it does discuss “objects”!), as any other?

So I went to see Mr. Chabert. Mr. Chabert was indeed less ignorant than Mr. Dupuy. Through him I discovered Euler and his problems on the number of eggs that a peasant woman brings to the market where a scoundrel steals a fifth of them, then she leaves behind the entire half of the remainder and so forth. This opened my mind, I glimpsed what it means to use the tool called algebra. I’ll be damned if anyone had ever explained it to me; endlessly Mr. Dupuy spun pompous sentences on the topic, but never did he say this one simple thing: it is a division of labor, and like every division of labor it creates wonders by allowing the mind to concentrate all its forces on just one side of objects, on just one of their qualities. What difference it would have made if Mr. Dupuy had told us: This cheese is soft or is it hard; it is white, it is blue; it is old, it is young; it is mine, it is yours; it is light or it is heavy. Of so many qualities, let us only consider the weight. Whatever that weight is, let us call it A. And now, no longer thinking of cheese, let us apply to A everything we know about quantities. Such a simple thing; and yet no one was explaining it to us in that far-away province [3]. Since that time, however, the influence of the École Polytechnique and Lagrange’s ideas may have trickled down to the provinces.

References

[1] Jeff Kramer: Is abstraction the key to computing?, in Communications of The ACM, vol. 50, 2007, pages 36-42.
[2] Bertrand Meyer and Claude Baudoin: Méthodes de Programmation, Eyrolles, 1978, third edition, 1982.
[3] No doubt readers from Grenoble, site of great universities and specifically one of the shrines of French computer science, will appreciate how Stendhal calls it  “that backwater” (cette province reculée).

Original French text

J’allai donc chez M. Chabert. M. Chabert était dans le fait moins ignare que M. Dupuy. Je trouvai chez lui Euler et ses problèmes sur le nombre d’œufs qu’une paysanne apportait au marché lorsqu’un méchant lui en vole un cinquième, puis elle laisse toute la moitié du reste, etc., etc. Cela m’ouvrit l’esprit, j’entrevis ce que c’était que se servir de l’instrument nommé algèbre. Du diable si personne me l’avait jamais dit ; sans cesse M. Dupuy faisait des phrases emphatiques sur ce sujet, mais jamais ce mot simple : c’est une division du travail qui produit des prodiges comme toutes les divisions du travail et permet à l’esprit de réunir toutes ses forces sur un seul côté des objets, sur une seule de leurs qualités. Quelle différence pour nous si M. Dupuy nous eût dit : Ce fromage est mou ou il est dur ; il est blanc, il est bleu ; il est vieux, il est jeune ; il est à moi, il est à toi ; il est léger ou il est lourd. De tant de qualités ne considérons absolument que le poids. Quel que soit ce poids, appelons-le A. Maintenant, sans plus penser absolument au fromage, appliquons à A tout ce que nous savons des quantités. Cette chose si simple, personne ne nous la disait dans cette province reculée ; depuis cette époque, l’École polytechnique et les idées de Lagrange auront reflué vers la province.

German translation (by Benjamin Morandi)

Deshalb ging ich zu Herrn Chabert. In der Tat war Herr Chabert weniger ignorant als Herr Dupuy. Bei ihm fand ich Euler und seine Probleme über die Zahl von Eiern, die eine Bäuerin zum Markt brachte, als ein Schurke ihr ein Fünftel stahl, sie dann die Hälfte des Restes hinterliest u.s.w. Es hat mir die Augen geöffnet. Ich sah was es bedeutet, das Algebra genannte Werkzeug zu benutzen. Unaufhörlich machte Herr Dupuy emphatische Sätze über dieses Thema, aber niemals dieses einfache Wort: Es ist eine Arbeitsteilung, die wie alle Arbeitsteilungen Wunder herstellt und dem Geist ermöglicht seine Kraft ganz auf eine einzige Seite von Objekten zu konzentrieren, auf eine Einzige ihrer Qualitäten. Welch Unterschied für uns, wenn uns Herr Dupuy gesagt hätte: Dieser Käse ist weich oder er ist hart; er ist weiss, er ist blau; er ist alt, er ist jung; er gehört dir, er gehört mir; er ist leicht oder er ist schwer. Bei so vielen Qualitäten betrachten wir unbedingt nur das Gewicht. Was dieses Gewicht auch sei, nennen wir es A. Jetzt, ohne unbedingt weiterhin an Käse denken zu wollen, wenden wir auf A alles an, was wir über Mengen wissen. Diese einfach Sache sagte uns niemand in dieser zurückgezogenen Provinz; von dieser Epoche an werden die École Polytechnique und die Ideen von Lagrange in die Provinz zurückgeflossen sein.

VN:F [1.9.10_1130]
Rating: 9.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

In praise of Knuth and Liskov

In November of 2005, as part of the festivities of its 150-th anniversary, the ETH Zurich bestowed honorary doctorates on Don Knuth and Barbara Liskov. I gave the speech (the “laudatio”). It was published in Informatik Spektrum, the journal of Gesellschaft für Informatik, the German Computer Society, vo. 29, no. 1, February 2006, pages 74-76; I came across it recently and thought others might be interested in this homage to two great computer scientists.  The beginning was in German; I translated it into English. I also replaced a couple of German expressions by their translations: “ETH commencement” for ETH-Tag (the official name of the annual ceremony) and “main building” for Hauptgebäude.

I took this picture of Wirth, Liskov and Knuth (part of my gallery of computer scientists)  later that same day.

 

Laudatio

 In an institution, Ladies and Gentlement, which so proudly celebrates its hundred-and-fiftieth anniversary, a relatively young disciplines sometimes has cause for envy. We computer scientists are still the babies, or at least the newest kids on the block. Outside of this building, for example, you will see streets bearing such names as Clausius, yet there is neither a Von Neumann Lane nor a a Wirth Square. Youth, however,  also has its advantages; perhaps the most striking is that we still can, in our own lifetime, meet in person some of the very founders of our discipline. No living physicist has seen Newton; no chemist has heard Lavoisier. For us, it works. Today, Ladies and Gentlemen, we have the honor of introducing two of the undisputed pioneers of informatics.

Barbara Liskov

The first of our honorees today is Professor Barbara Liskov. To understand her contributions it is essential to realize the unfair competition in which the so-called Moore’s law pits computer software against computing hardware. To match the astounding progress of computing speed and memory over the past five decades, all that we have on the software side is our own intelligence which, it is safe to say, doesn’t double every eighteen months at constant price. The key to scaling up is abstraction; all advances in programming methodology have relied on new abstraction techniques. Perhaps the most significant is data abstraction, which enables us to organize complex systems on the basis of the types of objects they manipulate, defined in completely abstract terms. This is the notion of abstract data type, a staple component today of every software curriculum, including in the very first programming course here ETH. it was introduced barely thirty years ago in a seemingly modest article in SIGPLAN Notices — the kind of publication that hardly registers a ripple in science indexes — by Barbara Liskov and Stephen Zilles. Few papers have had a more profound impact on the theory and practice of software development than this contribution, “Programming with Abstract Data Types”.

The idea of abstract data types, or ADTs, is one of those Egg of Christopher Columbus moments; a seemingly simple intuition that changes the course of things. An ADT is a class of objects described in terms not of their internal properties, but of the operations applicable to them, and the abstract properties of these operations. Not by what they are, but by what they have. A rather capitalistic view of the world, but well suited to the description of complex systems where each part knows as little as possible about the others to protect itself about their future changes.

An abstraction such as ETH-Commencement could be described in a very concrete way: it happens in a certain place, consists of one event after another, gathers so many people. This is what we computer scientists call an implementation-oriented view, and relying on it means that we can’t change any detail without endangering the consistency of other processes, such as the daily planning of room allocation in the Main Building, which use it. In an ADT view, the abstraction “ETH Commencement” is characterized not by what it is but by what it has: a start, an end, an audience, and operations such as “Schedule the ETH Commencement”, “ Reschedule it”, “Start it”, “End it”. They provide to the rest of the world a clean, precisely specified interface which enables every ADT to use every other based on the minimum properties it requires, thus isolating them from irrelevant internal changes, and providing an irreplaceable weapon in the incessant task of software engineering: battling complexity.

Barbara Liskov didn’t stay with the theoretical concepts but implemented the ideas in the CLU language, one of the most influential of the set of programming languages that in the nineteen-seventies changed our perspective of how to develop good software.

She went on to seminal work on operating systems and distributed computing, introducing several widely applied concepts such as guardians, and always backing her theoretical innovations by building practical systems, from the CLU language and compiler to the Argus and Mercury distributed operating systems. Distributed systems, such as those which banks, airlines and other global enterprises run on multiple machines across multiple networks, raise particularly challenging issues. To quote from the introduction of her article on Argus:

A centralized system is either running or crashed, but a distributed system may be partly running and partly crashed. Distributed programs must cope with failures of the underlying hardware. Both the nodes and the network may fail. The goal of Argus is to provide mechanisms that make it easier for programmers to cope with these problems.

Barbara Liskov’s work introduced seminal concepts to deal with these extremely difficult problems.

Now Ford professor of engineering at MIT, she received not long ago the prestigious John von Neumann award of the IEEE; she has been one of the most influential people in software engineering. We are grateful for how Professor Barbara Liskov has helped shape the field are honored to have her at ETH today.

 Donald Knuth

In computer science and beyond, the name of Donald Knuth carries a unique aura. A professor at Stanford since 1968, now emeritus, he is the only person on record whose job title is the title of his own book: Professor of the Art of Computer Programming. This is for his eponymous multi-volume treatise, which established the discipline of algorithm analysis, and has had more effect than any other computer science publication. The Art of Computer Programming is a marvel of breadth, depth, completeness, mathematical rigor and clarity, not to forget humor. In that legendary book you will find exposed in detail the algorithms and data structures that lie at the basis of all software applications today. A Monte Carlo simulation, as a physicists may use, requires a number sequence that is both very long and very random-looking, even though the computer is a deterministic machine; if the simulation is any good, it almost certainly relies on the devious techniques which The Art of Computer Programming presents for making a perfectly deterministic sequence appear to have no order or other recognizable property. If you are running complex programs on your laptop, and they keep creating millions of software objects without clogging up gigabytes of memory, chances are the author of the garbage collector program is using techniques he learned from Knuth, with such delightful names as “the Buddy System”. If your search engine can at the blink of an eye find a needle of useful information in a haystack of tens of billions of Web pages, it’s most likely because they’ve been indexed using finely tuned data structures, such as hash tables, for which Knuth has been the reference for three decades through volume three, Searching and Sorting.

Knuth is famous for his precision and attention to detail, going so far as to offer a financial reward for every error found in his books, although one suspects this doesn’t cost him too much since people are so proud that instead of cashing the check they have it framed for display. The other immediately striking characteristic of Knuth is how profoundly he is driven by esthetics. This applies to performing arts, as anyone who was in the Fraumünster this morning and found out who the organist was can testify, but even more to his scientific work. The very title “the Art of computer programming” betrays this. Algorithms and data structures for Knuth are never dull codes for computers, but objects of intense esthetic pleasure and friendly discussion. This concern with beauty led to a major turn in his career, which delayed the continuation of the book series by many years but resulted in a development that has affected anyone who publishes scientific text. As he received the page proofs of the second edition of one of the volumes in the late seventies he was so repelled by its physical appearance, resulting from newly introduced computer typesetting technology, that he decided to build a revolutionary font design and text processing system, all by himself, from the ground up. This resulted in a number of publications such as a long and fascinating paper in the Bulletin of the American Mathematical Society entitled “The Letter S”, but even more importantly in widely successful and practical software programs which he wrote himself, TeX and Metafont, which have today become standards for scientific publishing. Here too he has shown the way in quality and rigor, being one of the very few people in the world who promise their software to be free of bugs, and backs that promise by giving a small financial reward for any counter-example.

His numerous other contributions are far too diverse to allow even a partial mention here; they have ranged across wide areas of computer science and mathematics.

To tell the truth, we are a little embarrassed that by bringing Professor Knuth here we are delaying by a bit more the long awaited release of volume 4. But we overcome this embarrassment in time to express our pride for having Donald Erwin Knuth at ETH for this anniversary celebration.

VN:F [1.9.10_1130]
Rating: 10.0/10 (9 votes cast)
VN:F [1.9.10_1130]
Rating: +9 (from 9 votes)

Publish no loop without its invariant

 

There may be no more blatant example of  the disconnect between the software engineering community and the practice of programming than the lack of widespread recognition for the fundamental role of loop invariants. 

Let’s recall the basics, as they are taught in the fourth week or so of the ETH introductory programming course [1], from the very moment the course introduces loops. A loop is a mechanism to compute a result by successive approximations. To describe the current approximation, there is a loop invariant. The invariant must be:

  1. Weak enough that we can easily ensure it on a subset, possibly trivial, of our data set. (“Easily” means than this task is substantially easier than the full problem we are trying to solve.)
  2. Versatile enough that if it holds on some subset of the data we can easily (in the same sense) make it hold on a larger subset — even if only slightly larger.
  3. Strong enough that, when it covers the entire data, it yields the result we seek.

As a simple example, assume we seek the maximum of an array a of numbers, indexed from 1. The invariant states that Result is the maximum of the array slice from 1 to i. Indeed:

  1. We can trivially obtain the invariant by setting Result to be a [1]. (It is then the maximum of the slice a [1..1].)
  2. If the invariant holds, we can extend it to a slightly larger slice — larger by just one element — by increasing i by 1 and updating Result to be the greater of the previous Result and the element a [i] (for the new  i).
  3. When the slice covers the entire array — that is, i = n — the invariant tells us that Result is the maximum of the slice a [1..n], giving us the result we seek.

You cannot understand the corresponding program text

    from
        i := 1; Result := a [1]
    until i = n loop
        i := i + 1
        if Result < a [i] then Result := a [i] end
    end

without understanding the loop invariant. That is true even of people who have never heard the term: they will somehow form a mental image of the intermediate situation that justifies the algorithm. With the formal notion, the reasoning becomes precise and checkable. The difference is the same as between a builder who has no notion of theory, and one who has learned the laws of mechanics and construction engineering.

As another example, take Levenshtein distance (also known as edit distance). It is the shortest sequence of operations (insert, delete or replace a character) that will transform a string into another. The algorithm (a form of dynamic programming) fills in a matrix top to bottom and left to right, each entry being one plus the maximum of the three neighboring ones to the top and left, except if the corresponding characters in the strings are the same, in which case it keeps the top-left neighbor’s value. The basic operation in the loop body reads

      if source [i] = target [j] then
           dist [i, j] := dist [i -1, j -1]
      else
           dist [i, j] := min (dist [i, j-1], dist [i-1, j-1], dist [i-1, j]) + 1
      end

You can run this and see it work, filling the array cell after cell, then delivering the result at (dist [M, N] (the bottom-right entry, M and i being the lengths of the source and target strings. Or just watch the animation on page 60 of [2]. It works, but why it works remains a total mystery until someone tells you the invariant:

Every value of dist filled so far is the minimum distance from the initial substrings of the source, containing characters at position 1 to p, to the initial substring of the target, positions 1 to q.

This is the rationale for the above code: we want to compute the next value, at position [i, j]; if the corresponding characters in the source and target are the same, no operation is needed to extend the result we had in the top-left neighbor (position [i-1, j-1]); if not, the best we can do is the minimum we can get by extending the results obtained for our three neighbors: through the insertion of source [i] if the minimum comes from the neighbor to the left, [i-1, j]; through the deletion of target [j] if it comes from the neighbor above; or through a replacement if from the top-left neighbor.

With this explanation, a mysterious, almost hermetic algorithm instantly becomes crystal-clear. 

Yet another example is in-place linked list reversal. The body of the loop is a pointer ballet:

temp := previous
previous
:= next
next
:= next.right
previous.put_right
(temp)

with proper initialization (set next to the value of first and previous to Void) and finalization (set first to the value of previous). This is not the only possible implementation, but all variants of the algorithm use a very similar scheme.

The code looks again pretty abstruse, and hard to get right if you do not remember it exactly. As in the other examples, the only way to understand it is to see the invariant, describing the intermediate assumption after a typical loop iteration. If the original situation was this:

List reversal: initial state

List reversal: initial state

then after a few iterations the algorithm yields this intermediate situation: 

List reversal: intermediate state

List reversal: intermediate state

 The figure illustrates the invariant:

Starting from previous and repeatedly following right links yields the elements of some initial part of the list, but in the reverse of their original order; starting from next and following right links yields the remaining elements, in their original order. 

Then it is clear what the loop body with its pointer ballet is about: it moves by one position to the right the boundary between the two parts, making sure that the invariant holds again in the new state, with one more element in the first (yellow) part and one fewer in the second (pink) part. At the end the second part will be empty and the first part will encompass all elements, so that (after resetting first to the value of previous) we get the desired result.

This example is particularly interesting because list reversal is a standard interview questions for programmers seeking a job; as a result, dozens of  pages around the Web helpfully present algorithms for the benefit of job candidates. I ran a search  on “List reversal algorithm” [3], which yields many such pages. It is astounding to see that from the first fifteen hits or so, which include pages from programming courses at both Stanford and MIT, not a single one mentions invariants, or (even without using the word) gives the above explanation. The situation is all the more bizarre that many of these pages — read them for yourself! — go into intricate details about variants of the pointer manipulations. There are essentially no correctness arguments.

If you go a bit further down the search results, you will find some papers that do reference invariants, but here is the catch: rather than programming or algorithms papers, they are papers about software verification, such as one by Richard Bornat which uses a low-level (C) version of the example to illustrate separation logic [4]. These are good papers but they are completely distinct from those directed at ordinary programmers, who simply wish to learn a basic algorithm, understand it in depth, and remember it on the day of the interview and beyond.

This chasm is wrong. Software verification techniques are not just good for the small phalanx of experts interested in formal proofs. The basic ideas have potential applications to the daily business of programming, as the practice of Eiffel has shown (this is the concept of  “Verification As a Matter Of Course” briefly discussed in an earlier post [5]). Absurdly, the majority of programmers do not know them.

It’s not that they cannot do their job: somehow they eke out good enough results, most of the time. After all, the European cathedrals of the middle ages were built without the benefit of sophisticated mathematical models, and they still stand. But today we would not hire a construction engineer who had not studied the appropriate mathematical techniques. Why should we make things different for software engineering, and deprive practitioners from the benefits of solid, well-accepted theory?  

As a modest first step, there is no excuse, ever, for publishing a loop without the basic evidence of its adequacy: the loop invariant.

References

[1] Bertrand Meyer: Touch of Class: Learning to Program Well, Using Objects and Contracts, Springer, 2009. See course page (English version) here.

[2] Course slides on control structures,  here in PowerPoint (or here in PDF, without the animation); see example starting on page 51, particularly the animation on page 54. More recent version in German here (and in PDF here), animation on page 60.

[3] For balance I ran the search using Qrobe, which combines results from Ask, Bing and Google.

[4] Richard Bornat, Proving Pointer Programs in Hoare Logic, in  MPC ’00, 5th International Conference on Mathematics of Program Construction, 2000, available here.

[5] Bertrand Meyer, Verification as a Matter of Course, a post on this blog.

VN:F [1.9.10_1130]
Rating: 10.0/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 4 votes)

About Watts Humphrey

Watts Humphrey, 2007

At FOSE (see previous post [1]) we will honor the memory of Watts Humphrey, the pioneer of disciplined software engineering, who left us in October. A blog entry on my Communications of the ACM blog [2] briefly recalls some of Humphrey’s main contributions.

References

[1] The Future Of Software Engineering: previous entry of this blog.
[2] Watts Humphrey: In Honor of a Pioneer, in CACM blog.

VN:F [1.9.10_1130]
Rating: 8.5/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

The Future Of Software Engineering

In case you haven’t heard about it yet, let me point you to FOSE, the Future Of Software Engineering [1] symposium in Zurich next week, organized by Sebastian Nanz. It is all made of invited talks; it is hard to think (with the possible exception of the pioneers’ conference [2]) of any previous gathering of so many software engineering innovators:

  • Barry Boehm
  • Manfred Broy
  • Patrick Cousot
  • Erich Gamma
  • Yuri Gurevich
  • Michael Jackson
  • Rustan Leino
  • David Parnas
  • Dieter Rombach
  • Joseph Sifakis
  • Niklaus Wirth
  • Pamela Zave
  • Andreas Zeller

The symposium is over two days. It is followed by a special event on “Eiffel at 25” which, as the rest of FOSE, is resolutely forward-looking, presenting a number of talks on current Eiffel developments, particularly in the areas of verification integrated in the development cycle (see “Verification As A Matter Of Course” [3]) and concurrent programming.

References

[1] Future Of Software Engineering (FOSE): symposium home page.
[2] Broy and Denert, editors: Software Pioneers, Springer, 2002. See publisher’s page.
[3] Verification As a Matter Of Course (VAMOC): an earlier entry of this blog.

VN:F [1.9.10_1130]
Rating: 7.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)

Every bilingual dictionary should be a Galois connection

A Galois connection (for anyone not familiar with the concept, the Wikipedia entry is decent)  between two partially ordered sets consists of two total functions f: AB and g: B → A such that for  all a: A and b: B

(f (a)  ≤  b)        (g  (b)  ≥  a)

The simplest and most common example uses powersets and inclusion: for some sets X and Y, A is ℙ (X), the set of subsets of X, and B is (Y); the ≤ order relation is simply ⊆, inclusion between subsets. So the condition is that for arbitrary subsets a and b of X and Y:

(f (a)  ⊆  b)        (g  (b)  ⊇  a)

Pictorially:

A Galois connection between powersets

A Galois connection between powersets

(Instead of starting with total functions f and g between  ℙ (X) and ℙ (Y) you may also use possibly partial functions f’ : A -|-> B and g’ : B -|-> A, and use for f and g the associated image functions, which are total.)

Now you might think that this post continues with abstract interpretation or some such topic, but what I really want to talk about is dictionaries. Bilingual dictionaries. You need them if you are learning a language, and they would seem to be the ideal application for computers, including shirt-pocket computers (more commonly known as smartphones). Hyperlinking frees us from the tyranny of page turning and makes dictionary browsing an exciting and entirely new experience: you can type partial words and see them completed, make mistakes and see them corrected, discover a new word and see it memorized into the interactive equivalent of flashcards. If in the definition of a word you see another that catches your attention, in either the source or the target language, you can click it and see its own definition. You can travel back and forth, retain your browsing history, and test yourself repeatedly.

Unfortunately, what I have described is only the theory. Current electronic bilingual dictionaries — at least those I tried, but I tried quite a few, involving a variety of languages — fall short of this ideal. In addition, they are typically of rather bad linguistic quality as compared to their print competitors.

An example of a seemingly fundamental requirement that every bilingual dictionary should satisfy (and that dictionaries on the market fail to meet), is that the relationship it defines between two languages must  be a Galois connection, both ways. If you are looking for the translation of a word or group of words a in X, and obtain a set b of equivalents in Y, then it is pretty hard to justify that when you go back the translations for b do not include a!

I have yet, however, to find a Galois dictionary. As an example among hundreds that I encountered in recent months, take the Pons ($30) French-German dictionary. As the names suggest f will be the function yielding the French translation of a set of German words and g  the German translation of a set of French words. Now g {(“approximation“)}  includes “Näherungswert“; but then f ({“Näherungswert“}) only lists “Valeur approchée“!

The Galois requirement is not just a matter of principle; it makes the dictionary useful for native speakers of either language. If, as here,  g  (b)  ⊆  a but (f (a    b), and a includes  the most common words in Y for the concepts at hand, the native Y speaker may find the right translation (Näherungswert is indeed pretty good for approximation in the mathematical usage of this word),  but the native speaker of X will be misled. Indeed valeur approchée is not  the best term for the concept of mathematical approximation in French.

More generally, the reader who is trying to master both of the dictionary’s languages will be cheated. Such a reader wants to use the dictionary not just to get quick translations (there’s Google and Bing Translate for that), but to gain deep insights into the languages and their correspondence. How can one learn without the ability to check translations back and forth?

I wrote to Pons to report this problem (and others). To their great credit they took the trouble to answer my message in detail; but here is their tack on the issue:

As far as the choice of headwords for the source and the target language is concerned, PONS always is doing this choice for each language volume separatedly as we the dictionaries are made for special target groups and in different sizes we have to make a choice of words and this is done with regard to the importance a word has in each language – source and target language – and not by simply changing source and target language. This special elaboration of headword lists for each language can imply that a word which can be found in one volume of the dictionary is not necessarily part of the other volume.

I am not sure I understand what this means, but I am much too kind to wish upon dictionary authors, if they do not fix their systems, the sad fate of Évariste Galois.

VN:F [1.9.10_1130]
Rating: 7.6/10 (5 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 3 votes)

The cloud and its risks

There is so much fervor around cloud computing that no one seems to note the downsides. Here is a little cautionary story.

Like many people, I have come to rely increasingly, for collaborative work, on Google Docs. As a text editor it is a kind of primitive Word. But it is web-based, so that several people can share a document. They will not just have read access, but can all write into the document, even at the same time. The system is indeed pretty good at incorporating changes by different users, as long as they do not affect the exact same place in the document. It also uses a modern approach to version management, originally popularized by wikis: a built-in history mechanism saves your successive revisions, enabling you to go back to any previous version. That mechanism is not ideal (the level of granularity is too small, so that it takes a long time to locate an earlier version), but it does provide safety.

In principle, indeed, safety is one of the great advantages of a cloud-based approach: you don’t have — so the mantra goes — to worry about backups, or even about saving your document; you don’t even need any local storage; everything is recorded on the server. If you make a mistake, or simply want to recover some piece of your text that you had discarded, just go back far enough in the history. “Control-S” (save the document) still exists, presumably for the sake of users born in the twentieth century, but it is just redundant.  With the cloud, we are told, you no longer need to save. Just write your stuff, the theory goes: the infrastructure is taking care of remembering your steps.

Thus indeed does the theory go. Reality does not always follow theory. For example, the reality  will not follow the theory if the implementation has bugs.

One beautiful evening some weeks ago I was busy polishing a technical note, and enjoying the Google Docs diagramming facilities that I had just discovered — basic, but good enough to prepare figures to illustrate a technical document. In fact the core of my document was a complex technical diagram, which I had spent several hours to develop. Then I prepared another, much simpler diagram, basically a couple of rectangles and an arrow between them. At that point I wanted to make sure my valuable efforts were not lost and, somewhat instinctively (I was born in the 20th century) I saved; if I had not, the system would have done it for me anyway. Under my very eyes, the page redisplayed, with the figures — there were 5 or 6 of them altogether — all turned into an identical one, the trivial little diagram I had entered last. After a moment of panic I realized that the history would be there, so I could at least go back to a recent version with the appropriate figures; relax, this is the cloud, the server is keeping my history for me! No such luck, though: all the figures in all the earlier versions had been overwritten in the same way. Gone forever.

At that point I realized I must have hit a major bug. Of course I am a programmer and could more or less guess what kind of bug this could be: a reference assignment instead of a clone, or maybe, in Eiffel terms, a clone rather than a deep_clone. (As far as I know Google is not using Eiffel; I’ll let the reader decide whether to jump from correlation to causation.) As to the history, any decent implementation stores “diffs”  rather than full copies, so if an object has changed but it is still at the same place the reference is the same: there is no “diffs” to store.

Guessing the programming error provided little consolation: my brilliant diagram was lost for humankind. Just to check that the bug was real I tried a couple of times to modify one of the figures again, in a small way; sure enough, all figures in the document immediately redisplayed to an identical version, the one I had just produced. The software was obviously broken.

I decided not to take any more risks and recreated the figures in a Word document, then prepared screen shots and included them in the Google Doc. It was rather painful to redo everything but at least I knew that I would have to redo it just once. In the process I did not forget to type Control-S every once in a while, with the same feeling of warmth and safety as if revisiting a treasured childhood home, carefully  maintained by the grandparents away from the fads and bustle of the big city.

I do not know if there is customer support for Google Docs; if there is, it is not obvious. In any case it is a free service, so one has little ground to complain. I happen, however, to have friends in high places, and through them was able in just a few hours to reach the Google engineers in charge. They reacted very promptly, confirmed it was a bug,  and corrected it. They were very kind and valiantly tried to recover my figures; but at least they had corrected the problem, sparing many other users from an experience that, indeed, I do not recommend.

While preparing this note I had some further contacts with Google engineers, who commented:

At Google we use logging, on disk snapshots, replicated storage, tape backups, and other systems to deliver massively redundant data protection. In the rare cases of bugs like this one, where user data is impacted, we continue to have a consistent and impressive track-record in successfully recovering that data.”

There is an uplifting moral to the story: the bug was fixed in a matter of hours. Most Google Docs users probably did not notice it. A bug of similar severity, in a traditional product that gets released and sent out to users, would have required a new release and a new download. On the cloud it is enough to fix the server copy.

Other lessons, however, are less encouraging.

First, one may surmise that the very process of an official release in a traditional product mode, and the resulting heightened impact of bugs, lead to a more careful Quality Assurance process than the  “forever beta” culture of cloud-based deployment. I have no evidence that my bug story was due to an unsatisfactory QA process. It may just be a one-time blip. But the temptation definitely exists in a cloud-based project to lower one’s guard because of the expectation, conscious or not, that any error will be found by some user and promptly corrected for all users.

An even more scary observation is that on the cloud you are trusting everything to a provider and its software, correct or not, robust or not, secure or not. The recurring leaks of customer information from  Web sites are a constant reminder of that risk. In the text processing example, any user of a text editor or document processing knows that, if he saves his work once in a while, possible damage if the tool crashes or misbehaves is circumscribed: at worst, you will lose the changes since the last save. When working on the cloud, you typically do not make local copies: if a tool messes up and loses the record, you have lost everything. It is gone for good.

In technology we have hype, buzzwords, fads, and successful advances. These are not necessarily disjoint categories, but often successive steps in the life of  a new ideas.   What characterizes the transition from a fad to a successful technology is that in the latter case one knows clearly both the advantages and the drawbacks. Cloud computing is advanced enough to reach that stage.

VN:F [1.9.10_1130]
Rating: 9.0/10 (15 votes cast)
VN:F [1.9.10_1130]
Rating: +4 (from 6 votes)

The rise of empirical software engineering (II): what we are still missing

p> 

Recycled(This article was initially published in the CACM blog.)

The previous post under  the heading of empirical software engineering hailed the remarkable recent progress of this field, made possible in particular by the availability of large-scale open-source repositories and by the opening up of some commercial code bases.

Has the empirical side of software engineering become a full member of empirical sciences? One component of the experimental method is still not quite there: reproducibility. It is essential to the soundness of natural sciences; when you publish a result there, the expectation is that others will be able to replicate it. Perhaps such duplication does not happen as often and physicists and biologists would have us believe, but it does happen, and the mere possibility that someone could check your results (and make a name for himself, especially if you are famous, by disproving them) keeps experimenters on their toes. 

If we had the same norms in empirical software engineering, empirical papers would all contain a clause such as

Hampi’s source code and documentation, experimental data, and additional results are available at http://people.csail.mit.edu/akiezun/hampi

This example is, in fact, a real quote, from a paper [1] at the 2009 ISSTA conference. It shows exactly what we expect for an experimental software engineering publication: below are my results, if you want to rerun the experiments here is the URL where you will find the code (source and binary) and the data.

Unfortunately, such professionalism is the exception rather than the rule. I performed a quick check — entirely informal, as this is a blog post, not an empirical research paper! — in the ISSTA ’09 proceedings. ISSTA, an ACM conference is a good sample point, since it covers testing (plus other approaches to program analysis) and almost every paper has an  “experiment” section. I found only a very small number that, like the one cited above, give explicit reproducibility information. (Disclosure: one of those papers is ours [2].)

I believe that the situation will change dramatically and that in a few years it will be impossible to submit an empirical paper without including such information. Computer science, or at least some areas of software engineering, should actually consider themselves privileged when it comes to allowing reproducibility: all that we have to do to reproduce a result, in testing for example, is to run a program. That is easier than for a zoologist — wishing to reproduce a colleague’s experiment precisely — to gather in his lab the appropriate number of flies, chimpanzees or killer whales.

In some types of empirical software research, such as the assessment of process models or design techniques, reproducing an experiment’s setup is harder than when all you have to do is to rerun a program. But regardless of the area we must develop a true  culture of reproducibility. It is not yet there. I have personally come to take experimental results with a grain of salt; not that I particulary suspect foul play, but I simply know how easy it is, in the absence of external validation, to make a mistake in the experiments and, unwittingly, publish a paper with wrong results.

Developing a culture of reproducibility also has an effect on the refereeing process. In submitting papers with precise instructions to reproduce our results, we have sometimes remarked that referees never contact us. I hope this means they always succeed; I suspect, however, that in many cases they just do not try. If you think further about the implications, providing reproducibility instructions for a submitted paper is scary: after all a software run may fail to run for marginal reasons, such as the wrong hardware configuration or a misunderstanding of the instructions. You do not want to perform all the extra work (of making your results reproducible) just to have the paper summarily rejected because the referee is running Windows 95. Ideally, then, referees should have the possibility to ask technical questions — but anonymously, since this is the way most refereeing works. Conferences and journals generally do not support such a process.

These obstacles are implementation issues, however, and will go away. What matters for the growth of the discipline is that it needs, like experimental sciences before it, to embrace a true culture of reproducibility.

References

[1] Adam Kieun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, Michael D. Ernst: HAMPI: A Solver for String Constraints, Proceedings of the 2009 ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’09), July 19-23, 2009, Chicago.

[2] Nadia Polikarpova, Ilinca Ciupa  and Bertrand Meyer: A Comparative Study of Programmer-Written and Automatically Inferred Contracts, Proceedings of the 2009 ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA ’09), July 19-23, 2009, Chicago.

VN:F [1.9.10_1130]
Rating: 6.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +2 (from 4 votes)

The rise of empirical software engineering (I): the good news

 

RecycledIn the next few days I will post a few comments about a topic of particular relevance to the future of our field: empirical software engineering. I am starting by reposting two entries originally posted in the CACM blog. Here is the first. Let me use this opportunity to mention the LASER summer school [1] on this very topic — it is still possible to register.

Empirical software engineering papers, at places like ICSE (the International Conference on Software Engineering), used to be terrible.

There were exceptions, of course, most famously papers by Basili, Zelkowitz, Rombach, Tichy, Berry, Humphrey, Gilb, Boehm, Lehmann, Belady and a few others, who kept hectoring the community about the need to base our opinions and practices on evidence rather than belief. But outside of these cases the typical ICSE empirical paper — I sat through a number of them — was depressing: we made these measurements in our company, found these results, just believe us. A question here in the back? Can you reproduce our results? Access our code? We’d love you to, but unfortunately we work for a company — the Call for Papers said industry contributions were welcome, didn’t it? — and we can’t give you the details. So sorry. But trust us, we checked our results.

Actually, there was another kind of empirical paper, which did not suffer from such secrecy: the university study. Hi, I am professor Bright, the well-known author of the Bright method of software development. Everyone knows it’s the best, but we wanted to assess it scientifically through a rigorous empirical study. I gave the same programming problem to two groups of third-year undergraduates; one group was told to use the Bright method, the other not. Guess what? The Bright group performed 67.94% better! I see the session chair wanting to move to the next speaker; see the details in the paper.

For years, this was most of what we had: unverifiable industry reports and unconvincing student experiments.

And suddenly the scene has changed. Empirical software engineering studies are in full bloom; the papers are flowing, and many are good!

What triggered this radical change is the availability of open-source repositories. Projects such as Linux, Eclipse, Apache, EiffelStudio and many others have records going back 10, 15, sometimes 20 years. These records contain the true history of the project: commits (into the configuration management system), bug reports, bug fixes, test runs and their results, developers involved, and many more elements of project data. All of a sudden empirical research has what any empirical science needs: a large corpus of objects to analyze.

Open-source projects have given the decisive jolt, but now we can rely on industrial data as well: Microsoft and other companies have started making their own records selectively available to researchers. In the work of authors such as Zeller from Sarrebruck, Gall from Uni. Zurich or Nagappan from Microsoft, systematic statistical techniques yield answers, sometimes surprising, to questions on which we could only speculate. Do novices or experts cause more bugs? Does test coverage correlate with software quality, and if so, positively or negatively? Little by little, we are learning about the true properties of software products and processes, based not on fantasies but on quantitative analysis of meaningful samples.

The trend is unmistakable, and irreversible.

Not all is right yet; in the second installment of this post I will describe some of what still needs to be improved for empirical software engineering to achieve full scientific rigor.

Reference

[1] LASER summer school 2010, at http://se.ethz.ch/laser.

VN:F [1.9.10_1130]
Rating: 4.5/10 (2 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 4 votes)

Another DOSE of distributed software development

The software world is not flat; it is multipolar. Gone are the days of one-site, one-team developments. The increasingly dominant model today is a distributed team; the place where the job gets done is the place where the appropriate people reside, even if it means that different parts of the job get done in different places.

This new setup, possibly the most important change to have affected the practice of software engineering in this early part of the millennium,  has received little attention in the literature; and even less in teaching techniques. I got interested in the topic several years ago, initially by looking at the phenomenon of outsourcing from a software engineering perspective [1]. At ETH, since 2004, Peter Kolb and I, aided by Martin Nordio and Roman Mitin, have taught a course on the topic [2], initially called “software engineering for outsourcing”. As far as I know it was the first course of its kind anywhere; not the first course about outsourcing, but the first to explore the software engineering implications, rather than business or political issues. We also teach an industry course on the same issues [3], attended since 2005 by several hundred participants, and started, with Mathai Joseph from Tata Consulting Services, the SEAFOOD conference [4], Software Engineering Advances For Outsourced and Offshore Development, whose fourth edition starts tomorrow in Saint Petersburg.

After a few sessions of the ETH course we realized that the most important property of the mode of software development explored in the course is not that it involves outsourcing but that it is distributed. In parallel I became directly involved with highly distributed development in the practice of Eiffel Software’s development. In 2007 we renamed the ETH course “Distributed and Outsourced Software Engineering” (DOSE) to acknowledge the broadened scope. The topic is still new; each year we learn a little more about what to teach and how to teach it.

The 2007 session saw another important addition. We felt it was no longer sufficient to talk about distributed development, but that students should practice it. Collaboration between groups in Zurich and other groups in Zurich was not good enough. So we contacted colleagues around the world interested in similar issues, and received an enthusiastic response. The DOSE project is itself distributed: teams from students in different universities collaborate in a single development. Typically, we have two or three geographically distributed locations in each project group. The participating universities have been Politecnico di Milano (where our colleagues Carlo Ghezzi and Elisabetta di Nitto have played a major role in the current version of the project), University of Nijny-Novgorod in Russia, University of Debrecen in Hungary, Hanoi University of Technology in Vietnam, Odessa National Polytechnic in the Ukraine and (across town for us) University of Zurich. For the first time in 2010 a university from the Western hemisphere will join: University of Rio Cuarto in Argentina.

We have extensively studied how the projects actually fare (see publications [4-8]). For students, the job is hard. Often, after a couple of weeks, many want to give up: they have trouble reaching their partner teams, understanding their accents on Skype calls, agreeing on modes of collaboration, finalizing APIs, devising a proper test plan. Yet they hang on and, in most cases, succeed. At the end of the course they tell us how much they have learned about software engineering. For example I know few better way of teaching the importance of carefully documented program interfaces — including contracts — than to ask the students to integrate their modules with code from another team halfway around the globe. This is exactly what happens in industrial software development, when you can no longer rely on informal contacts at the coffee machine or in the parking lot to smooth out misunderstandings: software engineering principles and techniques come in full swing. With DOSE, students learn and practice these fundamental techniques in the controlled environment of a university project.

An example project topic, used last year, was based on an idea by Martin Nordio. He pointed out that in most countries there are some card games played in that country only. The project was to program such a game, where the team in charge of the game logic (what would be the “business model” in an industrial project) had to explain enough of their country’s game, and abstractly enough, to enable the other team to produce the user interface, based on a common game engine started by Martin. It was tough, but some of the results were spectacular, and these are students who will not need more preaching on the importance of specifications.

We are currently preparing the next session of DOSE, in collaboration with our partner universities. The more the merrier: we’d love to have other universities participate, including from the US. Adding extra spice to the project, the topic will be chosen among those from the ICSE SCORE competition [9], so that winning students have the opportunity to attend ICSE in Hawaii. If you are teaching a suitable course, or can organize a student group that will fit, please read the project description [10] and contact me or one of the other organizers listed on the page. There is a DOSE of madness in the idea, but no one, teacher or student,  ever leaves the course bored.

References

[1] Bertrand Meyer: Offshore Development: The Unspoken Revolution in Software Engineering, in Computer (IEEE), January 2006, pages 124, 122-123. Available here.

[2] ETH course page: see here for last year’s session (description of Fall 2010 session will be added soon).

[3] Industry course page: see here for latest (June 2010( session (description of November 2010 session will be added soon).

[4] SEAFOOD 2010 home page.

[5] Bertrand Meyer and Marco Piccioni: The Allure and Risks of a Deployable Software Engineering Project: Experiences with Both Local and Distributed Development, in Proceedings of IEEE Conference on Software Engineering & Training (CSEE&T), Charleston (South Carolina), 14-17 April 2008, ed. H. Saiedian, pages 3-16. Preprint version  available online.

[6] Bertrand Meyer:  Design and Code Reviews in the Age of the Internet, in Communications of the ACM, vol. 51, no. 9, September 2008, pages 66-71. (Original version in Proceedings of SEAFOOD 2008 (Software Engineering Advances For Offshore and Outsourced Development,  Lecture Notes in Business Information Processing 16, Springer Verlag, 2009.) Available online.

[7] Martin Nordio, Roman Mitin, Bertrand Meyer, Carlo Ghezzi, Elisabetta Di Nitto and Giordano Tamburelli: The Role of Contracts in Distributed Development, in Proceedings of SEAFOOD 2009 (Software Engineering Advances For Offshore and Outsourced Development), Zurich, June-July 2009, Lecture Notes in Business Information Processing 35, Springer Verlag, 2009. Available online.

[8] Martin Nordio, Roman Mitin and Bertrand Meyer: Advanced Hands-on Training for Distributed and Outsourced Software Engineering, in ICSE 2010: Proceedings of 32th International Conference on Software Engineering, Cape Town, May 2010, IEEE Computer Society Press, 2010. Available online.

[9] ICSE SCORE 2011 competition home page.

[10] DOSE project course page.

VN:F [1.9.10_1130]
Rating: 8.8/10 (4 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 0 votes)

Analyzing a software failure

More than once I have emphasized here [1] [2] the urgency of rules requiring systematic a posteriori analysis of software mishaps that have led to disasters. I have a feeling that many more posts will be necessary before the idea registers.

Some researchers are showing the way. In a June 2009 article [4], Tetsuo Tamai from the University of Tokyo published a fascinating dissection of the 2005 Mizuo Securities incident at the Tokyo Stock Exchange, where market havoc resulted from a software fault that prevented proper execution of the cancel command after an employee who wanted to sell one share at 610,000 yen mistakenly switched the two numbers.

I found out only recently about the article while browsing Dines Bjørner’s page and hitting on an unpublished paper [3] where Bjørner proposes a mathematical model for the trading rules. Tamai’s article deserves to be widely read.

References

[1] The one sure way to advance software engineering: this blog, see here.
[2] Dwelling on the point: this blog, see here.
[3] Dines Bjørner: The TSE Trading Rules, version 2, unpublished report, 22 February 2010, available online.
[4] Tetsuo Tamai: Social Impact of Information System Failures, in IEEE Computer, vol. 42, no. 6, June 2009, pages 58-65, available online (with registration); the article’s text is also included in [3].

VN:F [1.9.10_1130]
Rating: 5.3/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: 0 (from 2 votes)

From programming to software engineering: ICSE keynote slides available

In response to many requests, I have made available [1] the slides of my education keynote at ICSE earlier this month. The theme was “From programming to software engineering: notes of an accidental teacher”. Some of the material has been presented before, notably at the Informatics Education Europe conference in Venice in 2009. (In research you can give a new talk every month, but in education things move at a more senatorial pace.) Still, part of the content is new. The talk is a summary of my experience teaching programming and software engineering at ETH.

The usual caveats apply: these are only slides (I did not write a paper), and not all may be understandable independently of the actual talk.

Reference

[1] From programming to software engineering: notes of an accidental teacher, slides from a keynote talk at ICSE 2010.

VN:F [1.9.10_1130]
Rating: 7.0/10 (3 votes cast)
VN:F [1.9.10_1130]
Rating: +1 (from 1 vote)

The other impediment to software engineering research

In the decades since structured programming, many of the advances in software engineering have come out of non-university sources, mostly of four kinds:

  • Start-up technology companies  (who played a large role, for example, in the development of object technology).
  • Industrial research labs, starting with Xerox PARC and Bell Labs.
  • Independent (non-university-based) author-consultants. 
  • Independent programmer-innovators, who start open-source communities (and often start their own businesses after a while, joining the first category).

 Academic research has had its part, honorable but limited.

Why? In earlier posts [1] [2] I analyzed one major obstacle to software engineering research: the absence of any obligation of review after major software disasters. I will come back to that theme, because the irresponsible attitude of politicial authorities hinders progress by depriving researchers of some of their most important potential working examples. But for university researchers there is another impediment: the near-impossibility of developing serious software.

If you work in theory-oriented parts of computer science, the problem is less significant: as part of a PhD thesis or in preparation of a paper you can develop a software prototype that will support your research all the way to the defense or the publication, and can be left to wither gracefully afterwards. But software engineering studies issues that arise for large systems, where  “large” encompasses not only physical size but also project duration, number of users, number of changes. A software engineering researcher who only ever works on prototypes will be denied the opportunity to study the most significant and challenging problems of the field. The occasional consulting job is not a substitute for this hands-on experience of building and maintaining large software, which is, or should be, at the core of research in our field.

The bodies that fund research in other sciences understood this long ago for physics and chemistry with their huge labs, for mechanical engineering, for electrical engineering. But in computer science or any part of it (and software engineering is generally viewed as a subset of computer science) the idea that we would actually do something , rather than talk about someone else’s artifacts, is alien to the funding process.

The result is an absurd situation that blocks progress. Researchers in experimental physics or mechanical engineering employ technicians: often highly qualified personnel who help researchers set up experiments and process results. In software engineering the equivalent would be programmers, software engineers, testers, technical writers; in the environments that I have seen, getting financing for such positions from a research agency is impossible. If you have requested a programmer position as part of a successful grant request, you can be sure that this item will be the first to go. Researchers quickly understand the situation and learn not even to bother including such requests. (I have personally never seen a counter-example. If you have a different experience, I will be interested to learn who the enlightened agency is. )

The result of this attitude of funding bodies is a catastrophe for software engineering research: the only software we can produce, if we limit ourselves to official guidelines, is demo software. The meaningful products of software engineering (large, significant, usable and useful open-source software systems) are theoretically beyond our reach. Of course many of us work around the restrictions and do manage to produce working software, but only by spending considerable time away from research on programming and maintenance tasks that would be far more efficiently handled by specialized personnel.

The question indeed is efficiency. Software engineering researchers should program as part of their normal work:  only by writing programs and confronting the reality of software development can we hope to make relevant contributions. But in the same way that an experimental physicist is helped by professionals for the parts of experimental work that do not carry a research value, a software engineering researcher should not have to spend time on porting the software to other architectures, performing configuration management, upgrading to new releases of the operating system, adapting to new versions of the libraries, building standard user interfaces, and all the other tasks, largely devoid of research potential, that software-based innovation requires.

Until  research funding mechanisms integrate the practical needs of software engineering research, we will continue to be stymied in our efforts to produce a substantial effect on the quality of the world’s software.

References

[1] The one sure way to advance software engineering: this blog, see here.
[2] Dwelling on the point: this blog, see here.

VN:F [1.9.10_1130]
Rating: 8.3/10 (18 votes cast)
VN:F [1.9.10_1130]
Rating: +6 (from 8 votes)

Programming on the cloud?

I am blogging live from the “Cloud Futures” conference organized by Microsoft in Redmond [1]. We had two excellent keynotes today, by Ed Lazowska [1] and David Patterson.

Lazowska emphasized the emergence of a new kind of science — eScience — based on analysis of enormous amounts of data. His key point was that this approach is a radical departure from “computational science” as we know it, based mostly on large simulations. With the eScience paradigm, the challenge is to handle the zillions of bytes of data that are available, often through continuous streams, in such fields as astronomy, oceanography or biology. It is unthinkable in his view to process such data through super-computing architectures specific to an institution; the Cloud is the only solution. One of the reasons (developed more explicitly in Patterson’s talk) is that cloud computing supports scaling down as well as scaling up. If your site experiences sudden bursts of popularity — say you get slashdotted — followed by downturns, you just cannot size the hardware right.

Lazowska also noted that it is impossible to convince your average  university president that Cloud is the way to go, as he will get his advice from the science-by-simulation  types. I don’t know who the president is at U. of Washington, but I wonder if the comment would apply to Stanford?

The overall argument for cloud computing is compelling. Of course the history of IT is a succession of swings of the pendulum between centralization and delocalization: mainframes, minis, PCs, client-server, “thin clients”, “The Network Is The Computer” (Sun’s slogan in the late eighties), smart clients, Web services and so on. But this latest swing seems destined to define much of the direction of computing for a while.

Interestingly, no speaker so far has addressed issues of how to program reliably for the cloud, even though cloud computing seems only to add orders of magnitude to the classical opportunities for messing up. Eiffel and contracts have a major role to play here.

More generally the opportunity to improve quality should not be lost. There is a widespread feeling (I don’t know of any systematic studies) that a non-negligible share of results generated by computational science are just bogus, the product of old Fortran programs built by generations of graduate students with little understanding of software principles. At the very least, moving to cloud computing should encourage the use of 21-th century tools, languages and methods. Availability on the cloud should also enhance a critical property of good scientific research: reproducibility.

Software engineering is remarkably absent from the list of scientific application areas that speaker after speaker listed for cloud computing. Maybe software engineering researchers are timid, and do not think of themselves as deserving large computing resources; consider, however, all the potential applications, for example in program verification and empirical software engineering. The cloud is a big part of our own research in verification; in particular the automated testing paradigm pioneered by AutoTest [3] fits ideally with the cloud and we are actively working in this direction.

Lazowska mentioned that development environments are the ultimate application of cloud computing. Martin Nordio at ETH has developed, with the help of Le Minh Duc, a Master’s student at Hanoi University of Technology, a cloud-based version of EiffelStudio: CloudStudio, which I will present in my talk at the conference tomorrow. I’ll write more about it in later posts; just one note for the moment: no one should ever be forced again to update or commit.

References

[1] Program of the Cloud Futures conference.

[2] Keynote by Ed Lazowska. You can see his slides here.

[3] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, Emmanuel Stapf: Programs That Test Themselves. IEEE Computer, vol. 42, no. 9, pages 46-55, September 2009; online version here.

VN:F [1.9.10_1130]
Rating: 7.7/10 (6 votes cast)
VN:F [1.9.10_1130]
Rating: +3 (from 3 votes)